research

Cooperative distributed LQR control for longitudinal flight of a formation of non-identical low-speed experimental UAV's

Abstract

In this paper, an established distributed LQR control methodology applied to identical linear systems is extended to control arbitrary formations of non-identical UAV's. The nonlinear model of a low-speed experimental UAV known as X-RAE1 is utilized for simulation purposes. The formation is composed of four dynamically decoupled X-RAE1 which differ in their masses and their products of inertia about the xz plane. In order to design linear controllers the nonlinear models are linearized for horizontal flight conditions at constant velocity. State-feedback, input and similarity transformations are applied to solve model-matching type problems and compensate for the mismatch in the linearized models due to mass and symmetry discrepancies among the X-RAE1 models. It is shown that the method is based on the controllability indices of the linearized models. Distributed LQR control employed in networks of identical linear systems is appropriately adjusted and applied to the formation of the nonidentical UAV's. The applicability of the approach is illustrated via numerous simulation results

    Similar works