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Abstract— We consider periodic orbits high above the ecliptic

plane in the Elliptic Restricted Three-Body Problem where the

third massless body is a solar sail. Periodic orbits above the

ecliptic are of practical interest as they are ideally positioned

for the year-round constant imaging of, and communication

with, the poles. Initially we identify an unstable periodic orbit

by using a numerical continuation from a known periodic orbit

above the ecliptic in the circular case with the eccentricity as

the varying parameter. This orbit is then used to construct a

reference trajectory for the sail to track. In addition we illus-

trate an alternative method for constructing a periodic reference

trajectory based on a time-delayed feedback mechanism. The

reference trajectories are then tracked using a linear feedback

regulator (LQR) where the control actuation is delivered by

varying the solar sails orientation. Using this method it is shown

that a ‘near term’ solar sail is capable of performing stable

periodic motions high above the ecliptic.

1. INTRODUCTION

A solar sail consists essentially of a large mirror, which

uses the momentum change due to photons reflecting off the

sail for its impulse. They are therefore of great interest as

they do not require fuel for propulsion. In addition solar sails

are capable of trajectories and orbits which are impossible

for conventional spacecraft [1]. The solar sail is modeled in

the context of the restricted 3-body problem with the Earth

rotating the Sun in an elliptic orbit and the solar sail the

third massless body. This formulation will be referred to as

the Solar Sail Elliptical Three Body Problem (SSETBP) [2] a

generalization of the Solar Sail Circular Three Body Problem

(SSCTBP) [3], [4], [5]. The SSETBP takes into account the

eccentricity of the orbit of the primaries, and is therefore a

more accurate model than the SSCTBP.

The existence of equilibrium points out of the ecliptic

plane [3], [4], [5] in the SSCTBP has lead to the identi-

fication of new and interesting orbits, which conventional

spacecraft are not capable of. In Waters and McInnes [3] the

authors identify families of periodic orbits above the ecliptic

using the method of Lindstedt-Poincaré to find periodic

approximations to the nonlinear solution. The initial con-

ditions that yield these approximations were used as initial

‘guesses’ in a differential corrector to close the trajectory

and give exact initial conditions that yield periodic orbits in

the nonlinear system. These periodic orbits high above the

ecliptic are ideally positioned for the constant viewing of the

polar regions and high latitudes of the Earth [3]. Moreover,

an orbit of period one year with appropriate timing can



counter the seasonal effect of the variation of the Earth’s

axis of rotation.

The generalization to the SSETBP is considered in Baoyin

and McInnes [2] where it is shown that an ‘approximate’

equilibrium point can be maintained above the ecliptic in the

SSETBP using a linear feedback mechanism. In this paper

we extend this analysis to the study of periodic orbits above

the ecliptic in the SSETBP.

The method of Lindstedt-Poincaré is not applicable above

the ecliptic in the SSETBP as there are no equilibrium points

in this region. Consequently, we turn to numerical methods

in the search for periodic orbits above the ecliptic plane.

A numerical continuation, with the eccentricity e as the

varying parameter is used to find a periodic orbit above

the ecliptic, starting from a known orbit in the circular case

(e = 0) [3]. Using Floquet theory this orbit is shown to be

unstable and therefore requires active control to maintain.

This unstable orbit will therefore be used as a reference

trajectory for the solar sail to track using variations in its

orientation. In addition we present an alternative method for

determining reference trajectories based on a time-delayed

feedback mechanism. Finally, a Linear Quadratic Regulator

(LQR) control is implemented to track the periodic reference

trajectories using the sail’s orientation as the control. These

methods illustrate that a ‘near term’ solar sail is capable

of maintaining stable period motions of period 1 year, high

above the ecliptic using variations in its orientation.

In the next section we describe the equations of motion

for the SSETBP.

2. EQUATIONS OF MOTION FOR THE SSETBP

The classical Elliptical Restricted three body problem can

be modeled using a pulsating-rotating frame [6], [7]. The

pulsating-rotating frame is convenient as the true anomaly

appears in the equations of motion as the independent

variable and therefore we do not need to integrate Kepler’s

equation. In this paper we follow the same convention and

use a pulsating-rotating frame to model the SSETBP [2].

Assume that an appropriate set of units is introduced so that

the gravitational constant G = 1, the system has total unit

mass and the semi-major axis of the earth’s orbit about the

sun is a = 1. Let µ be the dimensionless mass of the earth

and then 1 − µ is the mass of the sun. The equations of

motion in pulsating-rotating coordinates x, y, z are then:

x′′ − 2y′ = 1
1+e cos f

(
∂Ω
∂x + accx

)

y′′ + 2x′ = 1
1+e cos f

(
∂Ω
∂y + accy

)

z′′ + z = 1
1+e cos f

(
∂Ω
∂z + accz

)
(1)

where (·)′ denotes differentiation with respect to the true

anomaly f and

Ω =
1
2
(x2 + y2 + z2) +

(1− µ)
‖r1‖ +

µ

‖r2‖

where e is the eccentricity and acc = (accx, accy, accz)T is

the solar sail acceleration defined by:

acc =
β(1− µ)
‖r2

1‖
(r̂1 · n̂)2n̂ (2)

where β is the solar sail lightness number and is the ratio

of the solar sail radiation pressure acceleration to the solar

gravitational acceleration, the ‘hat’ notation denotes the unit

vector and n̂ is the unit normal of the sail with respect to

the sun and describes the sails orientation. We define n̂ in

terms of two angles γ and δ in the rotating-pulsating frame:

n̂ = (cos γ cos δ, cos γ sin δ, sin γ)T (3)

While a β value of order 0.3− 0.4 is considered within the

realm of possibility, to put the analysis in this paper well

within the near-term we will consider very modest β values

of order 0.05. The values of the parameters in the Earth-Sun

system are e = 0.0167, µ = 0.000003. Note that the rotating-

pulsating coordinates are related to the rotating coordinates

X,Y, Z via the equations:

X = ρx, Y = ρy, Z = ρz (4)



with the semi-latus rectum ρ = (1−e2)
1+e cos f . It follows that when

e = 0 the equations (1) reduce to the equations of motion

for the SSCTBP.

3. UNSTABLE PERIODIC ORBITS ABOVE THE ECLIPTIC

In Waters and McInnes [3] initial conditions that yield

periodic orbits high above the ecliptic have been found

in the SSCTBP using the method of Lindstedt-Poincaré

and a differential corrector. When the eccentricity of the

earth’s orbit about the sun is considered these initial con-

ditions no longer yield periodic orbits. In this section we

use a continuation method with the eccentricity (e) as the

continuation parameter to find initial conditions that yield

periodic orbits in the SSETBP. Firstly, we note that when

e 6= 0 the equation (1) is non-autonomous and therefore

any periodic orbit must be of the same period as the true

anomaly dependent function, cos f . Therefore, we choose an

initial orbit above the ecliptic of period 1 year found in the

SSCTBP [3] as a starter orbit in the numerical continuation

and continue e until e = 0.0167. At each small increment

of e the trajectory is closed using a monodromy variant of

Newton’s method [8]. Let X(t) = (x, y, z, x′, y′, z′) be the

solution of the nonlinear system (1). When X(t) is close to

a natural periodic orbit Γ(t) of the system (1) an iterative

improvement to the choice of initial conditions for a periodic

orbit is given by [8]:

X∗(0) = X(0) + (I −M)−1[X(T )−X(0)] (5)

where X∗(0) is the improved initial condition, M the mon-

odromy matrix and I the identity matrix. One of the problems

encountered with this method is that the determinant of (I−
M) maybe zero and therefore its inverse is not well defined.

However, this problem is resolved by using the Moore-

Penrose pseudo inverse. The implementation of Newton’s

method relies on the computation of the monodromy matrix

as follows:

Let Γ(t) denote a periodic orbit with period T = 2π

which satisfies the condition Γ(T ) = Γ(0), by letting x =

X(t) − Γ(t), we may linearize the nonlinear system about

this periodic orbit, resulting in the variational equations

ẋ =A(t)x

where

A(t) = A(t + T ) =
∂f

∂X

∣∣∣∣
X(t)=Γ(t)

explicitly:

A(t) =


 0 I

J Ω


 , J =




a b c

d e f

g h i




Ω =




0 −2 0

2 0 0

0 0 0




(6)

where

a = ∂fx

∂x

∣∣∣
Γ(t)

, b = ∂fx

∂y

∣∣∣
Γ(t)

, c = ∂fx

∂z

∣∣∣
Γ(t)

d = ∂fy

∂x

∣∣∣
Γ(t)

, e = ∂fy

∂y

∣∣∣
Γ(t)

, f = ∂fy

∂z

∣∣∣
Γ(t)

g = ∂fz

∂x

∣∣∣
Γ(t)

, h = ∂fz

∂y

∣∣∣
Γ(t)

, i = ∂fz

∂z

∣∣∣
Γ(t)

here the partial derivatives a, b, c, d, e are time-dependent,

with period 2π. Recasting the variational equations in terms

of the state transition matrix (or principle fundamental ma-

trix) Φ = ∂X(t)/∂X(0), we have

Φ̇ = A(t)Φ, Φ(0) = I

where Φ is a 6 × 6 matrix. The monodromy matrix M is

then defined as M = Φ(T ). The monodromy matrix M is

computed at each iteration and Newton’s method is success-

ful in identifying 1 year period orbits with eccentricity as the

continuation parameter. Two periodic orbits are illustrated in

Figure 1 for e = 0 and e = 0.0167, where the solar sail

angles are γ = 0.809196 and δ = 0.

The stability of periodic orbits is determined using Floquet

theory [9] and depends on the behavior of the eigenvalues
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Fig. 1. Periodic Orbits in the rotating-pulsating frame: the thin line orbit

is for e = 0 and the thick lined orbit is for e = 0.0167 and γ = 0.809196

of the monodromy matrix M . To these eigenvalues λi

correspond the characteristic (Floquet) exponents αi defined

by

λi = eαiT

The orbit is stable at linear order if the real parts of all the

characteristic exponents are less than or equal to zero. The

eigenvalues of the monodromy matrix are of the form:

{λj , λ̄j , λi, λ̄i, λr, 1/λr}

and the characteristic exponents

{αj , ᾱj , αi, ᾱi,±αr}

which is consistent with unstable periodic orbits in the the

classical Elliptical Restricted 3-body Problem [10].

4. REFERENCE ORBITS

One of the obstacles in implementing an LQR control

is in the generation of a ‘good’ reference trajectory. In

our case a ‘good’ reference trajectory is characterized by

it being periodic and requiring as little control as possible

to track. In this respect a natural candidate for a reference

trajectory would be the unstable periodic orbit in Figure 1 for

e = 0.0167. To measure how ‘good’ this reference orbit is,

a comparison will be made with the periodic orbit in Figure

1 for e = 0.

In addition to this we propose a novel method for designing

reference orbits based on a time-delayed feedback mecha-

nism [11], [12]. This is a robust method, in that, even if it

does not converge to a natural unstable orbit, it will provide a

closed orbit of pre-specified period that requires a minimum

amount of control to maintain. Therefore, it is particularly

useful when the initial trajectory cannot be closed with a

Newton method or a differential corrector. For illustration

we use a monte-carlo simulation of initial conditions close

to the region that yield periodic orbits in the circular case

to find a trajectory as a close as possible to a periodic orbit

with e = 0.0167. This trajectory is illustrated in Figure 2. It

is noted that Newton’s method fails to close this trajectory.
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Fig. 2. A near periodic orbit found using monte-carlo simulation.

Our approach is then to use a time-delayed feedback mech-

anism to obtain a periodic reference trajectory. For the

nonlinear system Ẋ(t) =f(X(t), t) we assign a time delayed

feedback mechanism v(t) such that:

Ẋ(t) = f(X(t), t) + v(t)

v(t) = −K(X(t)−X(t− τ))
(7)

where τ is the delay time, which will be 2π in order to

obtain a 1 year orbit and K a 6 × 6 matrix which is com-

puted experimentally. A reasonable choice for K is a scalar

multiple of the identity matrix I6×6. By inspection of the



time-delayed feedback function (7) it can be seen that when

the trajectory X(t) is almost periodic (which is the case for

numerically determined orbits) i.e. ‖X(t)−X(t− τ)‖ = ε

where ε is small then the feedback mechanism v(t) will also

be small and equal to −Kε. Therefore, if the time-delayed

feedback mechanism causes the trajectory to converge to

an approximate periodic orbit the feedback will converge to

approximately zero. Hence, the final periodic trajectory is the

one that requires the least amount of feedback to maintain.

This effect is illustrated in simulation in Figure 3. Figure 3

(i) shows the final periodic orbit that will be used as our

reference trajectory. This orbit corresponds to the minimum

feedback requirement which can be seen in Figure 3 (ii).

It is also noted that the time-delayed feedback mechanism

works both for forward and backward integrations. For

forward integrations it appears that the initial part of the

trajectory is corrected, more so, than the final part and using

backward integration the opposite is true. In the following

section we compare each of the reference orbits illustrated

in Figures 1 and 3 (i) by tracking them with an LQR control.

The control actuation is delivered via variations in the sail’s

orientation.

5. TRACKING PERIODIC TRAJECTORIES ABOVE THE

ECLIPTIC USING THE SOLAR SAIL

In this section we propose using LQR to track the periodic

reference trajectories in Figures 1 and 3 (i) using variations

in the sails orientation (angles γ and δ provide the control

actuation). Specifically, we aim to stabilize the motion of the

sail about the periodic orbit over 10 years. The constraints on

the solar sail is its maximum deflection (rads) and maximum

rate of deflection (rads/sec) which are taken to be −π/2 ≤
γ, δ ≤ π/2 and −5 × 10−6 < dλ

dt , dδ
dt < 5 × 10−6 (approx.

± 1 degree per hour) respectively. These constraints are

imposed on our controls in Simulation. Firstly, to define the
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Fig. 3. The Time-delay feedback mechanism is used to compute a periodic

reference trajectory: (i) The final orbit that corresponds to the minimum

feedback requirement that will be used as a reference trajectory. (ii) the

feedback required to close the initial orbit is high but this reduces with

time during simulation to a minimum value.

reference orbits we fit a Fourier function to the numerical

data describing the orbits in Figures 1 and 3 (i) of the form:

X1j(t) = a0 + a1 cos t + b1 sin t+

a2 cos 2t + b2 sin 2t + a3 cos 3t + b3 sin 3t
(8)

where j = 1, ..., 6. This function provides a good fit to

the numerical data and ensures that the reference orbits are

exactly periodic. Following this we linearize the nonlinear

equations Ẋ = f(X, u(t)) about the reference trajectory Γ.



Writing x = X− Γ and u = u(t)− ue yields:

ẋ = Ax + Bu (9)

where A = ∂f
∂X

∣∣∣
Γ

and B = ∂f
∂u(t)

∣∣∣
ue

where ue = (γe, δe)T =

(0.809196, 0)T . From control systems theory the gain matrix

K for the linear state feedback control law u = −Kx which

minimizes the quadratic cost function

J =

∞∫

0

xT Qx + uT Rudt

where Q,R are symmetric positive semi-definite weighting

matrices respectively is given by:

K = R−1BT P (10)

where P is the unique, positive semidefinite solution to the

algebraic Riccati equation:

AT P + PA− PBR−1BT P + Q = 0 (11)

In simulation we find that defining a constant gains matrix

evaluated at the initial point of the reference orbit is

sufficient to stabilize the orbit using small variations in

the solar sail angles. The weighting matrices Q and R

are chosen so that the periodic orbit is stabilized about

the reference orbit over 10 years with minimum control

effort. The ability for the solar sail to track the reference

trajectories is illustrated in Figure 4 with the thin line the

reference trajectory and the thicker line the actual trajectory.

Figure 4 (i) shows that the solar sail does not track the

reference trajectory obtained in the SSCTBP well. However,

Figures 4 (ii) and (iii) illustrate that the sail can track the

reference trajectory obtained using the continuation and the

time delayed-feedback mechanism closely.

6. CONCLUSIONS

We consider periodic orbits above the ecliptic plane in

the Solar Sail Elliptic Three Body Problem (SSETBP). It is
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Fig. 4. LQR control: the thick line is the controlled trajectory and the thin

line is the reference orbit. Each figure shows the actual trajectory tracking

a reference orbit defined by (i) a periodic reference from the SSCTBP (ii)

a periodic reference computed using a time-delayed feedback machanism.

(iii) a periodic reference from an unstable orbit in the SSETBP

shown that stable periodic motions high above the ecliptic

can be achieved by manipulating the orientation of the

solar sail. Such periodic orbits are of particular interest as

they can be used to constantly view the polar regions and

high latitudes of the Earth. To show this we initially use a

numerical continuation from a previously known orbit above

the ecliptic in the circular case with the eccentricity e as the

varying parameter to obtain a periodic orbit at e = 0.0167.

This orbit is shown to be unstable and therefore active

control is required to maintain the sail on this orbit. This

orbit is used as a reference trajectory and tracked using an



LQR control. In addition we present an alternative method

for constructing a suitable reference trajectory based on a

time-delayed feedback mechanism. Finally, we use a Linear

Quadratic Regulator (LQR) to track the reference trajectories

using small variations in the sails orientation. In summary it

is shown that a ‘near’ term solar sail can successfully track

suitably defined 1 year periodic orbits high above the ecliptic.
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