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Summary

An analysis has been performed to determine the
effects of model error on the control of a large flexi- Antonna I _

ble space antenna. Control was achieved by employ- feod x'X_j--Fe_d m_st
ing two three-axis control-moment gyros (CMG's) lo- Column
cated on the antenna column. State variables were
estimated by including an observer in the control
loop that used attitude and attitude-rate sensors on

the column. Errors were assumed to exist in the in- _ y

dividual model parameters: modal frequency, modal
damping, mode slope, and moment of inertia. Their
effects on control-system performance were analyzed
either for (1) nulling initial disturbances in the rigid- x --supp..... b_os
body modes, or (2) nulling initial disturbances in
the first three flexible modes. The study includes so_a__,o_
the effects on stability, time to null, and control re-
quirements (defined as maximum torque and total Sketch A
momentum), as well as on the accuracy of obtain-
ing initial estimates of the disturbances. The effects structures. Previous control studies that used this

antenna model include references 3 to 5. The an-on the transients of the undisturbed modes are also
tenna is depicted in sketch A and is described inincluded. The results, which are compared for de- reference 2.

coupled and linear quadratic regulator (LQR) con-
The present paper is based on the control analysistrol procedures, are shown in tabular form, para-

metric plots, and as sample time histories of modal- reported in reference 4. In this reference an observer
amplitude and control responses, was used for estimating the state variables for control

Results of the analysis showed that the effects of feedback. In addition, residual modes were included
in the antenna model and the effects of includingmodel errors on the control-system performance were

generally comparable for both control procedures, these modes were investigated. The control arrange-
The effect of mode-slope error was the most serious ment employed one three-axis control-moment gyro
of all model errors. (CMG) at the top of the antenna column and one at

the bottom. Only the first three flexible modes were

Introduction included in the control law, inasmuch as data in ref-
erence 3 showed large increases in the control require-

Large space structures (LSS) will require control ments with additional modes included. In reference 4

for attitude orientation as well as procedures for con- it was shown that decoupled and linear quadratic reg-
trolling the flexible modes. After deployment or con- ulator (LQR) control procedures gave comparable re-
struction, any control required will most likely be sults; hence, the effects of model errors for both pro-
performed with a control procedure based on inac- cedures are analyzed and compared in the present
curate knowledge of model parameters. There are analysis.
many identification and adaptive control procedures Errors are assumed to exist in the individual

that have been developed (for example, ref. 1) for model parameters: modal frequency, modal damp-
updating and verifying these parameters. However, ing, mode slope (control-influence coefficient), and
the practical application of these procedures for op- moment of inertia. Their effects on control-system
eration in space has not been fully tested. Hence, a performance are analyzed either for (1) nulling initial
considerable period of time may be required before disturbances in the rigid-body modes, or (2) nulling
a more accurate model can be determined. Conse- initial disturbances in the first three flexible modes.

quently, a knowledge of the effects of model errors on The study includes the effects on stability, time to
the stability and control requirements for LSS control null, and control requirements (defined as maximum
would be useful, torque and total momentum), as well as on the ac-

The effects of model errors are addressed in curacy of obtaining initial estimates of the distur-
the present paper with regard to the control of a bances. The effects on the transients of the undis-
122-m-diameter hoop-column antenna (ref. 2). A turbed modes are also included. Results are shown
finite-element mathematical model of the antenna in tabular form, parametric plots, and as sample time
is used that provides a convenient tool for simu- histories of modal-amplitude and control responses.
lated control analysis of realistic large flexible space For the analysis, random positive and negative errors



were incorporated into the frequency and mode-slope Q state-vector weighting matrix
parameters, as were certain errors in the damping (eq. (7))

and moment of inertia; their effects were analyzed R control-vector weighting
individually for specified magnitudes of error. The matrix (eq. (7))analyses were carried out for a large number of sam-
ples in order to obtain the maximum effects of these r radius of hoop
errors. The control system and observer were as- s vector of system input noise
sumed to be perfect in that no actuator or sensor (eq. (10))
dynamics were included in the analysis.

T torque vector

Symbols and Abbreviations Ti,j components of torque, wherei is control direction and j is

h system matrix (eq. (4)) actuator location

An modal amplitude (eq. (2)), Tmax maximum value for actuator
where n is mode number requiring largest torque

(1,2,...,6) TN nominal ITmaxl (no model

B control influence matrix error)

(eq. (4)) Tn natural period

C observation matrix (eq. (9)) Tc ITmaxl with model error
t time

CMG control-moment gyro

d displacement vector (eq. (3)) u vector of observation noise
(eq. (8))

F decoupled feedback gain
matrix (eq. (5)) v input command vector(eq. (5))

G decoupled feedforward gain w weight
matrix (eq. (5))

x state vector
I moment-of-inertia matrix

(eq. (1)) :_ estimate of controlled statevector

I model moment of inertia
x, y, z coordinates of antenna center

Ix, Iy, Iz, Ixz center-of-gravity moments and of gravity
product of inertia y observation vector (eq. (8))

J objective function (eq. (7)) z sensor output vector without

K LQR feedback gain matrix noise
(eq. (6)) _ estimator error, y - C1_

K I estimator gain matrix _d desired damping ratio

(eqs. (13)) _n natural damping ratio

LQR linear quadratic regulator 0, ¢, ¢ rotation angle about x-, y-,

l distance (see fig. 1) and z-axis, respectively
(I) mode-shape matrix (eq. (3))

Mi, j angular momentum, where i
is control direction and j is ,_l{n). mode-slope matrix, where n
actuator location _,3 is mode number, i is control

M N nominal total momentum (no direction, and j is actuator
model error) location

M_ total momentum with model Wd desired frequency
error COn natural frequency
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Subscripts: equation (2) are modal-amplitude displacement vari-

An modal amplitude for nth mode ables and do not represent actual physical displace-
ments. The physical displacement at some point on

i,j control direction and actuator the antenna is a linear combination of the modal

location, respectively amplitudes and mode shapes and is given by the
transformation

0, ¢, ¢ rotation angle about x-, y-,
and z-axis, respectively dj -- '_An (3)

A matrix with a prime relates to the estimator where • is the mode-shape matrix.
equations. Dots over symbols indicate derivatives The mode-slope data used in the analysis were
with respect to time. A circumflex (-) over a symbol taken from results of a NASTRAN® model of the
indicates an estimate of the state variable. All 122-m-diameter hoop-column antenna system given
matrices are given in units of inches, pounds, and in reference 3. Table I shows the weight and inertias
seconds, of the antenna. The frequencies and assumed natural

damping ratios of the six flexible modes considered
Mathematical Model of Antenna in the analysis are also given in table I. As a matter

A large space structure such as the hoop-column of interest, the unforced transient behavior of these
antenna has, in theory, an infinite number of flexible modes is presented in figure 2.
(vibration) modes. To facilitate analytical treatment
of the control problem, a finite-order linearized model Decoupled and LQR Control

was formulated. For the analysis of this report, the The second-order equations in the analysis
structural model was selected to contain six of the (eqs. (1) and (2)) can be reduced to first-order equa-
lowest flexible modes of the 122-m-diameter hoop- tions (state-vector form) and written ascolumn antenna, as described in reference 2. The
three rigid-body rotation modes are included in the
analysis. ± = Ax + BT (4)

The equations of motion used to represent the
where the state vectorrigid-body and vibration modes of the antenna are

now discussed. Rigid-body rotations (for small an-
gles) about the antenna center of gravity for two x = [0, €, ¢, nl, A2..... n6, 6, 6, _, -41, "_12..... A6] T

three-axis CMG actuators on the column are rep-
resented by A1, A2, and A3 are the controlled flexible modes, and

A4, As, and A6 are considered as residual modes.

The B matrix used in the present analysis is given in
table AI in the appendix. The composition of the Ar 1

= /I-1 I I-l/T (1) matrix is defined as follows:
L JI

09× 9 I9x9

where A18× 18 =

W = [Tx,1, Ty,1, Tz,1, Tx,2, Ty,2, Tz,2] T -A9×9 -D9×9

The CMG's were used on the column such that where the subscripts indicate the dimensions of the
control torques were about the x-, y-, and z-axes various elements, and
as defined in figure 1. The CMG's are numbered to
be consistent with reference 3. 0 null matrix

Variations in modal amplitudes of the flexible I identity matrix
modes are represented by

A diag(0, 0, 0, Wl2, w2, ..., w62)

An + 2qnWn_4n+w2nAn = 1--_--_tTT D diag(0, 0, 0, 2_1Wl, 2q2w2, 2_'6w6)
r_ n •..,

(n = 1, 2, ..., 6) (2) Decoupled Control

where mn is the modal mass and _ is the mode- Since decoupling theory was analyzed extensively
slope matrix. It should be noted that An values in in reference 3, the discussion of its application in
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this paper is limited to some general remarks. The LQR Control

decoupling control law is taken as The asymptotic linear quadratic regulator (LQR)
approach of reference 6 was also used to calculate
the state feedback control gains. (A computer pro-

T = F_ + Gv (5) gram is given in ref. 7 for performing these compu-
tations.) When comparing the LQR and deeoupled-
control procedures, it should be noted that the de-

where _ is the estimated state vector, v is the input coupled approach has advantages in some areas. For
command vector, and F and G are feedback and feed- example, the decoupled feedback gains are computed
forward gain matrices, respectively. (As noted, esti- in closed form and yield the exact desired closed-loop
mates of the modal variables are employed because dynamics, whereas the LQR approach requires an
these variables cannot be measured directly.) De- inexact, time-consuming iterative solution to obtain
coupling theory provides a method for determining approximate desired closed-loop dynamics. Also, the
the F and G matrices such that independent control decoupled gains give a known transient response (for
is maintained for each of the decoupled (controlled) perfect state-variable estimates), as well as a steady-
state variables. Different values can be selected for state response. Only the steady-state response is
the closed-loop dynamics (Wd and fd) without affect- known by use of the LQR method.
ing the independent control capability. Examples The control law for the LQR results was given by
are given in reference 3 that illustrate the manner
in which the theory was applied to the system equa-
tions in determining the F and G matrices. The T = K_ (6)
values for the decoupled closed-loop dynamics used

The control gain matrix K was computed subject toin the current analysis are given in table II. This case
the constraint of equation (4) such that the followingcorresponds to fd values that give approximately the

same value (10 sec) for time to damp to 1 percent for function was minimized:
each of the three flexible modes. The other case rep-

/:resents the closed-loop dynamics pertaining to the J = lim (xTQx + TTRT) dt (7)LQR control analysis, which are close to those for t_oo
deeoupled control. The corresponding F gain matrix
used in the current analysis for decoupled control is where Q and R are positive definite symmetric
given in table AII in the appendix. The G matrix, weighting matrices for the states and controls, which
which is required for rigid-body commands, was not can be varied in order to achieve desired closed-loop
used in the present analysis. Rigid-body commands dynamics. For the present analysis, the identity ma-
were not analyzed inasmuch as the results would be trix used for R was found to be sufficient; the state-
similar to those for the control for the rigid-body variable weighting matrix Q was adjusted to obtain a
disturbances. The F matrix was calculated for a set of closed-loop dynamics close to that used for de-
reduced-order model (no residual modes). Hence, coupled control. (See table II.) The corresponding K

gains were used in the control procedure (eq. (6)) for
the subsequent LQR control analysis. The weight-

= [_, ¢, _, J[1, _[2, t[3, _, _, _, -_1, _[2, _1_3]T iningsQ and the K-gain matrix are given in tableAIIItheappendix.

Incorporation of Observer

An observer was incorporated into the control procedures in order to calculate estimates of the state variables

as required in equations (5) and (6). The Kalman-Bucy filter, which represents a systematic procedure for
observer design, is used for obtaining these estimates. An attitude-measurement device (e.g., a star tracker)
and a rate-measurement device (e.g., a rate gyro) were assumed to be present at certain locations on the
column. The sensor output is given by

y=z+u (s)
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where z = Cx and u is the sensor noise, which is assumed to be 0 for this analysis. As an example, the
observation matrix C is

<72. y2
__(1) _t(2) . _t(6)

03x9 I3x3 _Py,1 _y,1 " " _y,1

or(l) -t(2) .
z,1 _Pz,1 "" Oz,1 )

1(6

C6x18= (9)

_,(1) ,_'(2) ,_'(6)
I3x3 _y,4 Yy,4 ' " " "_y,4 03X9

and

X =- [0, ¢, ¢, A1, A2, ..., d6, 0, (_, _), A1, A2, ..., A6] T

The matrix I3x 3 is the identity matrix and 03x 9 is the null matrix. The superscripts on the mode slopes refer

to the flexible-mode number, and the subscripts refer to the direction and location. For example, the subscript
x, 1 refers to the mode slope in the x-direction at location 1 on the antenna column (fig. 1.) The observation
matrix shown in equation (9) corresponds to a sensed attitude rate in the x-, y-, and z-directions at location 1
and to a sensed attitude in the x-, y-, and z-directions at location 4. Mode-slope values for various locations

on the column are given in reference 3. The values corresponding to equation (9) are given in table AIV in the
appendix.

The complete set of equations required for the control analysis becomes

± = Ax + BT + s (10)

where s, the process noise, is assumed to be 0 for this analysis,

T -- K_ (for LQR control) (11a)

T = F:_ + Gv (for decoupled control) (llb)

y = Cx (12)

x = At_ + BIT + --'Kl[y- ---C/£)
where

x = (A' - K'C' + B'K)_ + K'Cx (for LQR control) (13a)

x = (A' - K'C' + B'F):_ + K'Cx + B'Gv (for decoupled control) (13b)

The estimator equations (eqs. (13)) calculate the estimates of the state vector using the measurement y and
the estimator gains K/, which are determined by a steady-state Kalman-Bucy filter. If all six flexible modes
are estimated, then C t = C. However, if the residual modes are not estimated, as in the present analysis, C r



becomes a 6 x 12 matrix. In this case, the six columns that contain the (I)'(4), (I)1(5), (I)'(6) information are
eliminated. The estimator gains K' were calculated by the technique given in reference 7. In conjunction with
the C' matrix, it should be emphasized that there are two differences between the A', B', and C' matrices
and the A, B, and C matrices. First, the primed matrices are of lower order than the unprimed matrices

since they do not include the residual modes. Second, the unprimed matrices represent the actual (true) model
parameters as revised by the various model parameter errors that modified the nominally assumed values.

The set of composite equations used for the LQR-control analysis is

= (14)
K I C IKI12×6C6x18 AI12×12 - 12×6 6x12 _ n112x6K6x12

For the decoupled-control analysis, K is replaced by F in equation (14) and the term

[ B18x6 G6×6 ]

..... V

LBtl2x6 G6x6

is added to the right side of the equation. The subscripts indicate the dimensions of the various elements for the
case in which the three residual modes are not estimated, which was used throughout the current analysis. With
precalculated values for K I and K (or K t, F, and G), the composite set of equations was integrated to obtain
time-history responses for specified initial conditions in the various modes. In determining the estimator gain
matrix, the weighting matrices S and U for the states and observations, which are analogous to the covariance
intensities of s and u, were varied until acceptable performance (satisfactory estimator eigenvalues and realistic
gain values) was obtained. The resulting matrices were

S = diag(.1, .1, .1, 105, 105, 105, .1, .1, ..., .1)

U = diag(1, 1, 1, 1, 1, 1000)

The weighting value of 1000 gave the best results as far as control oscillations were concerned.

A block diagram for decoupled control is shown in sketch B. (A block diagram for LQR control is the same,
with the exclusion of the (_ matrix.)

[

r i _ f I, [ 1 y(t)., v ,. _ x(t) , _W-_ ,

[ I I Sensors j
I
I

Antenna
I .-

r ]
i [ I

I I
I I
I I At + B_F - KICI

I [ State estimator

[ Decoupled controller

Sketch B
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Method of Analysis

For the study, errors were incorporated in the individual sets of model parameters, one parameter at a
time. For example, the effect of errors in knowledge of the flexible-mode natural frequencies Wn was studied
with the assumption that the values of all other model parameters were correct. Random sets of positive and

negative errors were employed for investigating the effects of frequency and mode-slope error. (For example, see
table III.) Effects of errors in damping and moment of inertia were investigated for either positive or negative
errors. As previously described, the frequency errors are reflected in the plant matrix A, which is a top element
in equation (14). Errors in the damping ratio are also associated with the A matrix. Errors in the moments
of inertia are associated with the B matrix, and for errors in the mode slopes, both the B and C matrices

are affected. The feedback gain matrices K or F, as well as the estimator gain matrix K t, were computed
using the nominal (no errors) A l, B I, and C I matrices. Also, these matrices were employed for the estimator
in equation (14). The resulting eigenvalues for the composite set of equations (see eq. (14)) were checked for
stability for each set of random errors used.

ResultsandDiscussion (See ref. 4.) The CMG's were placed at the top and

Results of the study are presented to illustrate bottom of the antenna column at locations 1 and 2
as shown in figure 1. It was assumed that three-axis

effects of various model errors on the control sys- attitude sensors and three-axis attitude-rate sensors
tem performance with regard to stability, time to were available at various locations on the column for
null, and control requirements. The effects are an-
alyzed either for (1) hulling initial disturbances in determining estimates of the state variables. Unless
the rigid-body modes, or (2) nulling initial distur- otherwise specified, one three-axis attitude-rate sen-
bances in the first three flexible modes. Case (1) sor at location 1 and one three-axis attitude sensor
is referred to as "rigid-body control," even though at location 4 were used.
control is being applied to attempt to maintain the It was further assumed that the control system
first three flexible modes at 0. Similarly, case (2) was not activated until the initial state estimates
is referred to as "flexible-mode control." Compar- were known to within 10 percent of true values for

the rigid-body modes and for the first three flexibleisons are made between the decoupled and LQR con-
trol procedures with the results shown in tabular modes. The initial state estimates are actually the
form, parametric plots, and as sample time histories initial conditions in the estimator equations. Esti-
of modal-amplitude and control responses. Compar- mates of the residual modes were not included in the

control procedure. Further discussion concerning ini-isons are also made for the effects on the transients
of the undisturbed modes, tim estimates is given in the following section.

Momentum and the maximum value for torque
input are used as the measure of control requirements Effect of Model Error on Initial Estimates
when making various comparisons. The momentum As shown in reference 4, good estimates of the
time histories represent the area under the torque state variables are required before activating the con-
response curves. The momentum values in the tables trol system, especially for rigid-body control. With-
and parametric plots are the values at the end of out good estimates, the control requirements are ex-
each computer run, when the torque responses have cessive. Good estimates can be assured by running
essentially zeroed out. Maximum torque is the value the estimator a few seconds before turning on the
for that actuator requiring the highest absolute value controller. The time histories of estimator error for

of torque, rigid-body control are shown in figure 3. As ex-
pected, these time histories are unaffected by any

General Considerations type of model error up to the magnitudes considered
For simulation, two three-axis CMG's were em- in this study. The curves in figure 3 show that good

ployed as actuators to control initial disturbances of estimates (90 percent) of the rigid-body disturbances
0.01 rad in the rigid-body modes or 1 in. in the three are obtained within about 12 sec.
flexible mode amplitudes. Since the system equations Figure 4 shows examples of the important effects
are linear, the results can be scaled to any constant of model errors in determining the state estimates for
positive multiple of these initial conditions. Initial flexible-mode control before the controller is turned
disturbances were also included in the three residual on. The effects can be compared to the case with no
modes, even though it was determined that the re- model errors, as shown in figure 4(a). Figure 4(b)
sults were not materially affected by their inclusion, shows that with _ errors of +20 percent, state
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estimation accuracy after about 6 sec is about 80 per- The parametric plots in figure 6 show the changes
cent. It was determined that for _ errors of =t=50per- in the flexible-mode control requirements from their
cent, the state estimates attained only about 50 per- nominal (no-error) values over a range of _n errors
cent accuracy in 6 sec. Figures 4(c) and 4(d) indicate of specified magnitudes. The sets for determining
that (zn errors are more crucial than _P errors with the random errors used in the frequency-error analy-
regard to the initial accuracy of the state estimates, sis are shown in table III. The eight sets represent
For Wn errors of 4-20 percent, the initial state esti- the total number of combinations possible for the
mates are shown to be good to only about 50 percent, first three flexible modes. As shown, random errors
For large Wn errors (:t=50 percent), the observer was were also incorporated in the three residual modes,
marginally stable. Errors in the moments of inertia although it was determined that their effects were rel-
and damping ratios had practically no effect on the atively small. The eight sets of random signs shown
initial state estimates, in table III were used to generate constant percent-

As previously stated, the results in this paper per- age errors in the six flexible-mode frequencies at spe-
rain to the assumption that the initial state estimates cific magnitudes of frequency error ranging from 10 to
are within 10 percent of the true values at the time 50 percent. (It should be noted that in figure 6, data
that the control is turned on. These results, how- for all eight sets of random errors are not shown at
ever, are applicable to larger percentage errors in the each specific magnitude of error because some points
estimates, inasmuch as reference 4 shows that satis- coincide.) The system was stable over the range of
factory control performance for flexible-mode control _n errors shown, but instability occurred for wn er-
is obtained for initial state estimates that were within rors of 4-75 percent. As shown, the effect on total
40 percent of the true values, momentum is larger for decoupled control for Wn er-

rors of more than 20 percent; the effect on maximum
Effect of Model Frequency Error on Control torque is larger for LQR control over the entire range
Performance of _n error. For both control procedures, it should be

noted that the z-axis control actuator at location 1

Flexlble-mode control. Figure 5 shows sample (fig. 1) required the maximum torque in the nominal
time histories of modal responses and control require- case. In some decoupled cases with an Wn error, the
ments for two sets of Wn errors. For both control z-axis actuator at location 2 required the maximum
procedures, only small differences are noted in the torque. For the LQR cases represented by the two
flexible-mode responses between the two sets of er- lowest data points across the range of a_n errors, the
rors. As shown in figure 5, the responses null within y-axis actuator at location 1 required the maximum
about 10 sec. The relatively small transients in the torque.
rigid-body responses are primarily caused by the ob-
server in that perfect estimates of the state variables Rigld-body control. The parametric plots in fig-
are not possible. (See ref. 4.) In addition, transients ures 7 and 8 show the effects of Wn errors on rigid-
in the undisturbed modes (initially at 0) are inherent body control requirements. As expected, the changes
to the LQR control procedure. As shown, the rigid- in the control requirements are considerably smaller
body transient responses null in about 60 sec for both for rigid-body control than for flexible-mode control.
control procedures. Curves for no-error cases are not In figure 7, only the maximum positive and negative
shown in figure 5 because they would fall within the changes in torque are plotted for the eight cases (ta-
general region of the plotted curves. For larger er- ble III) at each magnitude of o3n error. From the
rors in Wn, the effects are analyzed in a subsequent figure, it is evident that effects on maximum torque
section of this paper, are essentially the same for both control procedures.

The torque time histories in figure 5 require in- In all cases, the x-axis control actuator at location 2
stantaneous values because the initial estimates were required the maximum torque. As for total momen-
not 0. This condition can be eliminated by incorpo- tum requirements, figure 8 shows that Wn errors have
rating small time lags in the control-feedback gain a negligible effect for decoupled control.
matrix. (See ref. 4.) It is of interest to note in In reference 4 it was shown that the rigid-body
figure 5(a) that the control actuator requiring the modes could be controlled adequately with the use
maximum absolute value of torque is different for of only one three-axis attitude sensor at location 1.
the positive- and negative-error cases. This design Hence, an error analysis was made for this condition
consideration is important in sizing the actuators. (i.e., no rate sensor). The results are presented
Figure 5 shows that for LQR control, the total mo- in table IV for seven sets of random errors in Wn
mentum for the six actuators is somewhat lower for ranging from 10 to 20 percent. (No figure is presented
the case with an Wn error of -10 percent, because variations were relatively small.) The data



indicate that an unstable control system can result in figures ll(a) and ll(b). The LQR oscillations
with an _Zn error greater than 10 percent. For in figure 11(b)are more pronounced; however, after
example, with an _Vn error of 15 percent, the ¢ about 6 sec, their magnitudes are about the same as
rigid-body mode became unstable for LQR control, those for decoupled control. (The oscillations can
For an _Vnerror of 20 percent, the same mode was be partially alleviated if estimates of the residual

unstable along with one of the first three flexible modes can be included in the control procedure.)
modes. For the stable cases, it is seen that the Figure 11(c) is based on the case for figure 11(b)
maximum torque is unaffected. Also, in two of the except that the damping error is limited to the first
cases for LQR control with an wn error of 10 percent, three flexible modes. This situation is not likely to
the effects on momentum were relatively large as a occur, but the fact that the oscillations are smaller
result of poor performance by the z-axis actuators, than those in figure 11(b) points out the adverse
This performance is characterized by the long control effect of negative fn error on control performance.
oscillations that require more than 60 sec to zero The effect of positive fn error is not as great, as is seen
out, as shown in figure 9. Also shown in figure 9 in figure 11(d) for LQR control. Decoupled control
is an example of poor response in the ¢ rigid-body was not affected.
mode and a relatively large transient response for
the first flexible mode. The ¢ and 0 rigid-body mode Effect of Model Moment-of-Inertia Error on
responses are not affected. Control Performance

Figure 10(a) shows an example of the effect of ob- Figure 12 summarizes the effect of model moment-
servation spillover (effect of residual modes) on the of-inertia error on the momentum requirements for
z-axis control actuator at location 1 for decoupled rigid-body and flexible-mode control. Maximum
control. The other actuators are essentially unaf- torque requirements are not materially affected. As
fected. The rapid control oscillations, although small shown, changes in momentum are relatively small
in magnitude, are inherent to the decoupled-control over the large range of positive and negative errors
procedure, with or without model error, and are ag- in inertia, especially for flexible-mode control. Note
gravated by the effect of model error. These oscilla- that in this case, the effect of LQR control is three
tions are eliminated if estimates of the residual modes times larger than for decoupled control.
can be included in the control procedure. (See ref. 4.)
An alternative would be to turn off the actuator, as Effect of Mode-Slope Error on Control
shown in figure 10(b). (This condition was simulated Performance
on the computer by zeroing out the third row in the Consideration of the 15 different nonzero mode

feedback gain matrix. The other gains in the matrix slopes included in the B and C matrices would yield
were left unchanged, with the result that the control 32 768 (i.e., 215) possible combinations of random
law was not altered.) The system remained stable sets of positive and negative errors for any specified
with only minor effects noticed for the first and third magnitude of • _ error. Twenty random sets of er-
flexible modes, rors (similar to those given in table III) at four val-

ues of _t error were selected to determine the max-
Effect of Model Damping Error on Control
Performance imum changes in control requirements, as shown in

figure 13. Each random set was selected to be rad-
The results in table V show that model damping ically different from other sets because it was found

error has little effect on the control requirements, re- that a change of one or two signs between any two
gardless of whether the error is positive or negative, sets had a negligible effect on the results; thus each
The effect is greater for flexible-mode control; how- set essentially represents 120 or more different sets.
ever, the larger changes are shown to be negative, a This value was derived by the following combinato-
result that is not detrimental. (The maximum neg- rial formula for the number of r elements out of a set
ative error of 50 percent was chosen because some of n for a total of 120 combinations.
natural damping is required for stability.)

As expected, a negative fn error has a detrimental Crn = n(n - 1) .... (n - r + 1)
effect on control actuator performance because of an 1 •2 .... r

increase in the observation spillover effect caused by where
the reduced damping. The time histories in figure 11 15
depict this effect on the performance of the z-axis C_ 5 - - 151
control actuator at location 2. (The other actuators and

are not affected.) Rapid control oscillations for both C15 _ 15.14 _ 105decoupled and LQR flexible-mode control are shown 1 • 2

9



The 20 random sets chosen for the current anal- For smaller errors in Wn and Op, say 25 percent, the
ysis are deemed adequate for establishing the maxi- _ transient nulls within 60 to 120 sec.
mum effects. The system was stable over the range
of • _errors shown. Although errors of =t=75percent Effect of Model Error on Time to Null
resulted in a stable system, the control requirements

Examples of the effect of various model errorswere excessive for flexible-mode control. (For exam-
ple, momentum changes exceeded 300 percent.) on the time to null are presented in figures 16 and

As expected, the results in figure 13 show only 17. Figure 16(a) shows that for large Wn errors
small effects of • f errors on the rigid-body require- with decoupled flexible-mode control, the time to
ments. It is evident that when controlling the flexible null is about 60 sec. For the more realistic errors
modes, the maximum torque is more sensitive to • t in figure 16(c), this time is reduced considerably.
error for decoupled control than for LQR control. In The results shown in figures 16(e) and 16(f) for largeO I
all cases resulting in increased torque for LQR rigid- errors are similar to those shown in figure 16(a).
body and flexible-mode control, the control actuator With a few exceptions, model error had no effect on
requiring the maximum value was the same as that time to null for rigid-body control for either control
for the nominal case. For the decoupled flexible-mode procedure. Some LQR cases with a_n errors larger
control cases resulting in the largest torque increases, than 20 percent required up to 150 sec to null the ¢
the z-axis actuator at location 2 required the maxi- response as well as the first flexible-mode transient.
mum torque. There is also some effect of model inertia error I

Comparison of the results in figure 13 with those on time to null, as illustrated in figure 17. (Note
in figures 6 and 8 shows that the maximum changes the expanded time scale.) The curves apply to both

control procedures.in momentum are comparable for • _ and _n errors.
The larger errors in • / are considered to be more re-
alistic because mode shapes and slopes are the least ConcludingRemarks
identifiable of the model parameters and are there- An analysis has been made to determine the el-
fore the most important of all the model errors. (See fects of model error on the control of a large flexi-
ref. 8.) Hence, it would be advisable to concentrate ble space antenna. Control was achieved by employ-
on • I in any initial adaptive control procedure when ing two three-axis control-moment gyros (CMG's) lo-
updating the model parameters, cated on the antenna column. Results have been

compared for decoupled and linear quadratic reg-
Effect of Model Error on Maximum ulator (LQR) control procedures. Errors were as-
Transients sumed to exist in the individual model parame-
As previously discussed, transients are produced ters: modal frequency, modal damping, mode slope,

in the undisturbed modes when either control pro- and moment of inertia. Their effects on control-
cedure is employed, but transients are more pro- system performance have been analyzed either for
nounced with LQR control. Model errors in _Vnand (1) nulling initial disturbances in the rigid-body
• t affect the maximum values of these transients, as modes, or (2) nulling initial disturbances in the first
summarized in table VI. The last column indicates three flexible modes. The study includes the effects
the importance of the particular effect for each con- on stability, time to null, and control requirements
trol procedure. (For example, a small effect repre- (defined as maximum torque and total momentum),
sents a relatively small change in the transients over as well as on the accuracy of obtaining initial state es-
a large range in model error.) The example in fig- timates before the controller is activated. The effects
ure 14 illustrates the large effect on the flexible mode on the transients of the undisturbed modes (initially
transients due to an 02n error using LQR rigid-body at 0) have also been included.
control. It is seen in table VI(a) that this effect in- Errors in the model natural frequencies Wn have
creases substantially as the Wn error increases. (Er- the largest effect on the accuracy of determining
rors in _n and in inertia have negligible effects on the initial estimates for the state variables. Model er-
rigid-body and flexible-mode transients.) rors in the mode slopes have the next largest el-

Figure 15 illustrates a serious effect of Wn and • t fect; errors in the damping and moment-of-inertia
errors on the ¢ rigid-body transient response during parameters have a negligible effect. For the wide
flexible-mode control for both control procedures, range of model errors investigated, only large errors
Although the maximum transients are only about in frequency (> 50 percent) resulted in an unstable
0.2°, it is apparent that a considerable period of time system.
is required before the ¢ responses null. (The other Effects of model errors on the control require-
two rigid-body responses, 0 and ¢, null in 60 sec.) ments (defined as maximum torque and total
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momentum) are, in general, comparable for both con- The effects of model errors in frequency and mode
trol procedures. The effect of mode-slope error ap- slope on the maximum transients of the undisturbed

pears to be the largest of all model errors. Hence, it modes are different for the two control procedures,
would be advisable to concentrate on this parameter the severity depending upon the type of model error
in any initial adaptive control procedure when up- and whether rigid-body modes or flexible modes are
dating the model parameters. Errors in the damping to be controlled. The largest effect is produced
and moment-of-inertia parameters have only small by frequency errors with rigid-body LQR control.
effects on the control requirements. However, nega- Model errors in the damping and moment-of-inertia
tive damping error is detrimental to control-actuator parameters have a negligible effect on the transients.
performance in that rapid oscillations are induced in For rigid-body control, the model errors have only
the control responses, a minor effect on the time to null. Although the

In some cases for flexible-mode control with fre- effect is larger for flexible-mode control, the responses
nulled within 60 sec in all cases.quency or mode-slope errors, the control actuator

requiring the maximum absolute value of torque is

different from the nominal (no-error) case. This dif- NASA Langley Research Center
ference would be an important design consideration Hampton, VA 23665-5225
when sizing the actuators. May 27, 1986
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Appendix

Tables of Matrices Used in Current Analysis

This appendix consists of tables of matrices (tables AI to AIV) used in the
current analysis for the B matrix, F matrix for decoupled control, K matrix
and Q weightings for LQR control, and the C matrix.
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TABLE AI. B MATRIX

B18x6

O. O. O. O. O. O.
O, O, O. O. O, O.
O. O. O. O. O. O.
O. O. O. O. O, Oo
O. O. O. O. O. O.
0, 0. 0. 0. 0, 0.

O, O, O. O, O, .0,
O. O, O, O° O, O,
O, O, O. O, O° O,

.19737917E-07 0. .11003987E-0g ,19737917E~07 0. ,l1003987E-0q
0 ,1Q658120E-07 O, O, ,1g658120E-07 O,

llO03OS?E-Op O. ._5777708E-07 .llO03qBTE-O9 O, .25777798E-O7I_71Z325E-05 O, -.I1745441E-03 -.4Z32054_E-06 O. -.37776195E-06
-.36681003E-03 O. O. .31838614E-04 O.

0.611435qOE-03" O. .89756447E-04 -.61805513F-04 O, .20098311E-05
3P]78798E-06 O. .441qqO_4E-05 .88746034F-07 O. -.10276237E-03
126qBsg1E-03 O, -.1145215lE-04 -,21981567E-02 O, -.835_2937E-06
59589009E-07 O. -.34274029E-05 .71689635E-07 O° -.135§14q6E-03

TABLE AII. F MATRIX USED FOR DECOUPLED CONTROL

F6x12

[-.46716861E*05 0, ,11921819E+04 0, 0, 0,Row 1no.
_t-.8_OgO34qE+O6 O. .ZI_59275E+05 -.9618167ZE+03 O, -,11606566E+04

tO. -.40617g32E+05 O. O. O. O.2 / 0. -,73112277E+0b 0, 0, ,22278945E+04 0,
r ,10686118E+04 0, ,12631355E+04 O. 0. 0.3 / • 19Z35012E+O5 O. .ZZ?36_39E.05 .73813685E.0_ 0. -,18777995E402

4 _ -._99342_E.06 O. ,970bO27_E+03 O, O, O,
l-.82788170E.07 O, ,17470849E+05 ,9618167ZE+03 O. .11606566E.04

_0, -,46807772E.Ob O. O. O. O,
O, -,8_253990L+07 0, O, -,22278945E.0_ O,

$ .lO941729E+04 O, -,389ZO310E.06 U, O. O,6t • 19695112E+05 0, -.700_b557E+07 -.73813685E+04 0. ,18777995E.02



_" TABLE AIII. K MATRIX and Q WEIGHTINGS USED FOR LQR CONTROL

K6x 12

-,29895_E*00 O, ,5_9278E.04 -,1_4308E.03 0. -,217185E+03 -o496916£+0.7 O=
_OW no. I{ .I05906E,06 -,3798SDE+03 0. -.266962t+U4

2{ O, -,_3977E+O6 O, O. ,298704L+03 O, O, -,493@3)£*010, 0, ,363859E.04 0o

3{-,6_377_E*04 0, -.I_6435E+0_ .4461_t.03 0o -,160382E.03 -olt1494E*06 _,-,327119E.07 ,_19151E.0_ 0. -o3_5_4E.U3

4{-.332541E,06 O, -.9213log.03 o915410t.00 U, -oZ34356E*03 -.535499E.07 O,-,134411E.05 ,80W148E.02 O. ,281730L.03

5{ O. -,337012E.0_ O. o° .319770E.03 O° O, -o543606E*07Oo O, -°3_500E+03 O.

6{-.128526E.0_ O. .2055929._6 .519965E.03 _. -._21741E*02 -.124421E.05 O,-.3UOI37E_07 -.935697E.02 -.36Z612L+O1

Q = diag(0.2 x 1012 , 0.2 x 1012 , 0.7 x 1011, 1, 1, 1, 0.2 x 1014 , 0.2 x 1014 , 0.92 x 1013, 0.41 x 108 , 0.14 x 108 , 0.76 x 107 )

TABLE AIV. C MATRIX FOR THREE-AXIS ATTITUDE-RATE SENSOR AT LOCATION 1 AND
THREE-AXIS ATTITUDE SENSOR AT LOCATION 4

C6×18

0, 0, 0, 0, 0, 0,
Row no. i'0, 0, 0, ,I0000000E+01 0, 0,

,2Z532850F-03 0, ,1_790460E-02 -°11935500E-06 -°25308020E-03 ,43113600E-04
0, 0, 0, 0, 0, 0,

20. O. O. O. .lO000000F+O1 O.
O, -.191q5410_-02 O. O. O. O.
O, O. O. O, O, O,

3 O° O. O, O. O, ,IO000000E+OI
-,1798_blOF-01 0, ,275_31BOF-03 ,13_64720E-05 -,_823800F-04 -.2_797850E-02

,IO000000E+O1 O, O. -.1181_080E-03 O, -,50625030E-03
4 ,Z3921_70E-07 ,30756_50_-03 -,43030160E-05 O, O, O,
0, 0, 0, 0, 0° 0,
O, ,IO000000F+01 O, O. °54079040E-03 O.

5 O, O, O, O, O, O,
0, 0, 0, 0, 0, 0,
0, 0° .[ooooo0o_+ol L,1095qqTOE-01 0, ,17061950E-03

6 .37009500E-0_ -.1_806800E-04 -,_45_1710E-01 O. 0, O.
0, 0, 0, 0, 0, 0,
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TABLE I. ANTENNA CHARACTERISTICS

[Ix1.9577×lO101b-in2;Iyl.9657x= = 1010 lb_in2; ,]]
Iz 1.499 × 101° lb-in2; Ixz 0.8357 × 108 lb-in2;

w -- 10 020.3 lb

Mode Wn, rad/sec Tn, sec fn Description
1 0.7466 8.42 0.01 First torsion

2 1.3460 4.67 .01 First bending, xz-plane
3 1.7025 3.69 .01 First bending, yz-plane
4 3.1813 1.98 .01 Surface torsion

5 4.5294 1.39 .02 Second column bending, yz-plane
6 5.5905 1.12 .02 Surface-hoop torsion, feed-mast torsion

TABLE II. SPECIFIED CLOSED-LOOP EIGENVALUES

Case Mode Wd, rad/sec _'d
Decoupled 0 0.1 0.9

¢ .1 .9
¢ ,1 .9
1 a.7466 .59
2 a1.346 .34
3 al.7025 .24

LQR _ 0.098 0.904
¢ .112 .900
¢ .112 .901
1 .7453 .502
2 1.345 .511
3 1.700 .502

aValues used are exact Wn values.
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TABLE III. RANDOM SETS FOR COnERRORS

Flexible Positive and negative errors for random set number--
mode COn,rad/sec 1 2 3 4 5 6 7 8

1 0.7466 + + + + ....
2 1.3460 + + .... + +
3 1.7025 + - - + - + + -
4 3.1813 + - + .....
5 4.5294 . - + .... +
6 5.5905 + ...... +

TABLE IV. EFFECT OF COnERRORS ON RIGID-BODY CONTROL REQUIREMENTS

[One three-axis attitude sensor]

IO0(T_-TN)/TN, 100(Me - MN)/MN,
percent percent

Random error (a) (a) Comments
in con, Decoupled LQR Decoupled LQR

percent (b) (c) (b) (c)
+10 0 0 1.7 -1.4

±10 0 0 -0.6 10.9 Long oscillations in
Tz,1 and Tz,2
for LQR control

=hl0 0 0 1.9 -4.4
=t=10 0 0 -0.7 i7.7 Same as above
+15 0 0 -0.7 26.3 Same as above

=t=15 0 U 17.4 U Long oscillations in

Tz,1 and Tz,2
for decoupled control

+20 U U U U

au indicates instability; 0 indicates negligible effect.
bFor decoupled control: TN = 418 ft-lb; M N ---10 984 ft-lb-sec.
CFor LQR control: T N = 301 ft-lb; M N = 11 720 ft-lb-sec.
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TABLE V. EFFECT OF ;n ERRORS ON CONTROL REQUIREMENTS

, , , , •

100(T_ - TN)ITN, IO0(Mc-MN)IMN,
Error percent percent

Condition in _n, /a) (a)
percent DecouPled .LQR Decoupled LQR '

Rigid-body +900 0 0.3 0 -0.3
control (one -50 0 0 .1 .1
three-axis attitude

sensor)
'Rigid-body' +900' -/'0.7 ' 0.7 0' -0.2

control (two -50 0 0 .2 0
three-axis

sensors)
Flexible-mode +900 -9.5 -14.5 -5.4 --9.7'

control (two -50 .4 1.8 3.7 4.0
three-axis

sensors)

aValues for TN and MN are given in figures 6 to 8 and in table IV; 0 indicates negligible effect.
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TABLE VI. TYPICAL EFFECTS OF MODEL ERROR ON TRANSIENTS

(a) Rigid-body control

Model error Error, Control Maximum transients (absolute)
!n-- percent .procedure A1, in. A2, in. A3, in. Effect .....
_n ± 10 Decoupled 0.003 0.014 0.022 Small

±50 .005 .040 .027

±10 ...... LQR ...... 0.21 0.74 ....... 0186 Large
±50 .12 2.17 2.55

...... (I)' _10 ....... Decoupled 0.002 ' 0.035 0.020 Large ......
±50 .005 .135 .175

+10 LQR 0.24 0.65 0.75 small ....
±50 .21 .80 .95

(b) Flexible-mode control

Model error Error, Control Maximum transients (absolute)
.....in-- ....... percent procedure 8, rad ¢, rad ¢, rad Effect

Wn t10 Decoupled 0.000013 0.000038 0.000405 Large
±50 .000115 .ooo137 .OO318o

..... +10 LQR 0.000161 0.000233 0.001120 small
±50 .000194 .000349 .001440

'4' +10 ' Decoupled 0.000033 0.000009 0.001040 Large
±50 .000212 .000146 .003200
±10 " LQR 0.000116 0.000270 0.001540 Small
150 .000078 .000080 .003960

19



z

I Distance, in.
11 = 1183

12 = 2077

_ 14 = 193

I Iz = 677

/ Column
r = 2406

11

®

Y

x

2

r

/
q €

I

Hoop

Figure 1. Antenna coordinates and actuator or sensor locations.
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Figure 2. Unforced responses of natural vibration modes.
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Figure 3. State estimation error for rigid-body control. Controls off.
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Figure 4. Examples of state estimation error for flexible-mode control. Controls off,
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(a) Decoupled flexible-mode control.

Figure 5. Comparison of modal responses and control requirements for two sets of model frequency errors.
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Figure 5. Continued.
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Figure 5. Continued.
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(b) LQR flexible-mode control.

Figure 5. Continued.
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positive and negative changes shown; the solid and dashed curves were faired through the maximum values
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Figure 9. Example of poor performance for LQR rigid-body control using one three-axis attitude sensor at top
of antenna column. Error in Wn, +I0 percent; dashed curves indicate no-error case.
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Figure 10. Typical responses for decoupled rigid-body control using two three-axis sensors. Error in wn,
i10 percent.
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(b) Inoperative z-axis control actuator at top of column.

Figure 10. Concluded.
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(a) Decoupled control with error in fn of -50 percent in all six flexible modes.

Figure 11. Effect of model damping error on z-axis control actuator at bottom of antenna column (location 2)
when controlling flexible modes.
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(b) LQR control with error in _n of -50 percent in all six flexible modes.

Figure 11. Continued.

38



n

_7

I?

7

0 12 2u_ _6 u_8 60

Time, sec

(c) LQR control with error in fn of -50 percent in first three flexible modes.

Figure 11. Continued.
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(d) LQR control with error in _n of +900 percent in _i six flexible modes.

Figure 11. Concluded.
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(b) Flexible-mode control.

Figure 12. Effect of model error in I on total momentum for deeoupled and LQR control. MN values given infigures 6 and 8.

41



32-

24--
I-.

_z 16

!

a

_% ( (3
0 I0 20 30 40 50

Absolute error lndp °, percent

Figure 13. Effect of model error in Ot on control requirements for decoupled and LQR control. Open symbols
denote rigid-body control and solid symbols denote flexible-mode control; TN and M N values are given in
figures 6, 7, and 8; the solid and dashed curves were faired through the maximum values obtained.
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Figure 14. Typical transient response for rigid-body control with error in _n of±50 percent.
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Figure 15. Effect of model error on _ transient during flexible-mode control. Dashed curves indicate no-error
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Figure 16. Effect of model error on time to null for flexible-mode control.
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Figure 16. Continued.
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Figure 16. Concluded.
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Figure 17. Comparison of responses for two sets of model errors in I using rigid-body control.
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