192 research outputs found

    Finite-time passivity for neutral-type neural networks with time-varying delays – via auxiliary function-based integral inequalities

    Get PDF
    In this paper, we investigated the problem of the finite-time boundedness and finitetime passivity for neural networks with time-varying delays. A triple, quadrable and five integral terms with the delay information are introduced in the new Lyapunov–Krasovskii functional (LKF). Based on the auxiliary integral inequality, Writinger integral inequality and Jensen’s inequality, several sufficient conditions are derived. Finally, numerical examples are provided to verify the effectiveness of the proposed criterion. There results are compared with the existing results.&nbsp

    Sliding Mode Control for a Class of Multiple Time-Delay Systems

    Get PDF

    Improved results on an extended dissipative analysis of neural networks with additive time-varying delays using auxiliary function-based integral inequalities

    Get PDF
    The issue of extended dissipative analysis for neural networks (NNs) with additive time-varying delays (ATVDs) is examined in this research. Some less conservative sufficient conditions are obtained to ensure the NNs are asymptotically stable and extended dissipative by building the agumented Lyapunov-Krasovskii functional, which is achieved by utilizing some mathematical techniques with improved integral inequalities like auxiliary function-based integral inequalities (gives a tighter upper bound). The present study aims to solve the H∞,L2−L∞ H_{\infty}, L_2-L_{\infty} , passivity and (Q,S,R) (Q, S, R) -γ \gamma -dissipativity performance in a unified framework based on the extended dissipativity concept. Following this, the condition for the solvability of the designed NNs with ATVDs is presented in the form of linear matrix inequalities. Finally, the practicality and effectiveness of this approach were demonstrated through four numerical examples

    Convex Identifcation of Stable Dynamical Systems

    Get PDF
    This thesis concerns the scalable application of convex optimization to data-driven modeling of dynamical systems, termed system identi cation in the control community. Two problems commonly arising in system identi cation are model instability (e.g. unreliability of long-term, open-loop predictions), and nonconvexity of quality-of- t criteria, such as simulation error (a.k.a. output error). To address these problems, this thesis presents convex parametrizations of stable dynamical systems, convex quality-of- t criteria, and e cient algorithms to optimize the latter over the former. In particular, this thesis makes extensive use of Lagrangian relaxation, a technique for generating convex approximations to nonconvex optimization problems. Recently, Lagrangian relaxation has been used to approximate simulation error and guarantee nonlinear model stability via semide nite programming (SDP), however, the resulting SDPs have large dimension, limiting their practical utility. The rst contribution of this thesis is a custom interior point algorithm that exploits structure in the problem to signi cantly reduce computational complexity. The new algorithm enables empirical comparisons to established methods including Nonlinear ARX, in which superior generalization to new data is demonstrated. Equipped with this algorithmic machinery, the second contribution of this thesis is the incorporation of model stability constraints into the maximum likelihood framework. Speci - cally, Lagrangian relaxation is combined with the expectation maximization (EM) algorithm to derive tight bounds on the likelihood function, that can be optimized over a convex parametrization of all stable linear dynamical systems. Two di erent formulations are presented, one of which gives higher delity bounds when disturbances (a.k.a. process noise) dominate measurement noise, and vice versa. Finally, identi cation of positive systems is considered. Such systems enjoy substantially simpler stability and performance analysis compared to the general linear time-invariant iv Abstract (LTI) case, and appear frequently in applications where physical constraints imply nonnegativity of the quantities of interest. Lagrangian relaxation is used to derive new convex parametrizations of stable positive systems and quality-of- t criteria, and substantial improvements in accuracy of the identi ed models, compared to existing approaches based on weighted equation error, are demonstrated. Furthermore, the convex parametrizations of stable systems based on linear Lyapunov functions are shown to be amenable to distributed optimization, which is useful for identi cation of large-scale networked dynamical systems

    Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    Get PDF
    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefore able to continue for a long period. SWNCS also offers multi Service infrastructure solution for both developed and undeveloped countries. The system provides wireless controller lighting, wireless communications network (WI-FI/WIMAX), CCTV surveillance, and wireless sensor for weather measurement which are all powered by solar energy

    Partial state estimation of time-delay systems.

    Full text link
    This thesis broadly studies three crucial and rigorous inter-related control theoretical subjects: (i) Partial state estimation of linear systems; (ii) Stability analysis of time-delay systems with interval time-varying delays; and (iii) Functional observer design for time-delay systems
    • …
    corecore