117 research outputs found

    Television White Space Based Broadband Network’s Coverage and CAPEX Performance for Rural Areas Connectivity in Tanzania

    Get PDF
    This study compared the CAPEX requirements for a television white space (TVWS) based broadband network and that of deploying the UMTS based mobile broadband networks to deliver broadband connectivity in areas with sparse population which characterize most of Tanzania rural. Like many developing countries, Tanzania has low Internet penetration, with penetration of just over 46% when multiple subscriptions are taken into account. The affected communities are mostly rural due to low population densities which make deployment of the mobile broadband to be much expensive in terms of costs. This limits the economic development potential in these areas given that the broadband connectivity and services is a key driver for the Fourth Industrial Revolution (4IR or Industry 4.0) and modern digital economy. Comparative between the coverage capability of the TVWS and UMTS family of standards by considering the number of base transceiver stations (BTS) is conducted to cover a specific geographic area for three different radio operating environments namely hilly, undulating and flat terrain landscapes. The broadband connectivity data rate is defined at the receiver rate of 2 Mbps or above, and used to determine the number of BTS required for the two technologies. Results show that introducing the TVWS as a middle mile solution, cuts the number of UMTS BTS required to serve the same population by 68%, 66.7%, and 75% for the three canonical environments respectively

    Solutions for wireless internet connectivity in remote and rural areas

    Get PDF
    Abstract. These days internet connectivity is listed in the basic needs of human habitat. Internet provides inevitable support in getting knowledge, professional and social connectivity, entertainment media, and in running majority of businesses. Human dependency on internet for efficient, proficient and time saving work has increased the demand of internet connectivity worldwide. The global index shows a percentage increase in internet users from 16% to 48% (of the world population) from 2005 to 2019. The users are accessing internet via different media, inclusive of fixed lines and wireless connectivity. In wireless connectivity by 2019, 86% of the world population is using mobile broadband services offered by different telecom operators in different regions. Around 44.7% of the world population lives in rural areas as projected in 2018. Telecom operators are now seeking to cover all urban and rural, segregated, and dense, plateaus and hills, small and big geographical areas for internet connectivity. The majority of challenges faced by operators for deployment of internet connectivity services are in rural areas. Internet users cited in rural areas experience poor coverage and bad quality of service (QoS) in wireless internet access. This thesis covers the rural area internet connectivity challenges, existing deployable solutions against the challenges, and provides example solutions to overcome these challenges, to provide wireless network coverage in rural areas of Finland. Many of the existing wireless communication services are directly deployable or adjustable to the remote or rural areas almost the same way as for the urban areas. The major challenge is the low annual revenue per unit and segregated population densities of rural areas, which increase the return of investment time of network service providers. There are other challenges like ease of assembly, technology, backhaul connectivity, and electricity discussed in the thesis. The possible wireless network solutions deployable for wide area network regions and local area network regions are presented in this thesis. Thesis presents all emerging wireless technologies like small cell base station, super tower, balloon Loon project, power line Airgig project, satellite Viasat service, fixed wireless internet, and signal booster. Two possible network solutions for wireless network coverage in rural areas of Finland are analysed in the thesis. Huawei’s RuralStar small cell base station is presented as the first network solution from the viewpoint of network service provider. Hajakaista network services to individual user are presented as the second network solution from the viewpoint of end user. An addition of outdoor router in Hajakaista network architecture is presented as an additional advantage of outdoor Wi-Fi service together with indoor Wi-Fi. The limitations of the network solutions and future work scope are discussed in the discussion part of the thesis.Langattomia tietoliikenneratkaisuja syrjäalueille. Tiivistelmä. Nykyisin internetyhteys nähdään perustarpeeksi koska se antaa pääsyn tietoon, mahdollistaa ammatilliset ja sosiaaliset yhteydet sekä toimii viihdeväylänä ja tärkeänä osana liiketoimintaa. Tämän vuoksi tarve internetyhteydelle on kasvanut maailmanlaajuisesti. Vuonna 2005 maailman ihmisistä 16 % oli yhteys internettiin ja 2019 48 %. Internetyhteys voidaan saada usealla eri tavalla kuten valokuidulla ja langatonta yhteyttä käyttäen. Vuonna 2019 maailman ihmisistä 86 % käytti langatonta tekniikkaa. Vuonna 2018 44,7 % ihmisistä asui maaseutualueilla. Teleoperaattorit yrittävät kattaa kaikki kaupunki- ja maaseutualueet; eristyneet, tasaiset, kukkulaiset, isot ja pienet maantieteelliset alueet. Suurimmat haasteet ovat maaseudulla, jossa ihmiset kokevat huonoa yhteyspeittoa ja yhteyden laatua. Tämä diplomityö tarkastelee, miten nykyisiä langattomia järjestelmiä voitaisiin käyttää maaseudulla toimivien yhteyksien luomiseksi. Työ esittää kaksi esimerkkiratkaisua Suomen olosuhteisiin. Monet nykyisin kaupungeissa käytettävät ratkaisut ovat suoraan tai lähes suoraan sovellettavissa maaseudulle. Päähaasteet ovat matala vuosittainen yksikkötuotto ja hajallaan olevat alueet, jotka syyt kasvattavat investoinnin kuoletusaikaa. Muita haasteita ovat asennus, teknologia, siirtoyhteydet (tukiasemasta verkkoon) ja sähkön saanti, joita tarkastellaan työssä. Mahdollisia langattomia ratkaisuja ovat laajan alueen ja paikalliset ratkaisut, kuten työssä tuodaan esille. Työ tarkastelee solukkoverkkoja, supertornia, palloprojekti Loonia, sähkölinjoihin pohjautuvaa Airgig-projektia, Viasat-satelliittiratkaisua, kiinteää solukkoyhteyttä ja signaalin passiivista vahvistamista. Työ esittää kaksi ratkaisumallia Suomen olosuhteisiin. Toinen perustuu Huawein RuralStar-kevyttukiasemaan, jolla voi jatkaa operaattorin verkkoa. Toinen ratkaisu on kuluttajalähtöinen ja se perustuu Hajakaista Oy:n ratkaisuun. Siinä lisätään Hajakaista Oy:n perusratkaisun eli talon sisäisen Wi-Fi-verkon rinnalle ulkoinen Wi-Fi-verkko. Ratkaisujen rajoitteita tarkastellaan työn keskusteluosuudessa

    Expanding cellular coverage via cell-edge deployment in heterogeneous networks: spectral efficiency and backhaul power consumption perspectives

    Get PDF
    Heterogeneous small-cell networks (HetNets) are considered to be a standard part of future mobile networks where operator/consumer deployed small-cells, such as femtocells, relays, and distributed antennas (DAs), complement the existing macrocell infrastructure. This article proposes the need-oriented deployment of smallcells and device-to-device (D2D) communication around the edge of the macrocell such that the small-cell base stations (SBSs) and D2D communication serve the cell-edge mobile users, thereby expanding the network coverage and capacity. In this context, we present competitive network configurations, namely, femto-on-edge, DA-onedge, relay-on-edge, and D2D-communication on- edge, where femto base stations, DA elements, relay base stations, and D2D communication, respectively, are deployed around the edge of the macrocell. The proposed deployments ensure performance gains in the network in terms of spectral efficiency and power consumption by facilitating the cell-edge mobile users with small-cells and D2D communication. In order to calibrate the impact of power consumption on system performance and network topology, this article discusses the detailed breakdown of the end-to-end power consumption, which includes backhaul, access, and aggregation network power consumptions. Several comparative simulation results quantify the improvements in spectral efficiency and power consumption of the D2D-communication-onedge configuration to establish a greener network over the other competitive configurations

    Will 5G See its Blind Side? Evolving 5G for Universal Internet Access

    Get PDF
    Internet has shown itself to be a catalyst for economic growth and social equity but its potency is thwarted by the fact that the Internet is off limits for the vast majority of human beings. Mobile phones---the fastest growing technology in the world that now reaches around 80\% of humanity---can enable universal Internet access if it can resolve coverage problems that have historically plagued previous cellular architectures (2G, 3G, and 4G). These conventional architectures have not been able to sustain universal service provisioning since these architectures depend on having enough users per cell for their economic viability and thus are not well suited to rural areas (which are by definition sparsely populated). The new generation of mobile cellular technology (5G), currently in a formative phase and expected to be finalized around 2020, is aimed at orders of magnitude performance enhancement. 5G offers a clean slate to network designers and can be molded into an architecture also amenable to universal Internet provisioning. Keeping in mind the great social benefits of democratizing Internet and connectivity, we believe that the time is ripe for emphasizing universal Internet provisioning as an important goal on the 5G research agenda. In this paper, we investigate the opportunities and challenges in utilizing 5G for global access to the Internet for all (GAIA). We have also identified the major technical issues involved in a 5G-based GAIA solution and have set up a future research agenda by defining open research problems

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Mobility and resource management for 5G heterogeneous networks

    Get PDF
    The conventional topology of current cellular networks is a star structure, where central control points usually serve as base stations (BSs). This provides the advantage of simplicity while still providing quality of service (QoS). For next-generation networks, however, this topology is disadvantageous and difficult to use due to the insufficient availability of network access. The hybrid topology radio network will thus naturally be the future mobile access network that can help to overcome current and future challenges efficiently. Therefore, relay technology can play an important role in a hybrid cellular network topology. Today, with the recent long-term evolution-advanced (LTE-A) standards, the 3rd Generation Partnership Project (3GPP) supports a single-hop relay technology in which the radio access link between the BS and users is relayed by only one relay station (RS). With the help of multi-hop relay, however, the radio link between the BS and users can be extended to more than two hops to improve the coverage and network capacity. Multiple hops to transmit data to and from the corresponding BS results in the reduction of path loss. However, using a multi-hop relay system requires more radio resources to transmit data through different hops. More interference is also created due to a greater number of simultaneous transmissions in the network. New mobility and resource management schemes are thus important for achieving a high QoS while increasing the whole network capacity. In the first part, the problem of relay selection and radio resource allocation is studied, and choosing how the bandwidth should be shared between direct, backhaul, and access links in multi-hop relay networks is discussed. In such a network, resource allocation plays a critical role because it manages channel access in both time and frequency domains and determines how resources are allocated for different links. The proposed solution includes a nonlinear programming technique and a heuristic method. First, the problem formulation of resource allocation and relay selection is presented to provide an integrated framework for multi-hop relay networks. Second, an analytical solution to the problem is presented using a nonlinear programming technique. Finally, an iterative two-stage algorithm is presented to address the joint resource allocation and relay selection problem in multi-hop relay networks Under backhaul and capacity limitation constraints. In particular, the first stage proposed a fast approximation analytical solution for a resource allocation algorithm that takes into account the trade-off between the optimality and the complexity of the multi-hop relay architecture; the second stage presented a heuristic relay selection strategy that considers the RS load and helps to keep the relay from being overloaded is proposed. In the second part, the mobility problem in downlink multi-hop relay networks is addressed. In addition to the resource allocation issue, the relay selection problem is studied from a network layer perspective. Therefore, this part includes the issue of radio path selection. As an alternative to the heuristic algorithm developed in the previous part, the presented work describes the development and evaluation of a relay-selection scheme based on a Markov decision process (MDP) that considers the RS load and the existing radio-link path to improve handoff performance. First, the problem formulation of resource allocation and relay selection is presented. Second, an MDP mathematical model is developed to solve the relay selection problem in a decentralized way and to make the selection process simple. This relay selection scheme has the objective of maintaining the throughput and ensuring seamless mobility and service continuity to all mobile terminals while reducing the handoff frequency and improving handoff performance. In the third part, the admission and power control problem of a general heterogeneous network (HetNet) consisting of several small cells (SCs) is solved. Compared to the first two parts of this work, the system is expanded from a multi-hop RS to a general SC context. This part therefore focuses only on the access link problem, assuming the capacity of the SC backhaul links are large enough not to be bottlenecks. This part mainly deals with the problem of how to maximize the number of admitted users in an overloaded system while minimizing the transmit power given a certain QoS level. First, the problem is formulated to address concerns about QoS requirements in a better way. Second, a Voronoi-based user association scheme for maximizing the number of admitted users in the system under QoS and capacity limitation constraints is proposed to find near-optimal solutions. Finally, a twostage algorithm is presented to address the joint admission and power control problem in a downlink heterogeneous SC network. In particular, the first stage proposes a dynamic call admission control policy that considers the SC load and call-level QoS while also helping to keep the system from being overloaded. The second stage presents an adaptive power allocation strategy that considers both user distribution and the density of SCs in HetNets. Finally, the proposed solutions are evaluated using extensive numerical simulations, and the numerical results are presented to provide a comparison with related works found in the literature

    The TUCAN3G project: wireless technologies for isolated rural communities in developing countries based on 3G small-cell deployments

    Get PDF
    Recent years have witnessed a massive penetration of cellular systems in developing countries. However, isolated rural areas (sparsely inhabited by low-income population) have been disregarded because classical access and backhaul technologies do not ensure the return on investment. This article presents innovative techno-economical solutions to provide these areas with cellular voice and data services. We first analyze the general characteristics of isolated rural communities, and based on this information, low-cost solutions are designed for both access (using 3G access points) and backhaul networks (using non-carrier grade equipment as WiFi for long distances or WiMAX in non-licensed bands). Subsequently, a study of population-dependent income vs. costs is presented, and a new business model is proposed involving mobile network operators, rural operators, and infrastructure providers. In order to test these solutions, we have built two demonstration platforms in the Peruvian jungle that have allowed validation of the technical feasibility of the solution, verifying the business model assumptions and the scalability of the initiative.Peer ReviewedPostprint (author's final draft

    Connected vehicles for internet access: deployment and spectrum policies

    Get PDF
    Internet traffic from mobile users has been growing sharply. To meet the needs of thoseusers, it is important to expand capacity of networks that provide Internet access in cost effectiveways. This capacity has traditionally been provided by cellular networks. However,expanding the capacity of those networks alone may not be the most cost-effective way to meetthe present and future growth of mobile Internet under some circumstances. In this dissertation,we show that networks of connected vehicles can be an important way to complement thecapacity of cellular networks to provide mobile Internet access under several scenarios.Connected vehicles may soon be widely deployed, forming mesh networks of short-rangeconnections among vehicles and between vehicles and roadside infrastructure. Theseconnections are collectively referred to as vehicle-to-everything, or V2X. Deployment ofconnected vehicles and infrastructure is primarily intended to enhance road safety, and the U.S.Department of Transportation has recently proposed a mandate of V2X devices in vehiclesusing Dedicated Short Range Communications (DSRC) technology. Other applications are alsoenvisioned that include Internet access in vehicles connecting to roadside infrastructure servingas gateways to the Internet.In this work, we find that V2X-based networks are more cost-effective than cellular toprovide Internet access, in scenarios which DSRC devices are mandated in vehicles to enhanceroad safety. This is true initially for densely populated urban areas, but over time V2X-basednetworks would be cost-effective in less populated areas as well, as long as Internet traffic orpenetration of V2X devices grow as expected.Local and state governments are expected to deploy roadside infrastructure for safetyapplications. If that infrastructure is shared with Internet Service Providers for a fee, then V2XABSTRACT based networks are cost-effective in locations with even lower population densities than thelocations where it is cost-effective to deploy infrastructure for Internet access only. Moreover,the sharing fee could help governments save in infrastructure costs. We find the pricingstrategies that maximize either cost-effectiveness or government savings. We estimate thatgovernments could save about one-fifth of the total cost to deploy safety infrastructurenationwide in the U.S., if fees are set to maximize government savings. Although we find thatthese prices may differ from the pricing strategy that maximizes cost-effectiveness, maximizinggovernment savings results in near-optimal cost-effectiveness.The U.S. Federal Communications Commission has allocated 75 MHz of spectrum to beused exclusively by DSRC devices, and it has been hotly debated whether all or part of thatbandwidth should be shared with unlicensed devices. We find that it is highly efficient to shareany spectrum allocated to V2X communications beyond the portion of that spectrum that isneeded for safety-critical DSRC messages. V2X and unlicensed devices require up to 50% lessbandwidth on shared spectrum to achieve given throughputs, compared to V2X and unlicenseddevices using separate bands. We conclude that the spectrum available for V2X should bemaintained or increased, as long as much of that spectrum is shared with non-V2X devices.Conclusions are derived from an engineering-economic approach, in which part of theassumptions are based on data from a citywide deployment of connected vehicles in Portugal.The data is used in a detailed and realistic packet-level simulation model of V2X-basednetworks used to provide Internet access with DSRC technology. In some scenarios, thesimulation also includes unlicensed devices using Wi-Fi technology. The results of the networksimulation are then fed into engineering-economic models to compare costs of V2X-basednetworks with costs of macrocellular networks to carry given amounts of Internet traffic, and toestimate other measures such as government revenues and spectrum usage. Those measureshelp inform decisions about where and when to deploy V2X-based networks, decisions about whether and how to promote public-private partnerships to deploy V2X infrastructure, anddecisions about sharing spectrum used for V2X communications with non-V2X devices. <br
    corecore