2,266 research outputs found

    Regret-Optimal LQR Control

    Full text link
    We consider the infinite-horizon LQR control problem. Motivated by competitive analysis in online learning, as a criterion for controller design we introduce the dynamic regret, defined as the difference between the LQR cost of a causal controller (that has only access to past disturbances) and the LQR cost of the \emph{unique} clairvoyant one (that has also access to future disturbances) that is known to dominate all other controllers. The regret itself is a function of the disturbances, and we propose to find a causal controller that minimizes the worst-case regret over all bounded energy disturbances. The resulting controller has the interpretation of guaranteeing the smallest regret compared to the best non-causal controller that can see the future. We derive explicit formulas for the optimal regret and for the regret-optimal controller for the state-space setting. These explicit solutions are obtained by showing that the regret-optimal control problem can be reduced to a Nehari extension problem that can be solved explicitly. The regret-optimal controller is shown to be linear and can be expressed as the sum of the classical H2H_2 state-feedback law and an nn-th order controller (nn is the state dimension), and its construction simply requires a solution to the standard LQR Riccati equation and two Lyapunov equations. Simulations over a range of plants demonstrate that the regret-optimal controller interpolates nicely between the H2H_2 and the H∞H_\infty optimal controllers, and generally has H2H_2 and H∞H_\infty costs that are simultaneously close to their optimal values. The regret-optimal controller thus presents itself as a viable option for control systems design

    Effects of model error on control of large flexible space antenna with comparisons of decoupled and linear quadratic regulator control procedures

    Get PDF
    An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors

    Decoupled and linear quadratic regulator control of a large, flexible space antenna with an observer in the control loop

    Get PDF
    An analysis is performed to compare decoupled and linear quadratic regulator (LQR) procedures for the control of a large, flexible space antenna. Control objectives involve: (1) commanding changes in the rigid-body modes, (2) nulling initial disturbances in the rigid-body modes, or (3) nulling initial disturbances in the first three flexible modes. Control is achieved with two three-axis control-moment gyros located on the antenna column. Results are presented to illustrate various effects on control requirements for the two procedures. These effects include errors in the initial estimates of state variables, variations in the type, number, and location of sensors, and deletions of state-variable estimates for certain flexible modes after control activation. The advantages of incorporating a time lag in the control feedback are also illustrated. In addition, the effects of inoperative-control situations are analyzed with regard to control requirements and resultant modal responses. Comparisons are included which show the effects of perfect state feedback with no residual modes (ideal case). Time-history responses are presented to illustrate the various effects on the control procedures

    Combating False Reports for Secure Networked Control in Smart Grid via Trustiness Evaluation

    Full text link
    Smart grid, equipped with modern communication infrastructures, is subject to possible cyber attacks. Particularly, false report attacks which replace the sensor reports with fraud ones may cause the instability of the whole power grid or even result in a large area blackout. In this paper, a trustiness system is introduced to the controller, who computes the trustiness of different sensors by comparing its prediction, obtained from Kalman filtering, on the system state with the reports from sensor. The trustiness mechanism is discussed and analyzed for the Linear Quadratic Regulation (LQR) controller. Numerical simulations show that the trustiness system can effectively combat the cyber attacks to smart grid.Comment: It has been submitted to IEEE International Conference on Communications (ICC

    Stabilizing periodic orbits above the elliptic plane in the solar sail 3-body problem

    Get PDF
    We consider periodic orbits high above the ecliptic plane in the Elliptic Restricted Three-Body Problem where the third massless body is a solar sail. Periodic orbits above the ecliptic are of practical interest as they are ideally positioned for the year-round constant imaging of, and communication with, the poles. Initially we identify an unstable periodic orbit by using a numerical continuation from a known periodic orbit above the ecliptic in the circular case with the eccentricity as the varying parameter. This orbit is then used to construct a reference trajectory for the sail to track. In addition we illustrate an alternative method for constructing a periodic reference trajectory based on a time-delayed feedback mechanism. The reference trajectories are then tracked using a linear feedback regulator (LQR) where the control actuation is delivered by varying the solar sails orientation. Using this method it is shown that a 'near term' solar sail is capable of performing stable periodic motions high above the ecliptic

    Tip position control of single flexible manipulators based on LQR with the Mamdani model

    Get PDF
    Flexible manipulators have been actively used in various fields, such as aerospace, industry and medical treatment. It remains that the tip of the flexible manipulator should accurately trail the target trajectory without vibration. This paper proposes a novel method of the tip position control of a single flexible manipulator based on LQR with the Mamdani model. Firstly, using the assumed mode method and the Lagrange equations, the dynamic model of the single flexible manipulator is established. Then, the state equations are derived by the dynamic model. Based on the Mamdani model, the fuzzy algorithm is added to the traditional LQR control, and the self-adaptive adjustment of the LQR control variable R is conducted, which improves the adaptability of the control system. Finally, numerical simulations and experiments are presented. The results demonstrate that the novel control method presented in this paper can rapidly achieve the location in the position control and effectively suppress the elastic vibration of the single flexible manipulator, which has more considerable effect compared with the traditional LQR control method
    • 

    corecore