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Abstract

Jack Umenberger, BE (Hons 1) Doctor of Philosophy
The University of Sydney August 2017

Convex Identification of Stable
Dynamical Systems

This thesis concerns the scalable application of convex optimization to data-driven mod-
eling of dynamical systems, termed system identification in the control community. Two
problems commonly arising in system identification are model instability (e.g. unreliability
of long-term, open-loop predictions), and nonconvexity of quality-of-fit criteria, such as sim-
ulation error (a.k.a. output error). To address these problems, this thesis presents convex
parametrizations of stable dynamical systems, convex quality-of-fit criteria, and efficient
algorithms to optimize the latter over the former.

In particular, this thesis makes extensive use of Lagrangian relaxation, a technique for gen-
erating convex approximations to nonconvex optimization problems. Recently, Lagrangian
relaxation has been used to approximate simulation error and guarantee nonlinear model
stability via semidefinite programming (SDP), however, the resulting SDPs have large di-
mension, limiting their practical utility. The first contribution of this thesis is a custom
interior point algorithm that exploits structure in the problem to significantly reduce com-
putational complexity. The new algorithm enables empirical comparisons to established
methods including Nonlinear ARX, in which superior generalization to new data is demon-
strated.

Equipped with this algorithmic machinery, the second contribution of this thesis is the in-
corporation of model stability constraints into the maximum likelihood framework. Specifi-
cally, Lagrangian relaxation is combined with the expectation maximization (EM) algorithm
to derive tight bounds on the likelihood function, that can be optimized over a convex
parametrization of all stable linear dynamical systems. Two different formulations are pre-
sented, one of which gives higher fidelity bounds when disturbances (a.k.a. process noise)
dominate measurement noise, and vice versa.

Finally, identification of positive systems is considered. Such systems enjoy substantially
simpler stability and performance analysis compared to the general linear time-invariant
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(LTI) case, and appear frequently in applications where physical constraints imply nonneg-
ativity of the quantities of interest. Lagrangian relaxation is used to derive new convex
parametrizations of stable positive systems and quality-of-fit criteria, and substantial im-
provements in accuracy of the identified models, compared to existing approaches based on
weighted equation error, are demonstrated. Furthermore, the convex parametrizations of
stable systems based on linear Lyapunov functions are shown to be amenable to distributed
optimization, which is useful for identification of large-scale networked dynamical systems.
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Chapter 1

Introduction

This thesis concerns the building of approximate models of dynamical systems from mea-

sured data, a.k.a. system identification. The motif that unites all of the technical develop-

ments and contributions here within is the scalable application of convex optimization to

this task. In this introductory chapter, we motivate the system identification problem, hint

at some of its main difficulties, and outline the contributions of this thesis to address these

difficulties.

1.1 Data driven modeling

Building mathematical models from measured data is a task of fundamental importance in

many areas of science and engineering. Models are useful for making predictions, optimizing

design, developing automatic control systems, and furthering our understanding of the

universe that we inhabit; consider the early models of the motion of the planets, and the

revelation that the earth, in fact, orbits the sun. Given this prevalence, it is not surprising

that the ideas, theory, and algorithms for mathematical modeling have come from a variety

scientific communities, including: statistics and statistical learning, econometrics and time

series analysis, and recently, machine learning and artificial neural networks.

This thesis is concerned with the modeling of dynamical systems. Roughly speaking, a

system is said to be dynamic if what has happened in the past affects future behavior, i.e.,

the mapping from inputs to outputs has memory. In the control community, estimation of

dynamical systems from measured data is called system identification, although the process

of building a model may also be referred to as training, fitting or learning. Figure 1.1 offers

a graphical depiction of the key elements comprising the system identification problem. In

what follows, we briefly describe these key elements, and touch on the challenges associated

with each; or, more precisely, the challenges addressed in this thesis. For a more thorough

discussion, refer to Chapter 2.
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ũ ỹ?
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Figure 1.1 – Cartoon depiction of the system identification problem. (a) The high-level ob-
jective of a system identification problem. Given measured inputs, ũ, and outputs ỹ, find
a dynamical system that best fits this data. (b) A set of models to search over. Useful
properties, such as stability, are defined by nonconvex constraints. A major theme of this
thesis is convex parametrizations of stable models, that are easier to search over. (c) Many
quality-of-fit criteria, e.g. measures of model error, are nonconvex in the model parameters,
θ. Optimization of such criteria proceeds iteratively, by a sequence of approximations. A
major theme of this thesis is convex approximations to nonconvex quality-of-fit criteria,
that are (hopefully) robust to local minima. (d) A model should have good predictive
performance for a variety of inputs, not just good fit to the training data. The process of
testing this is called validation, and involves compared the output of the model to measured
data not used for training.
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Figure 1.1(a) summarizes the high-level objective of a system identification problem: given

observations, or measurements, of the inputs to and outputs from some dynamical system,

find a mathematical model that ‘best fits’ this data. There can be many challenges asso-

ciated with merely attaining the data for identification, such as: choosing an appropriate

input to excite the system, selecting the relevant outputs to observe, and using the right

sensors or recording methods to obtain accurate measurements. This process of experiment

design is an important topic in its own right, c.f., [76, 77, 197]; however, in this thesis we

will assume that the training data has already been collected.

Once the data has been collected, the second key element is a set (or parametrization) of

models to search over; this is depicted in Figure 1.1(b). As a concrete example, consider

the familiar linear discrete-time-invariant system

xt+1 = Axt +But (1.1)

yt = Cxt +Dut. (1.2)

Here, the unknown model parameters to be estimated are the matrices A,B,C,D. The

linear time-invariant (LTI) system in (1.1) is deterministic; however, in reality system be-

havior is almost always uncertain, due to random 1 disturbances that affect the dynamics,

as well as measurement (e.g. sensor) noise. In general then, the models that we fit are

probability distributions. The emphasis of Figure 1.1(b), however, is on the convexity of

the model set. In any optimization problem, convexity is one of the key properties that

determines tractability. Broadly speaking, convex problems are easier to solve than non-

convex ones, because every locally optimal solution is also globally optimal; c.f. Section 2.2.

In practice, many of the properties we desire for the identified model, e.g. stability during

long-term open-loop simulations, require constraints that lead to a nonconvex model set.

Developing (convex) parametrizations of models with useful properties has been recognized

as an important open problem [131, §4.1], and plays a prominent role in this thesis.

To quantify the notion of the ‘best model’ we need some kind of ‘quality-of-fit’ criterion.

Typically, some measure of the mismatch between the predictions from the model and the

observed outputs (e.g. prediction error) is used. We then seek the model that achieves

the lowest error, which is depicted in Figure 1.1(c) as numerical minimization problem. In

some special cases, this minimization can be carried out analytically. More often though,

an iterative procedure is required. This is complicated by the fact that many quality-of-fit

criteria (especially those that capture the long-term fit of model) are nonconvex functions

of the model parameters. The need for formulations of the identification problem that are

robust to local minima has also been recognized as an important topic for further research

[131, §4.2]. Even when the optimization is convex, scalability of the numerical algorithms

(i.e., computational complexity that does not explode with problem size) is not guaranteed.

In fact, the development of scalable algorithms for convex optimization is a motif that

1What is considered ‘random’ depends on how much one chooses to model; e.g., the influence of unmod-
eled dynamics may be approximated by random disturbances.
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underpins most of the contributions of this thesis.

Finally, it is important that the identified model has good predictive performance in response

to a variety of inputs, not just good fit to the data used for training. This property is referred

to as the generalizability of the model, and the process of testing this is called validation.

If the model performs well on training data, but poorly during validation (i.e., on data

not used for training) then the model may be described as ‘overfit’. Roughly speaking, this

occurs when the model is ‘too flexible’, and the parameters are tuned to imitate the random

disturbances in the measurements, rather than the underlying signal. In such a situation,

it may be necessary to collect more training data, use regularization to penalize and avoid

excessive model flexibility, or choose another model structure altogether.

1.2 Principle contributions

The central theme of this thesis is the efficient and scalable application of convex opti-

mization to problems arising in system identification, specifically, model instability and

nonconvexity of quality-of-fit criteria. With this in mind, the principle contributions of

this thesis can be summarized within the context of the following three overlapping lines of

research.

Recently, the technique of Lagrangian relaxation has been used to generate convex approx-

imations to simulation error (a.k.a output error) that can be optimized via semidefinite

programming; c.f. Section 2.4. The contributions of this thesis, presented in Chapter 3, are

as follows:

• Specialized path-following interior point algorithms for Lagrangian relaxation of sim-

ulation error (in the linear case) and linearized simulation error (in the nonlinear case)

are developed.

• These custom solvers have computational complexity that grows as a linear function

of the number of data points used for model fitting, compared to the cubic growth

exhibited by general-purpose semidefinite programming solvers.

• These efficient solvers enable Lagrangian relaxation to be applied to problems of a scale

hitherto intractable. The method of Lagrangian relaxation is empirically evaluated

and state-of-the-art performance against established methods, such as nonlinear ARX,

is demonstrated.

The Maximum Likelihood criterion is used extensively in a wide range of statistical learning

problems, including system identification. However, traditional formulations give no regard

to the stability of the identified models. The contributions of this thesis, presented in

Chapter 4, are as follows:
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• Model stability constraints are incorporated into maximum likelihood identification

of dynamical systems.

• Specifically, Lagrangian relaxation and expectation maximization (EM) are com-

bined to generate new bounds on the likelihood that can be optimized over convex

parametrizations of stable models; in the linear case, this parametrization includes all

stable linear models.

• In this framework, a new formulation of the EM algorithm for system identification

is presented. This new approach uses disturbances, rather than the usual choice of

states, as the latent variables.

• The relationship between choice of latent variables (i.e. disturbances or states) and

bound fidelity is studied. Theoretical and empirical studies show that bounds based

on latent states offer greater fidelity when the disturbances are more significant than

measurement noise; the converse is true for the latent disturbances formulation when

the situation is reversed.

• It is also shown that latent disturbances provide the most broadly applicable for-

mulation of EM for identification of models in which the disturbance covariance is

rank-deficient, a.k.a, singular state space models.

Dynamical systems for which nonnegative inputs imply nonnegative states are said to be

internally positive. Such systems appear frequently in applications, and enjoy simpler sta-

bility analysis compared to the generic LTI case. The contributions of this thesis to the

identification of positive systems, presented in Chapter 5, are as follows:

• Two new convex parametrizations of all stable positive systems are derived. One is

defined by a linear matrix inequality and generalizes existing approaches; the other is

defined by a polytopic set.

• Two new convex quality-of-fit criteria, compatible with the above parametrizations,

are derived. One is based on Lagrangian relaxation of equation error (a.k.a. the least

squares criterion); the other is a convex upper bound on the `1 norm of simulation

error (a.k.a. output error).

• It is shown how the new polytopic parametrization of stable positive systems per-

mits distributed optimization of the quality-of-fit criteria. Specifically, the linear

constraints defining the polytopic parametrization allow the identification problem

to be more readily decomposed into simpler subproblems, compared to existing LMI

conditions for stability.
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1.3 Publications

Research publications relating to this thesis are listed below, in reverse chronological order.

J. Umenberger, J. Wågberg, I.R. Manchester, T.B. Schön. Maximum likelihood

identification of stable linear dynamical systems. Automatica. 2017. Conditionally

accepted for publication.

J. Umenberger, I.R. Manchester. Specialized interior-point algorithm for stable

nonlinear system identification. IEEE Transactions on Automatic Control. 2017.

Under review.

C. Grussler, J. Umenberger, I.R. Manchester. Identification of externally positive

systems. To appear in Proceedings of the IEEE Conference for Decision and Control

(CDC). 2017.

J. Umenberger, I.R. Manchester. Scalable identification of stable positive systems.

In Proceedings of the IEEE Conference for Decision and Control (CDC). 2016.

J. Umenberger, I.R. Manchester. Specialized algorithm for identification of stable

linear systems using Lagrangian relaxation. In Proceedings of the American Control

Conference (ACC). 2016.

J. Umenberger, J. Wågberg, I.R. Manchester, T.B. Schön. On identification via

EM with latent disturbances and Lagrangian relaxation. In Proceedings of the IFAC

Symposium on System Identification (SYSID). 2015.

1.4 Thesis structure

This thesis proceeds as follows. Chapter 2 provides a summary of the state-of-the-art

in system identification. The purpose of this chapter is to survey the literature in such

a way so as to contextualize the contributions of this thesis, as well as equip the reader

with background information sufficient to understand the technical developments of the

succeeding chapters.

In Chapter 3 we present specialized interior-point algorithms for identification of stable

nonlinear dynamical systems, via Lagrangian relaxation of simulation error. We explain

the structural properties of Lagrangian relaxation exploited by the specialized algorithms,

and demonstrate, both theoretically and empirically, a significant reduction in computa-

tional complexity compared to generic solvers; namely, linear instead of cubic growth in the
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number of data points used for training. We demonstrate the performance of the algorithm

via three case studies: a simulated nonlinear mechanical system, a real two-tank bench-

mark identification problem, and simulated linear flexible beams. Superior performance

over state-of-the-art methods, such a nonlinear ARX, is achieved. We also investigate the

apparent ‘regularizing’ effect of model stability constraints in identification of nonlinear

systems.

We then extend some of these ideas to a stochastic setting in Chapter 4, by using La-

grangian relaxation to incorporate model stability constraints into the maximum likelihood

framework. We combine Lagrangian relaxation with the expectation maximization (EM)

algorithm to derive tight lower bounds on the likelihood that can be optimized over a con-

vex parametrization of all stable linear models by semidefinite programming. We explore

the effects that different choices of latent variables have on the fidelity of these bounds,

and show that latent states lead to better performance when system disturbances (a.k.a.

process noise) dominate measurement noise; conversely, latent disturbances perform better

when the situation is reversed. These conclusions are supported by theoretical analysis and

extensive simulation studies.

In Chapter 5 we turn our attention to identification of internally positive systems. We

leverage the simplified stability conditions enjoyed by such systems to derive two new con-

vex parametrizations of stable positive systems, as well as convex quality-of-fit criteria

compatible with these parametrizations. Extensive numerical simulations demonstrate su-

perior performance of criteria derived from Lagrangian relaxation, compared to existing

approaches based on weighted equation error. Distributed algorithms for the optimization

of these criteria are also presented.

Finally, Chapter 6 concludes the thesis by discussing some open problems and suggesting

directions for future research.
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Chapter 2

Background

In this chapter we attempt to provide something of a summary of the state-of-the-art in

system identification; however, due to the maturity of the subject, a comprehensive review

is beyond our scope. Rather, there are two objectives for this chapter. First, to survey

the literature in such a way so as to contextualize the contributions of this thesis. Second,

to equip the reader with background information sufficient to understand the technical

developments of the succeeding chapters.

2.1 A framework for system identification

System identification is a mature subject, with many textbooks covering both the ‘art’ and

‘science’ of building approximate models of dynamical systems from measured data, e.g.,

[124, 129, 132, 159]. As discussed in Chapter 1, modeling is a task of such fundamental

importance in so many fields of science and engineering, that many approaches and much

terminology has developed. This can make navigating the immense literature a daunting

task. In this section, we present an ‘optimization-based approach’ to system identifica-

tion, as a way of systematically reviewing the literature. There are five elements to this

optimization-based framework:

1. Data collection, i.e., obtaining sequences of inputs ũ1:T = {ũt}Tt=1 and outputs ỹ1:T =

{ỹt}Tt=1 from the system being modeled.

2. A set or parametrization of models to search over. The model set specifies the struc-

ture of the model, along with the unknown parameters to be found. We shall use θ to

denote the unknown parameters of a model, and Θ ⊂ Rnθ to denote the set of possible

values that θ can take.

3. A quality-of-fit metric or criterion to quantify the notion of the ‘best’ or ‘optimal’

model. Most quality-of-fit criteria are expressed in terms of model error, e.g. predic-

tion error, and so we will often talk about the quality-of-fit metric as a cost function to
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be minimized. The likelihood, as used in maximum likelihood methods, is an obvious

exception; however the different between ‘minimizing a cost function’ and ‘maximiz-

ing a value function’ is superficial. We shall use E(θ) to denote a generic quality-of-fit

metric.

4. An algorithm to search over the model set Θ to find the model that achieves the best

value of the quality-of-fit metric, i.e., an algorithm to solve the optimization problem:

θ̂ := arg minθ∈Θ E(θ).

5. Validation, i.e., checking that the identified model has good predictive performance

for a variety of inputs, not merely good fit to the data used for training, [129, §16].

These five elements can be thought of as steps in a system identification task. Before

proceeding, some comments on each are in order.

The data collection process incorporates tasks such as: the design of an input signal so as

to appropriately excite the system, i.e., elicit the behavior that we wish to capture in the

model; the selection of suitable signals to measure (to constitute the system outputs); the

choice of frequency at which to sample the measured signals, so as to capture the relevant

behavior; and any filtering or noise suppression. Despite the ongoing improvement of sensor

technology, in some applications even measuring the signals of interest is a challenge, e.g.,

consider the carbon nanowires [96] required to measure electrical activity of neurons modeled

in [144]. Many of these considerations fall under the subject of experiment design, which is

an important research topic in its own right, [76, 77, 142, 197]. In this thesis, however, we

do not consider experiment design; all of the methods we develop assume that the training

data {ũ1:T , ỹ1:T } is already available.

Rather, we shall focus most of our attention on elements 2-4: parameterizations of models,

quality-of-fit criteria, and search algorithms. It is to these three areas that this thesis

makes its contributions. Notice that we assume a finite parametrization of the models, i.e.,

θ ∈ Θ ⊂ Rnθ . Indeed, this thesis considers the problem of generating point estimates of

parametric models from data. Approaches that do not fit quite so neatly into this paradigm,

such as Bayesian methods, set membership, frequentist analysis of confidence intervals, and

nonparametric methods are discussed in Section 2.5.1. Furthermore, we shall be concerned

primarily with black-box modeling. Black-box modeling is characterized by flexible model

parametrizations that can (hopefully) approximate a wide variety of dynamical systems.

The goal is to accurately model input-output behavior, without regard for the physical

‘explainability’ of the structure of the identified model. This may be contrast to ‘gray-box’

modeling, which incorporates a priori information to develop model structures in which

the unknown parameters (typically) have some physical meaning, or ‘white-box’ modeling,

in which models are constructed from first principles; c.f., [131, §5] for a more thorough

discussion.

Validation is listed as the final step of the modeling task; however, if the performance of the

model on validation data is not adequate, it may be necessary to revise one (or all) of the
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preceding steps (e.g., collect more data, tweak the model structure, choose a new quality-

of-fit criterion and/or search algorithm), and repeat the process. In essence, validation tests

the ability of a model to generalize (from data used for training to data not used during

training). A useful tool for improving ‘generalizability’ is regularization, which penalizes or

constrains model complexity (in some sense) to help avoid overfitting, c.f. Section 2.1.2 for

further discussion. Although this thesis does not propose new methods for validation, we

do explore the apparent regularizing effect of model stability constraints in Chapter 3.

2.1.1 Common model structures

Once measurements of the input and output have been collected, the first step in an opti-

mization based approach to system identification is to select an appropriate set of models

to search over.

Deterministic models

In essence, a system is dynamic if future behavior depends on past behavior. One approach

then, is to model the output of a dynamical system as a finite truncation of previous inputs

yt = fp(θ, ut, ut−1, ut−2, . . . , ut−d). (2.1)

When fp is a nonlinear function of past inputs, (2.1) is called a nonlinear finite impulse

response (FIR) model. Common nonlinear functions include Wiener and Volterra series

[52, 202]. When fp is a linear function of the inputs, we have the familiar (linear) FIR

model as a special case; e.g, yt =
∑n

i=0 biut−i where {bt}nt=0 denotes the impulse response

of the nth order single input, single output (SISO) system.

FIR models have a number of attractive properties for identification. For one, model sta-

bility is guaranteed; it is clear that setting ut = 0 for t > τ will result in yt decaying to

a constant value fp(θ, 0, . . . , 0) in finite time. Furthermore, fitting is usually straightfor-

ward; e.g., when fp is linear in the model parameters, minimization of simulation error (c.f.

Section 2.1.2) is convex. Unfortunately, FIR models are known to be very inefficient when

modeling resonant systems, and are incapable of capturing some nonlinear behaviors such

as limit cycles (stable oscillations which live on the edge of instability).

In contrast, models with feedback offer a more parsimonious representation of dynamic

behavior. Perhaps the most simple example of feedback in a dynamical system is given by

the linear finite difference equation

yt + a1yt−1 + · · ·+ anayt−na = b1ut−1 + · · ·+ bnbut−nb . (2.2)

By introducing the backwards shift operator q−1, such that q−1ut = ut−1, we can define the

polynomials A(θ, q) = 1 + a1q
−1 + · · ·+ anaq

−na and B(θ, q) = b1q
−1 + · · ·+ bnbq

−nb , which
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gives a transfer function representation of (2.2)

yt =
B(θ, q)

A(θ, q)
ut = G(θ, q)ut, (2.3)

where θ = {a1, . . . , ana , b1, . . . , bnb}.

The finite difference model (2.2) may be augmented to incorporate system nonlinearity. One

approach is to introduce static nonlinearities at the input (Hammerstein), and/or output

(Weiner) of the linear dynamical system, leading to so-called Hammerstein-Weiner models,

[23]. Alternatively, one may introduce nonlinearity directly into the feedback path, resulting

in a nonlinear finite difference equation of the form

yt = ffd(θ, yt1 , . . . , yt−na , ut−1, . . . , ut−nb). (2.4)

Popular functional forms for ffd include polynomials, neural networks [39], wavelets [208],

as well as non-parametric kernels [178].

In a state space model, feedback is introduced via an internal state variable, xt ∈ Rnx . The

state summarizes or condenses all of the past behavior (i.e., input and outputs) into a single

quantity that is sufficient to compute future behavior. A general deterministic state space

model takes the form

xt+1 = aθ(xt, ut), (2.5)

yt = gθ(xt, ut). (2.6)

Here aθ : Rnx × Rnu 7→ Rnx defines the system dynamics, i.e. the state transition, whereas

gθ : Rnx ×Rnu 7→ Rny is a static mapping from states and inputs to the observable output.

A special case of (2.5) is the familiar LTI state space model,

xt+1 = Axt +But, (2.7)

yt = Cxt +Dut, (2.8)

which gained popularity after Kalman’s celebrated work on prediction and linear quadratic

optimal control. State space models offer a very general description of system dynamics;

in fact, the state space model in (2.5) is able to incorporate all of the previously discussed

model structures, e.g., for finite difference models, one can take a truncated history of

outputs as the state variable, and set g such that yt = xt.

Time-invariant state space models can also incorporate some1 of the dynamical systems

that appear in machine learning. For instance, a recurrent neural network (RNN) is a deep

feedforward network, in which all of the layers share the same weights [116]. A generic RNN

can be represented as a nonlinear state space model, c.f., e.g., [173, §1]. RNNs have proven

1Time-varying state space models are required to represent neural networks in which the weights in each
layer are independent of one another.
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effective in applications that deal with inputs sequentially, such as speech and language

processing. The internal state vector maintained by the ‘hidden layers’ of the network

stores information about past observations (e.g. words in a sentence); however, theoretical

and empirical results suggest that standard RNNs experience difficulty storing information

over long time horizons [12]. To address this limitation, recent approaches augment the

network with a ‘memory module’, leading to long-short term memory (LSTM) networks

[91], Neural Turning Machines [78], and memory networks [254].

Probabilistic models

Often it is desirable, or necessary, to model the stochastic properties of a system, e.g.

random disturbances that affect the dynamics, and/or measurement noise that affects the

output y that we observe. We can augment the deterministic models introduced above

with stochastic processes, to form a complete (but approximate) probabilistic description of

system behavior. Once more, the simplest approach involves the finite difference equation

model of (2.2). Adding a white-noise disturbance wt directly into the difference equation

yields an equation error model of the form

A(θ, q)yt = B(θ, q)ut + wt. (2.9)

Such a model is termed AutoRegressive with eXogenous inputs (ARX), due to the depen-

dence of the output on both past outputs, A(θ, q)yt (AR), and external (or exogenous)

inputs, B(θ, q)ut. Early work on identification of ARX systems can be found in [10, 92].

In some applications, it may be appropriate to model the disturbance as a (weighted) moving

average (MA) of white noise, leading to a so-called ARMAX model of the form

A(θ, q)yt = B(θ, q)ut + C(θ, q)wt, (2.10)

with C(θ, q) = 1 + c1q
−1 + · · · + cncq

−nc . In much the same way, stochastic processes

may be introduced to the deterministic nonlinear difference equation in (2.4), leading to

probabilistic nonlinear ARX (NARX) or NARMAX models [24].

In some settings, it may be more appropriate to approximate the system by a deterministic

model with the output, rather than the state transition, corrupted by measurement noise,

e.g., the transfer function in (2.3) with additive white measurement noise vt,

yt =
B(θ, q)

A(θ, q)
ut + vt, vt ∼ N (0,Σv) . (2.11)

Such a model is said to have an output error structure, as the noise corrupts the observed

outputs, rather than the state transition. Identification of output error models typically

lead to simulation error minimization problems: c.f. Section 2.1.2 and Chapter 3. In the

linear setting, a very general parametrization of probabilistic models is given by the so-called



14 Background

Box-Jenkins structure [27],

yt =
B(θ, q)

A(θ, q)
ut +

C(θ, q)

D(θ, q)
vt, (2.12)

with D(θ, q) = 1 + d1q
−1 + · · ·+ dndq

−nd .

As in the deterministic case, the most general description of finite dimensional (and finitely

parametrized) dynamical systems is offered by nonlinear state space models. A general

probabilistic state space model can be expressed as

xt+1 ∼ paθ(xt+1|xt, ut), (2.13)

yt ∼ pgθ(yt|xt, ut). (2.14)

As a concrete example, in engineering applications it is common to augment the determin-

istic state space model (2.5) with additive disturbances, wt, and measurement noise, vt,

leading to

xt+1 = aθ(xt, ut) + wt, yt = gθ(xt, ut) + vt. (2.15)

Furthermore, if the additive noise is normally distributed, i.e. wt ∼ N (0,Σw), then we have

paθ(xt+1|xt, ut) = N (xt+1 − aθ(xt, ut),Σw) , pgθ(yt|xt, ut) = N (yt − gθ(xt, ut),Σv) .

A special case of (2.15) occurs when the dynamics are linear, leading to a so-called linear

Gaussian state space (LGSS) model,

xt+1 = Axt +But + wt, (2.16)

yt = Cxt +Dut + vt. (2.17)

2.1.2 Quality-of-fit criteria

The next step of the identification problem is to find the model within the model set Θ

that best fits the measured data. We quantify the ‘best’ model as that which optimizes

(i.e. minimizes or maximizes) some quality-of-fit metric or criterion, E . In this section, we

survey some common quality-of-fit criteria. It should be noted that the choice of model

structure typically has a large influence on the quality-of-fit metric that is optimized.

Maximum likelihood

Since its introduction by Fisher [62] at the beginning of the 20th century, the maximum

likelihood (ML) criterion has remained an extremely popular approach to parameter iden-

tification in a range of statistical inference problems; c.f [56, §4]. A probabilistic model of

a dynamical system, parameterized by θ, defines a probability density function (PDF) for

the observed input and outputs, p(θ, u1:T , y1:T ). For a specified value of θ, this PDF gives
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the likelihood with which observations of the system will take on certain values, i.e.,

P({u1:T , y1:T } ∈ A) =

∫
{ū1:T ,ȳ1:T }∈A

p(θ, ū1:T , ȳ1:T ) dū1:Tdȳ1:T . (2.18)

Given observed data {ũ1:T , ỹ1:T }, i.e. realizations of the random variables {u1:T , y1:T },
p(θ, ũ1:T , ỹ1:T ) is called the likelihood function. The ML parameter estimate is then given

by

θ̂ML = arg max
θ

p(θ, ũ1:T , ỹ1:T ). (2.19)

In the system identification literature, the likelihood is often written as pθ(y1:T ), where

explicit dependence on u1:T has been dropped for brevity. It is worth emphasizing that the

likelihood pθ(y1:T ) is a function of θ when optimized in (2.19).

Under the assumption that the observed data was generated by a model in the model set Θ,

the ML estimate θ̂ML has a number of desirable properties, such as strong consistency and

asymptotic normality, c.f. [129, §8 and §9]. In fact, the asymptotic covariance of the ML

parameter estimate converges, as T → ∞, to the Cramér-Rao lower bound. In this sense,

θ̂ML has the best possible asymptotic properties of all unbiased estimators, c.f. [129, §9.3]

Despite this, there are two important caveats for ML identification. First, the assumption

that the model set is correctly specified is unrealistic in application; real systems are almost

always more complicated than the models we construct. This, in part, motivated the intense

study of prediction error methods, discussed next. Second, finding θ̂ML, i.e. achieving the

global maximum of (2.19), is not always straightforward. For nonlinear, non-Gaussian

models, the likelihood can be difficult to even compute, let alone differentiate, and local

maxima are not uncommon. ML identification is addressed in Chapter 4.

Prediction error

The basic principle of comparing predicted output to measured data as a criterion for

model fidelity has a long history in the system identification literature. Early work by

Akaike [3, 4] recognized the underlying connections between such criteria and maximum

likelihood methods, as well as the utility of prediction error criteria in the absence of a true

model. The term prediction error method (PEM) appears to have been introduced in a

series of papers [126, 127] by Ljung, who has since championed the approach. The method

centers around the prediction error, which is defined as the difference between the observed

output ỹt and the (one-step-ahead) prediction ŷt(θ) from the model, i.e.,

εpt (θ) := ỹt − ŷt(θ). (2.20)

It should be emphasized that ŷt(θ) need not be the optimal (e.g. unbiased, minimum

variance) one-step-ahead predictor for the model; as discussed in [129, §7.1], there is con-

siderable freedom in choosing the predictor. The prediction error estimator is then given
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by

θ̂PE = arg min
θ

{
Epe(θ) :=

1

T

T∑
t=1

` (L(q)εpt (θ))

}
, (2.21)

where `(·) is some scalar valued function, such as a norm, and L(q) is a stable linear

filter, selected by the user to attenuate behavior not critical to the modeling task, e.g.,

to suppress high-frequency noise or eliminate low-frequency drift. On occasion, especially

for the purpose of asymptotic analysis, we will write θ̂PE
T to emphasize dependence of the

resulting parameter estimate on the number of data points, T .

Although ML methods certainly predate PEM, the latter can be viewed as a general frame-

work that encompasses many popular approaches, depending on the statistical properties

of the model set and choice of function `(·). For instance, under the assumption of a true

model θ0 in the model set Θ, choosing `(·) = − log pe(·) recovers the ML estimate, i.e.

θ̂PE = θ̂ML, where pe(·) is the PDF for the residuals et = εpt (θ0).

The popularity of PEM is largely due to its desirable asymptotic properties in the absence

of a true system description within the model parametrization. Under mild assumptions

about the model set and given sufficiently informative data, PEM has been shown to provide

the best possible model estimate, from with the model set Θ, in the sense that

θ̂PE
T → arg min

θ∈Θ
Ē [`(L(q)εpt (θ))] w.p. 1 as T →∞, (2.22)

where Ē [ft] := limt→∞
1
T

∑T
t=1 E [ft], c.f. [128, Lemma 3.1], and [129, §8.3]. This property

is, of course, contingent on actually achieving the global minimum in (2.21), which is not

always straightforward, e.g., due to capture in local minima during optimization.

Equation error

PEM can be viewed as a framework that encapsulates many popular approaches, includ-

ing the least squares criterion, a.k.a. equation error minimization. Consider a linearly

parametrized equation error model, as defined in §2.1.1. For a concrete example, let us use

the ARX model in (2.9). The dynamics in (2.9) can be written in regressor form as

yt = φ′tθ + wt

where φ′t = [yt−1, . . . , yt−na , ut−1, . . . , ut−nb ] denotes a vector of regressors, and

θ = [a1, . . . , ana , b1, . . . , bnb ]
′

is the vector of model parameters. Suppose we choose a one-step-ahead predictor of the

form

ŷt = φ̃′tθ + µt,
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where φ̃′t = [ỹt−1, . . . , ỹt−na , ũt−1, . . . , ũt−nb ] and µt is a known function of the observed

data; c.f. [129, §7.3]. Taking `(·) = | · |2 and L(q) = 1 in (2.21) leads to minimization of

1

T

T∑
t=1

|εpt |2 =
1

T

T∑
t=1

|ỹt − ŷt|2 =
1

T

T∑
t=1

|ỹt − φ̃′tθ − µt|2. (2.23)

This cost function is often called the least squares criterion, or simply equation error. As

(2.23) is convex (quadratic, in fact) in the model parameters, it is analytically minimized by

the least squares estimate. It is worth emphasizing that the above developments are valid

for any linearly parametrized equation error model, e.g. NARMAX. Linearity in the model

parameters is what’s important; the regressors themselves may be nonlinear functions of

the problem data ũ1:T and ỹ1:T .

When the problem data ỹ1:T is generated by an equation error model,

ỹt = φ̃′tθ0 + wt,

where θ0 denotes the true model parameters, the least squares estimate is consistent, as long

as the regressors are not correlated with the disturbances, i.e., E
[
φ̃twt

]
= 0. However, in

most applications these conditions are not satisfied, e.g., the disturbances may not be white

noise, the outputs may be corrupted by measurement noise (as in ‘errors in variables’ prob-

lems, [212]), or the input sequence ũ1:T may come from a closed-loop feedback controller.

In such cases, the least squares estimate is not consistent.

Minimization of equation error also appears in approaches not directly derived from the

PEM framework. For example, in subspace methods one minimizes

T∑
t=1

‖ỹt − Cx̃t −Dũt‖2 +

T∑
t=1

‖x̃t+1 −Ax̃t −Bũt‖22 (2.24)

w.r.t. θ = {A,B,C,D}, where x̃1:T are state estimates derived from a subspace algorithm,

c.f. [239] and Section 2.1.3.

For models obtained by minimization of one-step-ahead prediction error, it is reasonable

to expect good short term predictive performance. However, small equation error does not

guarantee reliable long term open-loop predictive performance (e.g. due to accumulation of

error at each time step during simulation).

Simulation error

When accurate open-loop predictions of long-term system behavior are required, it may

be desirable to minimize simulation error (a.k.a. output error), defined as the difference

between the measured output, ỹ1:T , and the open-loop simulated output of the model; e.g.
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for the state space model (2.5), simulation error is defined as

Ese :=

T∑
t=1

‖ỹt − yt‖22 (2.25)

where yt = g(a(a(. . . a(x̃1, ũ1) . . . , ũt−2), ũt−1), ũt) is the simulated output of (2.5) beginning

from the initial conditions x̃1, which may be known a priori or estimated.

The definition of simulation error in (2.25) assumes a completely deterministic model, e.g.,

(2.5). For probabilistic models, such as (2.13), Ese is not well-defined. Having said this, in

the PEM framework, there are close connections between simulation error and prediction

error for output error model structures. For example, consider augmenting the deterministic

model (2.5) with i.i.d. measurement noise of constant covariance. The result is an output

error model of the form,

xt+1 = a(xt, ut), yt = g(xt, ut) + vt, vt ∼ N (0, diag (σ)) . (2.26)

A common one-step ahead predictor for this model is the simulated output, i.e., ŷt(θ) =

g(a(. . . a(x̃1, ũ1) . . . , ũt−1), ũt). Minimization of prediction error in (2.21) (with L(q) = 1

and `(·) = ‖ · ‖22) is then equivalent to minimization of simulation error, and corresponds to

maximum likelihood identification; c.f. [251], [22, §5].

Unlike equation error, e.g. (2.23), the dependence on the simulated output of the model

renders Ese a nonconvex function of the model parameters, θ, making the search for the

global minimum challenging. Even in the case of linear second order models, with finite T ,

the existence of poor local minima has been demonstrated [211].

Regularization

Due to the random disturbances affecting our measurements, any parameter estimate θ̂ is a

random variable, governed by a probability density function with mean and variance. The

difference between the mean value of the estimate and true model parameters (if such a true

description exists) is referred to as the bias. Therefore, there are two contributions to the

total error in a model: the bias and the variance. Roughly speaking, a model structure that

is not sufficiently flexible will be unable to capture the true behavior of the system, leading

to large bias. On the other hand, more flexibility in the model structure can increase the

risk of over-fitting to the random disturbances in the data, thereby increasing the variance.

Regularization refers to the process of constraining or reducing model complexity (in some

sense) to manage this bias-variance trade-off (i.e. prevent over-fitting) in statistical modeling

[86]. Classical methods such as Tikhonov regularization, also known and ridge regression

(shrinkage) in statistics [56, §7] and weight decay in machine learning [112], as well as

subset selection (regressor pruning) have long been applied in nonlinear system identification

[24, 99, 208].
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In system identification, regularization typically involves the addition of some term that

penalizes the size or complexity of the model parameters to one of the quality-of-fit criteria

discussed above. For example, Tikhonov regularization of prediction error minimization

takes the form

min
θ
Epe(θ) + δ‖θ − θ̄‖22, (2.27)

which is just the usual PEM criterion from (2.21) plus a quadratic cost on deviation from

some fixed parameter value, θ̄. At a conceptual level, there are three common justifications

for including the regularization term; c.f., e.g., [129, §7.4] for further details:

i. The regularization term δ‖θ − θ̄‖22 has the effect of ‘pulling’ the estimated parameters

towards the fixed point θ̄, often chosen to be the origin, θ̄ = 0. Roughly speaking,

the parameters that have little influence on Epe will be pulled close to zero, and vice

versa. This may be interpreted as a reduction in the ‘effective’ or ‘efficient’ number of

parameters, thereby reducing the flexibility of the model and variance of the error.

ii. This first interpretation is also well supported by the Bayesian framework for identifi-

cation, c.f. Section 2.5.1, in which the regularization term δ‖θ − θ̄‖22 corresponds to a

Gaussian prior, with mean θ̄ and covariance 1
2Tδ I, on the model parameters.

iii. The Hessian of the regularized criterion in (2.27) is given by ∇2Epe + δI. For models

with high-dimensional θ, the addition of δI can improve the numerical conditioning of

the Hessian, and ensuing optimization problem.

Recently, novel regularization strategies for the identification of linear systems have been

developed, including nuclear norm regularization for subspace identification (e.g. [125]) and

kernel methods for impulse-response modeling, surveyed in [179].

2.1.3 Subspace methods

Since their introduction in the 1990s, subspace methods have become an indispensable tool

for the identification of linear dynamical systems. A number of early approaches, such as

those presented in [97, 114, 239, 247], received a unified treatment in [240]; see also [241].

Since then, subspace methods have undergone continual development, including the study

of statistical properties [11, 81, 98] as well as extensions to identification of closed loop

systems [43, 45, 186, 246]; c.f. [185] for a recent survey on subspace methods.

In our framework, subspace methods straddle the boundary between ‘quality-of-fit’ criteria

and ‘search algorithms’. Subspace methods are typically used to generate state estimates

x̃1:T from input/output data that can then be used in quality-of-fit criteria such as equation

error, c.f., (2.24). In addition, many of the convex relaxations studied in this thesis rely

on such an approximate state sequence for their construction; e.g. approximate states are

useful for building multipliers in the Lagrangian relaxations of Section 2.4. For this reason,
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we devote some time to the key ideas and geometrical principles underlying the subspace

identification methods. A more thorough treatment can be found in [241, §2].

Subspace preliminaries

Idea is to estimate internal states from input-output data, by exploiting the property that

linear dynamical systems are invariant under similarity transformations.

Let {ut}Tt=0 and {yt}Tt=0 denote the noiseless inputs and simulated outputs of the LTI system,

xt+1 = Axt +But, (2.28)

yt = Cxt +Dut.

The key data structures that subspace algorithms manipulate are block Hankel matrices of

these inputs and outputs, i.e., for the inputs we have

U0|2i−1 =


u0 u1 . . . uj−1

u1 u2 . . . uj
...

...
. . .

...

u2i−1 u2i . . . u2i+j−2

 ∈ R2inu×j .

The block Hankel matrix for the outputs, Y0|2i−1, is defined similarly. The number of block

rows, i, is a user defined parameter, that ought to be set at least as large as the (unknown)

order of the true system, nx. The number of columns, j, is usually selected so as to make use

of all T data samples; i.e. there are 2i+j−1 block elements in the matrix, so j = T −2i+1.

In what follows, it is convenient to partition the block Hankel matrices as

U0|2i+1 =

[
U0|i−1

Ui|2i−1

]
=

[
Up
Uf

]
, Y0|2i+1 =

[
Y0|i−1

Yi|2i−1

]
=

[
Yp
Yf

]
,

where the subscripts p and f denote ‘past’ and ‘future’ measurements, respectively, relative

to the t = i− 1th point in the time series data. This notion of ‘past’ and ‘future’ quantities

also applies to the internal states. In particular, a sequence of j states is denoted by

Xi = [xi, . . . , xi+j−1] ∈ Rnx×j

from which we can define the past and future state sequences, Xp = X0, Xf = Xi. The

relationship between sequences of inputs, states and outputs can be expressed as

Yp = ΓiXp +HiUp (2.29)

Yf = ΓiXf +HiUf (2.30)

Xf = AiXp + ∆iUp. (2.31)
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where Γi denotes the extended observability matrix,

Γi =


C

CA
...

CAi−1


∆i denotes the extended controllability matrix,

∆i = [Ai−1B, . . . , AB,B],

and Hi denotes the block Toeplitz matrix,

Hi =


D 0 0 . . . 0

CB D 0 . . . 0
...

...
...

. . .
...

CAi−2B CAi−3B CAi−4B . . . D

 .

Finally, for matrices M ∈ Rm×j and N ∈ Rn×j , let ΠN := N ′(NN ′)†N define the orthogonal

projection operator onto the row space of N , such that

M/N := MΠN = MN ′(NN ′)†N

gives the orthogonal projection of the row space of M onto the row space of N . Similarly,

M/N⊥ := MΠN⊥ = M(I −N ′(NN ′)†N)

gives the projection of the row space of M onto the orthogonal complement of the row space

of N . In addition, instead of decomposing M = MΠN + MΠN⊥ into the row space of N

and its orthogonal complement, we may wish to project the row space of M onto the row

space of N along the row space of some other matrix P ∈ Rp×j . This defines the oblique

projection

M PN =
[
M/P⊥

] [
N/P⊥

]†
N.

See [241, §1.4] for further details.

Geometric interpretation

We now show how the state sequence Xf can be recovered from the input-output data by

algebraic operations. The first key insight exploited by subspace methods is that the state
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sequence Xf lies in the row space of Wp, where

Wp :=

[
Up
Yp

]
, Wf :=

[
Uf
Yf

]
.

To see this, begin by rearranging (2.29) as follows

ΓiXp = Yp −HiUp.

The idea is to solve this equation for the past states, Xp. Assuming a minimal realization

of the linear system (in particular, that (A,C) is observable), the extended observability

matrix Γi has rank nx, and so

Xp = Γ†i (Yp −HiUp).

Substituting the above expression into (2.31) yields:

Xf = AiXp + ∆iUp

= AiΓ†i (Yp −HiUp) + ∆iUp

= [∆i −AiΓ†iHi, A
iΓ†i ]︸ ︷︷ ︸

Lp

[
Up
Yp

]
︸ ︷︷ ︸

Wp

,

i.e., the future states, Xf , are a linear combination of the rows of Wp. Substituting Xf =

LpWp into (2.30) gives

Yf = ΓiLpWp +HiUf . (2.32)

Now we are in a position to appreciate the geometrical interpretation of the subspace iden-

tification algorithm, depicted in Figure 2.1. For convenience, define Oi = ΓiXf . Figure

2.1 clearly shows the simple fact that Yf = Oi +HiUf , which is nothing more than (2.30).

However, notice that Oi is depicted in the row space of Wp, which incorporates the result

from (2.32). Furthermore, observe that Oi (an unknown quantity) can be recovered by an

oblique projection of Yf along the row space of Uf and onto the row space of Wp,

Oi = Yf/UfWp (2.33)

which requires the measured quantities Yf , Uf and Wp only.

Now, as Γi and Xf are both rank nx, their product Oi = ΓiXf is also rank nx. Therefore,

it is possible to factor Oi by, e.g., using a singular value decomposition:

Oi = [U1, U2]

[
S1 0

0 0

][
V ′1
V ′2

]
. (2.34)

Then, the state sequence Xf can be recovered (up to an unknown similarity transformation)
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Oi = ΓiXf

Wp

YfHiUf

Figure 2.1 – Geometric interpretation of subspace identification algorithms. The depiction
Yf = Oi + HiUf is nothing more than (2.30). However, notice that Oi is depicted in
the row space of Wp, which incorporates the result from (2.32). This figure is based on
Figure 2.5 in [241].

by

Xf = S
1/2
1 V ′1 . (2.35)

The system matrices A,B,C,D may then be recovered, e.g., by minimization of equation

error, as in (2.24).

By replacing (2.34) with the singular value decomposition (SVD) of W1OiW2, where W1

and W2 are user-specified weighting matrices, one obtains a general framework for subspace

identification, in which specific choices of weights correspond to various subspace methods,

e.g. N4SID, MOESP, CVA; c.f. [241, §2.3]. For instance, in the more common (and arguably

more easily understood) ‘projection algorithms’, one projects (2.30) onto the orthogonal

complement of Uf , i.e.,

Yf/U
⊥
f = (ΓiXf +HiUf )/U⊥f =⇒ Yf/U

⊥
f = ΓiXf/U

⊥
f .

This has the effect of ‘removing’ the effect of the inputs Uf , which allows the extended

observability matrix to be recovered by SVD of Yf/U
⊥
f . By choosing weights W1 = I

and W2 = ΠU⊥f
, the approach outlined above is completely equivalent to the projection

algorithm.

Effect of noise

When the true system (2.28) that generates the problem data is purely deterministic, i.e.

unaffected by random disturbances, the procedure outlined above returns the true simulated

states, up to some coordinate transformation. When the system is affected by Gaussian

disturbances, as in the LGSS model of (2.16), the same procedure, i.e. (2.33), (2.34) and

(2.35), yields the (non steady-state) Kalman filter state estimates (up to some coordinate

transformation) [241, Theorem 12]. If these state sequences are used directly in minimiza-

tion of equation error, the resulting estimated system parameters will be asymptotically
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biased [241, §4.4.2]. An unbiased, albeit more complicated, procedure is given in [241,

§4.4.1].

2.1.4 Search algorithms

Once the model parametrization and quality-of-fit metric have been selected, the search

method is often implicitly specified, especially when the ensuing optimization is convex. In

this section we provide an overview of the algorithms typically used to solve the optimization

problem minθ∈Θ E(θ).

Linear least squares

One of the most common search algorithms employed in system identification is linear least

squares, used to compute the global minimizer of the equation error criterion. For example,

recall the equation error, a.k.a least squares, criterion from (2.23), i.e.,

Eee(θ) =
1

T

T∑
t=1

|ỹt − φ̃′tθ|2

for some autoregressive model (possibly nonlinear) with parameters θ and vector of regres-

sors φt. Here we set µ = 0 for simplicity and ease of explanation. As equation error is

quadratic in θ, the global minimizer is given in closed form by

θ̂LS := arg min
θ
Eee(θ) =

[
T∑
t=1

φ̃tφ̃
′
t

]−1 T∑
t=1

φ̃tỹt. (2.36)

The simplicity of the formula in (2.36) is appealing; however, least squares estimates are

not computed this way in practice, for numerical reasons. For instance, the matrix RT =∑T
t=1 φ̃tφ̃

′
t may be ill-conditioned, especially for high dimensional systems. Fortunately, by

now numerically robust methods for linear least squares problems have been developed, such

as those involving QR-factorizations, c.f. e.g. [75, §5]. See also [129, §10.1] for a thorough

discussion on the numerical solutions of least squares problems in a system identification

context.

Nonlinear programming

Popularity of the least squares criterion is largely due to the fact that the global mini-

mizer can be obtained non-iteratively, in closed form, as in (2.36). Unfortunately, most of

the quality-of-fit criteria outlined in Section 2.1.2, e.g. prediction error, output error and

likelihood, cannot (in general) be optimized analytically.
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In general, the problem θ̂ = arg minθ f(θ), for some quality-of-fit metric f(θ), must be

solved iteratively, i.e., at the kth iteration of such a procedure we update our estimate θ̂k

of the model parameters according to

θ̂k+1 = θ̂k + αdk, (2.37)

where dk is the search direction, and α is the step length, chosen such that f(θ̂k+1) <

f(θ̂k); c.f. [19, 136, 262] for a general treatments of iterative numerical optimization. At a

high-level, numerical optimization methods can be characterized by the complexity of the

information used in the parameter update rule:

1. first order methods build a local linear approximation to the function, based on the

function value and gradient (first derivative), to compute (2.37), e.g., for a gradient

descent method dk = ∇f(θ̂k),

2. second order methods build a local quadratic approximation to the function, based on

the function value, gradient and Hessian (second derivative), to compute (2.37), e.g., in

a Newton algorithm the ‘Newton’ direction is given by

dk = −
[
∇2f(θ̂k)

]−1
∇f(θ̂k). (2.38)

Second order methods provide fast convergence when f can be well approximated by a

quadratic function, e.g., close to a minimum. In practice though, the full Newton step as in

(2.38) is rarely used. Foremost, exact computation of the Hessian is often computationally

expensive, and even storage of the Hessian could require excessive memory. So called quasi-

Newton methods use an approximation of ∇2f(θk) in (2.38), usually constructed using

gradient information, to compute the search direction; e.g., BFGS and limited memory

variants [123] use a gradient based rank-1 update of the Hessian approximation. Second,

even if the exact Hessian is used, the full step length corresponding to α = 1 is seldom

used; much more common is a so-called damped Newton step in which α ≤ 1. There are

two main families of approaches for computing the step length. Line search methods [262,

§3], such as Gauss-Newton for nonlinear least squares problems [41, 252], first compute dk,

and then search in this direction for a suitable α such that f(θ̂k + αdk) < f(θ̂k). Trust

region methods [262, §4], such as the Levenberg-Marquardt algorithm [156], update θ by

minimizing a quadratic approximation of f that is deemed to be sufficiently accurate, or

trusted, within a defined region about the current iterate, θk, thereby choosing the step

length and direction simultaneously.

First order methods typically provide slower convergence, especially close to local min-

ima. Nonetheless, such approaches are less computationally expensive, and have witnessed

somewhat of a resurgence recently, especially in the machine learning community, where

methods such as stochastic gradient descent [26] are used extensively. There are, at least,

three main reasons for this: (i) necessity: for large scale models with many parameters
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(e.g. deep neural networks) it is often too expensive to compute and store approximations

of the Hessian; (ii) parallelization: first order methods are more amenable to parallel im-

plementations [271], which is important when training large models on massive datasets;

(iii) it just works: reaching the global minimum is often unnecessary or even undesirable,

e.g., early stopping is a common heuristic to avoid overfitting [264]. First order methods

are undoubtedly more popular in machine learning than system identification; however, the

interesting recent work [85] has demonstrated the efficacy of stochastic gradient descent in

output error minimization problems.

There is a third class of methods, called zero-th order, which use only the function value

f(θ̂k) to compute the parameter update, θ̂k+1. Zero-th order methods have the slowest

convergence properties, and are typically only used when gradient information is too diffi-

cult or expensive to compute. Such approaches include finite difference approximations of

derivatives, grid searches, and genetic algorithms [111].

Expectation maximization

Maximum likelihood identification of nonlinear, and/or non-Gaussian dynamical systems is

one such scenario in which the computation of gradients is problematic. In this setting, the

likelihood must be approximated with Monte Carlo methods using sequential importance

sampling (a.k.a. particle filtering) [203]. Unlike linear Gaussian models, in which the

likelihood can be computed in closed form with the Kalman filter, the derivatives of these

particle approximations are not readily available. One solution is to proceed via zero-

th order methods, such as simulated annealing [199] or the Nelder-Mead simplex method

[261]. An alternative is to optimize a differentiable lower bound to the likelihood, which

is the approach provided by the expectation maximization (EM) algorithm. Refer to [51]

for general details, and [71, 203, 214, 215, 237] for examples of the application of EM to

systems identification.

In this section we review the basic principles of ML estimation via the EM algorithm; this

material can be regarded as a primer for the technical developments of Chapter 4. The

approach is predicated on the assumption that there exists a set of latent (read: ‘hidden’

or ‘unobserved’) variables, Z, such that the ‘complete’ or joint log likelihood function

Lθ(y1:T , Z) = log pθ(y1:T , Z)

is easier to optimize than the incomplete log likelihood L(y1:T ) = log pθ(y1:T ). These latent

variables may be thought of as the data that we ‘wish’ we could observe, in the sense that

the problem would be more straightforward if Z was available.

The maximum likelihood problem can be related to the joint likelihood by marginalizing

over the latent variables

θ̂ML := arg max
θ
Lθ(y1:T ) = arg max

θ
log

∫
pθ(y1:T , Z)dZ.
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This is a formidable optimization problem, as marginalization has separated the logarithm

from the likelihood. The idea behind the EM algorithm is to take some estimate θk of the

parameters, use this to build a lower bound for Lθ(y1:T ), then maximize the lower bound

in place of the likelihood function to improve our estimate of θ.

For an arbitrary distribution ρ(Z), Jensen’s inequality gives∫
ρ(Z) log

pθ(y1:T , Z)

ρ(Z)
dZ ≤ log

∫
ρ(Z)

pθ(y1:T , Z)

ρ(Z)
dZ,

where the right hand side is simply Lθ(y1:T ). Therefore, we may define a lower bound for

the likelihood function by

Bρ(θ, θk) :=

∫
ρ(Z) log

pθ(y1:T , Z)

ρ(Z)
dZ. (2.39)

Notice that Jensen’s inequality has ‘reunited’ the logarithm with the likelihood, thereby

making the bound more amenable to optimization. Choosing ρ(Z) = pθk(Z|y1:T ) yields

an ‘optimal’, or ‘tight’, bound in the sense that Bρ(θk, θk) = Lθk(y1:T ) and so intuitively,

maximizing Bρ(θ, θk) w.r.t θ will result in Lθ(y1:T ) ≥ Lθk(y1:T ).

It is convenient to express the optimal bound in the form

Bρ(θ, θk) = Q(θ, θk) +H(θk),

where Q(θ, θk) represents∫
pθk(Z|y1:T ) log pθ(y1:T , Z) dZ = Eθk

[
log pθ(y1:T , Z)|y1:T

]
and H(θk) denotes the differential entropy of pθk(Z|y1:T ). As H(θk) is independent of θ,

maximizing the bound reduces to maximizing Q(θ, θk).

To summarize, each iteration of the EM algorithm consists of an expectation (E) step to

compute Q(θ, θk), and a maximization (M) step in which Q(θ, θk) is maximized to deliver

an improved θk+1, such that Lθk+1
(y1:T ) ≥ Lθk(y1:T ).
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Algorithm 1 Expectation Maximization algorithm

1. Set k = 0 and initialize θk such that Lθk(y1:T ) is finite.

2. Expectation (E) Step:

Q(θ, θk) = Eθk
[

log pθ(y1:T , Z)|y1:T

]
(2.40)

3. Maximization (M) Step:

θk+1 = arg max
θ
Q(θ, θk) (2.41)

4. If not converged, k ← k + 1 and return to step 2.

2.2 Convex optimization

In Section 2.1 we described system identification as an optimization problem: set, objective,

algorithm. One of the most important factors that determines the tractability of any math-

ematical optimization problem is convexity, of both the cost function and feasible set. One

of the main reasons for this is the property that every locally optimal solution of a convex

optimization problem is also a globally optimal solution; i.e., there are no ‘sub-optimal’

local minima in which an iterative minimization procedure might become ‘stuck’. In [196],

Rockafellar describes convexity as “the great watershed in optimization”, in the context of

complexity, tractability and completeness of theory. More formally, [161] established that

the information-based complexity of convex optimization problems is considerably lower

than general optimization problems. Further work on the computational complexity of con-

vex optimization can be found, e.g., in [162, 245]. Even for problems that aren’t convex,

e.g. minimization of most quality-of-fit metrics in system identification other than equa-

tion error, convexity can play an important role, for instance, in the solution intermediate

problems as part of an iterative numerical method [196].

For these reasons, convex optimization is a motif that underpins most of the technical devel-

opments and contributions of this thesis; e.g. the development of convex parametrizations

of stable models, convex approximations of nonconvex quality of fit metrics, and specialized

algorithms that exploit the structure of these convex functions to expedite the search for

model parameters.

In this section, we provide a very brief introduction to convex optimization; specifically, we

review some of the ideas and methods that are pertinent to the technical developments of

this thesis. For a thorough, and highly accessible, treatment of convex programming, c.f.,

e.g., [28].
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2.2.1 Convex programs

A general optimization problem has the form

min
θ

f0(θ) (2.42a)

s.t. fi(θ) ≥ 0, i = 1, . . . ,m (2.42b)

where θ ∈ Rnθ is the vector of decision variables, f0 : Rnθ 7→ R is the cost or objective

function to be minimized, and the functions fi : Rnθ 7→ R define the constraints in (2.42b)

that the decision variables must satisfy. A vector θ∗ is a solution of (2.42) if it has the

lowest cost (i.e. smallest value of the objective function) out of all the vectors that satisfy

the constraints. Such a vector is said to be optimal.

An optimization problem is convex if the objective and constraint functions are convex, i.e.,

they satisfy

fi(αx+ (1− α)y) ≤ αfi(x) + (1− α)fi(y) (2.43)

for all x, y ∈ Rnθ and α ∈ [0, 1]. As discussed, it has long been appreciated that convex

optimization problems are fundamentally more tractable than general optimization prob-

lems. In practice, there are certain classes of convex optimization problems, characterized

by the properties of the functions fi, for which solution methods are readily available. In

this section, we describe some such programs that appear regularly in the sequel.

Linear programming

One of the best known, and most widely used, convex optimization problems is the linear

program (LP), characterized by objective and constraint functions that are linear, i.e.,

fi(αx+ βy) = αfi(x) + βfi(y) (2.44)

for all x, y ∈ Rnθ and α, β ∈ R. Comparing the linearity condition (2.44) to the convexity

condition in (2.43), it is apparent that linear programs are a special case of the general

convex optimization problem in (2.42). Equivalently, convex optimization can be viewed

an a generalization of linear programming; indeed, many important solution methods for

general convex programs (e.g., interior-point methods for semidefinite programs) developed

as extensions of algorithms for linear programming; c.f. [105, 162], and Section 2.2.2.

Linear programs are often expressed in the form,

min
θ

c′θ (2.45a)

s.t. a′iθ + bi ≥ 0, i = 1, . . . ,m (2.45b)

where c, ai ∈ Rnθ and bi ∈ R are constant quantities. The linear constraints may be
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expressed more compactly by

Aθ ≥ b, A =

 a′1
...

a′m

 , b =

[
b1
bm

]
. (2.46)

Linear programming is used extensively in a wide variety of applications, including (but not

limited to), economics, manufacturing [36], electrical power and energy [270], telecommuni-

cations, as well as a number of ‘logistical settings’ such as transport, routing and scheduling

[47]. Historically, linear programs have played a less prominent role in system identifi-

cation, and control-theoretic applications more generally, due largely to the prevalence of

quadratic quantities in these fields; for example: quadratic quality-of-fit criteria (e.g. least

squares criterion), quadratic Lyapunov functions for stability analysis, and quadratic cost-

to-go functions for optimal control and filtering (e.g., linear quadratic regulators and the

Kalman filter). Having said this, with the recent resurgence of interest in positive dynamical

systems, [16, 83], linear programming has found new application in scalable analysis and

control design; c.f., [191, 192], and Chapter 5.

Semidefinite programming

In semidefinite programming one minimizes a linear cost function subject to the constraint

that an affine combination of matrices is positive semidefinite, i.e.,

min
θ

c′θ (2.47a)

s.t. F (θ) := F0 +

nθ∑
i=1

θ(i)Fi � 0, (2.47b)

where c ∈ Rnθ and Fi ∈ Sn. Problem (2.47) is called a semidefinite program (SDP), although

we also use SDP as shorthand for ‘semidefinite programming’. The constraint F (θ) � 0 is

called a linear matrix inequality (LMI), and is convex in θ, i.e., if F (x) � 0 and F (y) � 0

then for α ∈ [0, 1],

F (αx+ (1− α)y) = αF (x) + (1− α)F (y) � 0.

A linear matrix inequality can be viewed as an extension of the inequalities in LP, i.e.

(2.45), where the nonnegative orthant R+ is replaced by the cone of positive semidefinite

matrices S+. In fact, semidefinite programming includes many standard convex programs

as special cases; e.g. the LP in (2.45) can be solved as an SDP by setting

F0 = diag (b) , Fi = diag (A(:, i)) , i = 1, . . . ,m,
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where A and b are defined in (2.46). In this sense, semidefinite programming unifies several

standard convex problems (e.g. linear and quadratic programming).

The combination of increased generality over LP and efficient solution methods, has seen

SDP used in a wide variety of applications, c.f., [242, §2] and [29] for some examples. In the

context of system and control theory, SDP and LMIs have a long and celebrated history,

dating back to the stability analysis of Lyapunov in the late 19th century. For instance,

consider the Lyapunov stability condition

A′P + PA ≺ 0 (2.48)

for a continuous-time linear dynamical system, ẋ = Ax. The condition (2.48) may be

interpreted as negative definiteness of the time-derivative of the Lyapunov function V (x) =

x′Px, and is an LMI with decision variable θ = P ∈ S++. In fact, Lyapunov showed that

the LMI (2.48) can be solved analytically, by first choosing any Q ∈ S++ and then solving

the linear Lyapunov equation A′P +AP = −Q.

Skipping ahead 70 years, the work of Kalman, Yakubovich and Popov linked the solution

of certain LMIs to Popov’s frequency-domain condition for the absolute stability problem

[183]. This lead to celebrated Kalman-Yakubovich-Popov (KYP) lemma, also known as the

positive-real (PR) lemma, along with many variants, such as the circle criterion, c.f., e.g.,

[189],[100, §6,7]. LMIs also played a central role in the dissipativity approach to system

analysis and quadratic optimal control introduced by Willems in the early 1970s, [255, 257].

It is worth noting that during this period, LMIs were solved by graphical methods that

exploited equivalence to certain frequency domain conditions.

A major breakthrough in the solution of SDP occurred in the late 1980s when Nesterov and

Nemirovski showed that interior point methods developed for linear programming can be

generalized to all convex optimization problems [162]. The theoretical complexity guaran-

tees for interior point methods hinge on the existence of barrier functions with appropriate

properties, namely self-concordance; c.f. [28, §9.6] and Section 2.2.2 for a brief discussion.

From a practical viewpoint, an important contribution from Nesterov and Nemirovski was

the discovery of such a barrier function for SDP, that (along with its derivatives) is readily

computable. Similar work extending interior point methods to SDP was done independently

by [5] and [64].

Sum-of-squares programming

Sum-of-squares (SOS) programming is an extension, or even application, of SDP. Checking

global nonnegativity of a multivariate function is fundamental problem in many areas of

applied mathematics, e.g., stability analysis of nonlinear dynamical systems. The feasibility

of such problems depends largely on the class of functions involved. In applications, multi-

variate polynomials are a popular choice, as they offer a good compromise between limited
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complexity (necessary for computationally tractability) and generality (i.e. the ability to

approximate a wide variety of continuous functions, e.g., by a Taylor series).

Definition 2.1. A polynomial p in x ∈ Rn is a finite linear combination of monomials

p(x) =
∑
α

cαx
α =

∑
α

cαx
α(1)
1 . . . xα(n)

n (2.49)

where α ∈ N. The set of all polynomials in x ∈ Rn is denoted Rn[x].

The sum α(1) + · · ·+α(n) is referred to as the total degree of the monomial xα. The degree

of the polynomial is given by the highest degree of its constituent monomials.

Checking non-negativity of a general multivariate polynomial is known to be NP-hard.

However, a simple sufficient condition for global nonnegativity of a polynomial p is the

existence of a sum-of-squares (SOS) decomposition:

p(x) =
∑
i

pi(x)2, p(x) ∈ Rn[x]. (2.50)

Clearly, such a polynomial must have even degree, i.e. 2d for some integer d. This sufficient

condition for nonnegativity is the basic idea which underpins SOS programming: given a

polynomial of degree 2d, the goal is to find a representation

p(x) = z′Qz

where Q is a positive semidefinite constant matrix, called the Gram matrix, and z is the

vector of all possible monomials in x of degree less than or equal to d,

z = [1, x1, x2, . . . , xn, x1x2, . . . , x
d
n]′ ∈ R(n+d

n ). (2.51)

Positive semidefiniteness of the Gram matrix, i.e. Q � 0, implies z′Qz ≥ 0 for all z (and,

therefore, for all x too), which is clearly sufficient for nonnegativity of p. To link this

construction directly to the decomposition in (2.50), as Q � 0 it admits a factorization

Q = M ′M . Writing

Mz =


...∑

jMijzj
...

 =


...

fi(x)
...


gives

p(x) = z′Qz = (Mz)′(Mz) =
∑
i

fi(x)2.

To summarize, the search for a SOS decomposition requires finding a Gram matrix that

lies in the intersection of: (i) the positive semidefinite cone, i.e. Q ≥ 0, and (ii) an affine

subspace, i.e., the linear equality constraints that equate the coefficients of p to those of

z′Qz. Such a search can be formulated as a semidefinite program.
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This Gram matrix representation of SOS polynomials was studied and analyzed in [44], and

numerical implementations of the search for Gram matrices were presented in [184], although

no consideration was given to the convexity of such a search. In a convex optimization

framework, the SOS decomposition plays a pivotal role in the global bounds on polynomial

functions presented in [206]. The work of Parrilo [171, 172], see also [35, 115], emphasized

the connection between convex semidefinite programming and SOS decomposition, which

was followed by widespread interest and adoption in the control community.

Before concluding our discussion of SOS programming, we wish to emphasize two points.

First, the SOS decomposition is clearly sufficient for nonnegativity, but it is not necessary;

i.e., not all nonnegative polynomials admit a SOS decomposition. The solution to Hilbert’s

17th problem, posed at the beginning of the 20th century, establishes the conditions under

which nonnegativity implies the existence of a SOS decomposition:

Theorem 2.1 (Hilbert). Let m denote the degree of a polynomial p ∈ Rn[x]. Nonnegativity

and the existence of a sum-of-squares decomposition are equivalent when p is:

i. univariate: n = 1,

ii. quadratic: m = 2,

iii. bivariate and quartic: n = 2, m = 4.

Second, it is not always necessary to use all possible monomials of degree ≤ d in the

monomial basis z, c.f., (2.51). Careful selection of the basis monomials can simplify the

resulting SOS program, e.g., reduce the number of constraints and decision variables, with

no increase in conservatism. Tools such as the Newton polytope [134, 222],[171, §4.2], and

facial reduction [175], can be used to generate an effective basis.

Example 2.1 (Sum-of-squares decomposition). The following example of a SOS decompo-

sition is based on [168]. Consider the bivariate polynomial

p(x) = x2
1 + 2x4

1 + 2x3
1x2 − x2

1x
2
2 + 5x4

2. (2.52)

The degree of the polynomial is 4, i.e., d = 2. To search for a SOS decomposition, we first

collate all of the monomials in R2 up to degree d = 2:

z = [1, x1, x2, x1x2, x
2
1, x

2
2]′.

After removing the monomials that lie outside the Newton polytope, it is apparent that we

only require

z = [x1, x1x2, x
2
1, x

2
2]′. (2.53)
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With the set of candidate monomials in (2.53) we define the generic symmetric Gram matrix

Q =


q11 q12 q13 q14

q12 q22 q23 q24

q13 q23 q33 q34

q14 q24 q34 q44

 . (2.54)

The search for a SOS decomposition of (2.52) can then be formulated as the following

semidefinite program:

find Q (2.55a)

s.t. Q � 0 (2.55b)

q11 = 1, q22 = 2, 2q23 = 2, q33 + 2q24 = −1, q44 = 5 (2.55c)

qij = 0 otherwise . (2.55d)

Here, the LMI (2.55b) enforces positive semidefinitness of the Gram matrix, and the linear

equality constraints ensure that the coefficients of z′Qz match those of p(x), e.g., q33+2q24 =

−1 ensures that the monomial (q33 + 2q24)x2
1x

2
2 in z′Qz matches the monomial −x2

1x
2
2 in

p(x).

2.2.2 Interior point methods

In this section we discuss a family of solution methods for convex optimization problems

called interior point methods (IPMs). The widespread availability of high-quality general-

purpose solvers, and parsers, for convex optimization problems means that an understanding

of the underlying solution machinery is often unnecessary for the practitioner. Nonetheless,

we provide a brief introduction to the ideas behind these methods to help facilitate the

exposition of the specialized interior point solvers derived in Chapter 3. For a thorough, yet

concise, introduction to IPMs, refer to [28, §11], or [242] in the context of semidefinite pro-

grams. For an in-depth treatment, the reader should consult the seminal work of Nesterov

and Nemirovski [162].

Barrier methods

At a high level, numerical optimization schemes solve difficult optimization problems via a

sequence of simpler problems. The simplest (non-trivial) optimization problem is minimiza-

tion of a convex quadratic function, for which the solution can be written in closed form

(numerical conditioning and scalability issues aside). Further up the complexity hierarchy,

we have smooth and unconstrained optimization problems, to which Newton’s method is
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applicable. The idea behind Newton’s method is to solve such problems via a sequence of

quadratic approximations; c.f.Section 2.1.4 and the references within. Roughly speaking,

we expect Newton’s method to work well when the quadratic functions constructed from

local information (i.e., the value, gradient and Hessian of the cost function) provide a good

approximation of the shape of the cost function globally, or at least, a good approximation

close to the minimum.

Further up the complexity hierarchy we find constrained optimization problems, possibly

with non-smooth constraints (e.g. feasible sets with ‘sharp corners’). Newton’s method is

no loner applicable, as the cost function and its derivatives do not provide any information

about the affect of the constraints, i.e., the shape of the feasible set. The idea behind the

barrier method is to augment the cost function with additional penalty terms that give

a smooth approximation of the feasible set. The augmented cost function can then be

minimized as an unconstrained optimization problem, using, e.g., Newton’s method.

To make these ideas more precise, recall the general constrained convex optimization prob-

lem of the form (2.42), repeated here for convenience:

min
θ

f0(θ) s.t. fi(θ) ≤ 0, i = 1, . . . ,m.

Direct application of Newton’s method is not possible. To see this clearly, consider the

equivalent formulation

f∗0 = min
θ

f0(θ) +

m∑
i=1

I−(fi(θ)) (2.56)

where I : R 7→ R is the indicator function for nonpositive real numbers:

I−(c) =

{
0 x ≤ 0

∞ x > 0
. (2.57)

The indicator function is non-smooth; see Figure 2.2 for an illustration. Therefore, the

cost function in (2.56) is not (in general) differentiable, which precludes application of

Newton’s method. The idea behind an interior point method is to replace each non-smooth

indicator function in the objective of (2.56) with a smooth approximation, φ()̇, called a

barrier function. We discuss barrier functions in the sequel, but for now, we emphasize

that φ(x) should: (i) be smooth, (ii) be finite inside the feasible set, e.g. for x ≤ 0 when

approximating I−, (iii) tend towards infinity at the boundary of the feasible set, e.g. x = 0.

The barrier function approximation of (2.56) is given by

θ∗(τ) = arg min
θ

{
fτ (θ) := f0(θ) +

1

τ

m∑
i=1

φ(fi(θ))

}
(2.58)

where τ ≥ 0 is a parameter that control the accuracy with which (2.58) approximates (2.56).

Specifically, when τ is large the affect of the barrier function is only ‘felt’ at the boundary
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of the feasible set, and (2.58) approximates (2.56) closely; the converse is true for small τ ;

c.f. Figure 2.2 for an illustration. In fact, it can be shown that θ∗(τ) is no more than m/τ

suboptimal, meaning

f0(θ∗(τ))− f∗0 ≤
m

τ
,

c.f., [28, §11.2.2]. Therefore, we obtain a more accurate solution for large τ , as expected.

Notice that (2.58) is a smooth and unconstrained optimization problem, which can be

solved, e.g., by Newton’s method. However, we cannot (in general) simply solve (2.58) for

large τ , as the Hessian of fτ will be too large close to the boundary of the feasible set,

rendering Newton’s method unreliable; again, refer to Figure 2.2 for an illustration.

To circumvent this tradeoff (between an accurate solution and a well-conditioned Hessian),

we can solve a sequence of optimization problems of the form (2.58) for increasing τ . This

leads to the so-called barrier or path-following interior point method:

Algorithm 2 Basic barrier method.

Given: strictly feasible θ, τ > 0, µ > 1 and tolerance δ

1. Solve (2.58), e.g. by Newton’s method, initialized at θ.

2. Update θ ← θ∗(τ).

3. Terminate if m/τ < δ.

4. Increase τ ← µτ and return to step 1.

Before proceeding, we ought to make a few points regarding the basic barrier method:

i. The solution θ∗(τ) of (2.58) is often called the center point, and Step 1 the centering

step. The sequence of points θ∗(τ) for increasing τ is called the central path, which

leads to the alternate name ‘path-following method’.

ii. Concerning the centering step, it is not in fact necessary to solve (2.58) exactly. In

[162] it is proven that a single Newton step per τ update will still lead to a sequence of

points θ∗(τ) that converge to the global optimum.

iii. Path-following methods are not particularly sensitive to the choice of barrier parameter

µ; values between 10 and 100 seem to work well in practice; c.f. [28, §11.3.1]. Further-

more, the total number of Newton iterations required for convergence (and thus the

total run time of the algorithm) remains approximately constant for a large range of

τ . Smaller values of τ lead to smaller changes in the shape of fτ between τ updates;

this means that fewer Newton iterations are required in the centering step, but more τ

updates are required for θ∗(τ) to converge. The converse is true for larger values of τ .

Example 2.2 (A simple barrier function illustration). Consider the simple linearly con-
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strained convex quadratic optimization problem

θ∗ = arg min
θ

f0 := θ2 s.t. f1(θ) := 1− θ ≤ 0. (2.59)

The solution is clearly given by θ∗ = 1. However, the indicator function I−(1 − θ), which

encodes the constraint 1 − θ ≤ 0, is non-smooth thereby precluding direct application of

Newton’s method. We employ the barrier function φ(θ) = − log(1− θ). Refer to Figure 2.2

for an illustration of the weighted barrier function φ(θ)/τ , and observe how more accu-

rate approximations of the indicator function are attained for larger values of the barrier

parameter, τ .

The ideas behind the barrier method were first proposed by Fiacco and McCormick in

the 1960s [60] in an approach referred to as the sequential unconstrained minimization

technique. Interest in interior-point algorithms was rekindled in the 1980s, after the work

of [72] pointed out the connections to Karmarkar’s popular polynomial-time projection

algorithm for linear programming [105]. As discussed earlier, a major breakthrough in

the development of interior-point methods followed soon after with the work of Nesterov

and Nemirovski [162], which extended the complexity theory from linear programming to

general nonlinear convex programs.

Barrier functions

More specifically, Nesterov and Nemirovski provided precise polynomial-time convergence

results for general convex optimization problems. By ‘precise’, we mean worst-case bounds

on the number of iterations for convergence that do not depend on unknown constants.

Their analysis hinged on a property of the barrier functions called self-concordance. Roughly

speaking, a barrier function is self concordant if the rate of change of its Hessian (i.e. the

third derivative of the function) is not too big. To gain insight into the importance of

self-concordance, recall that we expect Newton’s method to work well when the Hessian of

the function being optimized is not changing too quickly, as this means that a quadratic

approximation based on local information is likely to effectively capture the shape of the

cost function in the surrounding region of the domain. For a trivial illustrative example,

consider a convex quadratic cost function. In this case, the Hessian is constant and Newton’s

method finds the global minimum in a single step.

More precisely, self-concordance is defined as follows:

Definition 2.2 (Self-concordance). A convex function φ : R 7→ R is self-concordant if

|∇3φ(x)| ≤ k
(
∇2φ(x)

)3/2
(2.60)
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(a) Weighted barrier functions φ(θ)/τ = − log(1− θ)/τ for the problem
(2.59), for various values of τ .

0 0.5 1 1.5 2 2.5 3
3

-1

0

1

2

3

4

5

6

7

8

9

f0(3)

f0(3) + ?(3)==; = = 0:4

f0(3) + ?(3)==; = = 1

f0(3) + ?(3)==; = = 10

I!(1 ! 3)

(b) fτ (θ) = θ2 − log(1− θ)/τ for problem (2.59), for various values of τ .

Figure 2.2 – (a) Observe how the weighted barrier function approximates the true constraint,
given by the indicator function I−(1 − θ), more accurately for larger values of τ . (b)
Similarly, observe how θ∗(τ) = arg minθ fτ (θ) approximates the true global optimum θ∗ = 1
more accurately for larger values of τ .
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for some positive constant k > 0. The constant k can be chosen arbitrarily, by linearly

scaling φ. Usually k = 2 to simplify related formulae.

A multivariate function φ : Rn 7→ R is said to be self-concordant if φ̃(τ) := φ(x + τv) is

self-concordant for all x ∈ dom φ and all v.

Nesterov and Nemirovski proved that a self-concordant barrier function always exists for

general convex constraints, c.f., [162, §2.5]. In practical applications, however, the ability to

efficiently compute the barrier function (along with its derivatives) is what really matters.

The purpose of this section is not to discuss complexity analysis of interior-point methods;

c.f., e.g., [162] or [28, §9.6] for details. Rather, we wish to emphasize that for many convex

programs encountered in applications, and certainly all the convex programs considered in

this thesis, efficiently computable self-concordant barrier functions do exist.

For instance, for linear inequality constraints of the form a′θ ≤ b, a self-concordant barrier

function is given by

φ(θ) = − log(b− a′θ).

For the linear matrix inequalities appearing in semidefinite programming, a self-concordant

barrier function for constraints of the form Z � 0 with Z ∈ Sn is given by

φ(Z) = − log det(Z). (2.61)

Primal-dual methods

Many state-of-the-art interior-point solvers employ a variant of the barrier method called

a primal-dual method. Primal-dual methods tend to achieve faster convergence compared

to barrier methods, which is particularly advantageous when high accuracy is required. In

Chapter 3 we benchmark our custom interior-point algorithms (based on barrier methods)

against state-of-the-art primal-dual solvers. To provide context for this comparison, in what

follows we briefly enumerate some of the key differences between the barrier and primal-dual

methods. For a more comprehensive treatment, c.f., e.g., [28, §11.7] and [162, §4.5].

One of the key differences between primal-dual and barrier methods is the search direction

used. In the preceding discussion of the barrier method, it was suggested that (2.58) be

solved by Newton’s method, for increasing values of τ . As discussed, Newton’s method

minimizes a cost function by solving sequence of quadratic approximations. More precisely,

the ‘Newton step’ in (2.38) is given by the global minimum of a quadratic approximation

to the cost function,

f0(θk + ∆θ) ≈ f0(θk) +∇f0(θk)∆θ + ∆θ
[
∇2f0(θk)

]
∆θ.

Alternatively, the same Newton step can be derived as the approximate solution to equa-

tions that specify the conditions of optimality for solutions to the constrained optimization
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problem (2.42). Specifically, when strong duality holds2, an optimal solution θ∗ to (2.42)

must satisfy

fi(θ
∗) ≤ 0, i = 1, . . . ,m (2.62a)

ν∗i ≥ 0, i = 1, . . . ,m (2.62b)

ν∗fi(θ
∗) = 0, i = 1, . . . ,m (2.62c)

∇f0(θ∗) +
m∑
i=1

ν∗i fi(θ
∗) = 0. (2.62d)

These equations are called the Karush-Kuhn-Tucker (KKT) conditions; c.f. [28, §5.5]. Here,

ν∗i are (the optimal values of) Lagrange multipliers used in the construction of a lower bound

to the optimal value of (2.42). Condition (2.62c) is referred to as complementary slackness,

and, roughly speaking, condition (2.62d) can be thought of as a generalization of the first

order optimality conditions for unconstrained problems (i.e. gradient equal to zero). When

(2.42) is a convex program, the KKT conditions are necessary and sufficient for optimality.

In general, the equations (2.62) are nonlinear in θ∗, and cannot be solved analytically. How-

ever, substituting (2.62c) into (2.62d) (thereby eliminating ν∗), and solving a linearization

of the resulting condition exactly recovers the Newton step given in (2.38). Moreover, for

minimization of fτ (θ) as in (2.58), the same procedure applied to (slightly) modified KKT

conditions leads to the search direction (i.e., Newton step) used in the barrier method dis-

cussed earlier. In the primal-dual method, one does not eliminate the Lagrangian multiplier;

rather, both (2.62c) and (2.62d) are linearized. One then solves for a primal-dual search

direction comprised of both ∆θ (the primal search direction) and ∆ν (the dual search di-

rection). The primal and dual search directions are coupled, leading to different search

directions than in the primal-only barrier method. It should be noted that for semidefi-

nite programming, linearization of the KKT conditions can be carried out in a number of

different ways, leading to different search directions and algorithms, e.g., [88, 110, 163, 234].

Another key difference between primal-dual and barrier methods is the update of the barrier

weight parameter, τ . In a primal-dual method, there are no ‘outer-iterations’ (in which

τ ← µτ) and ‘inner-iterations’ (i.e. Newton steps). Rather, in each iteration the barrier

parameter is updated and a single search direction is computed (which is then used to

update both the primal (θ) and dual (ν) variables, via a line search). Furthermore, unlike

the barrier method, the values of the primal and dual variables are not guaranteed to be

feasible at each iteration.

2Strong duality occurs when the maximum value of the Lagrangian dual problem is equivalent to the
optimal value of the primal problem, (2.42), i.e., the best Lagrangian lower bound to the original problem
is tight. For convex programs, existence of a strictly feasible point (i.e. Slater’s condition) is sufficient for
strong duality, c.f., [28, §5].
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2.2.3 Extensions and alternatives to interior point methods

Second order interior point methods have many desirable properties, such as reliable con-

vergence (polynomial worst-case complexity) to very accurate solutions, with no need for

fine tuning of algorithm parameters. However, such methods are not practical for high-

dimensional problems, especially semidefinite programs (2.47) with large n, due to the

computation time required to solve for the search direction, and memory requirements

(namely, storing the Hessian). Solution methods for high-dimensional problems3 is an ac-

tive area of research in convex optimization, particularly with the recent surge in popularity

of machine learning. We conclude this section on convex optimization with a brief discus-

sion of extensions to the interior point methods (IPMs) presented above, as well as some

alternatives to IPMs that may be more suitable for large scale problems. Our treatment of

this material is far from exhaustive. The main objective is to contextualize the custom IPM

presented in Chapter 3, and provide an introduction to the alternating direction method of

multipliers (ADMM) used in Chapter 5.

Exploiting structure in semidefinite programs

In many large scale applications of SDP, e.g. network optimization, the matrices Fi in

the LMI of (2.47) are sparse. This sparsity can be exploited to reduce the computational

complexity of the IPMs described in Section 2.2.2.

The most expensive operation in each iteration of an IPM is usually computation of the

search direction, e.g., solving a linearized version of the KKT conditions (2.62), in the case

of a primal-dual IPM. One approach is to exploit sparsity in the program structure to solve

for the search direction more efficiently, either directly, via a sparse Cholesky decomposition

[137], or indirectly, via an iterative solution method, e.g., conjugate gradients [63], as used

in [108], or the LSQR algorithm [170] for sparse least squares; c.f. also [242, §7.6]. Further

reductions in complexity are possible when the sparsity patterns (i.e. positions of nonzero

entries) of the matrices Fi are described by a chordal graph. A graph is said to be chordal

(a.k.a. triangulated or decomposable) if every cycle of length greater than three has a chord.

For the purpose of complexity reduction in IPMs, matrices with ‘chordal sparsity’ have the

useful property of a ‘zero fill-in’ Cholesky factorization: i.e., if X ∈ Sn++ then there exists a

permutation matrix P and lower triangular matrix L such that

P ′XP = LL′, (2.63)

where L+ L′ has the same sparsity pattern as X. This factorization simplifies the compu-

tation of the usual log determinant barrier functions; e.g., (2.61) can be computed as

φX := − log det(X) = −2
n∑
i=1

logL(i, i).

3Not necessarily semidefinite programs.
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Similar simplifications exist for the gradient and Hessian of φX, and have been utilized by

the solvers presented in [219] and [6].

Another approach to complexity reduction is to decompose large SDPs into many smaller

SDPs. For example, when F (θ) in (2.47) is block-diagonal, i.e., F (θ) = blkdiag(F̄1, . . . , F̄d),

the LMI is said to be ‘fully separable’, and is equivalent to d lower dimensional LMIs, F̄i � 0,

i = 1, . . . , d. This idea can be extended to the case of ‘partially separable’ LMIs, particularly

those in which the sparsity is characterized by a chordal graph. For the purpose of decom-

position, the key property of matrices with chordal sparsity is as follows: partially complete

symmetric matrices (i.e. some entries specified, other unspecified) have a positive definite

completion if and only if: (i) the graph describing the positions of the specified entries is

chordal (and includes the diagonals), and (ii) the sub-matrices corresponding to the cliques

of the chordal graph are themselves positive definite [79]. This property, first exploited in

[67, 158], allows large positive definiteness constraints X � 0 to be decomposed into many

smaller positive definiteness constraints X(cr, cr) � 0, r = 1, . . . , l, where cr are the cliques

of the chordal graph describing the sparsity pattern of X. These decomposed SDPs can

then be solved more efficiently (e.g. by introducing splitting variables and consistency con-

straints), especially when combined with first-order splitting methods, e.g. [46, 139, 223].

For further research on exploiting chordal sparsity in SDP, refer to [32, 107, 253] as well as

[244] for a comprehensive overview.

In addition to sparsity, another important class of SDPs for which structural properties can

be exploited are those arising from the application of the Kalman-Yakubovich-Popov lemma

(so-called KYP-SDPs). Specialized KYP-SDP solvers such as [249] improve efficiency by

solving the dual problem over a reduced set of decision variables, whereas [243] eliminates

dual variables in the Newton equations of primal-dual method. For KYP-SDPs related to

integral quadratic constraint (IQC) analysis, [102] presents a cutting plane method and

an interior point algorithm with a custom barrier function based on a frequency domain

integral. The work of [84] also presents specialized solvers for such problems: one which

eliminates variables in Newtwon-Todd search direction equations, and another based on

conjugate gradients.

Finally, the recent work [174] applies facial reduction to SDPs for which no strictly feasible

solution exists, leading to simplified equivalent problems.

Alternating direction method of multipliers

Developed in the 1970s [69, 73], and studied extensively in the 80s and 90s [54, 55, 68],

the alternating direction method of multipliers (ADMM) has become particularly popular

in recent years for large scale convex optimization problems, such as those found in ma-

chine learning [30, 74, 228, 268], power flow optimization [46, 139], and network utility
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maximization [148]. ADMM applies to problems of the form

min
θ,z

f(θ) + g(z), s.t. Aθ +Bz = c, (2.64)

for convex functions f and g. The method begins with formation of the augmented La-

grangian,

Lρ = f(θ) + g(z) + µ′(Aθ +Bz − c) +
ρ

2
‖Aθ +Bz − c‖22. (2.65)

It is ‘augmented’ in the sense that Lρ represents the usual Lagrangian for (2.64) augmented

by the additional term ρ
2‖Aθ+Bz − c‖22. Here, ρ > 0 is a user-specified penalty parameter,

and µ is the Lagrange multiplier for the constraint Aθ + Bz = c. Problem (2.64) is solved

by alternately minimizing (2.65) w.r.t. θ and z, and updating the multiplier µ, i.e., at the

kth iteration, θk, zk and µk are updated according to:

θk+1 = arg min
θ

Lρ(θ, z
k, µk),

zk+1 = arg min
z

Lρ(θ
k+1, z, µk),

µk+1 = µk + ρ(Aθk+1 +Bzk+1 − c).

2.3 Model stability

In [131, §4.1], Ljung outlines some open problems in system identification that are consid-

ered to be worthy of further study. Featuring prominently in this list is a need for useful

parametrizations of (nonlinear) models, in particular, classes of models for which “simu-

lation stability could be tested with reasonable effort.” Simulation stability of a model is

desirable for (at least) two reasons. Foremost, an unstable model that diverges during open-

loop simulation cannot be relied upon for accurate long term predictions. More subtly, low

sensitivity of long-term behavior to initial conditions can improve the ability of a model to

generalize to inputs not observed during the fitting/training procedure. In this sense, model

stability can be interpreted as somewhat of a ‘regularizer’, that penalizes model complexity

by constraining the behavior of the model. This view is touched upon in [232], and further

explored in Chapter 3.

In this section, we detail some recently developed parametrizations of nonlinear dynamical

systems for which model stability can be guaranteed a priori, and review some more well-

established approaches used in the linear setting.



44 Background

2.3.1 Notions of stability

Stability of linear systems

Consider the state space representation of discrete time LTI dynamics,

xt+1 = Axt +But. (2.66)

Such a system is said to be globally asymptotically stable if the unforced (i.e. u = 0) solution

xt = Atx0 from initial state x0 satisfies |xt|2 → 0 for all x0. For such an LTI system, stability

is completely characterized by the eigenvalues of A, also known as the system poles. In fact,

we have the following well known result:

Theorem 2.2. Consider a discrete time LTI system xt+1 = Axt + But. The following

statements are equivalent:

i. The system is globally asymptotically stable.

ii. The spectral radius of A is less than unity, i.e. A is a Schur matrix.

iii. There exists P ∈ Snx++ such that A′PA− P ≺ 0.

The condition A′PA− P ≺ 0 is called a Lyapunov equation. In Lyapunov stability theory,

V (x) = x′Px with P ∈ Snx++ defines a Lyapunov function, and

A′PA− P ≺ 0 ⇐⇒ x′t+1Pxt+1 − x′tPxt < 0, ∀t ⇐⇒ V (xt+1) < V (xt), ∀t,

i.e., the Lyapunov function decreases uniformly with the evolution of the system. From

this we can conclude that V (xt) → 0 as t → ∞. As P ∈ Snx++, V (xt) = x′tPxt → 0 implies

xt → 0.

For an LTI system, all notions of stability are equivalent, i.e. Theorem 2.2 implies Lyapunov,

(global) asymptotic, (global) exponential, and finite-gain L2 stability of the system.

Stability of nonlinear systems

For a nonlinear dynamical system we must be more precise, as there are many notions of

stability, owing to the complexity of behavior exhibited by such systems. Some common

notions of stability for nonlinear systems include:

• Stability in the sense of Lyapunov, c.f., e.g., [106, §4].

• Input-output stability, originally developed in [266] and [267], c.f., also [198, 256] and

[106, §5].
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• Input-to-state stability, introduced in [217], see also [216].

• Limit cycles, dating back to the work of Poincaré [180], c.f., also [140, 143, 260].

• Incremental Lyapunov [9] and contraction theory [135].

It is natural to ask: what kind of stability properties would we like our identified nonlinear

models to possess? One such notion, proposed and advocated for in [232], is as follows:

Definition 2.3 (Global incremental `2 stability). The model (2.5) is said to be globally

incremental `2 stable if the sequences {ȳt − ŷt}∞t=1 and {x̄t − x̂t}∞t=1 are square summable

for every two solutions (ū, x̄, ȳ) and (û, x̂, ŷ) of (2.5), subject to the same input ū = û.

Incremental `2 stability implies convergence of trajectories under same inputs, regardless of

initial conditions, i.e. the model ‘forgets about’ initial conditions. This reduced sensitivity

to initial conditions can help improve the long-term predictive ability of the model, and also

ensure a reliable response to a wide-variety of inputs. Furthermore, if (u, x, y) = (0, 0, 0) is

a valid solution, then global asymptotic stability of the origin is also implied.

Parameterizations of stable models

Deriving parametrizations of stable nonlinear dynamical systems is straightforward, if one

constrains oneself to (nonlinear) finite impulse response models, c.f. (2.1). It is evident

that the output yt of such a model will decay to zero in finite time if the input ut is set to

zero, regardless of past behavior. Difficulties arrive when one incorporates feedback into the

model structure. Feedback is necessary for a parsimonious description of resonant systems,

and essential to some uniquely nonlinear behaviors such as limit cycles; however, it also

introduces the possibility for instability. The main challenge in deriving parametrizations of

stable dynamical systems is the nonconvexity of the simultaneous search for both the model

parameters, and a certificate of model stability, e.g. a Lyapunov function or contraction

metric. Consider the LTI dynamics in (2.66). To verify stability of a given system (i.e. the

case where A is known), we must find P ∈ Snx++ that satisfies A′PA−P ≺ 0. The Lyapunov

equation is linear in P , and the search can be formulated as a convex program (SDP). The

simultaneous search for both A and P is, however, nonconvex.

2.3.2 Convex parametrizations of stable linear models

To circumvent the nonconvexity of the simultaneous search for A and P in identification of

stable LTI models, one strategy is to introduce a new variable A which the product of P

and A, i.e. A = PA. This is the approach adopted in [113]. Then the Lyapunov stability

condition can be expressed as

A′PA− P � −δI ⇐⇒ A′P−1A− P � −δI, (2.67)
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where δ > 0 is some arbitrarily small, positive constant. By an application of the Schur

complement, the right hand side of (2.67) is equivalent to[
P − δI A
A′ P

]
� 0, (2.68)

which is a LMI in P and A.

A related approach, introduced in [230], introduces an implicit representation of the LTI

dynamics in (2.66), i.e.,

Ext+1 = Fxt +Kut. (2.69)

Here, E is full rank, so an explicit representation as in (2.66) can be recovered as A =

E−1F and B = E−1K. With this implicit representation, one can define the Lyapunov

function VE(x) = |Ex|2P−1 , for P ∈ S++. Notice that, for the unforced state transition

Ext+1 = Fxt, we have VE(xt+1) = |Ext+1|2P−1 = |Fxt|2P−1 . Then, the Lyapunov inequality

VE(xt+1)− VE(xt) < 0 is equivalent to

|Fxt|2P−1 − |Ext|2P−1 < 0 ⇐= |Fxt|2P−1 − x′t (2E − P )xt < 0.

The implication makes use of the inequality

−|Ext|2P−1 ≤ −x′t (2E − P )xt,

which is a special case of the following simple linear upper bound on a concave quadratic

function,

− a′Qa ≤ b′Q−1b− 2b′a, ∀a, b,Q ∈ S++ (2.70)

with a = Ext, b = xt and Q = P−1. By an application of the Schur complement,

F ′P−1F − E − E′ + P � −δI ⇐⇒
[
E + E′ − P − δI F ′

F P

]
� 0. (2.71)

Notice that for E = P , (2.71) reduces to (2.68). Despite this equivalence, the advantages

of this alternative formulation are twofold:

1. The implicit formulation of the dynamics is essential to the extension to the nonlinear

case, which we discuss next.

2. The additional flexibility of the implicit formulation also improves the accuracy of

certain convex relaxations for simulation error minimization, as discussed in Section

2.4.2.

Before proceeding to the nonlinear case, we wish to emphasize that such convex parametriza-

tions of stable models are not the only approach to ensuring stability of identified linear
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models. For instance, for inputs generated by an autoregressive process, stability of linear

ARX models is guaranteed when the length of the training data sequence is sufficiently long

[195]. Stability of identified state space models generated by subspace identification was

studied in [138], where it was noted that stability can be enforced by inserting blocks of

zeros in the shifted state matrix. In [238] stability was ensured via regularization, and a

method to constrain pole locations to polytopic convex sets was presented in [154].

2.3.3 Convex parametrizations of stable nonlinear models

In contrast to the linear case, there are very few published methods that guarantee stability

of identified nonlinear models a priori. In practice, stability is often verified empirically

(posteriori) via extensive simulation. Of the few methods concerned with a priori stability

guarantees, the work of [21] gives conditions under which passivity and small-gain stability

properties are preserved for model reduction of a high order linear system in feedback with

(comparatively lower order) nonlinear system.

In this section, we review a recently developed family of methods for deriving convex

parametrizations of stable nonlinear models based on dissipativity and contraction theory,

c.f., [25, 141, 150, 229, 230, 232].

Implicit models

As alluded to in §2.3.2, the convex parametrization of stable models proposed by [232]

utilizes an implicit representation of nonlinear state space systems, i.e.,

e(xt+1) = f(xt, ut), (2.72a)

yt = g(xt, ut), (2.72b)

where e, f, g are linearly parametrized vector functions of the form

e(x) =

nθ∑
i=1

θiei(x), f(x, u) =

nθ∑
i=1

θifi(x, u), g(x, u) =

nθ∑
i=1

θigi(x, u). (2.73)

Here θ ∈ Rnθ denotes the model parameters. Popular choices for the basis functions

ei : Rnx 7→ Rnx , fi : Rnx×nu 7→ Rnx , gi : Rnx×nu 7→ Rny include vectors of multivari-

ate polynomials or trigonometric polynomials, as this permits the use of sums-of-squares

optimization techniques, as discussed in the sequel.

The model (2.72) is said to be well-posed when e(·) is a bijection, such that an explicit

nonlinear state space model of the form (2.5) can be recovered with a(x, u) = e−1 (f(x, u)).

Sufficient conditions for well-posedness of the model are given below; see also [232, Theorem

1].
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Incremental Lyapunov condition for stability

The idea behind the convex parametrizations presented in [232, §3] is to enforce incremental

`2 stability via an incremental Lyapunov approach. For two solutions of (2.72), x̄ and x̂,

consider the inequality

V (x̄t+1, x̂t+1)− V (x̄t, x̂t) + |g(x̄t, ut)− g(x̂t, ut)|2 ≤ −µ|x̄t − x̂t|2, (2.74)

where V : Rnx × Rnx 7→ R is a positive definite incremental Lyapunov function.

Summation of (2.74) yields

T∑
t=0

|g(x̄t, ut)− g(x̂t, ut)|2 + µ
T∑
t=0

|x̄t − x̂t|2 ≤ V (x̄0, x̂0)− V (x̄T , x̂T ) ≤ V (x̄0, x̂0) (2.75)

which is clearly sufficient for incremental `2 stability.

The practical utility of this approach hinges on the convexity of the simultaneous search

for both model parameters of (2.72) and an incremental Lyapunov function V such that

(2.74) holds. This is where the implicit dynamics of (2.72) proves useful, in much the same

way that the implicit dynamics of (2.69) convexified the simultaneous search for LTI model

parameters and a Lyapunov function in (2.71).

The authors of [232] propose an incremental Lyapunov function of the form

V (x̄, x̂) = |e(x̄)− e(x̂)|2P−1 .

Notice that

V (x̄t+1, x̂t+1) = |e(x̄t+1)− e(x̂t+1)|2P−1 = |f(x̄t, ut)− f(x̂t, ut)|2P−1 (2.76)

for solutions of (2.72). With this choice of V the Lyapunov condition (2.74) becomes

|f(x̄, u)− f(x̂, u)|2P−1 − |e(x̄)− e(x̂)|2P−1 + |g(x̄, u)− g(x̂, u)|2 ≤ −µ|x̄− x̂|2. (2.77)

For given (x̄, x̂, u), (2.77) is nonconvex in the model parameters, as −|e(x̄) − e(x̂)|2P−1 is

concave quadratic (recall that e, f, g are linearly parametrized). To address this, the authors

of [232] apply the inequality

− |e(x̄)− e(x̂)|2P−1 ≤ |x̄− x̂|2P − 2(x̄− x̂)′(e(x̄)− e(x̂)), (2.78)

which is a special case of (2.70). Substituting (2.78) into (2.77) gives

|f(x̄, u)−f(x̂, u)|2P−1 −2(x̄− x̂)′(e(x̄)− e(x̂)) + |x̄− x̂|2µI+P + |g(x̄, u)− g(x̂, u)|2 ≤ 0 (2.79)

which is sufficient for (2.77), but has the advantage of being convex in e, f, g for given
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(x̄, x̂, u). In summary, we have the following result:

Theorem 2.3. [232, Theorem 2] For any model of the form (2.72), existence of P ∈ Snx++

such that (2.79) holds for all (x̄, x̂, u) is sufficient for incremental `2 stability.

Contraction condition for stability

In this section, we present contraction conditions for incremental `2 stability of (2.72).

Contraction analysis studies the dynamics of virtual displacements, i.e. differences between

infinitesimally close trajectories of dynamical systems [135]. Parametrizations derived from

contraction theory are typically simpler than those based on dissipation inequalities. Fur-

thermore, there are strong connections between contraction conditions and quality-of-fit

metrics based on linearized model behavior, c.f. Section 2.4.3 and Chapter 3.

Consider two trajectories, xt and x̄t, of (2.72). The first order Taylor series approximation

of (2.72) about xt is given by

e(xt+1) + E(xt+1)(x̄t+1 − xt+1) ≈ f(xt, ut) + F (xt, ut)(x̄t − xt) (2.80)

ȳt ≈ g(xt, ut) +G(xt, ut)(x̄t − xt), (2.81)

which, after some elementary substitutions from (2.72), reduces to

E(xt+1)(x̄t+1 − xt+1) ≈ F (xt, ut)(x̄t − xt) (2.82)

ȳt − yt ≈ G(xt, ut)(x̄t − xt). (2.83)

When the two trajectories are close, then this linear approximation will accurately describe

the dynamics of the virtual displacement x̄t − xt. This motivates the introduction of the

so-called differential dynamics,

E(xt+1)∆t+1 = F (xt, ut)∆t, (2.84)

∆y
t = G(xt, ut)∆t, (2.85)

where E(x) = ∂
∂xe(x), ∆t = x̄t − xt, F (x, u) = ∂

∂xf(x, u), ∆y
t = ȳt − yt, and G(x, u) =

∂
∂xg(x, u). These differential dynamics motivate the following differential dissipation in-

equality

V (xt+1,∆t+1)− V (xt,∆t) ≤ −|G(xt, ut)∆t|2 − µ|∆t|2 (2.86)

with differential storage function V : Rnx × Rnx 7→ R. If (2.86) holds for solutions xt and

∆t of (2.72) and (2.84), respectively, then by summation of (2.86)

T∑
t=0

|G(xt, ut)∆t|2 + µ
T∑
t=0

|∆t|2 ≤ V (x0,∆0)− V (xT ,∆T ) ≤ V (x0,∆0) (2.87)

for all T . Before detailing the specific choice of V proposed in [232], let us first discuss
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the reasoning that links (2.86) to incremental `2 stability, from a contraction analysis per-

spective. Consider two infinitesimally close solutions of (2.72), denoted (xt, yt) and (x̄t, ȳt),

driven by the same input ut. The difference between these two trajectories will satisfy the

differential dynamics (2.84). Then (2.87) says that
∑T

t=0 |yt − ȳt|2 is finite for all T , which

implies that ȳt → yt as t→∞, i.e., the outputs of the two infinitesimally close trajectories

converge asymptotically. If the dissipation inequality (2.86) holds for all xt+1, xt,∆t+1,∆t,

then this analysis holds for every pair of infinitesimally close trajectories; i.e., the out-

puts of all pairs of nearby trajectories will converge, which implies that the outputs of all

trajectories (subject to the same inputs) will converge, regardless of initial conditions.

Once more, convexity of the simultaneous search for model parameters and a contraction

metric (a.k.a differential storage function) is key to the practical utility of this approach.

The authors of [232] propose the Riemannian metric V (x,∆) = |E(x)∆|2P−1 with P ∈ Snx++.

Notice that V (xt+1,∆t+1) = |E(xt+1)∆t+1|2P−1 = |F (xt, ut)∆t|2P−1 for solutions of (2.72)

and (2.84). With this choice of V the dissipation inequality (2.86) becomes

|F (x, u)∆|2P−1 − |E(x)∆|2P−1 + |G(x, u)∆|2 ≤ −µ|∆|2. (2.88)

For given (x, u), (2.88) is nonconvex in the model parameters, as −|E(x)∆|2P−1 is concave

quadratic (recall that e, f, g and thus E,F,G are linearly parametrized). The authors of

[232] address this with an application the inequality

− |E(x)∆|2P−1 ≤ ∆′P∆−∆′(E(x) + E(x)′)∆, (2.89)

which is a special case of (2.70) to obtain

F (x, u)′P−1F (x, u) + P − E(x)− E(x)′ +G(x, u′G(x, u)) � −µI. (2.90)

From (2.89), (2.90) implies (2.88) but has the advantage of being convex in e, f, g and P .

This can be clearly seen by taken the Schur complement of (2.90), leading to E(x) + E(x)′ − P − µI F (x, u)′ G(x, u)

F (x, u) P 0

G(x, u) 0 I

 � 0.

We now arrive at the following result for incremental `2 stability:

Theorem 2.4. [232, Theorem 5] For any model of the form (2.72), existence of P ∈ Snx++

such that (2.90) holds for all x, u, is sufficient for incremental `2 stability. Furthermore,

such a model is well-posed.
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2.3.4 Related properties

The convexification procedures described in this chapter can be extended to enforce other

behavioral properties of dynamical systems, in addition to stability, by appropriate choice

of storage function and supply rate; c.f., [232, Remark 1]. For example, passivity [106, §6]

of the identified model can be ensured via the dissipation inequality,

V (xt+1)− V (xt) ≤ −u′tg(xt, ut), (2.91)

with storage function V (x) = |e(x)|2P−1 and supply rate −u′tg(xt, ut). Summing (2.91) for

solutions of (2.5) gives
∑T

t=0 u
′
tyt ≤ V (x0) for all T , which implies passivity of the model.

In the work of [144], these ideas were extended to convex parametrizations of models with

stable limit cycles. In a stable limit cycle, solutions of the system converge to the same

path (through state space) but not necessarily the same trajectory, as differences in phase

may persist. Incremental `2 stability, i.e. the property that all solutions will eventually

converge regardless of initial conditions, is therefore ‘too strong’ a notion of stability to

impose if one wishes to identify systems with stable limit cycles. The approach adopted

in [144] enforces contraction only in directions (of the state space) transverse to the limit

cycle, thereby allowing differences in phase to persist; c.f., also [143].

2.4 Convex bounds on simulation error

For linearly parametrized models, equation error quality-of-fit metrics are convex in the

model parameters; however, small equation error does not guarantee good long-term pre-

dictive performance. To achieve the latter, it may be desirable to minimize simulation

error (a.k.a output error). Such an optimization is nonconvex due to dependence on multi-

step ahead simulated output of the model. In this section we review a family of methods

[25, 141, 150, 229–232] that seek a middle ground between these two approaches: convex

upper bounds on simulation error.

2.4.1 Incremental gain from equation error to simulation error

This line of research was introduced in a paper [150] by Megretski, which built upon earlier

work on relaxation based model reduction techniques [149, 218]. The paper proposed an

incremental `2 gain condition under which small equation error does imply small simulation

error. For the purpose of exposition, consider an implicit nonlinear ARX model of the form,

f(yt, yt−1, . . . , yt−na , ut−1, . . . , ut−nb) = 0. (2.92)

Note that this structure can incorporate the NARX model (2.4) by choosing

f(yt, yt−1, . . . , yt−na , ut−1, . . . , ut−nb) = yt − fAR(yt1 , . . . , yt−na , ut−1, . . . , ut−nb).
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Equation error for (2.92) is then given by

εt = f(ỹt, ỹt−1, . . . , ỹt−na , ũt−1, . . . , ũt−nb). (2.93)

To study the relationship between equation error and simulation error, one can introduce

the error model

f(yt, yt−1, . . . , yt−na , ut−1, . . . , ut−nb) = εt, (2.94)

where εt should be thought of as an additional input to the model.

Definition 2.4 (Incremental `2 gain of error model). Consider two solutions, ȳt and ŷt, of

(2.94) driven by two different inputs (ε̄, ū) and ε̂, û, respectively, but starting from the same

initial conditions. The smallest γ > 0 such that

T∑
t=0

|ȳt − ŷt|2 ≤ γ
T∑
t=0

|ε̂t − ε̂t|2 (2.95)

is called the incremental `2 gain of the error model.

If the error model has finite incremental `2 gain, then by

i. setting the initial conditions to those of the measured data, i.e., ȳt = ŷt = ỹt for

t = −1, . . . ,−na,

ii. setting ūt = ût = ũt for all t,

iii. setting ε̄t = εt = f(ỹt, ỹt−1, . . . , ỹt−na , ũt−1, . . . , ũt−nb) such that ȳt = ỹt,

iv. setting ŷt = 0 such that ŷt = yt, where yt is the simulated output of (2.92),

the inequality (2.95) implies

T∑
t=0

|ỹt − yt|2 ≤ γ
T∑
t=0

|εt|2, (2.96)

i.e., equation error upper bounds simulation error. Finite incremental `2 gain is implied by

the dissipation inequality

γ|f(ȳt, . . . , ȳt−na , ūt−1, . . . , ūt−nb)− f(ŷt, . . . , ŷt−na , ût−1, . . . , ût−nb)|2 − |ŷt − ȳt|2 ≥
V (ȳt, . . . , ȳt−na , ŷt, . . . , ŷt−na)− V (ȳt−1, . . . , ȳt−na−1, ŷt−1, . . . , ŷt−na−1).

(2.97)

Summing (2.97) for solutions (ȳ, ū, ε̄) and (ŷ, û, ε̂) yields (2.95) as

V (ȳT , . . . , ȳT−na , ŷT , . . . , ŷT−na) ≥ 0, ∀ȳ, ŷ,
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and V (ȳ−1, . . . , ȳ−na , ŷ−1, . . . , ŷ−na) = 0 when ȳt = ŷt = ỹt for t = −1, . . . ,−na (i.e. both

solutions begin from the same initial conditions).

For linearly parametrized f and V , the dissipation inequality (2.97) is nonconvex in the

model parameters. We make use of the linear upper bound on concave quadratic functions

given in (2.70) to obtain

−γ|f(ȳt, . . . , ūt−nb)− f(ŷt, . . . , ût−nb)|2 ≤
1

γ
|ȳt − ŷt|2 − 2(ȳt − ŷt)′(f(ȳt, . . . , ūt−nb)− f(ŷt, . . . , ût−nb)). (2.98)

Substituting (2.98) into (2.97) gives convex sufficient conditions for finite incremental `2
gain of the error model,

0 ≥ 1

γ
|ȳt − ŷt|2 − 2(ȳt − ŷt)′(f(ȳt, . . . , ūt−nb)− f(ŷt, . . . , ût−nb)) + |ŷt − ȳt|2+

V (ȳt, . . . , ȳt−na , ŷt, . . . , ŷt−na)− V (ȳt−1, . . . , ȳt−na−1, ŷt−1, . . . , ŷt−na−1). (2.99)

In summary, minimization of equation error (2.93) subject to the convex constraint (2.99)

upper bounds simulation error, and ensures stability of the identified model. We will return

to the concept of incremental gain of error models in Chapter 5 to derive convex upper

bounds on simulation error for positive dynamical systems.

2.4.2 Lagrangian relaxation of simulation error

In this same paper [150], Megretski also proposed a more accurate convex upper bound on

simulation error, based on a version of the Lagrangian relaxation [119]. Lagrangian relax-

ation refers to a family of methods for generating convex approximations to optimization

problems rendered nonconvex by ‘difficult’ constraints, such as combinatorial [160] and in-

teger programming problems [61]. In the control community, the technique is known as the

S-procedure [263] and has long been used in applications such as stability analysis [29] and

robust control [201], even before the theoretical properties of the method, i.e. the S-lemma,

were fully understood [181].

For our purposes, the variant of the Lagrangian relaxation we shall use concerns constrained

optimization problems of the form

min
θ,x

J(θ, x) s.t. F (θ, x) = 0, (2.100)

where J and F are assumed to be convex and affine, respectively, in θ. For a concrete

example, consider minimization of simulation error for a linearly parametrized state space

model of the form (2.5). Here, θ denotes the model parameters, and x = x1:T denotes

the internal states of the model. The cost function J(θ, x) =
∑T

t=1 |ỹt − g(xt, ũt)|2 is the
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sum-of-squares error between the model output and the measured data, and

F (θ, x) =


x1 − x̃1

x2 − a(x1, ũ1)
...

xT − a(xT−1, ũT−1)

 = 0

encodes the dynamics of the model.

The Lagrangian relaxation of (2.100) is then given by the convex program

min
θ
{Ĵλ(θ) , sup

x
J(θ, x)− λ(x)′F (θ, x)} (2.101)

where

1) It is convex in θ. Recall that J and F are convex and affine in θ, respectively. As such,

Ĵλ(θ) is the supremum of an infinite family of convex functions, and is therefore convex

in θ; see §3.2.3 of [28].

2) It is an upper bound for the original problem (2.100). Given θ, let x∗ be any x such that

F (θ, x∗) = 0. Then

J(θ, x∗) + λF (θ, x∗) = J(θ, x∗),

which implies that the supremum over all x can be no smaller; i.e. Ĵλ(θ) is an upper

bound for the simulation error.

For minimization of simulation error, the Lagrangian relaxation in (2.101) takes the form

Ĵλ(θ) = sup
x

{ T∑
t=1

|ỹt − g(θ, xt)|2 −
T−1∑
t=1

λt+1(x)′ (xt+1 − a(xt, ũt))

}
. (2.102)

It is known that the Lagrangian relaxation of equivalent constraints gives non-equivalent

bounds. Specifically, redundant parametrizations of the constraint function F (θ, x) in

(2.100) provides additional flexibility that leads to tighter bounds, i.e. lower values of

minθ Ĵλ(θ). For Lagrangian relaxation of output error, as in (2.102), redundancy can be

introduced to F (θ, x) by using an implicit representation of the dynamics, as in (2.72).

When a(·, ·) = e−1(f(·, ·)), the constraints
x1 − x̃1

x2 − a(x1, ũ1)
...

xT − a(xT−1, ũT−1)

 = 0 and


e(x1)− e(x̃1)

e(x2)− f(x1, ũ1)
...

e(xT )− f(xT−1, ũT−1)

 = 0
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have the same feasible set, x1:T , and so the upper bound given by

Ĵλ(θ) = sup
x

{ T∑
t=1

|ỹt − g(θ, xt)|2 −
T−1∑
t=1

λt+1(x)′ (e(xt+1)− f(xt, ũt))

}
(2.103)

will, in general, be tighter than that of (2.102).

Computational complexity

The function Ĵλ(θ), as defined in (2.103), gives a convex upper bound on output error;

however, optimization of Ĵλ(θ) is far from straightforward. Foremost, for nonlinear models

evaluation of Ĵλ(θ) requires computing the supremum of the Lagrangian,

T∑
t=1

|ỹt − g(θ, xt)|2 −
T−1∑
t=1

λt+1(x)′ (e(xt+1)− f(xt, ũt)) ,

which is nonlinear (and, in general, nonconcave) in x. When the functions e, f, g are given

by polynomials (or trigonometric polynomials), as proposed in Section 2.3.3, the supremum

in (2.103) may be approximated by sum-of-squares (SOS) methods; however, due to the

very large number of indeterminate variables (i.e. x1:T ), such an approach scales poorly.

Whether recent developments that take advantage of chordal sparsity in SOS programing,

e.g. [248], can improve tractability is a subject for future research.

In the following sections we outline two approaches to improve the computational tractabil-

ity of the Lagrangian relaxation: minimization of linearized simulation error, c.f. Section

2.4.3, and approximation of the Lagrangian relaxation with dissipation inequalities, c.f.

Section 2.4.4.

Surrogate state sequences

The developments of the following sections depend on a surrogate state sequence {x̃t}Tt=1.

While it is not assumed that these are true internal states, the more accurate they are the

more effective these approaches will be. For linear systems, subspace algorithms provide an

effective method for generating state estimates from input-output data [241]. For nonlin-

ear systems, state estimation is more challenging and solutions can be quite case specific.

Possible strategies include: subspace methods in the case of weakly nonlinear systems, c.f.

the example in Section 3.6; exploiting physical or structural knowledge, c.f. the example

in Section 3.5; alternating between model-based state estimation and model refinement,

e.g. Expectation Maximization, c.f. Chapter 4; and using truncated histories of inputs and

outputs (as in NARX) [208].
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2.4.3 Linearized simulation error

The principle difficulty associated with Lagrangian relaxation for nonlinear models, is the

computation of the supremum in (2.103). For the special case of linear models, the La-

grangian in (2.103) is quadratic in x (for multipliers λ(x) that are affine in x), which allows

the supremum to be calculated analytically. This motivates the study of linearized simula-

tion error. Roughly speaking, this can be thought of as the simulation error of the linear

time varying model obtained by linearizing the nonlinear model about some trajectory,

{x̃t}Tt=1, c.f. the discussion on surrogate state sequences in Section 2.4.2.

More precisely, we introduce a perturbed version of the nonlinear model in (2.72),

e(xρt+1) = f(xρt , ut) + ρεt (2.104a)

yρt = g(xρt , ut) + ρηt, (2.104b)

where ρ ∈ [0, 1] and

εt = e(x̃t+1)− f(x̃t, ũt), ηt = ỹt − g(x̃t, ũt)

denote the equation errors. Observe that when ρ = 0, (2.104) reduces to (2.72) and so

y0
t = yt, i.e., the usual unperturbed simulated output. Conversely, when ρ = 1 we have

x1
t = x̃1

t and y1
t = ỹ1

t , i.e., the simulated states and outputs of the perturbed system are

equal to surrogate states and measured outputs, respectively. One could think of ρ as a

‘leash’ on the perturbed system (2.104): a ‘tight leash’ (ρ = 1) constrains (2.104) to exactly

reproduce the measured output, whereas a ‘loose leash’ (ρ = 0) allows (2.104) to behave as

freely as the unperturbed system. Linearized simulation error is then defined as

E0 := lim
ρ→1

1

(1− ρ)2

T∑
t=1

|ỹt − yρt |2. (2.105)

One application of L’Hospital’s Rule gives

E0 = lim
ρ→1

−2
∑T

t=1 (∇ρyρt )
′
(ỹt − yρt )

−2(1− ρ)
,

where

∇ρyρt =
∂

∂ρ
(g(xρt , ũt) + ρηt) = G(xρt , ũt)

∂xρt
∂ρ

+ ηt.

A second application of L’Hospital’s Rule yields,

E0 = lim
ρ→1

−2
∑T

t=1

(
∇2
ρy
ρ
t

)′
(ỹt − yρt ) + +2

∑T
t=1 (∇ρyρt )

′
(∇ρyρt )

2
=

T∑
t=1

| (∇ρyρt |ρ=1) |2.

Linearized simulation error is then equivalent to E0 =
∑T

t=1 |G(x̃t, ũt)∆t + ηt|2, where
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∆ =
∂xρt
∂ρ

∣∣∣
ρ=1

satisfies ∆1 = 0, as xρ1 = x̃1 for all ρ, and

E(x̃t+1)∆t+1 = F (x̃t, ũt)∆t + εt, (2.106)

which follows from differentiation of (2.104a),

∂

∂ρ
e(xρt+1) = E(xρt+1)

∂xρt+1

∂ρ
=

∂

∂ρ
f(xρt , ũt) = F (xρt , ũt)

∂xρt
∂ρ

+ εt.

The Lagrangian relaxation of minimization of linearized simulation error then takes the

form

Ĵλ(θ) = sup
∆

{ T∑
t=1

|G(x̃t, ũt)∆t + ηt|2 −
T−1∑
t=1

λt+1(∆)′ (E(x̃t+1)∆t+1 − F (x̃t, ũt)∆t − εt)
}
,

(2.107)

which requires computing the supremum of a quadratic function in ∆. The ability to

compute the supremum analytically represents a dramatic reduction in computational com-

plexity compared to the Lagrangian relaxation of simulation error in (2.103). Nonetheless,

complexity of the minimization of (2.107) with general purpose semidefinite programming

(SDP) solvers grows cubicly with the number of data points, T . This is the motivation for

the specialized algorithms presented in Chapter 3, which exploit structure in the Lagrangian

relaxation to further improve computational tractability.

2.4.4 Robust identification error

One of the principle challenges to applying the Lagrangian relaxation in (2.103) is computing

supremum of a function of many variables, namely the entire state sequence x1:T . The idea

behind the so-called Robust Identification Error (RIE), first introduced in [230], c.f. also

[232, §4], is to approximate (2.103) with an alternative convex upper bound derived from

dissipation inequalities. This leads to a more computationally tractable point-wise measure

of model fit; to evaluate the upper bound at each data point, it is only necessary to compute

the supremum of a function of a single state, xt, as opposed to the suremum over the entire

state sequence.

The key idea is as follows. For the general nonlinear deterministic state space model (2.5),

restated here for convenience,

xt+1 = a(xt, ut), (2.108)

yt = g(xt, ut), (2.109)

consider the following dissipation inequality,

V (a(xt, ũt), t+ 1)− V (xt, t) ≤ st − |ỹt − g(xt, ũt)|2. (2.110)
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Here V (x, t) denotes the storage function, st− |ỹt− g(xt, ũt)|2 denotes the supply rate, and

st is a slack variable, the role of which will be made clear in the sequel. Suppose (2.110)

holds for all xt ∈ Rnx . Then it clearly also holds for the special case of solutions to the

dynamical system, i.e., xt+1 = a(xt, ũt). Summing (2.110) for solutions to (2.5) gives

T∑
t=1

V (a(xt, ũt), t+1)−V (xt, t) = V (xt+1, t+1)−V (x1, 1) ≤
T∑
t=1

st−|ỹt−g(xt, ũt)|2, (2.111)

which implies the following upper bound on simulation error,

V (x1, 1) +

T∑
t=1

st ≥
T∑
t=1

|ỹt − g(xt, ũt)|2. (2.112)

As with the convex parametrization of stable models, c.f. Section 2.3.3, one of the principle

challenges is the nonconvexity of the simultaneous search for storage function V and the

dynamics a(·, ·), specifically due to the composition V (a(xt, ũt), t + 1). Once again, the

implicit dynamics (2.72) proves useful. In [230], the authors propose the specific choice of

storage function

V (xt, t) = |e(xt)− e(x̃t)|2P−1 , (2.113)

which leads to

V (a(xt, ũt), t+ 1) = |e(a(xt, ũt))− e(x̃t)|2P−1 = |f(xt, ũt))− e(x̃t)|2P−1 . (2.114)

Notice that the troublesome composition has been replaced by f(·, ·) = e(a(·, ·)). Notice

also that with x1 = x̃1, we have V (x1, 1) = 0, and so from (2.112) we see that
∑

t st upper

bounds simulation error. To ensure that (2.110) holds for all xt we can enforce

st = sup
xt
|f(xt, ũt))− e(x̃t)|2P−1 − |e(xt)− e(x̃t)|2P−1 + |ỹt − g(xt, ũt)|2, (2.115)

where we have substituted the specific choice (2.113) of V into (2.110). It is clear that∑
t st upper bounds simulation error; however, we seek an upper bound that is convex in

the model parameters, θ. The supremum of an infinite family of convex functions is itself

convex; c.f. [28, §3.2.3]. Unfortunately, the family of functions

|f(xt, ũt))− e(x̃t)|2P−1 − |e(xt)− e(x̃t)|2P−1 + |ỹt − g(xt, ũt)|2 (2.116)

is not convex in θ, due to the concave term −|e(xt) − e(x̃t)|2P−1 . As in Section 2.3.3, we

replace the troublesome concave term with an affine upper bound

− |e(xt)− e(x̃t)|2P−1 ≤ |xt − x̃t|2P − 2(xt − x̃t)′(e(xt)− e(x̃t)), (2.117)

which is a special case of the inequality in (2.70). We can now define the RIE, as presented
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in [230], by

Erie
t (θ) := sup

xt
|f(xt, ũt))−e(x̃t)|2P−1 + |xt− x̃t|2P −2(xt− x̃t)′(e(xt)−e(x̃t))+ |ỹt−g(xt, ũt)|2.

(2.118)

As Erie
t (θ) ≥ st, it is clear that

∑
t Erie

t (θ) gives a convex upper bound on simulation error;

c.f. [232, Theorem 4]. Notice that the RIE in (2.118) only requires supremum over xt
rather than x1:T , which dramatically improves computational tractability, especially for

large T . Nevertheless, in general (2.118) still involves maximization of a nonconvex function

in xt, and so sum-of-squares (SOS) approximations are still necessary. To further reduce

computational complexity, a similar dissipation inequality construction can be applied to

linearized simulation error, discussed in Section 2.4.3, leading to the so-called local-RIE; c.f.

[232, §5.B]. With linearized simulation error, (2.118) becomes the supremum of a quadratic

function in xt, which can be computed analytically.

2.5 Concluding remarks

2.5.1 Other approaches

We conclude our survey of ‘optimization-based’ approaches to system identification by dis-

cussing some methods that don’t fit quite so neatly into the framework we have outlined,

or at the very least, offer a conceptually different treatment of the parameter estimation

problem. Specifically, the optimization approach we have outlined seeks a point estimate of

the model parameters, i.e. θ̂ = arg minθ∈Θ E(θ). In this section, we briefly review methods

in which the goal is not a point estimate of model parameters.

Bayesian methods

In a Bayesian approach to system identification, the model parameters θ are explicitly

modeled as a random variable. The identification problem then becomes estimation of

probability density function (PDF) that governs the distribution of the parameters, rather

than estimation of specific numerical values for the parameters. Specifically, given some

probabilistic model of the system, e.g. (2.13), we seek the posterior distribution of the

model parameters after the observations y1:T have been made, i.e., p(θ|y1:T ). The posterior

distribution is given by Bayes’ rule,

p(θ|y1:T ) =
p(y1:T |θ)p(θ)
p(y1:T )

, (2.119)

where p(y1:T |θ)p(θ) is the likelihood, commonly denoted pθ(y1:T ) and discussed in Section

2.1.2, and p(θ) is the prior distribution on θ, which encodes our beliefs about the values of θ

before (i.e., prior to) the observations y1:T . Roughly speaking, Bayes’ rule can be thought of
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as the formula for quantitatively updating our beliefs about an uncertain quantity in light

of new information. Refer to [176] for comprehensive treatment of the Bayesian approach

to system identification.

Despite the simplicity of (2.119), application of Bayes’ rule to identification of general non-

linear and non-Gaussian dynamical systems can be computationally challenging. Foremost,

Bayes’ rule clearly requires the likelihood, p(y1:T |θ), which can only be computed exactly

in special cases, e.g. for linear Gaussian models via the Kalman filter. In general, approx-

imations such as those based on sequential Monte Carlo (SMC, a.k.a. particle filtering) ,

a.k.a. particle filtering, must be used, c.f., e.g., [8, 122]. Secondly, application of Bayes’ rule

also requires the density of the observations, p(y1:T ), also known as the marginal likelihood.

The marginal likelihood can be expressed as

p(y1:T ) =

∫
p(y1:T |θ)p(θ)dθ (2.120)

which, once more, emphasizes the importance of the likelihood. However, even when the

likelihood is known, one must still evaluate this (possibly high-dimensional) integral w.r.t. θ,

which may not be analytically tractable. Again, SMC methods provides a general framework

for approximating such integrals; c.f. [204] for a very accessible introduction to SMC in

system identification, as well as [101, 122, 164, 203].

Before leaving the Bayesian framework, we note that it is not uncommon to generate a point

estimate of the model parameters from the posterior distribution p(θ|y1:T ). One popular

strategy is to compute the so-called maximum a posteriori (MAP) estimate, given by

θ̂MAP := arg max
θ
p(θ|y1:T ) = arg max

θ
pθ(y1:T )p(θ). (2.121)

We wish to make two remarks. First, computing the MAP estimate clearly fits into the

optimization-based framework outlined in this chapter; in this interpretation, the quality-

of-fit metric is given by the posterior distribution p(θ|y1:T ). Second, (2.121) illustrates

the close connections between the Bayesian framework and regularization. In particular,

maximizing the logarithm of the posterior in (2.121), leads to

max
θ

= log (pθ(y1:T )p(θ)) = max
θ

log pθ(y1:T ) + log p(θ). (2.122)

With a Gaussian prior, i.e. p(θ) = N
(
θ̄,Σ

)
, the MAP estimate can be interpreted as

maximum likelihood identification with Tikhonov regularization, i.e., (2.122) is equivalent

to

min
θ

{
− log pθ(y1:T ) +

1

2
|θ − θ̄|2Σ−1

}
.
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Asymptotic analysis of frequentist approaches

Though interpretation of θ̂ as a random variable is most explicit in the Bayesian framework,

such a treatment is also useful for asymptotic analysis of frequentist approaches, such as

prediction error methods, i.e., the behavior of the estimate θ̂PE
T , c.f. (2.21), as the number

of data points T → ∞. In Section 2.1.2, it was noted that θ̂PE
T → θ∗ as T → ∞, where4

θ∗ = arg minθ∈Θ Ē [`(εpt (θ))], c.f. (2.22). Under mild assumptions, it can be shown that the

asymptotic distribution of the random variable
√
T (θ̂PE

T − θ∗) is zero-mean Gaussian, c.f.,

[129, §9] for details and explicit expressions for the covariance. Even though the outcome

of parameter estimation for a given realization of the problem data is a point estimate,

this result emphasizes that the identification process is in fact a mapping from the random

variables ũ1:T and ỹ1:T to the random variable θ̂, e.g., θ̂PE
T in the case of PEM. For each

realization of the problem data, we can expect different numerical values of the parameter

estimates, which obey a normal distribution as T →∞.

Set membership methods

Model-based design of automatic controllers is one of the most important application areas

for system identification. The objective of robust control is to design a controller that meets

certain performance specifications despite uncertainty in the system model; i.e., the input to

the design process is a set of models, and the output is a controller guaranteed to meet the

performance specifications for all models in the set, c.f., e.g., [209, 269]. The requirement

of robust control for both a nominal system model as well as an explicit worst-case (deter-

ministic) bound on system uncertainty inspired the development of the ‘identification for

control’ framework, which includes set membership methods, c.f., e.g., [33, 37, 38, 89, 153].

Set membership (SM) methods are concerned with the identification of a set of unfalsi-

fied models, i.e., models that are consistent with the observed data, as well as a priori

assumptions on the model structure and disturbances.

There are (at least) two main considerations in the design of a SM method (and identification

for control methods more broadly). First, the identification method must reduce system

uncertainty to a level for which a robust controller exists; if the uncertainty is too great

(i.e. the model set is too large) then it may not be possible to design a controller satisfying

the performance specifications for all models in the set. Second, the model set must be in

a form compatible with robust control design methods. This typically requires an explicit

bound on system uncertainty, to quantify the worst-case error between the nominal model

and true system description. Satisfying this latter requirement is simpler for LTI systems,

which have received the most attention in the SM literature. Nonetheless, extensions to

linear systems with static nonlinearities (i.e., Hammerstein and Wiener systems) have been

developed, c.f., [34, 225].

4In the case that Ē [`(εpt (θ))] has no unique minimizer, θ∗ belongs to the set of minimizers, and θ̂PE
T → θ∗

denotes convergence to a set.
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Nonparametric models

In this thesis, we will be concerned with identification of finitely parametrized models.

However, there is an extensive literature on nonparametric models; such methods have re-

ceived increased attention recently, in part due to the flurry of activity in machine learning

approaches to statistical inference (a.k.a. statistical machine learning) [56]. In this nonpara-

metric setting, which is especially common in the Bayesian framework, Gaussian processes

(GPs) [193] have proved to be very useful for performing inference directly over the space

of functions. Modeling paθ and/or pgθ in (2.13) with a GP leads to a so-called Gaussian

process state space model (GP-SSM), c.f., e.g., [65, 66], as well as [224] for a generalization

of the GP-SSM that allows for discontinuities. GPs have also found application in impulse

response modeling [42, 177], and NARX [109].

2.5.2 Summary

This chapter has presented an ‘optimization-based approach’ to system identification, as

a way of systematically reviewing the immense literature. The three key elements to such

an approach are: i. a model set Θ, ii. a quality-of-fit criterion E , and iii. an algorithm to

solve minθ∈Θ E(θ). As in any optimization task, convexity plays a central role. In system

identification, nonconvexity enters through the constraints that ensure useful behavioral

properties of the identified model (chiefly, model stability), and through quality-of-fit criteria

that capture the long-term predictive power of the model, such as simulation error.

In Section 2.3 and 2.4 we reviewed a recently developed family of methods for generating

convex parametrizations of stable models and convex bounds on simulation error, respec-

tively. The remaining chapters of this thesis extend this line of research in several important

directions. In Chapter 3, specialized interior point algorithms for Lagrangian relaxation are

developed; these algorithms substantially reduce computational complexity compared to

generic solvers. In Chapter 4, these ideas are translated to a stochastic setting, where

maximum likelihood identification subject to stability constraints is addressed. Finally, in

Chapter 5 the special case of identification of positive systems is considered. In this setting,

many of these convex constructions are considerably simplified, allowing identification of

very large-scale systems via distributed optimization.



Chapter 3

Specialized algorithms for

Lagrangian relaxation

When accurate open-loop predictions of long-term system behavior are required, it is appro-

priate to fit a model by minimization of simulation error (closely related to output error).

Unfortunately, for models containing feedback, e.g. state space models, simulation error

is (in general) a nonlinear and nonconvex function of the model parameters, which makes

global optimization challenging. In Section 2.4, we reviewed a recently developed family

of methods for deriving convex approximations to simulation error. Among these methods

was Lagrangian relaxation, which can be used to generate a convex upper bound for simu-

lation error. Though convex, minimization of these bounds by general-purpose semidefinite

program (SDP) solvers suffers from poor scalability. Specifically, computation time grows

as a cubic function of the number of data points used for training.

This chapter presents specialized algorithms for minimization of Lagrangian relaxation of

simulation error, over convex parametrizations of stable models, that have lower computa-

tional complexity compared to general-purpose SDP solvers. Specifically, we derive custom

path-following interior point algorithms for which computation time grows as a linear func-

tion of the number of data points used for training. The basic idea is to exploit structural

properties of the Lagrangian relaxation so as to: (i) dramatically simplify computation of

the gradient and Hessian of the quality-of-fit criterion; (ii) significantly reduce the size of

the linear matrix inequalities (LMI) that must be enforced, compared to the standard-form

SDP representation of the problem.

The primary contribution of this chapter is the derivation and complexity analysis of these

specialized algorithms. Equipped with these efficient solvers, a secondary contribution of

this chapter is to empirically evaluate the performance of the Lagrangian relaxation method,

compared to established methods for system identification, such as nonlinear ARX. In

particular, we explore the apparent regularizing effect of Lagrangian relaxation with model

stability constraints, which seems to eliminate the need for careful selection, or pruning, of
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regressors in nonlinear model structures.

Connection to other chapters

The specialized algorithms developed in this chapter form the basic computational ma-

chinery necessary for efficient application of Lagrangian relaxation in other contexts, which

includes many of the subsequent developments in this thesis. For example, in Chapter 4

we use Lagrangian relaxation to incorporate model stability constraints into the maximum

likelihood framework. In the nonlinear setting, one of our proposals involves a Monte Carlo

approximation of the likelihood which leads to Lagrangian relaxation of many simultaneous

simulation error minimization problems at each iteration of an Expectation Maximization

algorithm. Without the efficient custom interior point methods developed in this chapter,

such an approach would be computationally prohibitive.

Publications

This material presented in this chapter also appears in the following publications:

J. Umenberger, I.R. Manchester. Specialized algorithm for identification of stable

linear systems using Lagrangian relaxation. In Proceedings of the American Control

Conference (ACC). 2016.

J. Umenberger, I.R. Manchester. Specialized interior-point algorithm for stable

nonlinear system identification. IEEE Transactions on Automatic Control. 2017.

Under review.

3.1 Introduction

In this chapter, we consider identification of (linear or nonlinear) state-space models of the

form

xt+1 = a(xt, ut), yt = g(xt, ut). (3.1)

where xt is an internal state, and ut, yt are input and output, respectively. This model class

is very flexible and includes nonlinear autoregressive models [24, 208], infinite-impulse-

response linear systems [129], Hammerstein and Wiener models [23], and recurrent neural

networks [116].

The downside of increased flexibility is a substantial increase in the difficulty of the search

for a model. Major problems include the difficulty of ensuring that the identified model
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(3.1) is stable, and existence of local minima due to non-convexity of long-term simulation

error (a.k.a. output error) as a function of model parameters [131, 169, 208].

Existing approaches to identification of state-space models include subspace identification

for linear systems [241], the prediction error method [129], initializing the search for non-

linear models with frequency-domain fitting of linear models [169], maximum-likelihood via

the expectation-maximization algorithm [203, 237], and Bayesian identification via Markov-

chain Monte Carlo [164, 224]. None of these methods guarantee globally optimal fits or sta-

bility of the identified model, though for linear subspace identification a number of methods

have been proposed (e.g. [113, 138, 238]).

The work in this chapter builds upon [232], which proposed a convex parametrization of

nonlinear state-space models with guaranteed stability, as well as a family of convex upper

bounds on simulation error. This line of research was initiated in [150], and further devel-

oped in [25, 141, 229, 230]. A central contribution of [232] is construction of a simulation-

error bound based on a version of the Lagrangian relaxation (LR) [119], closely related to

the S-procedure [181]. This bound can be represented as a semidefinite program (SDP),

however for practical data-sets the resulting SDP is very large, and the experimental results

in [232] were all based on the simpler but less-accurate robust identification error (RIE),

first presented in [230]. Indeed, we will show that when represented as a standard semidef-

inite program, the LR approach has computational complexity which is cubic in the length

of the data set, severely limiting its practical utility.

Our main contribution is a specialized algorithm that takes advantage of the structure in

the LR optimization to significantly improve computational tractability: scaling of Newton

iterates with respect to data-set length is now linear instead of cubic. Our contribution can

therefore be seen in the context of a growing body of research on specialized solvers for spe-

cial classes of SDPs appearing in robustness analysis via integral quadratic constraints and

the Kalman-Yakubovich-Popov lemma, e.g. [103, 104, 243, 250]. Of more direct relevance

to system identification is [125], which develops a custom interior point method (exploiting

structure in the Nesterov-Todd equations) for nuclear norm approximation with application

to subspace identification.

A secondary contribution of this chapter, enabled by the development of our specialized

algorithm, is to empirically evaluate the performance of the LR method and compare it to

established methods of linear and nonlinear system identification. In particular, we explore

the apparent regularizing effect of the stability constraint and LR.

Regularization refers to the process of constraining or reducing model complexity (in some

sense) to prevent over-fitting and to manage the bias-variance trade-off in statistical mod-

eling [86]. Classical methods such as ridge regression (shrinkage) and subset selection (re-

gressor pruning) have long been applied in nonlinear system identification [24, 99, 208].

More recently, novel regularization strategies have been developed for identification of lin-

ear systems, including nuclear norm regularization for subspace identification (e.g. [125])

and kernel methods for impulse-response modeling, surveyed in [179]. In this chapter, we
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provide evidence that stability constraints and LR have an effective regularizing effect and

seem to eliminate the need for regressor pruning.

This chapter is structured as follows: Section 3.2 introduces notation and problem setup.

Section 3.3 contains the main contribution: the specialized algorithm. Section 3.4 demon-

strates the algorithm’s improved computational complexity over existing methods. Sections

3.5, 3.6, and 3.7 present empirical comparisons to established methods on a number of ex-

ample problems, and finally Section 3.8 offers concluding remarks.

3.2 Preliminaries

3.2.1 Notation

Specific notation used in this chapter is as follows. The cone of real, symmetric nonnegative

(positive) definite matrices is denoted by Sn+ (Sn++). The n×n identity matrix is denoted In.

Let vec : Rm×n 7→ Rmn denote the function that stacks the columns of a matrix to produce

a column vector, and mat : Rmn 7→ Rm×n for its inverse. Let s2v : Sn 7→ Rn(n+1)/2 denote

the functions that stacks the columns of an n× n symmetric matrix, with duplicate entries

omitted. The Kronecker product is denoted ⊗. The transpose of a matrix a is denoted a′,

and |a|2Q is shorthand for a′Qa. For brevity, we use ‖a‖ to denote the Euclidean norm ‖a‖2
of a ∈ Rn. For a polynomial p, p ∈ SOS denotes membership in the cone of sum-of-squares

polynomials [172].

3.2.2 Model class

This chapter concerns the identification of nonlinear discrete-time state-space models of the

implicit form

e(xt+1) = f(xt, ut) (3.2a)

yt = g(xt, ut) (3.2b)

where e : Rnx 7→ Rnx , f : Rnx×nu 7→ Rnx and g : Rnx×nu 7→ Rny are multivariate polyno-

mials or trigonometric polynomials, linearly parametrized by unknown model parameters

ρ ∈ Rnρ . We shall enforce that e(·) be a bijection; i.e. for any b ∈ Rnx there exists a unique

solution s ∈ Rnx to e(s) = b. This means we can recover a model of the form (3.1) by

computing xt+1 = e−1(f(xt, ut)) = a(xt, ut). Implicit models of this form improve the qual-

ity of Lagrangian relaxation due to redundancy in the constraints, and also permit convex

parameterizations of stable models, [232].

The following strong form of stability ensures sensible model behavior for inputs not present

in the training dataset:
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Definition 3.1 (Global incremental `2 stability). The model (3.1) is said to be stable if

the sequences {ȳt − ŷt}∞t=1 and {x̄t − x̂t}∞t=1 are square summable for every two solutions

(ū, x̄, ȳ) and (û, x̂, ŷ) of (3.1), subject to the same input ū = û.

3.2.3 Simulation error

Given measurements of inputs {ũt}Tt=1 to and outputs {ỹt}Tt=1 from some dynamical system

(not necessarily in the model class), our goal is to minimize the simulation error :

Ese :=
T∑
t=1

‖ỹt − g(xt, ũt)‖2 (3.3)

where xt represents the simulated state, given by

xt = e−1
(
f(. . . e−1(f(e−1(f(x̃1, ũ1)), ũ2)) . . . , ũt−1)

)
,

i.e. the solution of (3.2), subject to the input {ũt}Tt=1 and initial condition x1 = x̃1.

Dependence on the simulated state renders Ese a highly nonlinear function of the model

parameters.

3.2.4 Lagrangian relaxation of linearized simulation error

Rather than minimize Ese directly, the approach proposed in [232] is to approximate Ese via

Lagrangian relaxation of the linearized simulation error, which we now define.

Given an estimated state sequence {x̃t}Tt=1, we define the equation errors

εt = f(x̃t, ũt)− e(x̃t+1), ηt = g(x̃t, ũt)− ỹt (3.4)

and Jacobians Et = ∇x e |x=x̃t , Ft = ∇x f |u=ũt
x=x̃t

, Gt = ∇x g |u=ũt
x=x̃t

. The linearized simulation

error is then given by

E0 =
T∑
t=1

‖Gt∆t + ηt‖2 (3.5)

where ∆t satisfies ∆1 = 0 and Et+1∆t+1 = Ft∆t + εt for t = 1, . . . , T − 1. The linearized

simulation error E0 quantifies local (i.e. close to {x̃t}Tt=1) sensitivity of the model equations

to equation errors; c.f., [232, §V] for further details.

In this work, Lagrangian relaxation refers to the approximation of the nonconvex problem

minρ E0 by the convex problem minρ Ĵλ(ρ), where for ∆ = (∆′1, . . . ,∆
′
T )′

Ĵλ(ρ) = sup
∆

{ T∑
t=1

‖Gt∆t + ηt|‖2 − λ′1E1∆1 −
T−1∑
t=1

λ′t+1(Et+1∆t+1 − Ft∆t − εt)
}
. (3.6)
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Ĵλ(ρ) represents a convex upper bound on E0 for arbitrary multipliers λt. In this chapter,

we will use λt = 2∆t, due to its desirable properties, e.g. tightness of the bound under

ideal circumstances [232, Theorem 6]. Note that for linear dynamical systems, simulation

error and linearized simulation are equivalent; we discuss the ways in which our approach

is simplified for the special case of linear identification in Section 3.3.7.

The above construction depends on a surrogate state sequence {x̃t}Tt=1. While it is not

assumed that these are true internal states, the more accurate they are the more effective

our approach will be. Methods for generating state estimates from input-output data include

subspace methods for linear systems [241]. For nonlinear systems, state estimation is more

challenging and solutions can be quite case specific. Possible strategies include: subspace

methods in the case of weakly nonlinear systems, c.f. Section 3.6; exploiting physical or

structural knowledge, c.f. Section 3.5; alternating between model-based state estimation

and model refinement, e.g. Expectation Maximization [237]; and using truncated histories

of inputs and outputs (as in NARX) [208].

For what follows, it is convenient to introduce the following ‘lifted’ representation of (3.6).

Let G(ρ) = blkdiag(G1, . . . , GT ), η(ρ) = [η′1, . . . , η
′
T ]′, ε(ρ) =

[
0, ε′1, . . . , ε

′
T−1

]′
and

F(ρ) =


E1 0 0 . . .

−F1 E2 0
. . .

0 −F2 E3
. . .

...
. . .

. . .
. . .

 . (3.7)

The upper bound in (3.6) can then be more compactly expressed as Ĵλ(ρ) = sup∆ Jλ(ρ,∆),

where

Jλ(ρ,∆) = ‖G(ρ)∆ + η(ρ)‖2 − 2∆′(F(ρ)∆− ε(ρ)). (3.8)

3.2.5 Optimization with general-purpose solvers

Minimization of Ĵλ(ρ) can be formulated as the following SDP, compatible with any general-

purpose SDP solver:

min
ρ

s (3.9a)

s.t.

 s ε(ρ)′ η(ρ)′

ε(ρ) F(ρ) + F(ρ)′ G(ρ)′

η(ρ) G(ρ) ITny

 � 0 (3.9b)

where s is a slack variable. If no structural properties (e.g. sparsity) of (3.9b) are exploited

by the solver, then each iteration of a primal-dual interior point method requires

O
(
max{nρ(nx + ny)

3T 3, n2
ρ(nx + ny)

2T 2}
)
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operations to solve, c.f., e.g., [125, §2], where nρ is the number of free model parameters,

and T is the number of data points in the training set. In a typical system identification

scenario, the model and parameter dimensions nx, ny, and nρ remain moderate in size while

the data set length T may be very large. This implies O(T 3) complexity, which will be

demonstrated empirically in Section 3.4.1.

3.3 Specialized algorithm

In this section we present the main contribution of this chapter: an efficient, scalable

algorithm for the problem minρ Ĵλ(ρ) where Ĵλ(ρ) (c.f. (3.6)) is a convex upper bound on

linearized simulation error. Specifically, we present an interior-point algorithm for which

the complexity of each Newton iteration grows linearly with the number of data points, T .

See Algorithm 3 for a complete listing.

3.3.1 Stable model set and cost function

We begin by defining the set of stable models that we wish to search over, first introduced

in [230]. Let P denote the set of all models ρ of the form (3.2) for which ∃ P ∈ Snx++ and

µ > 0 such that the matrix inequality

m(ρ, P, x, u) :=F (x, u)P−1F (x, u)− E(x)− E(x)′+

P + µInx +G(x, u)′G(x, u) � 0 (3.10)

holds for all x ∈ Rnx , u ∈ Rnu where E(x) = ∇xe(x), F (x, u) = ∇xf(x, u) and G(x, u) =

∇xg(x, u). The inequality (3.10) may be interpreted as a contraction condition [135] with

the metric E(x)′P−1E(x), and guarantees global incremental `2 stability of the model ρ.

The set P is nonconvex, and so we introduce a SOS approximation in Section 3.3.2.

The cost function that we seek to minimize is, of course, Ĵλ(ρ), given by (3.6). As the

Lagrangian Jλ(ρ,∆), defined in (3.8), is quadratic in ∆ it is finite if and only if

W := G′G − F − F ′ ≤ 0, (3.11)

i.e., Jλ(ρ) is concave. Imposing strict negativite-definiteness ensures robustness and a unique

maximizing ∆. It turns out that ρ ∈ P is sufficient to guarantee W < 0. Specifically, we

have the following result from [232, Theorem 6]:

Lemma 3.1. Given any arbitrary sequence of vectors {x̃t}Tt=1, W := G′G −F −F ′ < 0 for

ρ ∈ P, and thus Ĵλ(ρ) is finite.

The key point is that we can guarantee W < 0, i.e. a large LMI that grows linearly in

dimension with T , by enforcing (3.10), a low-dimensional convex constraint that does not

grow with T . This property is essential to the scalability of our approach.



70 Specialized algorithms for Lagrangian relaxation

3.3.2 Convex parametrization of stable models

In this section, we detail how the set of stable models,

P = {ρ ∈ Rnρ : ∃P ∈ Snx++ s.t. m(ρ, P, x, u) � 0 ∀ x, u}

can be approximated with sum-of-squares (SOS) programming [172]. By an application of

the Schur complement, (3.10) is equivalent to the infinite family of LMIs:

M(ρ, P, x, u) = (3.12) E(x) + E(x)′ − P − µInx F (x, u)′ G(x, u)′

F (x, u) P 0

G(x, u) 0 Iny

 � 0.

Introducing v ∈ R2nx+ny , and z = [x′, u′, v′]′, we define the linearly parametrized scalar

polynomial

p(z) := v′M(ρ, P, x, u)v.

Then the condition M(ρ, P, x, u) � 0 ∀x, u is equivalent to p(z) ≥ 0 ∀z. Testing non-

negativity of a general multivariate polynomial is known to be NP-hard. However, con-

straining p(z) to be SOS gives tractable sufficient conditions for nonnegativity [172].

Our goal is to find a representation of p(z) of the form

p(z) = ω(z)′Qω(z) =:

nq∑
i=1

ci(Q)zβi , where Q ∈ Snω+ , (3.13)

and ω : Rnz 7→ Rnω is a vector of nω monomials and Q is the Gram matrix. Careful

selection of the basis monomials ω can simplify the SOS program, e.g., reduce the number

of constraints and decision variables. Tools such as the Newton polytope [134], and facial

reduction [175], can be used to generate an effective basis. For the examples in this chapter,

we used the toolbox [233] for monomial selection.

Introducing θ = [ρ′, s2v(P )′, s2v(Q)′]′, the equality constraints in (3.13) can be expressed

as Aeθ = be. Similarly, positive semidefiniteness of the Gram matrix can be encoded as

S(θ) := mat(Asθ) := Q � 0. Then p(z) ∈ SOS is equivalent to θ ∈ Θ, where

Θ = {θ : S(θ) = mat (Asθ) � 0, Aeθ = be}. (3.14)

To develop a primal-only interior point method, c.f. Section 3.3.3, we first eliminate the

equality constraints in Θ, by constructing a general solution to Aeθ = be,

θ(ν) = θ∗ +Neν (3.15)

where Aeθ
∗ = be, Ne is a basis for the nullspace of Ae, and ν denotes our new decision
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variables. The particular solution θ∗ can be obtained, e.g., from the semidefinite feasibility

problem:

S(θ) = mat (Asθ) � 0, Aeθ = be. (3.16)

With the parameterization (3.15) the model set Θ reduces to {ν : S(ν) � 0}, and our

optimization problem becomes

min
ν

Ĵλ(ν) s.t. S(ν) � 0. (3.17)

Here, with mild abuse of notation, we have used Ĵλ(ν) as shorthand for Ĵλ(θ(ν)), which is

understood to denote Ĵλ(ρ(ν)). Similarly, S(ν) is shorthand for S(θ(ν)).

Before moving on, we remark that Aeθ = be in (3.14) will typically contain many constraints

of the form Q(i, j) = [ρ′, s2v(P )′]cij , where cij is a vector of constants. For such constraints,

it is possible to eliminate the variable Q(i, j) by directly parametrizing the Gram matrix.

Although the resulting formulation is mathematically equivalent, we have observed that

direct parametrization of the Gram matrix can improve numerical conditioning in practice.

3.3.3 Path-following interior point method

The algorithm we propose solves (3.17) via a (primal-only) path following interior point, or

barrier, method; see, e.g., [162]. Primal-dual interior point methods are generally expected

to be more efficient than barrier methods on standard SDPs [242]. Despite this, we employ

a primal-only method for the following reasons:

i. The LR approach requires minimization of a smooth nonlinear function of the semidef-

inite cone. Unlike standard SDPs, the dual function does not have a simple explicit

representation. Lifting to a standard-form SDP involves introducing a large number of

additional variables (see Section 3.2.5).

ii. We can exploit structural properties of Ĵλ(ν) to dramatically simplify the computation

of the gradient and Hessian.

iii. We can exploit the fact that S(ν) � 0 guarantees W < 0 and finiteness of Ĵλ(ν), c.f.

Lemma 3.1, which leads to a much smaller LMI than the formulation outlined in Section

3.2.5.

iv. Using a primal-only interior point method, we can guarantee model stability at every

iteration. In standard primal-dual methods, the iterates are not necessarily feasible.

This permits early stopping (without compromising model stability), a well-known

regularization method that has long been used in system identification, c.f., e.g., [208].
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v. As we will see in Section 3.4.2, our proposed algorithm is more accurate (i.e. returns

models with lower cost Ĵλ) than primal-dual methods, due to the numerical problems

encountered by general-purpose solvers for large datasets.

The key idea in a path-following interior point method is the introduction a barrier function

that tends towards infinity at the boundary of the feasible set. We use the standard choice

for the LMI constraint S(ν) � 0 [162], i.e.,

φ(ν) =

{
− log detS(ν) S(ν) > 0

∞ S(ν) ≯ 0
.

The barrier function, weighted by a scalar τ , is then added to the objective Ĵλ(ν) and we

solve (using a damped Newton method) a sequence of unconstrained optimization problems

min
ν
{fτ (ν) := Ĵλ(ν) + τφ(ν)} (3.18)

for decreasing τ , exploiting the insights enumerated above.

3.3.4 Gradient computation

In this section, we show that the gradient ∇Ĵλ(ν) can be computed very efficiently, which

is one of the key properties exploited by our solver. The gradient of fτ (ν) is given by

∇fτ (ν) = ∇Ĵλ(ν) + τ∇φ(ν). (3.19)

We consider each term separately, beginning with ∇Ĵλ(ν). Recalling our parametrization

of θ(ν) in (3.15), we have

∂Ĵλ(θ(ν))

∂ν
=
∂Ĵλ
∂θ

∂θ

∂ν
=
∂Ĵλ
∂θ

Ne (3.20)

by the chain rule. We now present a simple formula for the gradient of Ĵλ(θ) w.r.t. θ

at a particular parameter θ† ∈ Θ. From Lemma 3.1, the bound is given by Ĵλ(θ) =

max∆ Jλ(θ,∆) = Jλ(θ,∆∗(θ)) where

∆∗(θ) = arg max
∆

Jλ(θ,∆) = −W−1(G′η + ε). (3.21)

The gradient is then given by

∂Ĵλ
∂θ

=
∂Jλ
∂θ

+
∂Jλ
∂∆

∂∆∗

∂θ
.
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As ∆∗(θ†) maximizes the smooth function Jλ(θ†,∆), we have ∂Jλ
∂∆ = 0 at ∆ = ∆∗(θ†), and

so
∂Ĵλ
∂θ

=
∂Jλ
∂θ

∣∣∣∣
θ=θ†,∆=∆∗(θ†)

. (3.22)

The key point is that ∂∆∗

∂θ need not be computed to calculate the gradient of Ĵλ(θ†), which

now reduces to
∂Ĵλ
∂θ(i)

= 2(G∆∗ + η)′(Gi∆∗ + ηi)− 2∆∗
′
(Fi∆∗ − εi) (3.23)

where Gi, ηi,Fi, εi denote ∂G/∂θ(i), ∂η/∂θ(i), ∂F/∂θ(i), ∂ε/∂θ(i), respectively.

We now turn our attention to ∇φ(ν). The chain rule gives

∂φ(θ(ν))

∂ν
=
∂φ(θ)

∂θ

∂θ

∂ν
=
∂φ(θ)

∂θ
Ne. (3.24)

The gradient of φ(θ) w.r.t. θ is straightforward to compute, as S(θ) is affine in θ; specifically,

S(θ) = mat(Asθ). Recall that for g(Z) = log detZ, where Z ∈ S++, we have ∇g = Z−1,

and so by the chain rule we have

∂φ(θ)

∂θ
=

[
∂φ

∂θ(1)
, . . . ,

∂φ

∂θ(nθ)

]
= −vec(S(θ)−1)′As. (3.25)

3.3.5 Hessian computation

The Hessian of fτ (ν) w.r.t ν is given by

∇2fτ (ν) = ∇2Ĵλ(ν) + τ∇2φ(ν). (3.26)

By the chain rule we have

∂2Ĵλ(θ(ν))

∂ν2
=
∂θ

∂ν

′∂2Ĵλ(θ)

∂θ2

∂θ

∂ν
= N ′e

∂2Ĵλ(θ)

∂θ2
Ne (3.27)

To compute the Hessian ∇2Ĵλ we differentiate (3.22), yielding

∂2Ĵλ
∂θ2

=
∂2Jλ
∂θ2

+
∂2Jλ
∂∆∂θ

∂∆∗

∂θ
. (3.28)

Notice that ∂2∆∗

∂θ2 does not appear in (3.28), for the same reason that ∂∆∗

∂θ does not appear

in ∇Ĵλ, namely: ∂Jλ
∂∆ (θ,∆∗(θ)) = 0 for all θ ∈ Θ. This property simplifies the computation

of ∇2Ĵλ. The first two quantities in (3.28) are given by

∂2Jλ
∂θ(j)∂θ(i)

= 2(Gj∆∗ + ηj)
′(Gi∆∗ + ηi), (3.29a)
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∂2Jλ
∂∆∂θ(i)

=
2∆∗

′
(G′Gi + G′iG − F ′i −Fi) +

2 (η′Gi + η′iG + ε′i) .
(3.29b)

To compute ∂∆∗

∂θ we rewrite the linear system (3.21) as

W∆∗ = w (3.30)

where W = G′G−F ′−F and w = −G′η−ε. Application of the product rule to (3.30) yields

W
∂∆∗

∂θ(i)
=

(
∂w

∂θ(i)
− ∂W

∂θ(i)
∆∗
)
, (3.31)

from which we can solve for ∂∆∗

∂θ(i) ∈ RTnx .

We now turn our attention to the Hessian of the barrier, ∇2φ(ν), which, like the gradient,

is straightforward to compute. By the chain rule, we have

∂2φ(θ(ν))

∂ν2
=
∂θ

∂ν

′∂2φ(θ)

∂θ2

∂θ

∂ν
= N ′e

∂2φ(θ)

∂θ2
Ne. (3.32)

While ∇2φ(θ) is easy to compute, it is somewhat cumbersome to express. Let B : Sn 7→ Sn2

denote the function that maps a symmetric matrix Z ∈ Sn to the n × n block matrix, in

which the (i, j)th block is given by Z(:, j)Z(:, i)′, where Z(:, i) denotes the ith column of Z.

Then, by the chain rule, the Hessian of the barrier function is given by

∇2φ =

 ∂2φ
∂θ(1)2

∂2φ
∂θ(1)∂θ(2) . . .

...
. . .

 = A′sB(S(θ)−1)As. (3.33)

3.3.6 Stopping criteria

For each τ , the ‘Newton iterations’ (L7-20) terminate when at least one of the following

convergence criteria is satisfied: i) change in fτ (ν) is less than a prescribed tolerance, δf ; ii)

the maximum absolute value of an element of ∇fτ (ν) is less than δg; iii) the step size αdk is

less than δf . The ‘barrier iterations’ (and thus, the algorithm) terminate when the change

in Ĵλ(ν) is less than a prescribed tolerance, δJ . Recommended values for these parameters

are summarized in Table 3.1.

3.3.7 Special case: Identification of LTI systems

We conclude this section by making explicit the ways in which our proposed algorithm is

simplified when applied to the special case of LTI systems. Throughout this section, we use
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Table 3.1 – Parameter values for Algorithm 3.

Parameter Description Value

τ0 Initial barrier weight 104

β Barrier weight division factor 10
δf Newton objective tolerance 10−10

δg Newton gradient tolerance 10−10

δJ Objective convergence tolerance 10−11

maxit Max no. of Newton iterations 104

Algorithm 3 MIN-LAGRANGIAN

1: Initialize θ0 = θ∗, where θ∗ is given by (3.16)
2: Initialize ν = 0
3: Initialize τ0, c.f. Table 3.1
4: while |Ĵλ(νj)− Ĵλ(νj−1)| > δJ do
5: νk ← νj
6: Set fτ (ν) = Ĵλ(ν) + τjφ(ν)
7: for k = 1 : maxit do
8: Compute ∇Ĵλ(νk) using (3.20) and (3.23)
9: Compute ∇φ(νk) using (3.24) and (3.25)

10: Form ∇fτ (νk) using (3.19)
11: Compute ∇2Ĵλ(νk) using (3.27), (3.28), (3.29), (3.31)
12: Compute ∇2φ(νk) using (3.32) and (3.33)
13: Form ∇2fτ (νk) using (3.26)
14: Solve dk = ∇2fτ (νk)

−1∇fτ (νk)
15: Compute the step length α by a backtracking line

search to satisfy the Wolfe conditions.
16: Update the parameter estimate: νk+1 = νk + αdk
17: if |fτ (νk+1)− fτ (νk)| < δf or

‖∇fτ (νk+1)‖∞ < δg or
‖αdk‖∞ < δf then

18: νj ← νk and break
19: end if
20: end for
21: Set τj+1 = τj/β for some constant β
22: end while
23: return θ = θ0 +Neνj
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the specific implicit representation of LTI systems

Ext+1 = Fxt +Kut (3.34a)

yt = Cxt +Dut (3.34b)

where E ∈ Rnx×nx , F ∈ Rnx×nx and K ∈ Rnx×nu . There are two key simplifications in the

linear case. First, linearized simulation error E0 and simulation error Ese are equivalent. To

see this clearly, observe that for linear models∇x e(x) = E, ∇x f(x, u) = F , ∇x g(x, u) = C,

εt = Fx̃t + Kũt − Ex̃t+1 and ηt = Cx̃t + Dũt − ỹt. Substituting these identities into the

definition of E0 with ∆t = xt − x̃t, c.f. Section 3.2.4, we obtain E0 =
∑T

t=1 ‖Gt∆t +

ηt‖2 =
∑T

t=1 ‖Cxt + Dũt − ỹt‖2 subject to the constraints ∆t = 0 ⇐⇒ xt = x̃t and

Et+1∆t+1 = Ft∆t + εt ⇐⇒ Ext+1 = Fxt +Kũt, i.e., linearized simulation error E0 equals

simulation error Ese.

Second, there is no conservatism in the stability constraint: the stability condition (3.12)

reduces to

Ml(ρ, P ) =

 E + E′ − P + µI F ′ C ′

F P 0

C 0 I

 > 0. (3.35)

As (3.35) represents a LMI, there is no need for SOS approximation, as in the nonlinear

case. In fact, Θl := {ρ, P : Ml(ρ, P ) > 0} defines a convex parametrization of all stable LTI

systems, c.f. [141, Lemma 4], i.e., (3.35) is necessary and sufficient for stability.

3.4 Computational complexity

In this section we examine the computational complexity of the proposed algorithm with

respect to the length of the data set T . We will show that the per-iteration cost of the

proposed algorithm grows linearly with T , a significant improvement over the O(T 3) per-

iteration complexity of general-purpose SDP solvers, c.f. Section 3.2.5. This does not result

in a complete complexity analysis, since we do not bound the number of iterations required.

However, it is generally observed empirically that the number of iterations required grows

very mildly with the number of variables [242], and we confirm this in the next subsection.

In what follows, (Ln) refers to line n of Algorithm 3.

3.4.1 Scalability with respect to data length

In this subsection we establish that computational complexity of the gradient (L8) and

Hessian (L11) of Ĵλ(ν) both scale linearly with T . The gradient (L9) and Hessian (L12) of

the barrier function φ(ν), as well as the calculation of the search direction (L14), do not

depend on T . Computation of the gradient ∇Ĵλ requires:
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• one application of the chain rule, as in (3.20) which does not grow with T ,

• nθ applications of formula (3.23). Notice, from (3.7), that G and F , along with the

derivatives Gi and Fi, are sparse banded matrices. This implies that the products

G∆∗, Gi∆∗ and ∆∗
′Fi∆∗ in (3.23) can be computed with O(T ) arithmetic operations.

As the model (3.2) is linearly parametrized, the gradients Gi, ηi,Fi and εi can be

precomputed off-line.

• The most expensive operation would appear to be the computation of ∆∗ by solving

the linear system (3.30). However, as W is block diagonal, Hermitian, and sign-

definite we can employ the block Thomas algorithm [187, Section 3.8.3], to compute

∆∗ with O(T ) operations.

To compute each of the nθ(nθ + 1)/2 unique elements of ∇2Ĵλ, we require:

• one application of (3.29a), requiring O(T ) operations due to block diagonality of Gi,
c.f. (3.7),

• one application of (3.29b), requiring O(T ) operations due to block diagonality of G,

Gi and Fi, c.f. (3.7),

• the solution to (3.31) for i = 1, . . . , nθ, requiring O(T ) operations as W is block

tridiagonal, Hermitian and sign-definite.

To summarize, the complexity of computing each Newton step of the proposed algorithm

is therefore O(T ).

Before moving on, we remark that computation of the Hessian is the most expensive part

of each iteration. For identification of ‘large scale’ systems (e.g. models of high dimension

nx), it is possible to use only gradient information, if moderate-accuracy is acceptable, e.g.,

gradient descent or BFGS approximation of the Hessian, as in [235].

3.4.2 Empirical results

In this section we provide an empirical comparison between our proposed algorithm and

general-purpose solvers. Both methods solve the same convex optimization problem,

min
ν

Ĵλ(ν) s.t. S(ν) � 0,

as in (3.17). All computations were carried out with an Intel i7 (3.40GHz, 8GB RAM).

We begin with a nonlinear example. Figure 3.1(a) presents computation times for identifi-

cation of a SISO nonlinear model of the form (3.37), with nx = 4, degx(e) = degx(f) = 3,

and degx(g) = 1. Specifically, we compare our proposed algorithm to Mosek v7.0.0.119
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Table 3.2 – Computation time (in seconds, to 3 s.f.) for varying model order nx and T = 400,
averaged over 5 trials.

Model size, nx 2 4 6 8

Specialized algorithm 0.339 2.74 8.74 34.9
Mosek 7.0.0.119 162 882 2550 7340

(using Yalmip [133] for SDP formulation), which in our experience is the best currently

available general-purpose SDP solver. Problem data is generated by simulation of the non-

linear mass-spring-damper depicted in Figure 3.2 over time intervals of increasing length T .

As the focus of this section is algorithmic scalability, we refer the reader to Section 3.5.1

for simulation details. Examining Figure 3.1(a), it is clear that the specialized algorithm

exhibits better scalability compared to Mosek. In fact, for the specialized algorithm, the

slope of the line of best is 1.006 indicating approx. linear growth with T , whereas the slope

for Mosek is 2.946, indicating approx. cubic growth. This is consistent with the analysis

of Section 3.4.1 and Section 3.2.5. Furthermore, for T > 1200, Mosek reports an out of

memory error and fails to return a solution.

Before moving on, we note that in many of the trials depicted in Figure 3.1(a), Mosek

encountered numerical problems, and often reported unknown as the final solution status.

In such cases, one cannot have confidence in the feasibility (much less, optimality) of the

solution. In contrast, our primal only interior-point method ensures feasibility of the solu-

tion (i.e. stability of the identified model) at every iteration. Furthermore, for every trial

depicted in Figure 3.1(a), the objective value Ĵλ attained by our proposed algorithm was

lower than the value obtained by Mosek.

Next, we consider a linear example. Figure 3.1(b) presents computation times for identifi-

cation of 4th order SISO LTI systems, again comparing our proposed algorithm to Mosek.

In each trial, the true system was randomly generated using Matlab’s drss function, and

simulated for T timesteps, excited by a white noise input. The output was corrupted by

additive white noise to give a SNR of 17dB, and N4SID [241] was used to obtain the state

estimates {x̃t}Tt=1. As in the nonlinear example, the results support the claim that scala-

bility of the specialized algorithm linear w.r.t. T , while Mosek is cubic, although there is

slightly more variability in computation time due to the randomly generated test systems.

Finally, Table 3.2 records computation times for varying model order nx, with the length

of the dataset held constant at T = 400 in all trials.

3.4.3 Relationship to other specialized solvers

Recall from Section 3.3.3, one of the main motivations for optimizing Ĵλ directly was avoid-

ing the lifted representation (3.9) required by general-purpose solvers. In this lifted formu-
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(b) Linear identification.

Figure 3.1 – Computation times for solving minν Ĵλ(ν) s.t. S(ν) � 0, as in (3.17), via two
methods: our proposed algorithm (Specialized) and a general-purpose solver (Mosek). In
(a) the identified SISO nonlinear model is of the form (3.37) with nx = 4, degx(e) =
degx(f) = 3 and degx(g) = 1. For each value of T , 10 trials (each with different random
noise and input realizations) were conducted. In (b) the identified 4th order SISO LTI
model is randomly generated for each trial. For each value of T , 5 and 20 trials were
conducted for Mosek and Specialized, respectively.
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lation, the dimension of the LMI (3.9b), repeated here for convenience, s ε(ρ)′ η(ρ)′

ε(ρ) F(ρ) + F(ρ)′ G(ρ)′

η(ρ) G(ρ) ITny

 � 0,

grows linearly with the number of data points, T , leading to worst-case per-iteration com-

putational complexity that is cubic in T .

Though large, the LMI (3.9b) is high structured. In fact, as F and G are block Toeplitz

and block diagonal, respectively, (3.9b) has a sparsity pattern characterized by a chordal

graph. Since early 2000s [67, 158], there has been considerable research into exploiting

chordal sparsity in semidefinite programming, c.f. Section 2.2.3 for a brief discussion. One

such example is the recent work [6], which presents nonsymmetric interior-point methods

for optimization over semidefinite cones with chordal sparsity patterns. Specifically, a num-

ber of algorithms for computing the search direction (i.e. solving the Newton equations)

in primal scaling and dual scaling methods are derived, based largely on the zero fill-in

Cholesky factorization for matrices with chordal sparsity, c.f. [6, §4], and (2.63) in Chap-

ter 2. The authors utilize these algorithms in a feasible-start primal scaling method, and

empirically demonstrate superior per-iteration computational complexity compared to other

SDP solvers on a variety of problems. Specifically, the cost of each iteration is shown to

grow linearly with the dimension of the LMI when the sparsity pattern is chordal, compared

to quadratic growth for the alternative solvers.

The solver demonstrated in [6] and the algorithm we propose in this chapter have per-

iteration complexity that scales linearly with problem size; although [6] is of course more

generally applicable. The difference is, [6] exploits properties of matrices with chordal

sparsity, whereas we exploit structural properties of Lagrangian relaxation, namely, sim-

plified expressions for the gradient and Hessian, c.f. Section 3.3.3. Comparison of these

two methods for minimization of Ĵλ is the subject of current research. Such a comparison

is necessarily empirical in nature, and shall be concerned with differences in computation

time, as well as quality of the identified models.

3.5 Case study: Mechanical system with nonlinear spring

In this section, we consider identification of a mechanical system with nonlinear spring

stiffness. Accurate modeling of such systems is critical in several application areas, e.g.

microelectromechanical systems (MEMS) [151] and precision motion control [167].
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3.5.1 System Description

A schematic of the system is shown in Figure 3.2. The springs have a nonlinear characteristic

given by:

k(s) = k tan

(
πs

2× 1.25

)
, s ∈ [−1.25, 1.25]. (3.36)

To generate training data, the system is simulated for 100 seconds with ode45, excited by

a superposition of sinusoidal forces, each with randomized frequency, phase and amplitude.

We sample the input force f̃ and the displacement of the two masses, s(1) and s(2), at 10Hz,

to give discrete time data f̃t = f̃(t × Ts) and s
(i)
t = s(i)(t × Ts), i = {1, 2}, Ts = 0.1. We

then corrupt the displacement data with additive Gaussian noise s̃
(i)
t = s

(i)
t + w

(i)
t , w

(i)
t ∼

N (0, 10−4), i ∈ {1, 2}, to simulate measurement errors, giving a signal-to-noise ratio (SNR)

of approx. 34dB. Our goal is to model the dynamics from the input force to the position

of the second mass, i.e., {ũt, ỹt}Tt=1 = {f̃t, s̃(2)
t }Tt=1 with T = 103. To estimate the internal

states {x̃t}Tt=1, used in the construction of the Lagrange multipliers, c.f. Section 3.2.4, we

take

x̃t =

[
s̃

(1)
t , s̃

(2)
t ,

s̃
(1)
t+1 − s̃

(1)
t−1

Ts
,
s̃

(2)
t+1 − s̃

(2)
t−1

Ts

]′
,

i.e., we exploit our knowledge of the system structure and approximate the velocities by the

central difference.

In the following case studies, we will apply Lagrangian relaxation to implicit models of the

form (3.2), with

e : Rnx 7→ Rnx = [e1(x), . . . , enx(x)]′, (3.37a)

f : Rnx × Rnu 7→ Rnx = [f1(x, u), . . . , fnx(x, u)]′, (3.37b)

g : Rnx × Rnu 7→ Rny = [g1(x, u), . . . , gny(x, u)]′. (3.37c)

Each function ei, fi and gi is a scalar valued, multivariate polynomial, the degree of which

will be specified for each application example. We will use the term “degree n”, and the

notation degx(p) = n, to refer to a polynomial p containing all possible monomials in x up

to degree n, e.g., if nx = 2 then “e1 is degree 2”, or degx(e1) = 2, implies

e1(x) = θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x
2
1 + θ5x

2
2,

where {θi}5i=0 are the parameters to be identified.

Performance of identified models shall be quantified by the normalized simulation error,∑
t ‖ỹt−yt‖2∑
t ‖ỹt‖2

, where yt denotes the simulated output of the model and ỹt denotes measured

output from the system of interest.
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m1 m2

fu

k1

s1 s2

k2

c1 c2

 
Figure 3.2 – Mass-spring-damper system, with parameters m1 = 0.5 kg, m2 = 0.1 kg, c1 =

0.01 Nsm−1, c2 = 0.1Nsm−1. The spring has the nonlinear force-displacement curve
(3.36) with k1 = 2, k2 = 1. The measured control input is force fu and the measured
system outputs are the displacements s1 and s2.
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3.5.2 Comparison to RIE and equation error

We first compare the Lagrangian relaxation approach to two other methods that utilize

the same model structure but alternative convex surrogates for simulation error. The first

is minimization of the Local Robust Identification Error (RIE) [230], which also gives a

convex upper bound on simulation error, and was developed as a tractable approximation

to Lagrangian relaxation. The second is minimization of equation error (EE), i.e.,

min
θ

T∑
t=1

‖ηt‖2 +

T−1∑
t=1

‖εt‖2 s.t. E(x) + E(x)′ ∈ SOS, (3.38)

where the SOS constraint ensures that the identified model is well-posed (i.e. e(·) is a

bijection). Equation error is a form of one-step-ahead prediction error, frequently used in

system identification [129] and, for the case of linear systems, is exactly the algorithm of

[113].

Identified models are of the form (3.37), with {fi(x, u)}4i=1 affine in u. The results are pre-

sented in Figure 3.3, for models of increasing complexity. Figure 3.3(a) depicts performance

on training data, for 30 different training data realizations. Figure 3.3(b) plots the perfor-

mance of these 30 different instances of each model, for a single realization of validation

data. Computation times are listed in Table 3.3.

Table 3.3 – Mean computation times (in seconds, to 3 sig. fig) for the methods applied in the
30 experimental trials depicted in Figure 3.3. The parenthesized numbers refer to degree
of e, f, g, respectively.

Model (1, 1, 1) (3, 1, 1) (3, 3, 1) (5, 3, 1)

LR 4.45 44.4 67.3 1280

RIE 9.47 20.6 26.4 172

EE 3.60× 10−3 4.19× 10−2 4.25× 10−2 4.28

Table 3.4 – Median values (to 3 sig. fig.) of the convex upper bounds on simulation error for
the 30 experimental trials presented in Figure 3.3(a). The parenthesized numbers refer to
degree of e, f, g, respectively.

Model (1, 1, 1) (3, 1, 1) (3, 3, 1) (5, 3, 1)

Bound, LR 12.1 5.08 4.25 2.89

Bound, RIE 15.5 12.0 11.3 9.04

It is clear that in terms of model fidelity, LR is the best, followed by RIE, with EE worst.

In terms of computation time, the ranking is reversed. This is perhaps unsurprising: mini-
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mizing EE is essentially least-squares with a small SDP constraint, and RIE was proposed

as a simpler alternative to LR in [232].

We observe that for both LR and RIE, model fidelity improves (i.e. simulation error de-

creases) monotonically with increasing model complexity. In contrast, performance of mod-

els fit by minimization of EE is more erratic and exhibits large variance. EE is susceptible

to the well-known bias-variance tradeoff: comparing EE(1,1,1) to EE(5,3,1), we see that

increasing model complexity reduces median error at the expense of large variance. In this

situation, a standard remedy would be regressor pruning [24].

Both LR and RIE models achieve lower median error as model complexity increases without

any increase in variance. It should be noted that the increase in complexity from (3,3,1)

to (5,3,1) is significant; these models contain 271 and 1785 parameters, respectively. Given

that only 2000 input/output datapoints were used for identification, this is evidence of the

regularizing effect of model stability constraints and “robust” simulation error bounds.

Finally, in Table 3.4 we record the median values of the minimized convex upper bounds

on simulation error, for the experimental trials in Figure 3.3(a). for both LR and RIE the

tightness of the bound improves (i.e. the value decreases) with increasing model complexity.

This is entirely as expected, as increased model complexity corresponds to increased size of

the feasible convex set over which the convex bound is minimized. Furthermore, the bound

from LR is always tighter than that from RIE. This is guaranteed by construction of the

LR, c.f. [232, Theorem 6]

3.5.3 Comparison to Nonlinear ARX

Next, we compare our algorithm a standard approach: Nonlinear AutoRegressive mod-

els with eXogenous inputs (NARX), as implemented in the Matlab System Identification

Toolbox. In particular, we compare the following identification methods:

• LR - The proposed Lagrangian relaxation algorithm, applied to a model of the form

(3.37) with (e,f,g) of degree (3,3,1) respectively.

• Poly - Nonlinear regressors are all monomials in {s̃(1)
n , s̃

(2)
n } (for n = t − 1, t − 2) up

to degree 3; focus = simulation.

• Sig∗ - sigmoid nonlinearity; nlreg=search to select regressors; focus = prediction.

• Sig - sigmoid nonlinearity; all nonlinear regressors used; focus = simulation.

• Wav∗ - wavelet nonlinearity; nlreg=search to select regressors; focus = prediction.

• Wav - wavelet nonlinearity; all nonlinear regressors used; focus = simulation.
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(a) Simulation error on training data (30 realizations).
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(b) Simulation error on validation data.

Figure 3.3 – Comparison of different methods for fitting polynomial state-space models: La-
grangian relaxation (proposed method, LR); Local Robust Identification Error (RIE), c.f.
[230]; equation error (EE), c.f. (3.38). Parenthesized numbers denote the degrees of the
polynomials (e,f,g) for models of the form (3.37). Refer to Section 3.5.1 for experimental
details.
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Table 3.5 – Computation times (in seconds, to 3 sig. fig.) for the methods applied in the 30
experimental trials depicted in Figure 3.4.

Method LR Poly Sig∗ Sig Wav∗ Wav

Mean 63.2 1690 4930 58.3 2080 53.7

Std. Dev. 3.87 486 64.9 28.1 12.8 43.1

Each NARX model uses six regressors {y(1)
n , y

(2)
n , un}t−2

n=t−1, with {y(i)
n , un} = {s̃(i)

n , ũn} for

training. The focus property was set so as to produce the best performance for each model.

This was important for the Poly model, where simulation performed much better than

prediction, but less so for the others, where the focus property had little influence.

For each of the methods tested, 30 models were attained by fitting to 30 randomly gen-

erated training datasets; c.f. Section 3.5.1. Performance of these models on training data

is depicted in Figure 3.4(a). For validation, we randomly generate a single new dataset

and compute the simulation error of each of the 30 models; the results are presented in

Figure 3.4(b). Many NARX models were unstable, and the simulations diverged. To keep

the scale of Figure 3.4 meaningful, we collect these at the top as ∞ simulation error, and

the box plots are generated using only the stable models. Note that the same models are

being simulated in Figures 3.4 (a) and (b), but different proportions of models were diver-

gent. This is because (local) stability of a nonlinear model is trajectory-dependent. On the

other hand, the global incremental stability constraint (3.35) for LR ensures stability for

all possible inputs.

Some interesting observations can be made from Figure 3.4. Foremost, we note that LR

outperforms NARX, achieving the lower median error than all other methods. The apparent

lower median of Poly is is not a real effect: since 73% of models diverged it could be said

that for Poly the median simulation error is infinity.

The computation times are recorded in Table 3.5. Computationally, LR is comparable with

Sig and Wav, although LR achieves significantly lower (i.e. better) simulation error. Only

Wav∗ has similar median error to LR, though with larger variance, but it took around

30 times longer to compute due to the costly subset selection process. Before moving on,

we note that even better performance can be attained by LR, at the expense of greater

computational effort, if we are willing to use a more complicated model, e.g. LR(5,3,1)

in Figure 3.3. Notice that LR(5,3,1) is still twice as fast to fit compared to Wav∗, c.f.

Table 3.3.

Comparing LR to the subset selection methods Sigmoid∗ and Wavelet∗, we observe that

the variance of simulation error on validation data is much lower for LR. We suggest that

this is due to the large variation in the structure (i.e. selected regressors) of models from

subset selection. Table 3.6 reports the frequency with which individual regressors were
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(a) Training data, 30 models per method.
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(b) Validation data, 30 models per method.

Figure 3.4 – Comparison of proposed method (LR) to various nonlinear ARX models; c.f.
Section 3.5.3 for a complete description of the models and methods. The percentages at
infinite error denote the proportion of trials for which the simulated model diverged.
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Table 3.6 – Frequency with which certain nonlinear regressors were chosen by Matlab’s subset
selection algorithm (i.e. nlreg set to search) during the 30 experimental trials depicted
in Figure 3.4.

Regressor y
(1)
t−1 y

(1)
t−2 y

(2)
t−1 y

(2)
t−2 ut−1 ut−2

Wavelet∗, y1 77% 0% 17% 3% 7% 20%

Wavelet∗, y2 37% 27% 30% 13% 93% 97%

Sigmoid∗, y1 80% 10% 17% 10% 30% 33%

Sigmoid∗, y2 33% 43% 27% 30% 67% 57%
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Figure 3.5 – Simulated performance on validation data for one of the trials in Figure 3.4. LR
denotes a 4th order state-space model fit with our proposed algorithm. Sigmoid∗ denotes a
nonlinear ARX model with sigmoid net nonlinearity and regressors chosen automatically
by Matlab’s subset selection algorithm; see Section 3.5.3 for details. Normalized simulation
error for LR and Sigmoid∗ are 2.02× 10−2 and 3.71× 10−2, respectively.

chosen by Matlab’s subset selection algorithm. Notice that there isn’t a single regressor

that was selected in 100% of trials. Since subset selection is inherently nonsmooth, and

small variations in the training data can lead to large differences in model structure (i.e.

selected regressors), having an adverse effect on the ability of these models to generalize.

By contrast, our proposed LR algorithm involves a minimizing a smooth convex function

over a convex set, and small changes in the problem data do not result in large changes in

the identified model.
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3.6 Case study: Two tank system

In this section, we seek to model a system consisting of two interconnected tanks. The

input is the voltage ũ (V) applied to a pump, which delivers fluid to Tank One. Fluid then

flows from an outlet in the bottom of Tank One to Tank Two. System output is the depth

ỹ (m) of fluid in Tank Two. These signals are sampled at 5Hz to produce the discrete-time

training dataset {ũt, ỹt}Tt=1, where T = 103. For further details and access to the problem

data, c.f. [147].

We compare our proposed Lagrangian relaxation method to the best performing NARX

model from [147], comprising 8 linear regressors {ỹt−1, . . . , ỹt−5, ũt−1, . . . , ũt−3} and 2 non-

linear regressors {ỹt−4, ũt−3} with 12 unit wavelet nonlinearities. The polynomial model

fit with Lagrangian relaxation is of the form (3.37) with nx = 3, {ei}3i=1 degree 5, {fi =

fxi (x) + fui (u)}3i=1 with {fxi }3i=1 degree 3 and {fui }3i=1 degree 4, g = gx(x) + gu(u) with gx

degree 3 and gu degree 4. To estimate the internal states {x̃t}Tt=1, used in the construction

of the Lagrange multipliers, we apply the subspace algorithm of [241, Section 4.3.1], with

nx = 3.

The simulated performance of each model is depicted in Figure 3.6 and recorded in Table

3.7. We observe that LR performs significantly better (49% improvement) on validation

data, compared to the best NARX model.

Table 3.7 – Normalized simulation error for training and validation data from the two tank
system.

Method LR NARX

Training 3.21× 10−4 3.62× 10−4

Validation 2.52× 10−3 4.91× 10−3
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(a) Simulated output on training data.
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(b) Simulated output on validation data.

Figure 3.6 – Simulated performance for a 3rd order state-space model fit with our proposed
algorithm compared to a NARX model; see Section 3.6 for details. True data is collected
from a two tank system [147].

3.7 Case study: bias in linear system identification

To illustrate the performance of our proposed algorithm on a wide variety of linear models,

we first conducted the following numerical experiment: Matlab’s drss function was used to

randomly generate forty 8th order LTI SISO systems. Each system was excited with white

noise and simulated for T = 400 time steps to generate input/output data {ũt, ỹt}Tt=1. The

algorithm of [155] was used obtain an approximate state sequence {x̃t}Tt=1 in a balanced
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Figure 3.7 – Performance of our proposed algorithm compared with stable subspace ID for
the identification of forty 8th order SISO models, randomly generated by Matlab’s drss

function.

basis.

We then fit 8th order linear models to the data using two methods: i) our proposed algo-

rithm, and ii) minimization equation error, weighted by P ∈ S++, subject to model stability

constraints, i.e.,

min
θ

T∑
t=1

‖ỹt − Cx̃t −Dũt‖2 + ‖Px̃t+1 −Ax̃t − Bũt‖2 (3.39)

s.t.

[
P − δI A
A′ P

]
� 0, (3.40)

where θ = {P,A,B, C,D}. A stable LTI model can then be recovered as A = P−1A and

B = P−1B. This method is henceforth referred to as ‘stable subspace ID’. This process

was repeated eight times for each model, over four different SNRs. The results of this

experiment are shown in Figure 3.7, which records the validation error of each identified

model. It is clear that models identified with our proposed algorithm outperform those

from stable subspace ID in the majority (86%) of trials.

It has been observed by several authors that guaranteeing stability in system identification

is often associated with a bias towards models that are “too stable” [138, 141, 229] and [113].

To gain further insight into this effect, we consider identification of a flexible beam, which

serves as a useful model of cantilever structures arising in many engineering applications. In

particular, we fit 8th order models to a 8th order (4-link) beam; the Bode plot for this system

is given in Figure 3.8(a). The subspace algorithm [155] was used obtain an approximate state

sequence {x̃t}Tt=1. Figure 3.9 plots identified pole locations for decreasing SNR. Observe
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(a) 8th order model fit to 8th order true system.
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(b) 8th order model fit to 12th order true system (undermodeling).

Figure 3.8 – Bode plots for the true flexible beam model (gray), and 8th order models identified
by Lagrangian relaxation (blue) and stable subspace ID (red). In (a), the true system is
8th order, while in (b) the true system is 12th order; i.e. undermodeling is present. The
output SNR was 100 (20dB).
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Figure 3.9 – Pole locations of 8th order models fit to an 8th order flexible beam; c.f. Figure 3.8
for the Bode plot. The small dots denote the poles of the true model, ‘×’ the poles of
identified models.
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that the poles of models identified by stable subspace ID have been shifted considerably

towards the center of the unit circle, compared to those of the models from Lagrangian

relaxation.

Figure 3.8(a) presents Bode plots for identified models from one of these trials. The inability

of the model from stable subspace ID to capture the resonant peaks – and associated phase

shifts – is a consequence of the poles being pulled in towards the origin.

In most real applications, there is some degree of undermodeling: i.e. the model identified is

of lower order than the true system. To examine performance in this situation, we repeated

the above experiments but fit 8th-order models is fit to data from a 12th order system,

representing a six-link beam. The resulting Bode plots are shown in Figure 3.8(b). It

is clear that LR does a good job of capturing four resonant peaks (as expected with an

8th-order model), and a reasonable job of interpolating through the remaining two. The

particular peaks that are captured depend on the spectra of the forcing input. Stable

Subspace again fails to capture the resonance.

3.8 Conclusion

In this chapter, we have developed interior point algorithms for minimization of Lagrangian

relaxation of simulation error, and linearized simulation error, for linear and nonlinear

dynamical systems, respectively. In both settings, stability of the identified model is guar-

anteed. The algorithms take advantage of special structure in the problem to reduce com-

putational complexity from cubic to linear in the data length, compared to a generic SDP

solver.

Equipped with this specialized algorithm, we demonstrate superior performance of the

proposed method over several established methods, and discuss the apparent regularizing

effect of stability constraints and robust fidelity bounds.



Chapter 4

Maximum likelihood identification

of stable systems

The Maximum Likelihood criterion is used extensively in a wide range of statistical inference

problems. In fact, when the model parametrization includes a description of the true system,

the ML estimator is optimal in the sense that it asymptotically achieves the Cramér-Rao

lower bound; c.f. [129, §7.4]. As we have stressed, for applications in which the long-term,

open-loop predictive power of the model is important, stability of the identified model is

vital. Of the existing methods designed to ensure stability, surveyed in Section 2.3, all

depart from (and thus fail to inherit the desirable properties of) the ML framework.

In this chapter, we incorporate model stability constraints into maximum likelihood identi-

fication of dynamical systems. The approach draws upon the underlying similarity between

Lagrangian relaxation and Expectation Maximization; both of which are techniques to gen-

erate bounds that are more easily optimized than the cost functions they approximate.

More specifically, the EM algorithm is an iterative approach to ML estimation in which

estimates of the unknown latent variables, typically unobserved system states, are used to

construct tractable lower bounds on the likelihood. We use Lagrangian relaxation to derive

alternative bounds on the likelihood, that have advantage of being able to be optimized

over convex parameterizations of stable models.

Furthermore, we also propose a novel formulation of the EM algorithm in which system

disturbances, rather than system states, are taken as the latent variables. We show that

the latent states formulation provides tighter bounds on the likelihood when the effect of

disturbances is more significant than the effect of measurement noise. Conversely, the latent

disturbances formulation gives tighter bounds when the situation is reversed. We also show

that use of latent disturbances gives the most broadly applicable formulation of EM for

identification of models with rank-deficient disturbance covariance, so-called singular state

space models.
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Connection to other chapters

One of the key tools used in this chapter is Lagrangian relaxation. Specifically, our latent

disturbances formulation of EM involves the Lagrangian relaxation of many simultaneous

simulation error minimization problems. Without the efficient custom interior point meth-

ods developed in Chapter 3, this approach would be computationally intractable. In this

sense, the latent disturbances formulation developed in this chapter can be viewed as an

important application area for the specialized algorithms developed in Chapter 3.

On the other hand, the Lagrangian relaxation of simulation error studied in Chapter 3 has

two potential shortcomings, depending on the application. First of all, the method applies

only to deterministic models; no attempt is made to explicitly model disturbances or mea-

surement noise. Modeling these random processes can be important in some applications,

e.g., if the model is to be used for state inference or design of control systems that are ro-

bust to disturbances. Second, the constructions optimized in Chapter 3, especially linearized

simulation error, depend upon an approximate state sequence, x̃1:T . In many applications,

internal system states cannot be measured directly. Various strategies and ad-hoc solutions

to this problem exist; however, in general, there are no mature techniques for estimation of

internal states of a nonlinear dynamical system in the absence of an approximate model,

research on various embedding theorems notwithstanding, c.f., [226][165][220][221]. This is

in contrast to identification of linear systems, where subspace methods fulfill this role. In

this sense, the EM based algorithms proposed in this chapter can be viewed as an iter-

ative approach to generating approximate state sequences for the Lagrangian relaxations

constructed in Chapter 3.

Publications

This material presented in this chapter also appears in the following publications:

J. Umenberger, J. Wågberg, I.R. Manchester, T.B. Schön. Maximum likelihood
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accepted for publication.

J. Umenberger, J. Wågberg, I.R. Manchester, T.B. Schön. On identification via

EM with latent disturbances and Lagrangian relaxation. In Proceedings of the IFAC

Symposium on System Identification (SYSID). 2015.
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4.1 Introduction

This chapter is concerned with identification of discrete-time linear Gaussian state space

(LGSS) models of the form,

xt+1 = Axt +But + wt, (4.1a)

yt = Cxt +Dut + vt, (4.1b)

where xt ∈ Rnx denotes the system state, and ut ∈ Rnu , yt ∈ Rny denote the observed input

and output, respectively (henceforth, resp.). The disturbances, wt ∈ Rnw and measurement

noise, vt, are modeled as zero mean Gaussian white noise processes, while the uncertainty

in the initial condition x1 is modeled by a Gaussian distribution, i.e.

wt ∼ N (0,Σw), vt ∼ N (0,Σv), x1 ∼ N (µ,Σ1). (4.2)

For convenience, all unknown model parameters are denoted by the variable

θ = {µ,Σ1,Σw,Σv, A,B,C,D}.

Despite the simplicity of (4.1), identification of LTI systems is complicated by (at least)

two factors: latent variables and model stability, the latter being a desirable property in

many applications. Typically, observed data consists of inputs and (noisy) outputs only;

the internal states or exogenous disturbances are latent or ‘hidden’. Bilinearity of (4.1) in

x and θ renders the search for model parameters nonconvex. Similarly, the set of stable

matrices, S, is also nonconvex.

Various strategies have been developed to deal with this ‘hidden data’. Marginalization, for

instance, involves integrating out (i.e. marginalizing over) the latent variables, leaving θ as

the only quantity to be estimated. This approach is adopted by prediction error methods

[129, 130] (PEM) and the Metropolis-Hastings algorithm [87, 152].

Alternatively, one may treat the latent variables as additional quantities to be estimated

together with the model parameters. Such a strategy is termed data augmentation, and

examples include subspace methods [114, 239], and the Expectation Maximization (EM)

algorithm [51, 71, 203, 207]. The augmentation together with appropriate priors also allows

for closed form expressions in a Gibbs sampler [70, 259], (as a special case of the Metropolis-

Hastings algorithm).

Recently, a new family of methods have been developed in which one supremizes over the

latent variables, with an appropriate multiplier, to obtain convex upper bounds for quality-

of-fit cost functions, such as output error; c.f. Section 2.4 of this thesis, and the references

within. An important technique employed in this approach is Lagrangian relaxation [119]

(also used in combinatorial optimization, and closely related to the S-procedure [181, 263]
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in robust control), which replaces difficult constrained optimization problems with tractable

convex approximations.

In this chapter, we seek the maximum likelihood (ML) estimate of the model parameters

θ, given measurements u1:T and y1:T , subject to model stability constraints, i.e.

θ̂ML = arg max
θ
pθ(u1:T , y1:T ) s.t. A ∈ S. (4.3)

ML methods have been studied extensively and enjoy desirable properties, such as asymp-

totic efficiency; see, e.g., [129, Chapters 7 and 9]. Stability of identified state space models

has been investigated by a number of authors, using tools such as regularization [238], linear

matrix inequality (LMI) and polytopic parametrizations of stable models [113, 154, 230], and

modifications to the shifted state matrix in subspace algorithms [138]. However, the result-

ing methods do not fall within, nor inherit the desirable properties of, the ML framework;

e.g. [138, 230] are known to bias the estimated model, and even unconstrained subspace

methods are generally considered to be less accurate than PEM [59].

The work in this chapter draws on the underlying similarities between EM and Lagrangian

relaxation to incorporate model stability constraints into the ML framework. The EM algo-

rithm is an iterative approach to ML estimation, in which estimates of the latent variables

are used to construct tractable lower bounds to the likelihood. We use Lagrangian relax-

ation to derive alternative bounds on the likelihood, that have advantage of being able to

be optimized over a convex parameterization of all stable linear models, using standard

techniques such as semidefinite programming (SDP).

In this chapter, we treat both the latent states and latent disturbances formulation of EM,

leading to two algorithms: EM with latent States & Lagrangian relaxation (EMSL), and

EM with latent Disturbances & Lagrangian relaxation (EMDL). The former represents the

de facto choice of latent variables; however, we show that the latter can lead to higher

fidelity bounds on the likelihood, when the effect of measurement noise is more significant

than that of the disturbances. We also show that latent disturbances lead to the most

broadly applicable formulation of EM for identification of singular state space models.

4.2 Preliminaries

4.2.1 Notation

Specific notation used in this chapter is as follows. The cone of real, symmetric nonnegative

(positive) definite matrices is denoted by Sn+ (Sn++). The n×n identity matrix is denoted In.

Let vec : Rm×n 7→ Rmn denote the function that stacks the columns of a matrix to produce

a column vector. The Kronecker product is denoted ⊗. The transpose of a matrix A is

denoted A′. For a vector a, |a|2Q is shorthand for a′Qa. Time series data {xt}bt=a is denoted

xa:b where a, b ∈ N. A random variable x distributed according to the multivariate normal
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distribution, with mean µ and covariance Σ, is denoted x ∼ N (µ,Σ). We use a(θ) ∝ b(θ) to

mean b(θ) = c1a(θ)+c2 where c1, c2 are constants that do not affect the minimizing value of

θ when optimizing a(θ). The log likelihood function is denoted Lθ(y1:T ) := log pθ(u1:T , y1:T ).

The spectral radius (magnitude of largest eigenvalue) of a matrix A is rsp(A).

4.2.2 The minorization-maximization principle

The minorization-maximization (MM) principle [95, 166] is an iterative approach to opti-

mization problems of the form maxθ f(θ). Given an objective function f(θ) (not necessarily

a likelihood), at each iteration of an MM algorithm we first build a tight lower bound b(θ, θk)

satisfying

f(θ) ≥ b(θ, θk) ∀ θ and f(θk) = b(θk, θk),

i.e. we minorize f by b. Then we optimize b(θ, θk) w.r.t. θ to obtain θk+1 such that

f(θk+1) ≥ f(θk). The principle is useful when direct optimization of f is challenging, but

optimization of b is tractable (e.g. concave). In the following two subsections, we present

EM and Lagrangian relaxation as special cases of the MM principle, for problems involving

missing data. Each of these algorithms is predicated on the assumption that there exists

latent variables, z, such that optimization of f(θ) would be more straightforward if z were

known.

4.2.3 The Expectation Maximization algorithm

The EM algorithm [51] applies the MM principle to ML estimation, i.e., f(θ) = log pθ(u1:T , y1:T ) :=

Lθ(y1:T ). Each iteration of the algorithm consists of two steps: the expectation (E) step

computes the auxiliary function

Q(θ, θk) :=

∫
Lθ(y1:T , Z)pθk(Z|y1:T ) dZ (4.4a)

= Eθk
[
Lθ(y1:T , Z)|y1:T

]
, (4.4b)

which is then maximized in lieu of the likelihood function during the maximization (M)

step. The auxiliary function can be shown to satisfy the following inequality

Lθ(y1:T )− Lθk(y1:T ) ≥ Q(θ, θk)−Q(θk, θk) (4.5)

and so the new parameter estimate θk+1 obtained by maximization of Q(θ, θk) is guaranteed

to be of equal or greater likelihood than θk. In this sense, EM may be thought of as a specific

MM recipe for building lower bounds Q(θ, θk) to the objective Lθ(y1:T ), in ML estimation

problems involving latent variables.

Remark 4.1. Strictly speaking Q(θ, θk) does not minorize Lθ(y1:T ). Rather, the change in

Q(θ, θk) lower bounds the change in Lθ(y1:T ); c.f. (4.5). Nevertheless, with some abuse of
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terminology, we will refer to Q(θ, θk) as a lower bound, as shorthand for the relationship in

(4.5).

4.2.4 Lagrangian relaxation

The technique of Lagrangian relaxation applies the MM principle to constrained optimiza-

tion problems of the form

min
θ,z

J(θ, z) s.t. F (θ, z) = 0, (4.6)

i.e. f(θ) = minz J(θ, z) s.t. F (θ, z) = 0. Here J(θ, z) is a cost function assumed to be

convex in θ, and F (θ, z), assumed affine in θ, encodes the constraints. Notice that we present

the problem as cost minimization, rather than objective maximization, and consequently

develop upper bounds; however, this difference in superficial.

Unlike EM, in which we estimate z, Lagrangian relaxation supremizes over the latent vari-

ables to generate the bound. Specifically, the relaxation of (4.6) takes the form

J̄λ(θ) = sup
z

J(θ, z)− λ(z)′F (θ, z), (4.7)

where λ(z) may be interpreted as a Lagrange multiplier. For arbitrary λ, the function J̄λ(θ)

has two key properties:

1) It is convex in θ. Recall that J and F are convex and affine in θ, respectively. As such,

J̄λ(θ) is the supremum of an infinite family of convex functions, and is therefore convex

in θ; see §3.2.3 of [28].

2) It is an upper bound for the original problem (4.6). Given θ, let z∗ be any z such that

F (θ, z∗) = 0. Then

J(θ, z∗) + λF (θ, z∗) = J(θ, z∗) ≥ f(θ),

which implies that the supremum over all z can be no smaller; i.e. J̄λ(θ) is an upper

bound for f(θ).

The original optimization problem (4.6) may then be approximated by the convex program

minθ J̄λ(θ).

4.3 EM for linear dynamical systems

In the application of EM to the identification of dynamical systems, there are two natural

choices of latent variables: systems states, x1:T , and initial conditions and disturbances
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{x1, w1:T }. In this section, we recap the latent states case, detail the latent disturbances

formulation, and elucidate the key differences between the two.

The EM algorithm begins from an initial estimate of θ. As with any iterative method, it

can be desirable to incorporate as much prior knowledge about the system as possible when

initializing the algorithm. In this chapter, in the absence of prior information, we initialize

with Lagrangian relaxation of simulation error [236], to ensure stability of the initial model.

4.3.1 EM with latent states

Latent states are the de facto choice of latent variables in the identification of dynamical

systems. Consequently, this formulation has been studied extensively, c.f. [71]. Here we

recap the essential details, to pave the way for the introduction of stability guarantees in

§4.4.1. Choosing latent states yields a joint likelihood function of the form

pθ(y1:T , x1:T ) =

[ T∏
t=1

pθ(yt|xt)
][ T−1∏

t=1

pθ(xt+1|xt)
]
pθ(x1). (4.8)

The E step computes the auxiliary function,

Qs(θ, θk) = Eθk [ log pθ(y1:T , x1:T )| y1:T ] (4.9)

which decomposes as

Qs(θ, θk) = Eθk [ log pθ(x1)| y1:T ]︸ ︷︷ ︸
∝−Qs

1(θ,θk)

+ (4.10)

T∑
t=1

Eθk [ log pθ(yt|xt)| y1:T ]︸ ︷︷ ︸
∝−Qs

2(θ,θk)

+

T∑
t=1

Eθk [ log pθ(xt+1|xt)| y1:T ]︸ ︷︷ ︸
∝−Qs

3(θ,θk)

Notice that −Qs ∝ Qs
1 + Qs

2 + Qs
3. It is more convenient to discuss maximization of Qs in

terms of minimization of
∑3

i=1Q
s
i . As −Qs is convex in θ, minimization is straightforward

and reduces to linear least squares; c.f [71, Lemma 3.3]. Global minimizers of Qs
1, Qs

2 and

Qs
3 are given by

µ = x̂1|T , Σ1 = Σ̂1|T , (4.11a)

[C D] = ΦyzΦ
−1
zz , Σv = Φyy − ΦyzΦ

−1
zz Φyz, (4.11b)

[A B] = ΦxzΦ
−1
zz , Σw = Φxx − ΦxzΦ

−1
zz Φxz, (4.11c)

resp., where zt = [x′t, u
′
t]
′, Φyy = 1

T

∑T
t=1 yty

′
t, and

x̂1|T = Eθk [x1| y1:T ] , Σ̂1|T = Varθk
[
x1|y1:T

]
, (4.12)
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Φyz =
1

T

T∑
t=1

Eθk
[
ytz
′
t

∣∣ y1:T

]
, Φxz =

1

T

T∑
t=1

Eθk
[
xt+1z

′
t

∣∣ y1:T

]
Φzz =

1

T

T∑
t=1

Eθk
[
ztz
′
t

∣∣ y1:T

]
, Φxx =

1

T

T+1∑
t=2

Eθk
[
xtx
′
t

∣∣ y1:T

]
.

The quantities in (4.12) can be computed by the RTS smoother [194]; c.f. [71, Lemma 3.2]

for details. A numerically robust square-root implementation of the smoothing algorithm

should be used for accuracy, e.g. [71, §4].

4.3.2 EM with latent disturbances

In the latent disturbances formulation of EM, it is convenient to work with the more general

parametrization

xt+1 = Axt +But +Gwt, (4.13)

of LGSS model dynamics. This permits identification of singular state-space models, in

which nw < nx, as discussed in §4.5.1. When using latent disturbances, we set Σw = I and

θ = {µ,Σ1,Σv, A,B,C,D,G}. To avoid cumbersome notation, we use the same variable θ

to group parameters in both the latent states and disturbances formulations; the contents

of θ can be easily inferred from the context. Choosing latent disturbances yields a joint

likelihood function of the form

pθ(y1:T , x1, w1:T ) =

[ T∏
t=1

pθ(yt|w1:t−1, x1)

]
pθ(w1:T )pθ(x1). (4.14)

Analogously to (4.10), the auxiliary function

Qd(θ, θk) = Eθk [log pθ(y1:T , x1, w1:T )|y1:T ] (4.15)

conveniently decomposes as

Qd(θ, θk) = Eθk [log pθ(x1)|y1:T ]︸ ︷︷ ︸
∝−Qd

1(θ,θk)

+ Eθk [log pθ(w1:T )|y1:T ]︸ ︷︷ ︸
∝−Qd

2(θk)

+ Eθk [log pθ(y1:T |x1, w1:T )|y1:T ]︸ ︷︷ ︸
∝−Qd

3(θ,θk)

. (4.16)

The following lemma details the computation of Qd(θ, θk). For clarity of exposition, we

introduce the following lifted form of the dynamics in (4.13),

Y = C̄H̄Z + (C̄N̄ + D̄)U + V,
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where Y = vec(y1:T ), U = vec(u1:T ), V = vec(v1:T ), Z = vec([x1, w1:T−1]),

H̄ =


I 0 0 0 . . . 0

A G 0 0 . . . 0

A2 A G 0 . . . 0
...

. . .
...

AT−1 AT−2G AT−3G . . . G

 ,

N̄ =


0 0 0 0 . . . 0

B 0 0 0 . . . 0

AB B 0 0 . . . 0
...

. . .
...

AT−2B AT−3B . . . AB B 0

 ,

C̄ = IT ⊗ C and D̄ = IT ⊗D. (4.17)

Lemma 4.1. The auxiliary function Qd(θ, θk) defined in

(4.15) is given by

−Qd(θ, θk) ∝ log det Σ1 + |x̂1|T − µ|2Σ−1
1

+ tr
(
Σ−1

1 Σ̂1|T
)
+

T log det Σv + tr(Σ−1
Y (C̄H̄ΩH̄ ′C̄ ′ + ∆̂∆̂′)),

where x̂1|T = Eθk [x1|y1:T ] and Σ̂1|T = Varθk
[
x1|y1:T

]
as in (4.12), and

Ẑ = Eθk [Z|y1:T ] , (4.18a)

Ω = Varθk [Z|y1:T ] , (4.18b)

µY := Eθ
[
Y |Z

]
= C̄H̄Z + (C̄N̄ + D̄)U, (4.19a)

ΣY := Varθ
[
Y |Z

]
= IT ⊗ Σv, (4.19b)

∆̂ = Eθk
[
Y − µY |y1:T

]
= Y − C̄H̄Ẑ − (C̄N̄ + D̄)U. (4.20)

Proof. Refer to 4.8.1.

For the LGSS models considered in this work, Ẑ and Ω can be computed in closed form

by standard disturbance smoothers; see, e.g., [53, §4.5]. Once again, it is prudent to use

square-root implementations of these smoothing algorithms, given in [53, §6.3], for numerical

robustness (i.e. nonnegative definiteness of covariances).

We now turn our attention to the M step, i.e. minimization of −Qd ∝ Qd
1 + Qd

2 + Qd
3 . It

is clear that Qd
1 and Qs

1 take the same form, so µ = x̂1|T and Σ1 = Σ̂1|T globally minimize

Qd
1(θ, θk), as in (4.11a). Minimization of Qd

2(θk) is unnecessary, as it is constant w.r.t. θ.

Minimization of Qd
3 , however, is a more challenging problem. Indeed, from Lemma 4.1, it
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is clear that the quantities H̄ and N̄ render Qd
3(θ, θk) a nonconvex function of the model

parameters.

To summarize, the computations involved in each iteration of the latent disturbances formu-

lation of EM are straightforward, with the exception of minimization of

Qd
3(θ, θk), which is nonconvex.

A common heuristic for terminating the EM algorithm is to cease iterations once the change

in likelihood falls below a certain tolerance δ, i.e.

Lθk+1
(y1:T )− Lθk(y1:T ) < δ. (4.21)

Alternatively, one can simply run the algorithm for a finite number of iterations, chosen so

as to attain a model of sufficient quality; this is the approach taken, e.g., in [71, 258].

4.4 Convex M step with guaranteed model stability

In this section we incorporate model stability constraints into the EM framework. The set

S of stable A matrices is nonconvex; however, by using Lagrangian relaxation we build

convex bounds on −Q(θ, θk), which we optimize over a convex parametrization of all stable

linear models.

4.4.1 Ensuring stability with latent states

We begin with the latent states formulation. The global minimizers (4.11a) and (4.11b) of

Qs
1 and Qs

2, resp., remain unchanged, as they do not influence stability. To optimize Qs
3, it

is convenient to work with the representation:

Qs
3(θ, θk) =

Ms∑
t=1

|x̃t+1 −Ax̃t −Bũt|2Σ−1
w

+ T log det Σw (4.22)

where M s = 2nx + nu, and x̃ and ũ satisfy

Ms∑
t=1

 x̃t+1

x̃t
ũt


 x̃t+1

x̃t
ũt


′

= T

[
Φxx Φ′xz
Φxz Φzz

]
= Φs. (4.23)

Our goal is to minimize Qs
3 subject to model stability constraints. The main challenge is

nonconvexity of the set S of (Schur) stable matrices, i.e., the Lyapunov condition A′PA−
P < 0 is not jointly convex in A and P ∈ Snx++. One can circumvent this difficulty by

introducing an equivalent implicit representation of the dynamics, e.g.,

Ext+1 = Fxt +Kut. (4.24)



4.4 Convex M step with guaranteed model stability 105

In what follows, let θs = {E,F,K,Σw}.
Lemma 4.2. A matrix A ∈ Rnx×nx is Schur stable iff there exists E ∈ Rnx×nx and P ∈ Snx++

such that the LMI

Ss(θs) :=

[
E + E′ − P − I F ′

F P

]
� 0 (4.25)

holds with F = EA.

Proof. This result is a trivial modification of Lemma 4 and Corollary 5 in [141, Section

3.2].

By Lemma 4.2, Θs = {θs : ∃P ∈ Snx++, S
s(θs) � 0} defines a convex parametrization of all

stable linear systems. Note also that (4.25) implies E + E′ � 0, which ensures that the

implicit dynamics in (4.24) are well-posed, i.e. A = E−1F .

The challenge now becomes the optimization of Qs
3 with models in the implicit form (4.24).

Simply solving

min
θs∈Θs

∑Ms

t=1
|Ex̃t+1 − Fx̃t −Kũt|2Σ−1

w
+ T log det Σw

is insufficient, as there is no guarantee that this will reduce Qs
3. We proceed by using

Lagrangian relaxation to build a convex upper bound on Qs
3. For clarity of exposition, let

us temporarily ignore the log det Σw term, as well as the summation, in (4.22) and consider

the nonconvex problem

min
A,B,Σw

|x̃t+1 −Ax̃t −Bũt|2Σ−1
w

s.t. A ∈ S (4.26)

for some t. Problem (4.26) is completely equivalent to

min
xt+1,θs∈Θs

|x̃t+1 − xt+1|2Σ−1
w

s.t. Ext+1 = Fx̃t +Kũt (4.27)

as both (4.26) and (4.27) have the same objective and feasible set. Introducing ∆ =

x̃t+1 − xt+1 and εt = Ex̃t+1 − Fx̃t −Kũt, the Lagrangian relaxation of (4.27) is given by

J̄sλ(θs, t) = sup
∆
|∆|2

Σ−1
w
− λ(∆)′ (E∆− εt) (4.28)

for some multiplier λ(∆), c.f. Section 4.2.4. As J̄sλ(θs, t) upper bounds (4.26), we can

construct a convex upper bound for Qs
3 by combining

∑
t J̄

s
λ(θs, t) with a linear bound on

the concave log det Σw term.1

Lemma 4.3. Consider the function

Q̄s
3(θs) :=

∑Ms

t=1
J̄sλ(θs, t) + T tr

(
Σ−1
wk

Σw

)
, (4.29)

1The linear bound on log det Σw is tr
(
Σ−1
wk

Σw
)

+ log det Σwk + nx, but we exclude the constant terms
from (4.29) for brevity.
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where Σwk is the estimate of Σw stored in θk. Q̄
s
3(θs) is a convex upper bound on Qs

3(θ, θk).

The function Q̄s
3 is a convex upper bound on Qs

3 for any multiplier, λ. However, to be

suitable for EM, i.e. for (4.5) to hold, we require Q̄s
3 to be tight at θk, i.e. Q̄s

3(θsk) =

Qs
3(θk, θk). The following lemma provides a choice of multiplier that ensures this property.

Lemma 4.4. For each J̄sλ(θsk, t) in (4.29), t = 1, . . . ,M s, let λ(∆) = 2H∆ where H =

(P ′)−1Σ−1
w is such that θsk = {P, PAk, PBk,Σwk} ∈ Θs. Then Q̄s

3(θsk) = Qs
3(θk, θk), i.e. the

bound is tight at θk.

Proof. Refer to 4.8.2.

Before leaving the latent states case we note that the upper bound Q̄s
3 can be optimized as

the following SDP:

min
R,θs∈Θs

tr (RΦs) + T tr
(
Σ−1
wk

Σw

)
(4.30)

s.t.

 R EF
′

K H 0

H ′EFK H ′E + E′H I

0 I Σw

 � 0,

where R ∈ S2nx+nu is a slack variable, EFK = [E,−F,−K], and Φs is the empirical covariance

matrix in (4.23). A complete summary of the approach is given in Algorithm 4.

Remark 4.2. To ensure model stability, it is only necessary to solve (4.30) if the spectral

radius ofAls is too large, where Als is the least squares solution from (4.11c), i.e., if rsp(Als) >

1− δ for some-user selected δ > 0, c.f. (3.2) of Algorithm 4.

Algorithm 4 EM with latent States and Lagrangian
relaxation (EMSL)

1. Set k = 0 and initialize θk such that Ak ∈ S and Lθk(y1:T ) is finite; c.f. §4.3.

2. Expectation (E) Step: compute (4.12).

3. Maximization (M) Step:

(3.1) Update θk+1 with least squares, as in (4.11).

(3.2) If rsp(Ak+1) > 1 − δ for user-chosen δ > 0, solve θsk+1 = arg minθs∈Θs Q̄
s
3(θs),

and update θk+1 with Ak+1 = E−1
k+1Fk+1, Bk+1 = E−1

k+1Kk+1, and Σwk+1

4. Evaluate termination criteria, e.g. (4.21). If false, k ← k + 1 and return to step 2.
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4.4.2 Convex bounds with stability guarantees for latent

disturbances

We now turn our attention to the latent disturbances formulation. The developments in

this section follow the same pattern as §4.4.1, however, the computations are more involved.

As in the latent states case, the global minimizer (4.11a) of Qd
1 remains unchanged, and so

we concentrate on optimization of Qd
3 subject to a model stability constraint, A ∈ S. It is

convenient to conceptualize Qd
3(θ, θk) in terms of simulation error, defined as

E(θ, U, Y, Z) :=

T∑
t=1

|yt − Cxt −Dut|2Σ−1
v
, (4.31)

where vec(x1:T ) = N̄U + H̄Z, i.e., the simulated states.

Lemma 4.5. With simulation error defined as in (4.31),

Qd
3(θ, θk) in (4.16) is equivalent to:

Qd
3(θ, θk) = E(θ, U, Y, Ẑ) +

Md∑
j=1

E(θ, 0, 0, Zj) + T log det Σv (4.32)

where Md = nx + (T − 1)nw, and Zj ∈ Rnx+(T−1)nw are such that
∑Md

j=1 ZZ
j′ = Ω.

Proof. Refer to 4.8.3.

Our task minθQ
d
3 s.t. A ∈ S is challenging due to nonconvexity of both the objective and

feasible set. As in §4.4.1, we circumvent the latter by introducing an implicit representation

of the dynamics in (4.13),

Ext+1 = Fxt +Kut + Lwt. (4.33)

Setting θd = {E,F,K,L,Σv} we can define the convex set of stable models Θd = {θd : ∃P ∈
Snx++, S

d(θd) � 0}, with

Sd(θs) :=

 E + E′ − P − δI F ′ C ′

F P 0

C 0 Σw

 � 0, (4.34)

for δ > 0. We use the LMI (4.34), instead of (4.25), to ensure finiteness of the supremum

in (4.37), c.f. 4.8.5.

To optimize Qd
3 with models in the implicit form (4.33), we use Lagrangian relaxation to

build a convex upper bound on Qd
3 . For clarity of exposition, let us temporarily ignore the
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log det Σv term, and summation, in (4.32) and concentrate on minimization of simulation

error

min
θ
E(θ, U, Y, Z) s.t. A ∈ S. (4.35)

Problem (4.35) is completely equivalent to

min
∆,θd∈Θd

|Y − C̄∆− D̄U |2
Σ−1
Y

s.t. Ē∆ = ε̄, (4.36)

as both problems have the same objective and feasible set. In (4.36), ∆ ∈ RTnx denotes the

states x1:T that we optimize over, Ē ∈ RTnx×Tnx and ε̄ ∈ RTnx are given by
E 0 . . .

−F E 0

0 −F E 0
...

. . .
. . .

 &


Ex1

Ku1 + Lw1

...

KuT−1 + LwT−1


resp., and C̄, D̄, ΣY are defined in (4.17). The Lagrangian relaxation of (4.36) is given by

J̄dλ(θd, U, Y, Z) = sup
∆
|Y − C̄∆− D̄U |2

Σ−1
Y
− λ(∆)′

(
Ē∆− ε̄

)
(4.37)

for some multiplier λ(∆) ∈ RTnx , c.f. §4.2.4. As J̄dλ upper bounds (4.26), we can construct

a convex upper bound for Qd
3 by replacing each simulation error term in (4.32) with the

appropriate bound:

Lemma 4.6. Consider the following function

Q̄d
3(θd) := J̄λ0(θd, U, Y, Ẑ) +

Md∑
j=1

J̄λj (θ
d, 0, 0, Zj)

+T tr
(
Σ−1
vk

Σv

)
, (4.38)

where
∑Md

j=1 Z
jZj

′
= Ω as in Lemma 4.5, and Σvk is the estimate of Σv stored in θk. Q̄

d
3(θd)

is a convex upper bound for Qd
3(θ, θk).

Proof. Refer to 4.8.4.

Notice, from (4.38), that Q̄d
3 depends on Md + 1 multipliers, {λj}Md

j=0, unlike Q̄s
3. Although

Q̄d
3 upper bounds Qd

3 for any choice of λ, as in §4.4.1 we require Q̄d
3 to be a tight bound

such that (4.5) holds, i.e., we need Q̄d
3(θdk) = Qd

3(θk, θk). To obtain such a set of multipliers

{λj}Md

j=0, we propose the following two-stage approach. At the kth iteration,

i. For each of the j = 0, . . . ,Md bounds J̄λj (θ
d) that comprise Q̄d

3(θd), c.f. (4.38), solve
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the convex program

Ejk = arg min
E

J̄
λj∆

(θd)

s.t. θd = {E,EAk, EBk, EGk,Σvk} ∈ Θd

where λj∆ = 2∆.

ii. Set λj = 2
(
∆ + hj

)
with hj ∈ RTnx given by

hj = (Ēj
′

k )−1
(

Ψj
k(Ē

j
k)
−1ε̄jk + ε̄jk − C̄ ′kΣ̄−1

Y,k(Y − D̄kU)
)

(4.39)

where Ψj
k = C̄ ′kΣ̄

−1
Y,kC̄k − Ē

j
k − Ē

j′

k . Here Ējk and ε̄jk denote Ē and ε̄, resp., built with

E = Ejk, F = EjkAk, K = EjkBk, and L = EjkGk. C̄k and D̄k denote C̄ and D̄k, resp.,

built with C = Ck, D = Dk.

The following lemma guarantees that the multipliers generated by this two-stage procedure

give a ‘tight’ bound:

Lemma 4.7. Given θdk ∈ Θd, let {λj}Md

j=0 in (4.38) take the form λ(∆)j = 2(∆ + hj) with

hj given by (4.39). Then Q̄d
3(θdk) = Qd

3(θk, θk), i.e. the bound is tight at θk.

Proof. Refer to 4.8.5.

A complete summary of the latent disturbances approach to EM with stability constraints

is given in Algorithm 5.

Remark 4.3. This EMDL formulation includes, as a special case, models in innovations

form, c.f. [129, §4.3]. For such models, innovations replace disturbances in (4.1a) and the

latent variables reduce to the initial state, x1. EM in this setting was studied in [258].

The difference between [258] and our approach is the M step: in [258] Q(θ, θk) is optimized

directly with a quasi-Newton method; we optimize a convex upper bound on −Q(θ, θk) over

a convex parametrization of stable models.

4.4.3 Correlated disturbances and measurement noise

For clarity of exposition, we have considered models in which there is no correlation between

disturbances and measurement noise. However, the methods we have presented readily

extend to the correlated case, i.e.[
wt
vt

]
∼ N (0,Σsc) , Σsc =

[
Σw Σwv

Σ′wv Σv

]
. (4.40)
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Algorithm 5 EM with latent Disturbances and
Lagrangian relaxation (EMDL)

1. Set k = 0 and initialize θk such that Ak ∈ S and Lθk(y1:T ) is finite; c.f. §4.3.

2. Expectation (E) Step:

(2.1) Compute x̂1|T and Σ̂1|T as in (4.12).

(2.2) Compute Ẑ and Ω as in (4.18).

3. Maximization (M) Step:

(3.1) Update {µ,Σ1}k+1 = {x̂1|T , Σ̂1|T }.
(3.2) Assemble {λj}Md

j=0 of the form λj = 2(∆+hj) by computing {hj}Md

j=0 with (4.39).

(3.3) Obtain θdk+1 = arg minθd∈Θd Q̄
d
3(θd).

(3.4) Update θk+1 with Ak+1 = E−1
k+1Fk+1, Bk+1 = E−1

k+1Kk+1, Gk+1 = E−1
k+1Lk+1,

and Σvk+1
.

4. Evaluate termination criteria, e.g. (4.21). If false, k ← k + 1 and return to step 2.
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With latent states, the joint likelihood becomes

pθ(y1:T , x1:T ) =

[ T∏
t=1

pθ(yt, xt+1|xt)
]
pθ(x1),

with −Qs(θ, θk) ∝ Qs
1(θ, θk) +Qs

c(θ, θk) where

−Qs
c(θ, θk) ∝

∑Ms
c

t=1

∣∣∣∣∣
[
x̃t+1

ỹt

]
−
[
A B

C D

][
x̃t
ũt

]∣∣∣∣∣
2

Σ−1
sc

+T log det Σsc . (4.41)

Here M s
c = 2nx + ny + nu, and x̃, ỹ, ũ satisfy∑Ms

c

t=1
ζ̃tζ̃
′
t =

∑T

t=1
Eθk

[
ζtζ
′
t

∣∣ y1:T

]
,

where ζ̃t =
[
x̃′t+1, ỹ

′
t, x̃
′
t, ũ
′
t

]′
and ζt =

[
x′t+1, y

′
t, x
′
t, u
′
t

]′
. Clearly, (4.41) has the same form as

(4.22), and so the Lagrangian relaxation of §4.4.1 is applicable.

Similarly, in the latent disturbances formulation the joint likelihood can be factorized as

pθ(y1:T , x1, w1:T ) =

T∏
t=1

pθ(yt, wt|x1, w1:t−1)p(x1),

with p(yt, wt|x1, w1:t−1) given by

N
([

Cxt +Dut
0

]
,Σsd

)
, Σsd =

[
Σv Σwv

Σ′wv I

]
,

where vec(x1:T ) = N̄U + H̄Z. Introducing yct = [y′t, w
′
t]
′, Cc = [C ′, 0′]′, and Dc = [D′, 0′]′

we have

log pθ(y1:T , w1:T |x1) ∝∑T

t=1
|yct − Ccxt −Dcut|2Σ−1

sd

+ T log det Σsd . (4.42)

The resemblance to (4.31) is apparent. Computing the expected value of (4.42) leads to a

quantity that takes the same form as Qd
3 in (4.32), to which the Lagrangian relaxation of

§4.4.2 is applicable.
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4.5 On the choice of latent variables

4.5.1 Singular state space models

In applications it may be known a priori that the dimension of the disturbance is less

than that of the state variable, i.e. nw < nx. For example, consider a mechanical sys-

tem in which the disturbances are forces or torques. There are typically fewer disturbance

forces than state variables (as force directly affects acceleration, but not position or veloc-

ity, in continuous time dynamics), and so G is rank-deficient. As the transition density

pθ(xt+1|xt) = N (Axt+But, GG
′) no longer admits a closed form representation, when GG′

is singular, it is well known that the standard EM algorithms based on latent states are no

longer directly applicable.

Modifications of the EM algorithm have been proposed to circumvent this difficulty. The

work of [214] introduced a perturbation model with full-rank process noise covariance, and

proved that the EM iterations remain well behaved when the perturbation is set to zero.

However, this approach was restricted to models in which the disturbances and measurement

noise are uncorrelated. A subsequent paper [215] addressed the case of correlated state and

measurement noise, but only considered models in innovations form; extension to the case

of models in general form was left to future work. Furthermore, this method requires the

variance of the initial state (i.e. Σ1) to be excluded from the estimated parameters, θ.

The latent disturbances formulation of EM, c.f. §4.3.2, provides the most general solution

to the difficulties associated with singular state space models. Specifically, with latent

disturbances we can handle rank deficient G, with the possibility of correlated state and

measurement noise (c.f. §4.4.3), as well as unknown initial conditions (µ, Σ1), for models not

necessarily in innovations form, c.f. Remark 4.3. When using latent disturbances we work

with the joint likelihood function pθ(y1:T , x1, w1:T ), given in (4.14). Comparing (4.14) to

(4.8), we observe that the problematic transition density is replaced by the joint distribution

of disturbances pθ(w1:T ) which remains well-defined in the singular case, nw < nx.

4.5.2 Absence of disturbances or measurement noise

In this section, we study the auxiliary function Q(θ, θk) in the limit cases of G = 0 and

Σv = 0, for different choices of latent variables. These results will offer insight into the

behavior of the EM algorithm as a function of disturbance magnitude, which is explored in

§4.5.3.

Proposition 4.1. Consider a model of the form (4.1), and let θ be such that Σw = 0,

i.e. disturbances are omitted from the model. The auxiliary function built on latent states,

Qs(θ, θk), is undefined when A 6= Ak or B 6= Bk.

Proof. Refer to 4.8.6.
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Proposition 4.2. Consider a model of the form (4.1), with dynamics of the form (4.13),

and let θ be such that G = 0, i.e. disturbances are omitted from the model. Furthermore,

suppose Σ1 = 0; i.e. the initial conditions x1 = µ are modeled without uncertainty. Then

Lθ(y1:T , x1) = Qd(θ, θk) for all θ, θk; i.e., the auxiliary function built on latent disturbances,

Qd(θ, θk), reduces to the log likelihood.

Proof. Refer to 4.8.7.

Proposition 4.3. Consider a first order model of the form (4.1), and let θ be such that

Σv = 0, i.e. output noise is omitted from the model. The auxiliary function built on latent

disturbances, Qd(θ, θk), is undefined for θ 6= θk, i.e. the domain of Q(θ, θk) collapses to a

single point, θ = θk.

Proof. Refer to 4.8.8.

Proposition 4.4. Consider a first order model of the form (4.1), and let θ be such that

Σv = 0, i.e. output noise is omitted from the model. Let Qs(θ, θk) denote the auxiliary

function built on latent states, then:

i. Qs(θ, θk) is undefined for all θ such that C 6= Ck or D 6= Dk.

ii. Qs(θ, θk) = Lθ(y1:T ) for all θ such that C = Ck and D = Dk.

Proof. Refer to 4.8.9.

4.5.3 Influence of disturbance magnitude on bound fidelity

In this section, we empirically investigate the fidelity of Q(θ, θk) as a bound on Lθ(y1:T ),

as a function of the magnitude of the disturbances, w1:T , and the choice of latent variables.

The results are presented in Figure 4.1, which depicts Qs, Qd and Lθ(y1:T ) for a first order

(nx = 1) LGSS model, with A = 0.7, B = 0.3, C = 0.1, D = 0.01, and GG′ = Σw. Each

bound, Qs and Qd, is plotted as a function of the single unknown scalar parameter θ = A.

Note that S = {A : −1 < A < 1} is convex for nx = 1; this is not true for nx > 1.

We begin with the case of ‘small’ disturbances (i.e. Σw � Σv) as depicted in Figure

4.1(a), and observe the following: Qd(θ, θk) represents Lθ(y1:T ) with high fidelity, whereas

Qs(θ, θk) is localized about θk. Such an observation is not without precedent. For instance,

in the latent states formulation of [203, Section 10] it was noted that an initial disturbance

covariance estimate Σw = 0 results in θk = θ0 for all k; i.e. the model parameters are

not improved. This suggests that Qs(θ, θk) fails to accurately represent Lθ(y1:T ), except at

θ = θ0.

Proposition 4.1 makes this observation more precise: in the 1D case of Figure 4.1(a), when

Σw = 0, Qs(θ, θk) is undefined for A 6= Ak. Taken together, Figure 4.1(a) and Proposition
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4.1 suggest that as Σw becomes smaller (relative to Σv) the bound Qs(θ, θk) becomes more

localized about θk; the domain collapses to a single point, θ = θk, when Σw = 0. Conversely,

as Σw (and Σ1) decrease, Qd(θ, θk) becomes an increasingly accurate representation of the

log likelihood, eventually reproducing Lθ(y1:T ) exactly, when Σw (and Σ1) are identically

zero, as in Proposition 4.2.

Turning our attention to the case of ‘large’ disturbances (i.e. Σw � Σv) as depicted in Figure

4.1(b), we observe the opposite behavior: Qs(θ, θk) faithfully represents the log likelihood,

whereas Qd(θ, θk) appears to be localized about θk. Once more, studying the limiting case

Σv = 0 offers insight into this behavior: Proposition 4.3 states that when Σv = 0, Qd(θ, θk) is

undefined for A 6= Ak. Taken together, Figure 4.1(b) and Proposition 4.3 suggest that as Σv

decreases (i.e. as Σw increases relative to Σv), the bound Qd(θ, θk) becomes more localized

about θk; the domain collapses to a single point, θ = θk, when Σv = 0. Conversely, for this

1D experiment with θ = A, Proposition 4.4 states that Qs(θ, θk) will reproduce Lθ(y1:T )

exactly, when Σv is identically zero. Indeed, in Figure 4.1(b) with Σv � Σw, we observe

Qs(θ, θk) representing the likelihood faithfully.

To summarize: in the case of ‘small disturbances’ (i.e. Σw � Σv), Q
d(θ, θk) will tend to

bound Lθ(y1:T ) with greater fidelity, compared to Qs(θ, θk). In the case of ‘large distur-

bances’ (i.e. Σw � Σv) the converse is true.

We conclude this section by drawing attention to the fidelity of the bounds from Lagrangian

relaxation, i.e. Q̄d
3 and Q̄s

3. In Figure 4.1(a), Q̄d
3 provides an effective bound on the likeli-

hood, despite Lθ(y1:T ) not being concave in the neighborhood of θk. In Figure 4.1(b), Q̄s
3

almost perfectly reproduces Qs, except at the boundary of the feasible set, S, where it tends

towards −∞ as desired, unlike Qs, which remains finite for unstable models (A > 1).

4.6 Numerical experiments

4.6.1 Stability of the identified model

This section provides empirical evidence of the value of the model stability constraints

introduced in §4.4. We present examples of model instability arising in the standard uncon-

strained latent states formulation, during identification of models depicted in Figure 4.4.

Figure 4.2 considers the case where measurement noise is more significant than the distur-

bances, for singular state space models; Figure 4.3 treats the ‘significant disturbances’ case

with full rank covariance. We make the following observations. First, model instability can

arise even when the true spectral radius is far from unity; c.f. Figure 4.2(b) and 4.3(b)

concerning identification of the overdamped System 2 in Figure 4.4. Secondly, the conse-

quences of instability are varied; e.g. in Figure 4.2(b), model instability leads to failure of

the latent states algorithm due to poor numerical conditioning, whereas in Figure 4.3(a)

the spectral radius of the identified model hovers above unity for thousands of iterations.
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(a) ‘Small’ disturbances: Σw = 1× 10−3 and Σv = 1× 10−2.
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(b) ‘Large’ disturbances: Σw = 10 and Σv = 1× 10−2.

Figure 4.1 – Bounds on the log likelihood Lθ(y1:T ) of a 1st order system with a single unknown
scalar parameter, A. Qs and Qd denote the bounds based on latent states and disturbances
resp., c.f. (4.10) and (4.16). Q̄s

3 and Q̄d
3 denote the bounds from Lagrangian relaxation,

using latent states and disturbances resp., c.f. (4.29) and (4.38).
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Such a model may achieve adequate performance on training data, yet behave unreliably

should the unstable modes be excited during validation.

To supplement the results in Figures 4.2 and 4.3, we randomly generated 1500 stable SISO

systems, of varying order, with Matlab’s drss function, and report instability of the identi-

fied models in Table 4.1. Specifically, to generate problem data each model was simulated

for T = 2nθ time steps (where nθ is the number of parameters in the model) with Σv set to

give a SNR of 20dB, and GG′ of rank 1 with eigenvalue 10−4. The latent states algorithm

[214] was then run for 60 seconds, randomly initialized with drss. The proportion of trials

for which the identified model was unstable for at least one iteration is recorded in Table 4.1.
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(a) System 1, underdamped: Σv = 1.7× 10−3.
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(b) System 2, overdamped: Σv = 0.012.

Figure 4.2 – Spectral radius of identified models at each iteration of two methods: our latent
disturbances method (EMDL), and the latent states method [214] (EM); c.f. Figure 4.4
for Bode plots of true systems. For each model, the disturbance covariance is singular with
G = [0,

√
10−5, 0, 0]′. In each case, both algorithms were initialized with the same randomly

generated model from drss. Models were trained with T = 75 and 100 datapoints, in (a)
and (b), resp.
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(a) System 1, underdamped: Σw = I4, Σv = 1.7× 10−3.

100 101 102 103

Iteration

0.5

0.75

1

r s
p
(A

)

EMSL

EM

True system

(b) System 2, overdamped: Σw = I4, Σv = 0.012.

Figure 4.3 – Spectral radius of identified models at each iteration of two methods: our stable
latent states method (EMSL), and the latent states method [71] (EM); c.f. Figure 4.4 for
Bode plots of true systems. For each model, the disturbance covariance is full rank. In
each case, both algorithms were initialized with the same randomly generated model from
drss. Models were trained with T = 75 datapoints.

Table 4.1 – Proportion of trials for which the identified model was unstable for at least one
iteration, using the latent states algorithm [214]. 300 trials were conducted for each model
order; the true SISO models were generated with drss; c.f. Section 4.6.1 for details.

Model size, nx 2 4 6 8 10

Unstable model 32% 32% 36% 48% 47%

4.6.2 Convergence rate and computation time

In this section, we demonstrate that although the per-iteration complexity of our latent

disturbances formulation (EMDL), c.f. Algorithm 5, is much greater, total computation

time remains competitive with conventional latent states methods in cases where measure-

ment noise dominates disturbances. This is due to the higher fidelity bounds on likelihood

achieved using latent disturbances, e.g. Figure 4.1(a), meaning fewer iterations are required
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Figure 4.4 – Bode plots of 4th order systems used in the numerical experiments of Section 4.6.
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to significantly improve the likelihood. To illustrate this, we identify three 4th order linear

models, the Bode plots for which are given in Figure 4.4. Each of these systems has GG′

of rank 1, with eigenvalue 10−5. We set Σv to give a signal-to-noise ratio (SNR) of approx.

20dB, which means Σv is two to three orders of magnitude larger than GG′. The experi-

ment consists of 50 trials; in a single trial we repeat the following process for each system in

Figure 4.4. First we simulate the system for T = 250 time steps, excited by ut ∼ N (0, 1),

to generate problem data u1:T and y1:T . We then run EMDL and [214] for 30 minutes.

Each algorithm is initialized with the same model (randomly generated for each trial), with

system matrices close to zero.

Figure 4.5 presents the log likelihood as a function of computation time. The longer per-

iteration time of EMDL is immediately apparently; tens of seconds elapse before the first

iteration completes. After 200 seconds of computation, EMDL is approx. equal to (or

greater than) EM, and after 30 minutes EMDL has surpassed EM in almost all cases.

These higher likelihoods correspond to more accurate models, as revealed by Figure 4.6,

which plots the H∞ and prediction error (on validation data) of the systems identified in

Figure 4.5.

For the highly resonant System 3, EM exhibited poor performance (in both formulations)

due to capture in local maxima. This is evident in Figure 4.7(b) where the H∞ error is

close to unity (again, for both formulations) indicating only marginal improvement over

no dynamics at all. Similarly, with a ‘warm start’ (initialization with a model from La-

grangian relaxation, c.f. [236]), we observe little improvement in prediction and H∞ error,

c.f. Figures 4.7(a) and (b), respectively.

Finally, we analyse the performance of EMDL as a function of the number of datapoints

used for training, T . Figure 4.8 presents H∞ and prediction error for increasing T , for

identification of System 2. System 2 was selected because capture in local maxima is less

common, allowing us to study the asymptotic behavior of the global maximum more reliably.

Both EMDL and the latent states algorithm [214] were run for 30 minutes in each trial.

For EMDL, we observe an increase in accuracy (i.e., a decrease in both H∞ and prediction

error) for increasing T . In fact, for T ≥ 200 the prediction error of the identified model is

approximately equal to that of the true model. For the latent states algorithm, this trend

is much less pronounced. The weak performance of latent states, along with the latent

disturbances outliers, appears to be due to capture in local maxima, as model quality fails

to improve in these cases, even after many additional iterations.

Table 4.2 records the mean computation time for a single iteration of the experimental

trials carried out in Figure 4.8. Latent states methods, including EMSL, scale linearly with

T , as the cost is dominated by the filtering and smoothing operations in the E step. In

principle, EMDL, is O(T 2), as optimization of each of the Md + 1 bounds in (4.38) requires

O(T ), [236]. In practice, all Md singular values of Ω are not typically required for accurate

approximation of Q3(θ, θk).
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Figure 4.5 – Log likelihood as a function of computation time for EMDL and the latent
states formulation of [214] (EM). 50 trials were carried out for each system, and T = 250
datapoints were used for fitting. Bode plots for System 1 and 2 are depicted in Figure 4.4.

Table 4.2 – Mean per-iteration computation time (in seconds, to 3 sig. fig.) for the trials in
Figure 4.8. EMSL and EMDL denote Algorithm 4 and Algorithm 5, respectively. EMSL
is included for reference.

Data length, T 50 100 150 200 250

EM [214] 0.028 0.0541 0.08 0.103 0.126

EMSL 0.197 0.214 0.235 0.254 0.271

EMDL 37.5 40.7 48.9 54.6 65.6
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Figure 4.6 – Prediction error (on validation data) and H∞ error for EMDL and the latent
states formulation of [214] (EM). The systems used are those reached at the conclusion of
the trials depicted in Figure 4.5.
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Figure 4.7 – Prediction error (on validation data) and H∞ error for (EMDL) and the latent
states formulation of [214] (EM), after identification of the highly resonant System 3, c.f.
Figure 4.4. ‘Cold start’ and ‘warm start’ denote initialization with a random model (with
system matrices close to zero) and a model from Lagrangian relaxation [236], respectively.

4.7 Conclusion

This chapter has incorporated model stability constraints into the maximum likelihood

identification of linear dynamical systems. By combining the EM algorithm and Lagrangian

relaxation, we construct tight convex bounds on the (negative) likelihood, that can be

optimized over a convex parametrization of all stable linear systems, with semidefinite

programing. The key practical outcomes of this work are as follows. The de facto choice

of latent states leads to the simplest algorithms, as well as higher fidelity bounds on the
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Figure 4.8 – Prediction error (on validation data) and H∞ error for EMDL and the latent states
formulation of [214] (EM). The true model is the overdamped System 2, c.f. Figure 4.4.
For each T , 50 trials were carried out, and each algorithm was run for 30 minutes.

likelihood when disturbances are more significant than measurement noise (i.e. Σw �
Σv). Concerning software implementation, incorporating stability constraints into standard

latent states algorithms is straightforward: if the identified model becomes unstable, simply

replace the usual M step (4.11c) with the convex program (4.30), to continue the search

over a convex set of stable models. On the other hand, when measurement noise is more

significant than disturbances it may be advisable to formulate EM with latent disturbances.

Although the per-iteration computational complexity of the ensuing algorithm is greater,

the improved fidelity of the bounds on the likelihood can lead to faster convergence and

more accurate models (e.g. by avoiding local maxima). Furthermore, latent disturbances

lead to the most broadly applicable formulation of EM for identification of singular state

space models.
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4.8 Proofs

4.8.1 Proof of Lemma 4.1

The first term in (4.16), Qd
1 , is identical toQs

1, so we focus onQd
3 . The p.d.f. pθ(y1:T |x1, w1:T )

is given by pθ(Y |Z) = N (Y ;µY ,ΣY ), where µY and ΣY are given in (4.19). Qd
3 may then

be expressed as

Eθk
[

logN (Y ;µY ,ΣY )|y1:T

]
= −Tny

2
log 2π − log det ΣY − Eθk

[
|Y − µY |2Σ−1

Y
|y1:T

]
.

Letting Ẑ and Ω, defined in (4.18), denote the mean and covariance (respectively) of

pθk(x1, w1:T−1|y1:T ), gives

Q3(θ, θk) ∝ −T log det Σv − tr(Σ−1
Y (C̄H̄ΩH̄ ′C̄ ′ + ∆̂∆̂′)), (4.43)

where ∆̂ = Eθk
[
Y − µY |y1:T

]
is defined in (4.20).

4.8.2 Proof of Lemma 4.4

Evaluating the supremum in (4.28) yields

J̄sλ(θs, t) = ε′tH
(
H ′E + E′H − Σ−1

w

)−1
H ′εt. (4.44)

Let et = x̃t+1 − Ax̃t − Bũt, such that εt = Eet. Then substituting H = (E′k)
−1Σ−1

w into

(4.44) gives J̄sλ(θsk, t) = e′tΣ
−1
w et, i.e. (4.28) is tight to (4.26) at θk.

4.8.3 Proof of Lemma 4.5

First consider the tr(ΣY ∆̂∆̂′) term in (4.43). From (4.20), ∆̂ is clearly the difference between

the measured output y1:T and the simulated output of the model with the expected value

of the latent disturbances, i.e. Ẑ. Therefore, tr(ΣY ∆̂∆̂′) =
∑T

t=1 |yt−Cxt−Dut|2Σ−1
v

where

vec(x1:T ) = N̄U + H̄Z̄. Next, consider tr(Σ−1
Y C̄H̄ΩH̄ ′C̄ ′). Decomposing Ω =

∑Md

j=1 Z
jZj

′

leads to

tr(Σ−1
Y C̄H̄ΩH̄ ′C̄ ′) =

Md∑
j=1

|C̄H̄wj |2Σ−1
Y

=

Md∑
j=1

T∑
t=1

|Cxjt |2Σ−1
v

where vec(xj1:T ) = H̄Zj ., i.e. the sum of M s simulation error problems with Y = 0, U = 0

and Z = Zj .
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4.8.4 Proof of Lemma 4.6

As Q̄d
3(η) is defined by a summation of convex functions, it is itself a convex function.

Summation of the following inequalities

J̄λ0(η, u1:T , y1:T , x̂1|T , ŵ1:T ) ≥ E(η, u1:T , y1:T , x̂1|T , ŵ1:T ),

J̄λj (η, 0, 0, x
j
1, w

j
1:T ) ≥ E(η, 0, 0, xj1, w

j
1:T ), j = 1, . . . , T,

tr(Σ−1
vk

Σv) + log det Σvk + ny ≥ log det Σv,

gives Q̄d
3(η) ≥ −Q3(β, θk). Notice that ny+log det Σvk +tr(Σ−1

vk
Σv) is an affine upper bound

on the concave term log det Σv, which is tight at our current best estimate of the covariance,

Σvk .

4.8.5 Proof of Lemma 4.7

For θdk ∈ Θd, we have Ψk < 0, c.f. [232, Theorem 6]. The Lagrangian in (4.37) is then

concave in ∆, so the supremizing ∆ satisfies Ψ∆ = Ē′kh
j + C̄ ′k(Y − D̄kU)− ε̄k. Substituting

hj from (4.39) into the above yields Ψ∆ = ΨĒ−1
k ε̄k. As Ψ is full rank, this implies Ēk∆ = ε̄k.

Then J(θdk,∆)− λF (θdk,∆) = J(θdk,∆) = E(θdk).

4.8.6 Proof of Proposition 4.1

When Σw = 0, pθk(x1:T |y1:T ) is supported on the set

X (θk) = {x1:T : vec(x1:T ) = N̄U + H̄Z̃ ∀ ξ1 ∈ Rnx}

where Z̃ = [ξ′1, 0]′ and G = 0. Then,

Qs(θ, θk) =

∫
X (θk)

log pθ(x1:T , y1:T )pθk(x1:T |y1:T )dx1:T .

As Σw = 0, pθ(x2:T |x1) is deterministic. When A 6= Ak or B 6= Bk, log pθ(x2:T |x1) = 0

for all x1:T ∈ X (θk), and so log pθ(x1:T , y1:T ) is undefined. As a consequence, Qs(θ, θk) is

undefined.

When A = Ak and B = Bk, pθ(x2:T |x1) = 1 for all x ∈ X (θk) and so Qs(θ, θk) can be

evaluated as usual.
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4.8.7 Proof of Proposition 4.2

As G = 0, Σ1 = 0 the p.d.f. pθk(x1, w1:T |y1:T ) is trivially deterministic, evaluating to unity

when x1 = µ and w1:T ≡ 0, and evaluating to zero otherwise. Therefore

Qd(θ, θk) = log pθ(y1:T , µ, 0) = log pθ(y1:T |µ).

The log likelihood can be decomposed as

Lθ(y1:T ) = log

∫
pθ(y1:T , x1)dx1

= log

∫
pθ(y1:T |x1)pθ(x1)dx1 = log pθ(y1:T |µ),

where the final equality follows from the fact that pθ(x1) is a δ-function, at x1 = µ.

4.8.8 Proof of Proposition 4.3

For a given θ, let xθ1:T denote the unique state sequence that is ‘consistent’ with the data,

i.e. xθ1:T := {x1:T : yt = Cxt + Dut, t = 1, . . . , T}. There is also a corresponding unique

disturbance sequence, denoted wθ1:T = {w1:T : xθt+1 = Axθt +But +Gwt, t = 1, . . . , T}.

As Σv = 0, the p.d.f. pθk(x1, w1:T |y1:T ) is a δ-function at x1 = xθk1 and w1:T = wθk1:T . The

auxiliary function is then given by Qd(θ, θk) = log pθ(y1:T , x
θk
1 , w

θk
1:T ). We can decompose

pθ(y1:T , x
θk
1 , w

θk
1:T ) as in (4.14). As Σv = 0, the p.d.f. pθ(y1:T |x1, w1:T ) is also a δ-function

at x1 = xθ1 and w1:T = wθ1:T . If θ 6= θk then xθ1 6= xθk1 and wθ1:T 6= wθk1:T . In this case

pθ(y1:T |xθk1 , wθk1:T ) = 0 and so Qd(θ, θk) is undefined.

When θ = θk, pθ(y1:T |xθk1 , wθk1:T ) = 1 and Qd(θ, θk) can be evaluated as usual.

4.8.9 Proof of Proposition 4.4

For a given θ, let xθ1:T denote the unique state sequence that is ‘consistent’ with the data,

i.e. xθ1:T := {x1:T : yt = Cxt +Dut, t = 1, . . . , T}. As Σv = 0, given y1:T both pθk(x1:T |y1:T )

and pθ(y1:T |x1:T ) are δ-functions at x1:T = xθ1:T . The auxiliary function is then given by

Qs(θ, θk) = log pθ(y1:T , x
θk
1:T ).

Let us now consider the two cases:

i. When C 6= Ck or D 6= Dk, x
θ
1:T 6= xθk1:T and so pθ(y1:T |xθk1:T ) = 0. Therefore, Qs(θ, θk) is

undefined.
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ii. When C = Ck and D = Dk, x
θ
1:T = xθk1:T and so

Qs(θ, θk) = log pθ(y1:T |xθ1:T )pθ(x
θ
1:T ) = log pθ(x

θ
1:T ).

The likelihood can be expressed as

Lθ(y1:T ) = log

∫
pθ(y1:T |x1:T )pθ(x1:T )dx1:T

= log pθ(x
θ
1:T ),

where the second inequality comes from the fact that pθ(y1:T |x1:T ) is a δ-function.

Therefore, Lθ(y1:T ) = Qs(θ, θk).



Chapter 5

Identification of positive dynamical

systems

The central motif of this thesis has been the scalable application of convex optimization

to system identification, namely: minimization of convex quality-of-fit criteria over convex

parametrizations of stable models. Hitherto, our main tool has been the linear matrix

inequality (LMI), which can be optimized via semidefinite programming. Unfortunately,

semidefinite programming suffers from poor scalability: memory requirements for large-

scale problems are severe, unless structure (e.g., sparsity) can be exploited, c.f., Section

2.2.3.

In this chapter, we consider identification of internally positive systems, which have the

property that nonnegative inputs lead to nonnegative internal states and outputs. Such

system representations frequently arise in applications in which physical constraints imply

that the quantities of interest are nonnegative. Internally positive systems enjoy substan-

tially simpler stability and performance analysis, compared to general the LTI case. Specif-

ically, a Lyapunov function that is linear, rather than quadratic, in both the state variable

and the number of parameters is necessary and sufficient to verify stability. We exploit

these simplified linear stability conditions to derive a polytopic parametrization of all sta-

ble positive systems. Furthermore, due to ease of decomposability compared to LMIs, these

linear constraints are amenable to distributed optimization suitable for identification of

large-scale dynamical systems. To access these benefits, we also derive convex quality-of-fit

metrics based on Lagrangian relaxation, and demonstrate superior performance over exist-

ing approaches based on weighted equation error. We also derive convex upper bounds on

simulation error that can be optimized with linear programming, by utilizing `1 dissipativity

theory for positive systems.
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Connection to other chapters

Scalability has been a recurrent theme throughout this thesis. For instance, Chapter 3 was

concerned with scalability of identification with respect to the length of the training data.

The specialized algorithms developed in Chapter 3 reduced computational complexity of

Lagrangian relaxation of simulation error to linear growth with the number of data points,

T , compared to the cubic growth exhibited by generic solvers. This chapter is concerned

with scalability of identification with respect to system scale, i.e., the size of the state

dimension nx.

The main message of this chapter is that several problems in system identification, namely

the construction of convex parametrizations of stable models and convex quality-of-fit cri-

teria, are substantially simplified for positive systems. In particular, the linear stability and

dissipativity theory for positive systems permits many of the ideas and techniques developed

in the preceding chapters to be extended to large-scale systems.

Publications

Some of the material presented in this chapter also appears in:

J. Umenberger, I.R. Manchester. Scalable identification of stable positive systems.

In Proceedings of the IEEE Conference for Decision and Control (CDC). 2016.

5.1 Introduction

Traffic flow through urban centers, antiretroviral treatment of infectious disease and the

smart electricity grid are but a few examples of the diverse array of large-scale systems

for which modeling and control is becoming increasingly important. In many of these

applications, physical constraints imply that the quantities of interest - e.g., number of cars

passing through a tunnel, concentrations of pathogens, or power through a transmission line

- are nonnegative. In such cases, it is appropriate to model the situation as a positive system,

in which the set of nonnegative internal states remains invariant under the dynamics.

Over the past decade, positive systems have received increased attention from the control

community, largely due to the fact that many performance and stability results in linear

system theory are simplified when the dynamics are positive. For example, static state

and output feedback controllers were designed using linear programming in [49] and [188],

respectively. Stability and dissipativity theory for positive systems based on linear storage

functions and supply rates was developed in [82], and employed for robust stability analysis

in [31]. Similarly, the work of [227] provided a bounded real lemma for positive systems

based on a diagonal quadratic storage function, which enabled the design of structured H∞
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controllers. More recently, [190] has presented novel versions of many of the above results,

with an emphasis on scalable controller synthesis and verification.

Model-based design and analysis depends of course on the availability accurate system

models. While in some applications these come from first-principles, when physical models

are either unknown or too complex, some form of data-driven modeling is necessary. So

far, most of the research effort has focused on the so-called positive realization problem,

i.e., determining the conditions for which there exists an internally positive realization of a

system with nonnegative impulse response, c.f. [7, 13, 14]. In contrast, the identification

problem has received little attention. Among the few published results are [15], which

presents conditions for ‘compartmentality’1 of identified models, and [50], which considers

identification of third order internally positive systems with Poisson output.

As discussed in Section 2.3, stability of the identified model is often a desirable property,

c.f., also [131, §4]. To the best of our knowledge, the only work concerned with identification

of stable positive systems is that of [94]. This work, which also appears in [83, §18], extends

the approach presented in [113] to identification of positive systems, by deriving an LMI

parametrization of stable positive systems that can be optimized over with semidefinite

programming (SDP). Specifically, the usual dense positive definite solution to the Lyapunov

equation for generic LTI systems is replaced with a diagonal solution; for positive systems

this introduces no conservatism, c.f., Section 5.3 for details. The reduction in decision

variables associated with this diagonal solution notwithstanding, such an approach is not

really suitable for identification of large-scale systems that so often arise in networks with

positive dynamics, due to the poor scalability of SDP.

Identification of large-scale systems (indeed large-scale optimization in general), typically

requires decomposition of the problem into many sub-problems of lower complexity. De-

pending on the application, this is termed distributed, decentralized or parallel computation

[20], c.f. Section 5.2.5 for a discussion of the terminology used in this chapter. Second or-

der interior point methods for SDP employ barrier functions that make the decomposition

of linear matrix inequalities problematic, unless some chordal sparsity properties can be

exploited; c.f., [67, 139, 223, 244, 253] for recent progress on scalable SDP. In contrast, de-

composition methods for element-wise inequality constraints, such as the stability conditions

for positive systems based on Lyapunov functions, are far more mature. Early research on

distributed solutions for such optimization problems includes dual decomposition [48, 57],

with improvements in convergence properties obtained by the alternating direction method

of multipliers [30, 69, 73]. More recently, approaches based on game theory have proven

successful, especially when communication between processors is unreliable [120, 145].

The contributions of chapter are as follows. In Section 5.3 we present two new convex

parametrizations of all stable positive systems: an LMI based parametrization that gener-

alizes [94], and a polytopic parametrization that leverages the simplified stability conditions

1Compartmental systems are a special case of internally positive systems.
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for positive dynamics. In Section 5.4 we present convex quality-of-fit criteria that are com-

patible with the parametrizations of Section 5.3. As an alternative to weighted equation

error [94, 113], we propose Lagrangian relaxation of equation error; superior performance

of the latter is demonstrated empirically in Section 5.5.1. We also present convex upper

bounds for the `1 norm of simulation error (a.k.a. output error), based on linear dissipativ-

ity theory for positive systems; the utility of these bounds for identification of structured

systems is demonstrated in Section 5.5.3. Finally, in Section 5.6, we exploit the decompos-

ability of the polytopic parametrization of stable models to derive distributed algorithms

for minimization of the criteria presented in Section 5.4.

5.2 Preliminaries

5.2.1 Notation

Specific notation used in this chapter is as follows. For real matrices and vectors A,B ∈
Rm×n, A < (≤)B denotes element-wise inequality, whereas A ≺ (�)B means B − A is

positive definite (semidefinite). The transpose of A is denoted A′. For A ∈ Rm×n, A(i, j)

denotes the scalar entry in the ith row and jth column. We define the sets Rn++ := {a ∈
Rn : a > 0} and Rn+ := {a ∈ Rn : a ≥ 0}. For a ∈ Rn, |a| ∈ Rn+ denotes element-wise

absolute value, and |a|σ :=
(∑n

i=1 |a(i)|σ
)1/σ

denotes the σ-norm. We define 1 ∈ Rn as the

vector with all elements equal to 1; the dimension n can be inferred from the context. The

spectral radius (largest magnitude of the eigenvalues) of a matrix A is denoted rλ (A).

5.2.2 Positive state space models

This chapter concerns the identification discrete time positive LTI models of the form

xt+1 = Axt +But, (5.1a)

yt = Cxt +Dut, (5.1b)

where u ∈ Rnu , y ∈ Rny and x ∈ Rnx denote the input, output and state, respectively. We

can distinguish between two different notions of positivity, namely external and internal

positivity.

Definition 5.1. A linear system (5.1) is called externally positive if and only if its output

corresponding to a zero initial state is nonnegative for every nonnegative input.

Definition 5.2. A linear system (5.1) is called internally positive if and only if its state

and output are nonnegative for every nonnegative input and every nonnegative initial state.

It is apparent that internal positivity implies external positivity; however, in general, it is

NP-hard to test whether a system is externally positive.
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Proposition 5.1 ([58]). A linear system (A,B,C,D) is externally positive if and only if

∀t ≥ 0 : CeAtB ≥ 0 and D ≥ 0.

By contrast, conditions for internal positivity are considerably more tractable. Internal

positivity of (5.1) requires that the non-negative orthant Rnx≥0 is invariant w.r.t. A. In [17]

it is shown, that this is the case if and only if A ≥ 0.

Proposition 5.2 ([58]). A discrete linear system (A,B,C,D) is internally positive if and

only if A,B,C,D are element-wise nonnegative

In this chapter, we are interested in internally positive (henceforth, positive) systems only.

5.2.3 Stability of positive systems

Nonnegativity of the state variable xt greatly simplifies Lyapunov stability analysis of pos-

itive systems:

Lemma 5.1 ([17, Lemma 6.2.1]). For A ≥ 0 the following statements are equivalent:

1. The matrix A is Schur stable, i.e. rλ (A) < 1.

2. There exists diagonal P � 0 such that A′PA− P ≺ 0.

3. There exists p ∈ Rn++ such that p′A < p′.

The dynamical systems interpretation of this result is that V (x) = p′x serves as a linear

Lyapunov function for the system xt+1 = Axt. We denote the set of all Schur stable positive

matrices by S+, i.e., S+ := {A ∈ Rn×n : A ≥ 0, rλ (A) < 1}. The set S+ is nonconvex,

as the stability conditions A′PA ≺ P (and p′A < p′) are nonconvex in A and P (and p),

jointly.

5.2.4 Problem data

We assume data of the form ZTDT = {ũt, ỹt, x̃t}Tt=1 where ũ, ỹ and x̃ denote (possibly noisy)

measurements of u, y and x, respectively. Notice that measurements (or at least estimates)

of the state x are required. In this chapter, we have in mind the identification of networked

systems such that x = [x(1), . . . , x(nx)], where x(i) denotes the measurable state at node i,

e.g. transport networks where x(i) denotes traffic density [210]. This is a rather restrictive

assumption, necessitated by the fact that popular state estimation techniques, e.g. subspace

methods, return state estimates subject to an arbitrary coordinate transformation [241,

§2.2], which may not be consistent with a positive realization of the dynamics. Subspace

methods for positive systems are an important subject for future research.
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We note, in passing, that if one desires only external positivity of the identified model,

then the arbitrary transformation introduced by subspace methods poses no difficulty. Our

recent work [80] provides convex conditions for cone invariance of identified model, which

is sufficient for external positivity. In particular, it is shown that when the true system

(generating the problem data) is externally positive, enforcing cone invariance instead of

internal positivity, as a means of ensuring input-output positivity, leads to much more

accurate models.

5.2.5 Parallel and distributed identification

In Bertsekas and Tsitsikils’ classic text [20], a distinction is made between parallel comput-

ing systems, characterized by many processors, working together in close proximity with

reliable communication, and distributed systems, in which processors may be far apart and

interprocessor communication is unreliable and possibly delayed [20, §1.1.2]. In this chap-

ter we use the term distributed to refer to algorithms that decompose large optimization

problems into many smaller problems, usually to reduce the memory requirements; refer

to Section 5.6.1 for a thorough discussion of the scope and intended applications of the

distributed algorithms presented in this chapter.

5.3 Convex parametrizations of stable models

The fundamental obstacle to optimization subject to stability constraints is the nonconvex-

ity of the simultaneous search for the model parameters A, and a Lyapunov function V .

The usual strategy for constructing a convex parametrization of all Schur stable matrices S
is to adopt a Lyapunov function V (x) = |x|2E and a change of variables, e.g. F = AE. Then

the Lyapunov inequality FE−1F ′ ≺ E is convex in E and F , and A ∈ S can be recovered

as A = FE−1, c.f., [113]. For internally positive systems, there is the additional challenge

of ensuring nonnegativity of recovered solution. Fortunately, from Lemma 5.1, a diagonal

E is necessary and sufficient, and thus there is no conservatism in using E ∈ D so that

F ≥ 0 implies FE−1 ≥ 0. This is the approach presented in Haddad [94], which leads to

the following convex parametrization of S+:

Θl = {E,F : Ml � 0, F ≥ 0}, (5.2)

where, for some arbitrarily small tolerance δ > 0,

Ml :=

[
E − δI F ′

F E

]
. (5.3)

In this section we introduce two alternative convex parametrizations of S+: (i) an LMI repre-

sentation that offers additional flexibility compared to Θl, and (ii) a polytopic parametriza-
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tion that facilitates distributed optimization.

5.3.1 LMI parametrization with M-matrices

To optimize over Θl, it is necessary to weight the quality-of-fit metric by E in such a way

that the product F = AE appears as a decision variable. We will discuss this in greater

detail in Section 5.4. For now, we emphasize that the same matrix E is used as a weight in

the cost function and in the Lyapunov function V (x) = |x|2E . In what follows, we introduce

a more flexible convex parametrization of S+. The idea is to use a slightly different change

of variables, F = EA, and the Lyapunov function V (x) = |Ex|2P−1 , where E and P are

not required to be diagonal. To ensure positivity of A = E−1F , we require that E be an

M-matrix :

Definition 5.3. An M-matrix is a matrix H ∈ Rn×n with the properties: (i) H(i, j) ≤ 0

for i 6= j, (ii) the real part of each eigenvalue of H is positive.

Equivalently, an M-matrix is a negative Hurwitz Metzler matrix. For our purposes, M-

matrices have the following key properties:

Lemma 5.2 ([182, Theorem 2.1]). Suppose (−H) ∈Mn×n. Then the following statements

are equivalent: (i) H is an M-matrix, (ii) there exists diagonal D � 0 such that HD+DH ′ �
0, (iii) H is inverse-positive, i.e. H−1 exists and H−1 � 0.

Property (ii) implies that E +E′ � 0 and −E ∈M are sufficient for E to be an M-matrix,

whereas property (iii) ensures positivity of A = E−1F , when F ≥ 0, without requiring E

to be diagonal. We can now define the following convex parametrization of S+:

Θm := {E,F : −E ∈Mnx×nx , F ≥ 0, ∃P ∈ Snx++, s.t. Mm � 0}, (5.4)

where, for some arbitrarily small tolerance δ > 0,

Mm :=

[
E + E′ − P − δI F ′

F P

]
. (5.5)

Theorem 5.1. The set Θm is a convex parametrization of all (element-wise) nonnegative

Schur matrices, i.e., A ∈ S+ iff there exists {P,E, F} ∈ Θm such that A = E−1F .

Proof. Refer to Section 5.8.1.
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5.3.2 Polytopic parametrization

So far, we have used quadratic Lyapunov functions to derive convex parametrizations of

S+ expressed in terms of LMIs. In this section, we exploit the stability conditions based

on linear Lyapunov functions, c.f. Lemma 5.1, to develop a polytopic parametrization of

S+. The idea is the same: we introduce the linear Lyapunov function V (x) = 1′Ex with

E ∈ D, along with the change of variables F = EA. This leads to the following convex

parametrization of S+:

Θp := {E,F : E ∈ D, F ≥ 0, 1′F − 1′E ≤ −δ1′}. (5.6)

Theorem 5.2. The set Θp is a convex (polytopic) parametrization of all (element-wise)

nonnegative Schur matrices, i.e., A ∈ S+ iff there exists {E,F} ∈ Θp such that A = E−1F .

Proof. Refer to Section 5.8.2.

5.3.3 Discussion

This section has presented two new convex parametrizations of S+: Θm defined by the LMI

(5.5), and the polytopic set Θp. A few comments are in order. First, it is apparent that

Θm is a generalization of Θl, defined in (5.2) and introduced in [94]. For example, with the

choices E ∈ D and E = P in (5.5), Θm reduces to Θl. Other choices of E and P can be

made to control complexity of the parametrization (i.e., the number of decision variables),

e.g. −E ∈ M or E ∈ D, P ∈ S or P ∈ D. An advantage of choosing E ∈ D is that sparsity

in F is preserved in A = E−1F .

It is worth emphasizing that all of the convex parametrizations of S+ utilize an implicit

representation of A. Consequently, many of the standard quality-of-fit criteria defined for

(5.1) are no longer valid. Convex criteria compatible with the implicit representations is

the subject of Section 5.4. Notice too, that we have two different implicit representations:

specifically, E can either enter from the right (F = AE), or from the left (F = EA). The

choice of representation depends on the quality-of-fit criterion being optimized; E = AF is

used for weighted equation error, c.f. Section 5.4.1, whereas F = EA is used for Lagrangian

relaxation, c.f. 5.4.2. For Θl and Θp it is trivial to reformulate the stability condition

with either representation. For example, formulate the polytopic set Θp with F = AE, one

simply replaces the inequality 1′F − 1′E ≤ −δ1′ with F1− E1 ≤ −δ1 in (5.6).

5.4 Convex quality-of-fit criteria

In this section we present a variety of convex quality-of-fit metrics (i.e. cost functions to be

minimized) that are compatible with the convex parametrizations of stable positive systems
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developed in Section 5.3.

5.4.1 Weighted equation error

The 2-norm of equation error, a.k.a. the least squares criterion, is a popular quality-of-

fit metric, used, e.g., in identification of autoregressive models [129, §4.2] and in subspace

methods [241, §2.4]. For LTI models, equation error is given by

T∑
t=1

‖εt‖22 +
T∑
t=1

‖ηt‖22, (5.7)

where εt = x̃t+1 −Ax̃t −Bũt and ηt = ỹt − Cx̃t −Dũt. The problem minC,D
∑

t ‖ηt‖22 s.t.

C ≥ 0, D ≥ 0 is a convex quadratic program, so we will focus our attention on

min
A≥0,B≥0

{
Ee

2 :=

T∑
t=1

‖εt‖22
}

s.t. A ∈ S+. (5.8)

The main challenge in solving (5.8) is nonconvexity of S+. For the convex parametrizations

of S+ introduced in Section 5.3, equation error is no longer well defined, as we must work

with the new decision variable F = AE, instead of A.

To circumvent this difficulty, the work of [113] proposed minimization of weighted equation

error:

Ew
2 := ‖x̃2:T − [A B]

[
x̃1:T−1

ũ1:T−1

]
W‖2F . (5.9)

By a judicious choice of weighting matrix, namely

W =

[
x̃1:T−1

ũ1:T−1

]† [
E 0

0 I

]
, (5.10)

weighted equation error in (5.9) becomes

Ew
2 = ‖[ÃE B̃]− [F B] ‖2F = ‖ÃE − F‖2F + ‖B̃ −B‖2F , (5.11)

where Ã and B̃ are the unconstrained least squares minimizers of Ee
2 . Notice that F has

replaced A in (5.9), and thus Ew
2 is compatible with the change of variables used in the

convex parametrizations of S+. This approach was extended to identification of stable

positive systems in [94], where it was shown that

max(0, B̃) = arg min
B≥0

‖B̃ −B‖2F . (5.12)
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Here, max applies element-wise. All that remains is to solve

min
E,F

‖ÃE − F‖2F , s.t. (E,F ) ∈ Θ, (5.13)

where Θ is one of the convex parametrizations of S+ presented in Section 5.3. For instance,

choosing Θ = Θm gives the most flexible parametrization, and leads to a semidefinite

program. Choosing Θ = Θl with E ∈ D gives the approach outlined in [94]. Finally,

choosing the polytopic parametrization Θ = Θp leads to a convex quadratic program, which

is amenable to a distributed solution method c.f. Section 5.6.

5.4.2 Lagrangian relaxation of equation error

To optimize over a convex approximation of (5.8), Lagrangian relaxation (LR) may be used

as an alternative to weighted equation error in (5.9). We begin with a quick recap of LR; c.f.

[232, §2] for details in a system identification context. Consider a constrained optimization

problem

min
θ,∆

J(θ,∆) s.t. h(θ,∆) = 0, (5.14)

where J(θ,∆) and h(θ,∆), are convex and affine in θ, respectively. The Lagrangian relax-

ation of (5.14) takes the form

J̄λ(θ) = sup
∆

J(θ,∆)− 2λ(∆)′h(θ,∆). (5.15)

Here, λ(∆) may be interpreted as a Lagrange multiplier. For arbitrary λ, the function J̄λ(θ)

has two key properties:

1) It is convex in θ. Recall that J and h are convex and affine in θ, respectively. As such,

J̄λ(θ) is the supremum of an infinite family of convex functions, and is therefore convex

in θ; c.f., Section 3.2.3 of [28].

2) It is an upper bound for the original problem (5.14). Given θ, let ∆∗ be any ∆ such that

h(θ,∆∗) = 0. Then

J(θ,∆∗)− 2λ(∆)′h(θ,∆∗) = J(θ,∆∗),

which implies that the supremum over all ∆ can be no smaller than this feasible solution.

The original optimization problem (5.14) may then be approximated by the convex program

minθ J̄λ(θ).

We now present the LR of (5.8). We shall refer to this as Lagrangian relaxation of equation

error (LREE). To optimize over a convex parametrization of S+, we work with an implicit

representation of (5.1a),

Ext+1 = Fxt +Kut. (5.16)
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This implicit representation also improves the performance of the LR, as LR of equivalent

constraints leads to non-equivalent bounds. Specifically, consider the constraint functions

h1(θ, x) = xt+1 −Axt −But, (5.17)

h2(θ, x) = Ext+1 − EAxt − EBut. (5.18)

Both h1 and h2 have the same feasible set, but the redundant parametrization in h2 will

lead to tighter bounds (i.e. bounds with lower numerical value) in general.

For convenience, introduce θ = {E,F,K} and define Θ̄ := {θ : K ≥ 0, (E,F ) ∈ Θ}, where

Θ is any one of the convex parametrizations of S+ developed in Section 5.3, e.g., Θm, Θl or

Θp. To apply LR to (5.8), first consider the problem

min
A≥0,B≥0

{
‖εt‖22 = ‖x̃t+1 −Ax̃t −Bũt‖22

}
s.t. A ∈ S+, (5.19)

for ease of exposition. Problem (5.19) is equivalent to

min
θ∈Θ̄,xt+1

‖x̃t+1 − xt+1‖22 s.t. Ext+1 = Fx̃t +Kũt (5.20)

as both (5.19) and (5.20) have the same objective and feasible set. Introducing ∆ =

x̃t+1 − xt+1 and ε̄t = Ex̃t+1 − Fx̃t −Kũt, the Lagrangian relaxation of (5.20) is given by

J̄λ(θ, t) := sup
∆
‖∆‖22 − 2λt(∆)′(E∆− ε̄t) (5.21)

for some multiplier λt(∆). Convexity of J̄λ(θ, t) is guaranteed for all multipliers λt that are

independent of θ. We propose the specific choice λt(∆) = H∆t = H(x̃t+1 − xt+1), where

H ∈ Rnx×nx is some user specified constant matrix. With this multiplier, (5.21) can be

written explicitly as

J̄λ(θ, t) = |H ′ε̄t|2(H′E+E′H−I)−1 . (5.22)

As J̄λ(θ, t) ≥ ‖εt‖22 it is clear that

J̄λ(θ) :=
T∑
t=1

J̄λ(θ, t) ≥
T∑
t=1

‖εt‖22, (5.23)

i.e., J̄λ is an upper bound on equation error. In summary:

Theorem 5.3. The function J̄λ(θ), defined in (5.23), is a convex upper bound on
∑T

t=1 ‖εt‖22
in (5.8). Furthermore minθ J̄λ(θ) s.t. θ = (E,F,K) ∈ Θ̄ can be solved as the following

SDP,
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min
R,θ∈Θ̄

tr (ΦR) (5.24)

s.t.

[
R EF

′
K H

H ′EFK H ′E + E′H − I

]
� 0,

where R ∈ S2nx+nu is a slack variable, EFK = [E,−F,−K], and Φ denotes the empirical

covariance matrix given by

Φ :=
T∑
t=1

 x̃t+1

x̃t
ũt


 x̃t+1

x̃t
ũt


′

. (5.25)

System matrices A ∈ S+ and B ≥ 0 can be recovered as A = E−1F and B = E−1K.

Proof. Refer to Section 5.8.3.

We conclude this section with two remarks. First, the LMI in (5.24) grows linearly with

the size of the system; in particular, R ∈ S2nx+nu is a dense, positive semidefinite matrix.

Consequently, solving (5.24) directly may suffer from poor scalability. In Section 5.6.3 we

show that minimization of J̄λ can in fact be decomposed into many smaller subproblems;

c.f. (5.42). Even without distributed computation, this decomposition can significantly

reduce computation time for generic SDP solvers.

Second, it is of course possible to construct a Lagrangian relaxation of simulation error

(LRSE), instead of equation error, as in Chapter 3. However, LR of simulation error cannot

be decomposed into smaller subproblems in the same way as LR of equation error (LREE).

Consequently, for large-scale systems the associated SDPs remain high dimensional, even

with the specialized algorithms developed in Chapter 3. For this reason, we focus on LREE.

5.4.3 1-norm bounds on output error

The convex criteria considered so far can both be interpreted as weighted equation error.

This is obvious for Ew
2 as defined in (5.11) with weighting matrix W as in (5.10). Further-

more, from (5.22), it is apparent that LR is also a procedure for constructing an alternative

weighting of equation error, J̄λ. What is not clear, however, is the effect that these weighting

matrices have on the quality of the identified model.

In this section, we provide convex conditions under which a simpler weighting matrix has a

meaningful interpretation; specifically, the weight can be quantified as `1-gain from equation

error to output error. To develop this result, we work with the 1-norm of equation error,

Ee
1 :=

∑T

t=1
‖x̃t+1 −Ax̃t −Bũt‖1 (5.26)
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and the 1-norm of simulation error, defined as

Es
1 :=

∑T

t=1
‖ỹt − Cxt −Dũt‖1,

where xt denotes the simulated state sequence satisfying xt+1 = Axt + Bũt and x1 = x̃1.

We use the 1-norm so as to leverage the linear dissipativity theory developed for positive

systems. To study the relationship between Ee
1 and Es

1, notice

T∑
t=1

‖ηt + Cx̃t − Cxt‖1 ≤
T∑
t=1

‖ηt‖1 +
T∑
t=1

‖Cx̃t − Cxt‖1. (5.27)

As
∑

t ‖ηt‖1 is convex, we concentrate on
∑

t ‖Cx̃t−Cxt‖1, and remark that the simulated

states, x1:T , and the estimated states, x̃1:T , are in fact solutions to the same augmented

dynamical system. Specifically, by considering the system

xt+1 = Axt +Bũt + vt (5.28)

with input vt and initial condition x1 = x̃1, we observe:

i. for vt = 0 the solution to (5.28) is xt, i.e., the usual simulated state sequence.

ii. for vt = εt, the solution to (5.28) is x̃t.

Recalling ∆t = x̃t−xt, it is clear that ∆t satisfies the incremental error dynamics given by

the system

∆t+1 = A∆t + εt, (5.29a)

z = C∆t. (5.29b)

This analysis, much in the spirit of [150], relates the equation error, ‖εt‖1, to the quantity of

interest ‖C(x̃t−xt)‖1, via the `1-gain of the incremental error system in (5.29). Furthermore,

observe that when the original system (5.1) is positive, i.e., A ≥ 0, C ≥ 0, so too are the

incremental error dynamics in (5.29). The `1-gain of a positive system can be characterized

as:

Lemma 5.3 ( [31, Lemma 1]). Let (5.1) denote a positive system. The following statements

are equivalent:

1. The matrix A is Schur and the `1-gain of u 7→ y is less than γ.

2. There exists p ∈ Rnx++ such that[
A B

C D

]′ [
p

1

]
<

[
p

γ1

]
. (5.30)
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Lemma 5.3 can be used to quantify the contribution of each ‘channel’ of the equation error

ε to the simulation error:

Lemma 5.4. Given a stable, positive system of the form (5.1), the `1-gain from the ith

input channel ε(i) to the output z of the incremental error system (5.29), is given by p∗(i),

where

p∗ = arg min
p∈Rnx++

∑
i

p(i) s.t. p′A− p′ + 1′C < 0. (5.31)

Proof. Refer to Section 5.8.4.

To leverage the result in Lemma 5.4 we propose the following convex parametrization of

stable positive systems:

Θ̄d := {E,F,K,C,D :E ∈ D, F ≥ 0, C ≥ 0, D ≥ 0,

1′F − 1′E + 1′C ≤ −δ1′}, (5.32)

and the following convex quality-of-fit metric:

Ew
1 :=

T∑
t=1

‖Ex̃t+1 − Fx̃t −Kũt‖1 +
T∑
t=1

‖ηt‖1, (5.33)

i.e., the 1-norm of equation error, with εt weighted by E. For θ = (E,F,K,C,D) the

problem minθ∈Θ̄d
Ew

1 is a convex linear program. Lemma 5.4 implies that E serves as both

a stability certificate (i.e., the linear Lyapunov function, V (x) = 1′Ex) and a meaningful

weighting of equation error. Specifically, E penalizes most heavily the ‘channels’ of εt that

contribute most significantly to the simulation error, as p∗ = diag (E) encodes the `1-gain

of ε 7→ z in the incremental error system (5.29). In summary:

Theorem 5.4. For θ = (E,F,K,C,D) ∈ Θ̄d, with Θ̄d defined in (5.32), the function

Ew
1 (θ), as defined in (5.33), is a convex upper bound on the 1-norm of output error, Es

1. The

problem minθ∈Θ̄d
Ew

1 is a convex linear program, from which system matrices A ∈ S+ and

B ≥ 0 can be recovered as A = E−1F and B = E−1K, resp., along with C ≥ 0 and D ≥ 0.

Proof. Refer to Section 5.8.5.

Remark 5.1. The strict inequality in (5.31) has been replaced by a non-strict inequality

in (5.32) to ensure that the constraints lead to a well posed optimization problem. The

extent of the conservatism introduced by this approximation is characterized by δ, and can

be made arbitrarily small.
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5.5 Case studies

5.5.1 Comparison of convex parametrizations and quality-of-fit criteria

In this section we compare the different convex parametrizations of S+ outlined in Section

5.3, as well as the two main convex quality-of-fit criteria presented in Section 5.4, (i) weighted

equation error, Ew
2 , proposed in [94], c.f Section 5.4.1, and (ii) Lagrangian relaxation of

equation error, J̄λ, developed in Section 5.4.2. In what follows, we will often discuss ‘banded

matrices’. A matrix A is said to have bandwidth n if |j − i| > n implies A(i, j) = 0.

Then each row and column will have 2n − 1 nonzero elements (except for the first/last n

rows/columns).

We begin by empirically motivating the need for identification algorithms that ensure sta-

bility for large-scale systems. Table 5.1 records the prevalence of model instability during

identification when using unconstrained least squares, as state dimension increases. The

experimental procedure is as follows: (i) a system (A,B) of specified state dimension nx is

randomly generated using Matlab’s rand function. A is banded, with bandwidth = 5 and

spectral radius of 0.95, and B = [Inu , . . . , Inu , 0nu×m]′, with nu = bnx/10c and m specified

for each experiment. (ii) the system is simulated for T = 100 time steps, and white noise

w ∼ N (0,Σw) is added to the simulated states to generate training data x̃1:T . The covari-

ance matrix Σw is diagonal, and each diagonal element is tuned to give SNR of 10dB, for

each state. (iii) models are then fit with least squares, i.e. (Ã, B̃) = minA,B
∑

t ‖εt‖22. The

model is said to be unstable if Ã /∈ S. (iv) this process is repeated 1000 times for each nx
and m combination.

Table 5.1 – Percentage of models identified using least squares that were unstable (1000 exper-
imental trials for each nx and m combination). True models were randomly generated: A
was banded (bandwidth = 5) with spectral radius of 0.95, and B = [Inu

, . . . , Inu
, 0nu×m]′,

with nu = bnx/10c. Training data was generated by simulating these models for T = 100
time steps, and corrupting the states with white noise (SNR= 10dB).

State dim., nx 50 60 70 80 90 100 110 120 130 140 150

m = 4nu 0 0.1 0.1 0.2 0.4 0.8 2.3 4.5 8.3 15.1 20.4

m = 5nu 0.1 0.2 0.6 1.1 3.4 7.3 14.1 24.0 37.2 49.9 62.0

m = 7nu 0.3 1.7 8.0 18.9 40.0 58.5 77.1 88.7 95.5 97.7 99.4

m = 9nu 0.8 6.9 24.4 59.0 83.6 93.5 98.7 99.8 100 100 100

It is apparent that unstable models are identified by least squares with greater regularity

for systems with larger state dimension, nx. It is important to emphasize that, due to the

banded structure of A, the ratio of the number of model parameters to the number of data

points remains constant, regardless of nx, i.e., each row of A contains 9 parameters, to be
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fit from 100 scalar data points. Increased prevalence of model instability with nx is not

due simply to increased variance (associated with a larger parameter to data point ratio),

but rather, the scaling of the network. In fact, there is a growing body of research on

robustness of large-scale interconnected networks, c.f., [1, 90, 93, 265], as well as [200] for a

study that specifically investigates how the robustness of a network changes with increased

state dimension. Network topology has a significant influence on properties like robustness;

indeed, the results in Table 5.1 demonstrate that model instability is particularly sensitive

to m in the definition of B. For this reason, Table 5.1 should be interpreted as a motivating

illustration, rather than a conclusive study.

Comparison of quality-of-fit criteria for large-scale systems

We now compare minimization of Lagrangian relaxation of equation error (henceforth,

LREE), J̄λ, and weighted equation error (henceforth, EEW), Ew
2 , for ‘large-scale’ systems,

e.g., systems with hundreds or thousands of state variables. We begin with large-scale sys-

tems because model instability is more prevalent in this setting; c.f. Table 5.1. For systems

with fewer states, model instability tends to arise only under ‘extreme’ circumstances, e.g.,

when the true systems are close to being unstable (i.e., spectral radius very close to unity),

or when the training set contains very few data points (relative to the number of model

parameters). In this section, we use the polytopic parametrization Θp of S+, as the ensuing

optimization problems scale better (i.e., can be solved more quickly for high-dimensional

systems compared to the LMI parametrizations of S+); c.f., Section 5.5.2 for a comparison

of computation time. The LMI parametrizations of S+ are examined in the sequel.

The results in this section are generated using the following experimental procedure: (i)

a stable positive system (of specified state dimension nx and nu = bnx/10c) is randomly

generated using Matlab’s rand function. A is banded, with bandwidth = 5 and spectral

radius of 0.95; B is also sparse. We shall refer to this system as the ‘true model’. (ii) the

true model is simulated for T time steps, excited by ũt = |wt|, wt ∼ N (0, I). White noise

(SNR 10dB) is added to the simulated states to form the state estimates, i.e. x̃t = xt + vt,

vt ∼ N (0,Σv) (iii) a model is fit by ordinary, unconstrained least squares, i.e., minimization

of (5.7). If this model is not unstable, i.e., if Ã ∈ S, we return to (i) and generate a new

dataset; (iv) if the least squares solution Ã is unstable, we proceed with minimization of

Ew
2 (θ) and J̄λ(θ), for θ ∈ Θp. (v) this process is repeated 100 times. We use C = [1′50 0] as

the output mapping for both the true and identified models.

The results of this experimental procedure for varying state dimension nx are depicted in

Figures 5.1 and 5.2. Normalized simulation error, defined as
∑T

t=1 ‖yt − ỹt‖22/
∑T

t=1 ‖ỹt‖22
where yt is the simulated output of the identified model and ỹt is validation data from the

true model, is used to quantify model fit. It is apparent that LREE significantly outperforms

EEW (on average) for each value of nx.

Figure 5.3 presents the results of the same experimental procedure, for fixed state dimen-
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sion (nx = 500) but varying training dataset length, T . Once again, LREE significantly

outperforms EEW. Furthermore, performance of both methods improves with increasing T ,

as expected.
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Figure 5.1 – Normalized simulation error vs. state dimension of the true system, nx. Two
methods are compared: (i) Weighted EE : minθ∈Θp

Ew
2 (θ), c.f. Section 5.4.1, (ii) LREE :

minθ∈Θp
J̄λ(θ), c.f. Section 5.4.2. The polytopic parametrization of S+, Θp, is used for

both. Models have banded A (bandwidth of 5). T = 100 data points were used for training;
the SNR was 10dB. The spectral radius of the true models was 0.9.
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Figure 5.2 – Normalized simulation error vs. state dimension of the true system, nx. Two
methods are compared: (i) Weighted EE : minθ∈Θp

Ew
2 (θ), c.f. Section 5.4.1, (ii) LREE :

minθ∈Θp
J̄λ(θ), c.f. Section 5.4.2. The polytopic parametrization of S+, Θp, is used for

both. Models have banded A (bandwidth of 5). T = 200 data points were used for training;
the SNR was 10dB. The spectral radius of the true models was 0.9.
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Figure 5.3 – Normalized simulation error vs. length of training data set, T . Two methods are
compared: (i) Weighted EE : minθ∈Θp Ew

2 (θ), c.f. Section 5.4.1, (ii) LREE : minθ∈Θp J̄λ(θ),
c.f. Section 5.4.2. The polytopic parametrization of S+, Θp, is used for both. Models have
banded A (bandwidth of 5) with nx = 500. The SNR was 10dB, and the spectral radius
of the true models was 0.9.

Influence of least squares solution

The results in Figures 5.1, 5.2, and 5.3 suggest that LREE offers improved performance over

weighted EE. In this section, we attempt to gain deeper insight into the differences between

the two methods. The same experimental procedure as the previous section is repeated, but

with the following differences: (a) the dimension of the true models is reduced to nx = 5.

Furthermore, A and B are both dense (not banded), and nu = 1. (b) to compensate for the

reduced state dimension, the spectral radius of the true A is increased to 0.98. (c) we use

the LMI parametrization of S+, Θl as in (5.2); however, the conclusions we draw are valid

for the parametrizations Θm and Θp, as the empirical results are qualitatively similar; c.f.,

e.g., Figure 5.5. (d) we use C = 1′ as the output mapping for both the true and identified

models. (e) the experimental procedure is repeated 1000 times.

The results are presented in Figure 5.4. We use normalized H∞ error as a measure of model

fit; the results are qualitatively similar for H2 error, c.f. Figure 5.5. Figures 5.4(a) and

(b) plot normalized H∞ error for cases in which the least squares solution was nonnegative

(i.e., Ã ≥ 0) and not nonnegative (i.e., Ã � 0), respectively. The performance of EEW in

the first case is very bad (e.g., the ‘best’ models have normalized H∞ error of unity, which

is no better than no model at all). Performance of EEW in the second case is somewhat

improved; although LREE is clearly superior in both cases. To understand this behavior,
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consider once more minimization of weighted equation error as in (5.13),

min
E,F

‖ÃE − F‖2F , s.t. (E,F ) ∈ Θl. (5.34)

This can be interpreted as a projection of the least squares solution Ã onto the parametriza-

tion of S+ given by Θl. When Ã ≥ 0 but not stable, this projection moves the poles of

A = E−1F ‘just’ inside the unit circle. This leads to a model with spectral radius that is

far too close to unity, leading to extremely large error. This is exactly what we observe in

Figure 5.4(c). When Ã � 0 but unstable, the projection also has to correct the negative

elements in Ã, and the poles often end up a little further inside the unit circle, which may

improve performance; c.f. Figure 5.4(d). In summary, the performance of EEW is highly

sensitive to the least squares solution Ã, as might be expected. Conversely, LREE appears

largely insensitive to Ã, as there is essentially no difference between Figure 5.4(c) and (d).

As stated above, these observations tend to hold true all three parametrizations of S+, i.e.,

Θm, Θl, and Θp.
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(c) Least squares nonnegative, Ã ≥ 0. Note the different x-axis scale.
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(d) Least squares not nonnegative, Ã � 0. Note the different x-axis scale.

Figure 5.4 – Sensitivity of two methods to the unconstrained least squares solution, Ã: (i)
Weighted EE : minθ∈Θl

Ew
2 (θ), c.f. Section 5.4.1, (ii) LREE : minθ∈Θl

J̄λ(θ), c.f. Section
5.4.2. ‘Least squares not nonnegative’ means that at least one entry of Ã is strictly neg-
ative. Weighted EE is highly sensitive to Ã: the spectral radius (SR) is systematically
overestimated when Ã ≥ 0. LREE appears to be insensitive to Ã; compare (c) and (d).
The SRs of the true models were 0.98, with nx = 5. T = 100 data points were used for
training; the SNR was 10dB.
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Table 5.2 – Comparison of Lagrangian relaxation of equation error (LREE) with two
parametrizations of S+, Θm defined in (5.5) and Θl defined in (5.2). For each metric
(the bound J̄λ, H∞ error and H2 error) the number recorded is the ratio of the median
value of LREE with Θm to median value of LREE with Θl, i.e., numbers less than unity
indicate better performance with Θm.

Spectral radius 0.97 0.98 0.99 0.999 0.999 0.999 0.9999

SNR (dB) 5 10 10 10 22 30 30

J̄λ 0.997 0.994 0.993 0.989 0.994 0.995 0.995

H∞ error 1.000 1.009 1.004 0.999 1.097 0.575 1.051

H2 error 1.028 1.001 0.998 0.997 1.126 0.615 1.070

Effect of spectral radius

We continue our comparisons of convex parametrizations and quality-of-fit metrics with an

investigation of the effect that spectral radius (SR) of the true model has on performance. To

generate some baseline results, we begin with identification of 10th order systems (nx = 10,

nu = 2) with SR equal to 0.97. Figures 5.5 and 5.6 record the normalized H2 and H∞ error,

respectively, for the two different criteria, Ew
2 and J̄λ, and three different parametrizations

of S+, Θm, Θl and Θp. From these figures we make the following observations. First,

LREE significantly outperforms WEE for all parametrizations of S+. Second, it is apparent

that for in this experiment choice of parametrization has little influence on performance; in

particular, the difference between the two LMI parametrizations Θm and Θl is negligible;

c.f. also Table 5.2. Henceforth, we shall consider Θl only. Finally, we can gain further

insight into these results by plotting error as a function of the SR of the identified models,

as in Figure 5.6(b) and (c), for Θl and Θp, respectively. The plot for Θm is omitted due to

similarity with Θl. From Figure 5.6(b), we observe that EEW tends to underestimate the

SR; furthermore, these overestimates are correlated with larger error. Conversely, models

from LREE tend to have SR closer to the true value. The situation is slightly different for Θp.

From Figure 5.6(c), it is apparent that EEW continues to underestimate the SR; however,

it is also clear that LREE tends to overestimate the SR, and that these overestimates are

correlated with larger error. This is a trend that we will continue to observe in the sequel.

Next, we examine the performance of each parametrization for increasing spectral radius of

the true model. In Figure 5.7, we record performance (H∞ error) of the LMI parametrization

Θl and make the following observations. First, LREE performs significantly better than

EEW, for all values of true spectral radius (although there are a few outliers at SR =

0.999). Second, although performance of both methods degrades (H∞ error gets larger)

with increasing true SR, degradation of EEW is much more pronounced; for SR = 0.999

the normalized H∞ error is approximately unity. For relatively small SR, e.g. 0.98 as in

Figure 5.7(b), we observe EEW systematically underestimating the SR, as in Figure 5.6(b).

However, for larger SR, e.g., 0.999 as in Figure 5.7(c), the situation is different. EEW still



148 Identification of positive dynamical systems

underestimates the SR, but now there is no correlation between H∞ error and SR; all models

are equally bad, regardless of SR. For LREE, there is a very strong relationship between

estimated SR and H∞ error. In most trials, large H∞ error is due to underestimation of

the SR; however, there are a few cases in which the SR is overestimated. Indeed, it is these

cases that correspond to particularly bad models, i.e., the outliers in Figure 5.7(a).

In Figure 5.8 we record the performance of the polytopic parametrization Θp for varying

true SR. From Figure 5.8(a), we see that LREE performs better than EEW for SR of 0.98

and 0.99, but considerably worse for larger SR of 0.999 and 0.9999. Let us first discuss the

performance for SR of 0.98 and 0.99. From 5.8(b), we see, once more, that error in EEW

is correlated with underestimating the SR; compare with 5.7(b). Performance of LREE is

better, but not quite as good as LREE with Θl. Comparing 5.8(b) with 5.7(b) it is apparent

that LREE with Θp is more likely to overestimate the SR, and these overestimates correlate

with greater H∞ error. Let us now turn to SR of 0.999 and 0.9999. The first thing to

emphasize is that performance of EEW is very bad (normalized H∞ error of unity), even

though, on average, it is better than LREE. Figure 5.8(c) sheds some light onto the behavior

of LREE. Here, the propensity for LREE with Θp to overestimate the SR leads to extremely

poor performance. For trials in which the SR was estimated accurately, performance is quite

acceptable.

In Figure 5.9, we repeat the experiment for SR of 0.999 and 0.999, but with a lower SNR of

10dB. The additional noise removes the propensity for LREE with Θp to overestimate the

SR, c.f. Figure 5.9(b), and models with very large H∞ are no longer identified. It is worth

pointing out that these difficulties arise when the true system has very large SR, i.e., the

system almost contains a pure integrator. In such a setting, some additional preprocessing

of the signals (e.g. differentiation) may be appropriate.
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Figure 5.5 – Normalized H2 error for two methods: (i) Weighted EE : minθ∈Θ Ew
2 (θ), c.f.

Section 5.4.1, (ii) LREE : minθ∈Θ J̄λ(θ), c.f. Section 5.4.2. All three parametrizations of
S+ are used: Θm (LMI, c.f. (5.4)), Θl (LMI, c.f. (5.2)), and Θp (polytopic, c.f. (5.6)).
True models are 10th order (nx = 10, nu = 2) with SR of 0.97. T = 100 data points were
used for training (SNR of 5dB). 500 trials are depicted for each method/parametrization.
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(c) Parametrization: Θp (polytopic), c.f., (5.6).

Figure 5.6 – Normalized H∞ error for two methods: (i) Weighted EE : minθ∈Θ Ew
2 (θ), c.f.

Section 5.4.1, (ii) LREE : minθ∈Θ J̄λ(θ), c.f. Section 5.4.2. All three parametrizations of
S+ are used: Θm (LMI, c.f. (5.4)), Θl (LMI, c.f. (5.2)), and Θp (polytopic, c.f. (5.6)).
The experimental setup is identical to that described in Figure 5.5. True models are 10th

order (nx = 10, nu = 2) with SR of 0.97. T = 100 data points were used for training (SNR
of 5dB). 500 trials are depicted for each method/parametrization.
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(c) True spectral radius: 0.999. Note the different x-axis scale.

Figure 5.7 – Normalized H∞ error for two methods: (i) Weighted EE : minθ∈Θl
Ew

2 (θ), c.f.
Section 5.4.1, (ii) LREE : minθ∈Θl

J̄λ(θ), c.f. Section 5.4.2. The LMI parametrization Θl

of S+ is used, c.f. (5.2)). True models are 10th order (nx = 10, nu = 2), and T = 100 data
points were used for training. 500 trials are depicted for each SR.
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Figure 5.8 – Normalized H∞ error for two methods: (i) Weighted EE : minθ∈Θp Ew
2 (θ), c.f.

Section 5.4.1, (ii) LREE : minθ∈Θp J̄λ(θ), c.f. Section 5.4.2. The polytopic parametrization
Θp of S+ is used, c.f. (5.6)). True models are 10th order (nx = 10, nu = 2), and T = 100
data points were used for training. 500 trials are depicted for each SR.
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Figure 5.9 – Normalized H∞ error for two methods: (i) Weighted EE : minθ∈Θp
Ew

2 (θ), c.f.
Section 5.4.1, (ii) LREE : minθ∈Θp

J̄λ(θ), c.f. Section 5.4.2. The polytopic parametrization
Θp of S+ is used, c.f. (5.6)). True models are 10th order (nx = 10, nu = 2), and T = 100
data points were used for training. 500 trials are depicted for each SR.

5.5.2 Scalability

In this section we illustrate the difference in scalability between the LMI parametrization

(Θl) of S+ introduced in [94], c.f. (5.2), and the polytopic parametrization (Θp) intro-

duced in Section 5.3.2, c.f., (5.6). Specifically, we compare the following four optimization

problems,

i. Weighted EE (polytopic, Θp), i.e., the QP minθ Ew
2 (θ) s.t. θ ∈ Θp,

ii. Weighted EE (LMI, Θl), i.e., the SDP minθ Ew
2 (θ) s.t. θ ∈ Θl,

iii. LREE (polytopic, Θp), i.e., the SDP minθ J̄λ(θ) s.t. θ ∈ Θp,

iv. LREE (LMI, Θl), i.e., the SDP minθ J̄λ(θ) s.t. θ ∈ Θl.
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Each experimental trial consists of the following steps: (i) a stable positive system with

state dimension nx is randomly generated using Matlab’s rand function; A ∈ Rnx×nx has

a banded structure with bandwidth equal to 5. (ii) the system is simulated for T = 104

time steps; x̃1:T is obtained by adding white noise to the simulated states at SNR equal

to 20dB. (iii) Each of the four methods listed above are run on a desktop computer (Intel

i7, 3.40CHz, 8GB RAM). Programs using the LMI parametrization are formulated with

Yalmip [133], whereas programs using the polytopic parametrization are formulated with

SPOT [233]. All programs are solved with Mosek v7.0.0.119. (iv) this process is repeated

5 times for each nx.

The results are presented in Figure 5.10, from which we make the following observations.

Foremost, it is clear that the methods using the polytopic parametrization have superior

scalability compared to the LMI parametrization. Specifically, Weighted EE (Θp) and LREE

(Θp) each have complexity that grows approx. linearly with state dimension; the approaches

using Θl have complexity that grows approx. cubicly. Furthermore, the methods using Θl

begin to exhaust available memory between nx = 1100 and nx = 2000. The methods

using Θp can handle nx > 104 before memory becomes a limitation. Finally, we note

that no explicit attempts to exploit the sparsity of the system were made; use of solvers and

parsers designed to exploit sparsity could improve performance (i.e. reduce computationally

complexity), especially for the SDPs associated with the LMI parametrization, c.f., e.g., [6].
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Figure 5.10 – Computation time as a function of system size, for four identification strategies;
c.f. Section 5.5.2 for details. For each value of nx, 5 trials were conducted. The slopes
of the lines of best fit are: 1.08 (EEW, Θp), 3.16 (EEW, Θl), 1.09 (LREE, Θp), and 2.74
(LREE, Θl).



5.5 Case studies 155

5.5.3 Identification of structured systems

In this section, we illustrate the utility of the bound on simulation error developed in Section

5.4.3 for identification of structured systems. Incorporating a priori structural information

is recognized as a central problem in the industrial application of system identification

algorithms [131, §6]; e.g., it may be known that two identical components are connected in

series, and we would like our model to respect this structural property. To enforce model

stability under structural constraints of the form A(i, j) = A(k, l), with a parametrization

F = EA for diagonal E, we require F (i, j)/E(i, i) = F (k, l)/E(k, k), which is not jointly

convex in F and E.

To circumvent this nonconvexity, one may consider a two-step approach, solving first (5.35a)

and then (5.35b):

{Ed, ?} := arg min
θ∈Θ̄d

Ew
1 (θ) (5.35a)

Σd := {Ad, Bd, Cd, Dd} = arg min
{A,B,C,D}≥0

Ew
1 (θ) (5.35b)

s.t. 1′EdA− 1′Ed + 1′C ≤ −δ1′,
A(i, j) = A(k, l), F = EdA, K = EdB,

for all i, j, k, l for which we wish to enforce such constraints, based on a priori structural

knowledge. Here, θ = {E,F,K,C,D} with E ∈ D, and Θ̄d is defined in (5.32). The idea

is that (5.35a) furnishes us with an approximation of the `1 gain from equation error to

simulation error, diag (Ed). Then, in (5.35b), E is fixed as E = Ed such that the structural

constraints A(i, j) = A(k, l) are convex in A.

To demonstrate the advantages of enforcing θ ∈ Θ̄d over the regular polytopic stability

condition θ ∈ Θp, c.f. (5.6), we compare the approach in (5.35) to the following similar

two-step procedure:

{Es, ?} := arg min
θ∈Θp

Ew
1 (θ) (5.36a)

Σs := {As, Bs, Cs, Ds} = arg min
{A,B,C,D}≥0

Ew
1 (θ) (5.36b)

s.t. 1′EsA− 1′Es ≤ −δ1′,
A(i, j) = A(k, l), F = EsA, K = EsB,

Notice that in (5.35) we enforce the dissipation inequality p′A−p′+1′C ≤ −δ1′, whereas in

(5.36) we simply enforce the stability condition p′A− p′ < 0. The difference between these

two conditions is illustrated by identifying a model Σ with structure of the form:

A =

[
A11 A12

A21 A22

]
, B =

[
B1 0

0 B2

]
, C =

[
C1 0

]
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where A11 = A22 and B1 = B2. The interpretation is that Σ represents two identical

subsystems, that are coupled by A12 and A21, however only the first subsystem contributes

directly to the measured plant output.

We generate a dataset from a model Σ̃ with parameters:

A11 = [0.2, 0.7; 0.5, 0.4], A22 = [0.5, 0.2; 0.4, 0.7],

A12 = [0, 0.001; 0, 0.02], A21 = [0.01, 0.05; 0.03, 0.01],

B1 = [0.1; 0], B2 = [0.2, 0], C1 = [1, 0].

To form the training dataset ỹ and x̃ were taken to be the true simulated quantities,

corrupted by additive Gaussian noise. Notice that Σ̃ is not in the model class, as there

is some mismatch between the two subsystems that are assumed to be identical.

The normalized (simulation) error of each identified model, defined as Es
1/
∑

t |ỹt|, for 1000

experimental trials is plotted in Fig. 5.11, from which it is evident that (5.35) outperforms

(5.36). Greater insight can be gained by studying Fig. 5.12, which depicts the equation error

of Σd (from (5.35)) and Σs (from (5.36)), for a typical experimental trial. The `1 gain from

ε to Es
1 for the true model Σ̃ is given by [4.66, 5.44, 0.09, 0.11], for each state, respectively;

i.e. equation error in x1 and x2 contribute most significantly to simulation error. In this

trial, diag (Ed) = [4.11, 4.51, 0.25, 0.30] and diag (Es) = [1.03, 1.34, 1.11, 1.09]× 10−4. As E

functions as a weight on equation error, (5.35) will prioritize minimization of equation error

in x1, x2, at the expense of poor fit in x3, x4; c.f. Fig. 5.12. This accounts for the superior

performance of Σd over Σs, in Fig. 5.11.
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Figure 5.11 – Normalized simulation error for models Σd, identified by (5.35), and Σs, identified
by (5.36). 1000 experimental trials were conducted.
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Figure 5.12 – Equation error for Σd from (5.35), and Σs from (5.36). The approach of (5.35)
detects that equation error in x1 and x2 contributes most significantly to simulation error,
and returns a model that achieves good fit in these states, at the expense of poor fit in x3

and x4, due to structural constraints.

5.6 Algorithms for distributed identification

In this section we exploit the polytopic parametrization of stable positive systems, Θp,

introduced in Section 5.3.2 and present scalable distributed algorithms for minimization of

the quality-of-fit criteria derived in Section 5.4.

5.6.1 Problem scope and set-up

Distributed optimization is a rich subject that finds application in a variety of fields, each

with their own goals, assumptions and terminology. Before proceeding, let us clarify the

scope of the problem that we consider in this section. The main challenge that we address is

scalability of the search for a model subject to stability constraints. Consider minimization

of equation error (in the state), Ee
2 , as defined in (5.8). Equation error can be trivially

decomposed as

Ee
2 =

nx∑
i=1

{ T∑
t=1

|x̃t+1(i)−A(i, :)x̃t −B(i, :)ũt|2
}
, (5.37)

i.e., the sum of nx independent cost functions, each of which depend only on the decision

variables associated with the ith row of A and B. In the absence of any stability constraints,

minimization of (5.37) can be carried out in a distributed way, in the sense that A(i, :) and

B(i, :) can be fit independently of A(j, :) and B(j, :), i 6= j. Model stability constraints
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introduce coupling between rows. For convex parametrizations of stable models based on

LMIs, e.g. Θm and Θl, decoupling these constraints is nontrivial. When A is sparse, as is

often the case for networks of dynamical systems, these LMIs may inherit a sparsity pattern

characterized by a chordal graph. Chordal sparsity permits a decomposition of the problem

for which more efficient solution methods are applicable, c.f., e.g., [139, 244]. In general,

identification of large-scale systems with non-sparse A, subject to LMI stability constraints,

leads to large, dense SDP that are computationally intractable.

For positive systems, the situation is fundamentally different. In the polytopic parametriza-

tion of stable models Θp, each column of the linear stability condition 1′F−1′E < 0 in (5.6)

can be checked independently; i.e., stability is verified by i = 1, . . . , nx linear inequalities,

each of which depends only on the ith column of F . In other words, the linear stability

condition decomposes into simpler independent conditions, even when A (and, therefore,

F ) is non-sparse.

With this in mind, the purpose of this section is to make explicit the ways in which the

polytopic parametrization Θp of S+ permits distributed optimization of the convex quality-

of-fit criteria outlined in Section 5.4. By distributed , we mean decomposition of the problem

into minimization of the sum of many ‘local’ cost functions, each of which depends only

on a subset of the decision variables, for the purpose of improved scalability (namely:

methods that require less memory). The problems we consider are not always completely

separable; i.e., the stability constraints may couple the variables associated with each local

cost function. In our context, this coupling is due to the fact that equation error permits

a ‘row-based’ decomposition, as in (5.37), whereas the stability condition (5.6) allows for a

‘column-based’ decomposition, when formulated with F = EA.

As discussed, for positive systems decomposability of the stability constraints does not

depend on sparsity. Nevertheless, sparsity of A (and B) is common when modeling large-

scale networks of dynamical systems; e.g., when each subsystems is only directly connected

to a few neighboring subsystems within the network. When a sparse system representation

is desired, we shall assume that the sparsity patterns (i.e., locations of the nonzero elements)

of A and B are known a priori. This is a strong assumption, not valid in all applications;

however, there are many settings in which the topology of the network is explicitly known,

e.g., the interconnection of roads. Furthermore, the problem of inferring the topological

structure of networks of dynamical systems from measured data has received increased

attention as of late, c.f., e.g., [146, 205]. To characterize the sparsity of A, we define the

‘row neighbors’ of the ith row, and ‘column neighbors’ of the ith column by nari := {j :

A(i, j) 6= 0}, and naci := {j : A(j, i) 6= 0}, respectively. The row and column neighbors of

B are given by nbri := {j : B(i, j) 6= 0}, and nbci := {j : B(j, i) 6= 0}, respectively.

Hitherto, we have discussed separability of the identification problem in terms of the decision

variables. It is worth emphasizing that each ‘local’ cost function in (5.37) depends on the

entire state and input sequence, x̃1:T and ũ1:T , respectively. When the system is sparse,

the ith local cost function depends on the states x̃1:T (nari ) and inputs ũ1:T (nbri ) associated
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with its row neighbors. If each local cost function is assigned its own processor, then it is

apparent that communication of problem data x̃ and ũ between processors is required. In

Section 5.6.2 and 5.6.3, we assume that this communication is reliable (i.e. problem data is

shared perfectly). In Section 5.6.4, we consider game-theoretic approaches for distributed

optimization, useful in settings where communication of decision variables is unreliable (e.g.,

packet loss).

5.6.2 Distributed minimization of weighted equation error

Weighted equation error, as in (5.11), can be decomposed as

Ew
2 =

nx∑
i=1

nx∑
j=1

{
|Ã(i, j)E(i, i)− F (i, j)|2 + |B̃(i, j)−B(i, j)|2

}
, (5.38)

i.e., the sum-of-squares of the elements of the matrices ÃE − F and B̃ − B. For F = AE,

the stability condition F1− E1 ≤ −δ1 can be checked ‘row-by-row’. Therefore, by taking

‘row-based’ decomposition of the system in which θ = {E,F}, θi = {E(i, i), F (i, nari )} and

Ew
i (θi) :=

∑
j∈nari

|Ã(i, j)E(i, i)− F (i, j)|2

it is apparent that minθ∈Θp ‖ÃE − F‖2F is equivalent to

min
θ≥0

nx∑
i=1

Ew
i (θi), s.t. F1− E1 ≤ −δ1. (5.39)

Problem (5.39) is completely separable, and may be solved as the independent collection of

subproblems

min
θi
Ew
i (θi), s.t. F (i, nari )1− E(i, i) ≤ −δ, i = 1, . . . , nx, (5.40)

each of which depends only on θi. Each problem in (5.40) is a linearly constrained quadratic

program, for which efficient solvers are available.

5.6.3 Distributed minimization of Lagrangian relaxation of equation error

Lagrangian relaxation of equation error, i.e. J̄λ as defined in (5.23), can also be decomposed

into ‘local’ cost functions, in the style of (5.37). To see this, let us write (5.21) as

J̄λ(θ, t) = sup
∆

∆′Ξ∆ + ∆′ξt, (5.41)
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where θ = (E,F,K), Ξ = I −H ′E−E′H and ξt = H ′ε̄t. When E ∈ D, as in the case when

using the polytopic set Θp, Ξ is also diagonal provided H ∈ D. Then,

J̄λ(θ, t) = sup
∆

∑nx

i=1
∆(i)′Ξ(i, i)∆(i) + ∆(i)′ξt(i), (5.42)

=
∑nx

i=1
sup
∆
{∆(i)′Ξ(i, i)∆(i) + ∆(i)′ξt(i)},

:=
∑nx

i=1
J̄i(θi, t),

for θi = {E(i, i), F (i, nari ),K(i, nbri )} By defining J̄i(θi) :=
∑T

t=1 J̄i(θi, t), it is apparent that

J̄λ(θ) =
∑T

t=1
J̄λ(θ, t) =

∑nx

i=1
J̄i(θi). (5.43)

With this definition of J̄i, minθ J̄λ(θ) is equivalent to

min
θ≥0

nx∑
i=1

J̄i(θi), s.t. 1′F − 1′E ≤ −δ1′. (5.44)

The stability constraint, which can be enforced ‘column-by-column’, introduces coupling

between θi and θj . This means that (5.44) cannot be decomposed into independent sub-

problems, as in (5.40). Fortunately, (5.44) is well suited to the alternating direction method

of multipliers (ADMM); c.f. Section 2.2.3 for a brief introduction to the method. For convex

functions f and g, ADMM solves problems of the form

min
θ,z

f(θ) + g(z), s.t. Aθ +Bz = c, (5.45)

by alternately minimizing the augmented Lagrangian,

Lρ = f(θ) + g(z) + µ′(Aθ +Bz − c) +
ρ

2
‖Aθ +Bz − c‖22, (5.46)

w.r.t. θ and z, i.e., at the kth iteration, θk, zk and µk are updated according to:

θk+1 = arg min
θ

Lρ(θ, z
k, µk),

zk+1 = arg min
z

Lρ(θ
k+1, z, µk),

µk+1 = µk + ρ(Aθk+1 +Bzk+1 − c).

Here µ is a Lagrange multiplier, and ρ > 0 is a user-specified (scalar) penalty parameter.

To solve (5.44) with ADMM, we introduce duplicates of the decision variables, i.e. z =

{Ez, F z}, with zi = {Ez(i, i), F z(i, nar)} for i = 1, . . . , nx. Then (5.44) is equivalent to

min
θ≥0,z≥0

nx∑
i=1

J̄i(θi) +

nx∑
j=1

I−
(
1′F z(nacj , j)− Ez(j, j) + δ

)
, s.t. θ = z, (5.47)
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where I− is the indicator function for nonpositive reals,

I−(x) =

{
0 x ≤ 0

∞ x > 0
. (5.48)

Then, at the kth iteration, update θ, z and µ by solving:

θk+1
i = arg min

θi≥0
J̄i(θi)− µ′iθi +

ρ

2
‖θi − zki ‖22, (5.49a)

zk+1
ci = arg min

zci≥0
µ′cizci +

ρ

2
‖θk+1
ci − zci‖22, (5.49b)

s.t. 1′F z(naci , i)− Ez(i, i) ≤ −δ1′

µk+1
i = µki − ρ

(
θk+1
i − zk+1

i

)
, (5.49c)

for i = 1, . . . , nx. Here θci = {E(i, i), F (naci , i)} denotes a partition of the model parameters

by columns, rather than by rows, as in θi; zci and µci are defined analogously. A couple

of comments on this procedure are in order. The update policies (5.49a) and (5.49b) are a

low-dimensional SDP and linearly constrained QP, respectively, to which standard solvers

are applicable. From a distributed optimization perspective, suppose the ith processor is

responsible for storing and updating θi, zi and µi. The update (5.49a) can be performed

with ‘local decision variables’ (i.e. zi and µi); however, the update (5.49b) requires processor

i to communicate with its column neighbors, so as to form the quantities θci , zci and µci .

Numerical illustration

We conclude this section with an illustration of the solution of minθ∈Θp J̄λ(θ) via ADMM.

The true system was a randomly generated 5th order positive system (nx = 5, nu = 1): A

had spectral radius equal to 0.99; both A and B were dense. We set C = 1′. This system

was simulated for T = 100 time steps, and the simulated states were corrupted by white

noise (10dB) to generate training data. ADMM was initialized with θ = z = 0 (i.e. all

parameters set to zero), µ = 0 and ρ = 1.

From Figure 5.13 we see that ADMM converges to a solution with the same quality-of-

fit (measured by H∞ and H2 error) as that from an interior point method (IPM) within

100 iterations. We also observe that Lagrangian relaxation combined with model stability

constraints has something of a ‘regularizing effect’ on the solution; i.e., the global minimizer

of minθ∈Θp J̄λ(θ) is different to the (stable) minimizer of equation error. This can be seen

from Figure 5.13(a) and (b). In fact, the model from LREE has better ‘generalizability’

(i.e. lower H∞ and H2 error) compared to the stable minimizer of equation error; c.f.

Figure 5.13(c) and (d). The regularizing effect of LR and model stability constraints was

also observed in Chapter 3, c.f., Section 3.5.2. Application of ADMM to the identification

of very high-dimensional systems (e.g. hundreds of thousands of state variables) is a subject

for further research.
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Figure 5.13 – Illustration of ADMM for the solution of minθ∈Θp J̄λ(θ). ADMM converges
to a solution with the same quality-of-fit (measured by H∞ and H2 error) as that from
an interior point method (IPM). Notice that only the final value of the solutions from
IPMs are plotted. Lagrangian relaxation of equation error (LREE) demonstrates superior
performance compared to weighted equation error.

5.6.4 Game-theoretic approaches

The distributed formulation of Section 5.6.3 gave no consideration to robustness against

imperfect communication between processors. In this section, we address this by adopting

a recently developed approach to distributed optimization, in which the solution is obtained

from the Nash equilibrium of a state-based potential game [120, 145]. Such an approach

is known to be robust to delays in communication and heterogeneous clock rates [145].

In what follows, we show how the game-theoretic approach of [121] can be used to solve

minθ∈Θp J̄λ(θ) in a distributed fashion.
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The method of [121] applies to optimization problems of the form

min
θi≥0

∑
i∈N

φi(θi), (5.50a)

s.t.
∑
i∈N

Qki θi + qk ≤ 0, k = 1, . . . ,m. (5.50b)

Here N = {1, . . . , n} denotes a set of n agents. Each agent i has its own set of local

decision variables, θi, and local cost function φi(θi), assumed to be convex and differentiable.

The agents’ decisions are constrained by m linear constraints {∑i∈N Q
k
i θi + qk ≤ 0}mk=1.

Furthermore, it is assumed that each agent i can only communicate with its neighboring

agents j ∈ Ni.

The optimization problem minθ∈Θp J̄λ(θ) can be put into the form (5.50) by setting θi =

{E(i, i), F (i, nari ),K(i, nbri )} (as in ADMM), φi(θi) = J̄i(θi), and choosing {Qki , qki } so as to

encode the stability constraint (5.6), i.e.,∑
i∈N

Qki θi + qk ≤ 0 ⇐⇒ 1′F (:, k)− E(k, k) ≤ −δ, k = 1, . . . , nx.

As we have discussed, the major obstacle to be overcome in a distributed solution to prob-

lems of the form (5.50) are the constraints (5.50b) introduce coupling between decision

variables θi and θj , i 6= j. The method proposed in [121] decouples these constraints by

auxiliary variables ei = {eki }mk=1 for i ∈ N . Here eki denotes the ith agent’s estimate of the

kth constraint, i.e. eki ≈
∑

i∈N Q
k
i θi + qk. A state-based potential game equivalent to (5.50)

can be defined by introducing a state ζi = (θi, ei) for each agent i ∈ N , as well as a state

action ζ̂i = (θ̂i, êi). Here, êi = {êki }mk=1 with êki = {êki→j}j∈Ni . The term êki→j denotes the

change in the estimation of the kth constraint that agent i communicates to agent j ∈ Ni.

Agent states then evolve according to the dynamics (θ̃, ẽ) = f(ζ, ζ̂) given explicitly by

θ̃i = θi + θ̂i (5.51a)

ẽki = eki +Qki v̂i +
∑
j∈Ni

êkj→i −
∑
j∈Ni

êki→j . (5.51b)

The introduction of estimation variables ei enables the constraints in (5.50b) to be decou-

pled. Specifically, each agent is assigned its own cost function, which depends only on the

states (and actions) of neighboring agents (c.f. [121, §III-B] for details):

φ̄i(ζ, ζ̂) = φi(θi) + β
∑
j∈Ni

∑
k=1m

(
max(0, ẽkj )

)2
. (5.52)

Here β > 0 denotes a trade-off parameter, which balances the ith agent’s local cost function

with the penalty on inconsistencies between estimation terms. To solve (5.50), each agent

i ∈ N minimizes its own individual cost function φ̄i. Almost any optimization policy can be
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employed, gradient play is a popular choice (c.f., e.g., [120, §4]). At each iteration, the ith

agent’s state is updated in accordance with (5.51), with expressions for θ̂i and êki→j given

in [121, §4]. Gradient play is particularly well suited to minθ∈Θp J̄λ(θ), given the simplified

expressions available for computing the gradient of the Lagrangian relaxation, c.f., 3.3.4.

Finally, it is clear that the gradient play policy outlined above requires agent i to commu-

nicate with neighboring agents j ∈ Ni. However, unlike the ADMM algorithm in §5.6.3,

it is not clear how this neighbor set should be specified. In fact, any specification of the

neighbor sets {Ni}i∈N that gives rise to an connected, undirected communication graph is

sufficient; c.f. [121, Theorem 1]. The effect of different choices of {Ni}i∈N on convergence

properties, as well as application of this method to the identification of large-scale systems,

is the subject of ongoing research.

5.7 Conclusions

The main message of this chapter is that several problems in system identification are sub-

stantially simplified for positive systems, by leveraging stability and performance conditions

based on element-wise linear inequalities. In particular, we have introduced a polytopic

parametrization of all stable positive systems. Minimization of existing quality-of-fit cri-

teria, such as weighted equation error [94, 113], subject to model stability conditions then

takes the form of a quadratic program. In contrast, parametrizations of general stable LTI

systems necessarily involve LMIs, and the analogous identification tasks result in semidefi-

nite programs.

This chapter has also introduced a new convex quality-of-fit criterion, Lagrangian relax-

ation of equation error (LREE), as an alternative to weighted equation error. Although

this construction involves a LMI, minimization of LREE has been shown, empirically, to

produce significantly more accurate models compared to minimization of weighted equa-

tion error. Furthermore, unlike Lagrangian relaxation of simulation error, c.f. Chapter 3,

LREE for high dimensional systems with sparse structure is readily decomposed into many

smaller LMIs. When combined with the polytopic parametrization of stable models, this

decomposition permits minimization of LREE by distributed methods such as ADMM and

game-theoretic approaches.

5.8 Proofs

5.8.1 Proof of Theorem 5.1

First, let us establish that for θ = {E,F} ∈ Θm, A := E−1F ≥ 0. Notice that positive

semidefiniteness of (5.5) implies that E + E′ � P + δI � 0. This implies that E is an
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M-matrix, as −E ∈ Mnx×nx , c.f. Definition 5.3. Therefore, E−1 ≥ 0, which ensures that

E−1F ≥ 0 for F ≥ 0.

To prove that Θm contains only stable models, note that Theorem 5.1 is in fact a special case

of Lemma 4.2 (c.f., also, Lemma 4 and Corollary 5 in [141, Section 3.2]) with −E ∈Mnx×nx

and F ≥ 0. Therefore θ = {E,F} ∈ Θm implies E−1F ∈ S+.

To prove that Θm contains every stable positive system, note that Θm is a generalization of

Θm, which is a parametrization of all stable positive systems, c.f. (5.2) and [94]. Specifically,

Θm is equivalent to Θl when E = P ∈ D. Therefore, every A ∈ S+ has a representation in

Θl, and also in Θm.

5.8.2 Proof of Theorem 5.2

We first establish that for θ = {E,F} ∈ Θp, A := E−1F ≥ 0. This is trivial, because E ∈ D
and (5.6) implies E ≥ δI.

Let us now prove sufficiency, i.e. θ ∈ Θp =⇒ A := E−1F ∈ S+. For clarity, let

E = diag (e). As F = FA, (5.6) implies

1′F − 1′E = 1′EA− 1′E = e′A− e′ ≤ −δ1′ < 0 (5.53)

which, from Lemma 5.1, implies A ∈ S+.

Let us now prove necessity, i.e., A ∈ S+ =⇒ ∃{E,F} ∈ Θp. If A ∈ S+ then Lemma 5.1

implies existence of e ∈ Rnx++ such that e′A−e′ < 0. For any δ > 0, we can scale e such that

e′A − e′ ≤ −δ1′. With this scaled e, let E = diag (e) and F = EA. Then (5.53) implies

{E,F} ∈ Θp.

5.8.3 Proof of Theorem 5.3

By construction J̄λ(θ) is a convex upper bound on
∑T

t=1 ‖εt‖22; c.f., (5.23). In this section

we derive the LMI in (5.24). First, notice that

ε̄t = [E,−F,−K]︸ ︷︷ ︸
EFK

[
x̃′t+1, x̃

′
t, ũ
′
t

]′︸ ︷︷ ︸
φt

. (5.54)
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Then, recalling the explicit definition of J̄λ(θ, t) from (5.22),

J̄λ(θ) :=

T∑
t=1

J̄λ(θ, t) =

T∑
t=1

|H ′ε̄t|2(H′E+E′H−I)−1

=

T∑
t=1

tr
(
φtφ
′
tE

F ′
K H(H ′E + E′H − I)−1H ′EFK

)
= tr

(
T∑
t=1

φtφ
′
tE

F ′
K H(H ′E + E′H − I)−1H ′EFK

)
= tr

(
ΦEF

′
K H(H ′E + E′H − I)−1H ′EFK

)
= tr (ΦR) ,

where Φ is defined in (5.25) and R is a slack variable such that

R � EF ′K H(H ′E + E′H − I)−1H ′EFK . (5.55)

By the Schur complement, (5.55) is equivalent to the LMI in (5.24).

5.8.4 Proof of Lemma 5.4

By an application of Lemma 5.3, with D = 0 and B = Inx(:, j), the `1-gain of ε(j) 7→ z is

equal to q(j), given by

min
q∈Rnx++

q(j) s.t. C ′1 + (A′ − I)q < 0. (5.56)

We must show that p(j) = q(j). Suppose p(j) < q(j). As p is in the feasible set of (5.56),

this implies that q is not the optimal solution of (5.56), and thus p(j) ≥ q(j). Suppose, that

p(j) > q(j). The jth row of the constraint in (5.31) is p(j)(1−A(j, j))−∑nx
i 6=j p(i)A(j, i) >

(C ′1)(j) which also holds for q. As A is Schur stable, A(j, j) < 1, q(j) < p(j), implies

q(i) < p(i) for i 6= j. This implies that p is not the optimal solution of (5.31), and thus

p(j) = q(j).

5.8.5 Proof of Theorem 5.4

To prove the claim that Ew
1 is an upper bound for the 1-norm of output error, Es

1, we need

only consider the E that satisfies (5.32) with minimal
∑

iE(i, i), as Ew
1 will only be larger

for any other choice of E. For convenience, define e such that E = diag (e). From (5.27),

to prove Ew
1 ≥ Es

1 it is sufficient to show that
∑

t ‖Eεt‖1 ≥
∑

t ‖zt‖1, where ε and z are

the input and output of (5.29). Let zt,j denote the output of (5.29) at time t, in response

to the jth input channel ε(j) alone, i.e. when ε(i) = 0 for i 6= j. As (5.29) is linear, by
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superposition we have zt =
∑nx

j=1 zt,j . Therefore,

T∑
t=1

‖zt‖1 =

T∑
t=1

‖
nx∑
j=1

zt,j‖1 ≤
T∑
t=1

nx∑
j=1

|zt,j | ≤
T∑
t=1

nx∑
j=1

e(j)|εt(j)| =
T∑
t=1

‖Eεt‖1,

holds for all T . Here the second inequality holds because e(j) is an upper bound for the

`1-gain from ε 7→ z, by Lemma 5.4.
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Chapter 6

Conclusion

The central theme of this thesis has been the scalable application of convex optimization to

problems arising in data-driven modeling of dynamical systems, specifically, model insta-

bility and nonconvexity of quality-of-fit criteria, such as simulation error. To address these

challenges, we have developed new convex parametrizations of stable models and convex

quality-of-fit criteria, as well as efficient algorithms to optimize the latter over the former.

Specifically, Chapter 3 presented specialized interior point algorithms for Lagrangian re-

laxation of simulation error. Hitherto, Lagrangian relaxation had been used to generate

convex approximations to simulation error (a.k.a. output error) and guarantee model sta-

bility, however, the large-dimension of the resulting semdefinite programs (SDPs) limited

practical utility. The custom algorithms developed in this thesis reduce computational com-

plexity to linear growth in the length of the training dataset, down from the cubic growth

exhibited by generic SDP solvers. This new algorithm enabled empirical comparisons to

established methods, such as Nonlinear ARX, in which superior generalization to new data

was demonstrated.

Chapter 4 introduced model stability constraints into the maximum likelihood identification

of dynamical systems, thereby extended some of the ideas from Chapter 3 to a stochastic

setting. Lagrangian relaxation was combined with the expectation maximization (EM)

algorithm to generate tight lower bounds to the likelihood that can be optimized over

a convex parametrization of all stable linear systems, via semidefinite programing. Two

formulations of EM were proposed: one uses states as latent variables, the other uses

disturbances. It was shown, via both theoretical and empirical analysis, that bounds based

on latent states perform better when the effect of disturbances in more significant than

measurement noise; the converse is true for the latent disturbances formulation when the

situation is reversed.

Finally, Chapter 5 considered the special case of identification of internally positive systems.

Such systems have received increased attention from the control community in the past

decade, especially in the context of distributed analysis and design for large scale networks.
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The main message of Chapter 5 is that many of the convex constructions derived for generic

systems are greatly simplified when the dynamics are positive. Convex parametrizations of

stable models defined by polytopic sets, and quality-of-fit criteria that can be minimized by

linear and quadratic programing were proposed; analogous constructions for generic systems

require linear matrix inequalities (LMIs) and lead to SDPs. These simplified stability and

performance conditions permit identification of large-scale positive systems via distributed

optimization.

In this concluding chapter, some open problems and directions for future research are dis-

cussed.

6.1 Open problems and directions for future work

EM for identification of stable nonlinear systems

It would be useful to extend the methods presented in Chapter 4 to identification of non-

linear dynamical systems; in fact, our early work [237] on EM with latent disturbances

outlined a framework for such problems. The major challenges associated with the nonlin-

ear setting are as follows. First, it was shown in Chapter 4 that Lagrangian relaxation (LR)

can be used to develop tight bounds on the likelihood that are compatible with a convex

parametrization of stable models. For linear systems, LR leads to semidefinite programs.

For nonlinear systems, LR leads to convex constructions that are not necessarily computa-

tionally tractable; e.g., LR of simulation error for nonlinear systems requires computing the

supremum of a nonlinear, nonconvex function. When the system nonlinearities are given

by polynomials, sum-of-squares programing can be used to approximate the supremum;

however, the resulting SDPs are very large, c.f. Section 2.4.2. One solution is to consider

LR of linearized quantities, e.g., linearized simulation error as in Chapter 3. Working with

linearized quantities improves tractability; however, it is not yet clear whether the resulting

relaxations can be designed to give tight bounds on the likelihood.

Second, the latent disturbances formulation of EM requires samples from the joint smooth-

ing distribution of disturbances, pθ(x1, w1:T |y1:T ). In the linear-Gaussian setting, (the mean

and variance of) this distribution can be computed in closed form; c.f. Section 4.3.2. In the

nonlinear non-Gaussian setting, disturbance smoothing is still an active area of research; c.f.

[157] for recent work on the disturbance filtering problem. When the model structure is such

that knowledge of states implies knowledge of disturbances, e.g. xt+1 = a(xt, ut) +wt, then

samples w̄t ∼ pθ(wt|y1:T ) can be computed as w̄t = x̄t − a(x̄t, ut), where x̄t ∼ pθ(xt|y1:T )

are generated by, e.g., sequential Monte Carlo methods [204].
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Subspace algorithms for positive systems

As in Chapter 3, the convex quality-of-fit criteria presented in Chapter 5 also depend on

approximate state sequences for their construction. For generic LTI systems, these state

estimates can be generated by subspace algorithms, c.f., Section 2.1.3. However, for the

internally positive systems studied in Chapter 5, subspace algorithms do not, in general,

return state estimates in a basis consistent with a positive realization of the dynamics. The

fundamental problem is that internal positivity is not a property that is preserved under

arbitrary similarity transformations of the dynamics.

One way to modify the standard subspace algorithms for application to positive systems

could involve replacing the singular value decomposition (SVD) in (2.34) with a nonnegative

matrix factorization (NMF), i.e. Oi = NM , where N = Γi ≥ 0 (the nonnegative extended

observability matrix) and M = Xf ≥ 0 (the nonnegative estimated state sequence). Com-

puting such a factorization is nonconvex, so in one sense we have simply traded one difficult

problem for another. Nevertheless, over the past two decades or so NMF has received con-

siderable attention in the machine learning community, especially for unsupervised learning,

as it has been shown to provide useful decompositions of multivariate data, c.f., e.g., [117].

It would be interesting to apply NMF algorithms from the machine learning community

[18, 118] to subspace identification of positive systems.

Connections to machine learning

As discussed in Chapter 2, the task of training a neural network in machine learning is

an example of data-driven modeling of a dynamical system. In particular, the equivalence

between recurrent neural networks (RNNs), popular in applications that process sequential

data such as speech and text, and nonlinear state space models has been well established

[173]. Training of RNNs has, at least conceptually, much in common with the simulation

error minimization problem. Despite this, there has been relatively little interaction between

the system identification and machine learning community. Neural networks have certainly

been utilized in system identification, but mostly as a functional form for the transition

dynamics, e.g., in nonlinear ARX [2, 40, 41]. However, until recently, lessons learned from

training neural networks have not been translated to a system identification setting.

Machine learning has enjoyed considerable success in recent years, especially with advances

in deep learning [116]. One of the most remarkable aspects of this success, is the effectiveness

of first order methods (such as stochastic gradient descent) for minimization of quality-of-

fit criteria (i.e., training error) for neural networks. The efficacy of first order methods for

system identification has been explored in the recent work [85], which proved that gradient

descent, under very mild assumptions on the true model generating the training data,

converges to a global minimizer of output error for LTI state space models. It has long

been known that, asymptotically, every stationary point of the output error criterion is also

a global minimum [213], however, [85] appears to be the first work to provide polynomial
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bounds on the convergence. The result is clearly an important stepping stone towards

better understanding the training of nonlinear dynamical systems constituting RNNs, and

it will be interesting to see what impact these findings have on the system identification

community.

On the other hand, it will be interesting to see whether developments from system identifi-

cation can be translated to machine learning applications. For instance, a crucial ingredient

in the success of RNNs for speech and text processing has been the development of model

structures capable of learning long-range dependencies in the training data. Such model

structures include long-short term memory (LSTM) networks [91], Neural Turning Machines

[78], and memory networks [254]. It may be possible that representations of dynamical sys-

tems developed in the identification community (e.g. parametrizations of stable models)

end up being useful for refining the structure of neural networks in certain applications.
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la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non
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[212] T. Söderström. Errors-in-variables methods in system identification. Automatica, 43
(6):939–958, 2007.
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