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Stability Analysis of Discrete-Time Neural
Networks With Time-Varying Delay via An

Extended Reciprocally Convex Matrix Inequality
Chuan-Ke Zhang, Yong He, Lin Jiang, Qing-Guo Wang, and Min Wu

Abstract—This paper is concerned with the stability analysis
of discrete-time neural networks with a time-varying delay.
Assessment of the effect of time delays on system stability requires
suitable delay-dependent stability criteria. This paper aims to
develop new stability criteria for reduction of conservatism
without much increase of computational burden. An extended
reciprocally convex matrix inequality is developed to replace
the popular reciprocally convex combination lemma (RCCL). It
has potential to reduce the conservatism of the RCCL-based
criteria without introducing any extra decision variable due to
its advantage of reduced estimation gap using the same decision
variables. Moreover, a delay-product-type term is introduced for
the first time into the Lyapunov function candidate such that
a delay-variation-dependent stability criterion with the bounds
of delay change rate is established. Finally, the advantages of
the proposed criteria are demonstrated through two numerical
examples.

Index Terms—Discrete-time neural networks, interval time-
varying delay, stability, extended reciprocally convex matrix
inequality, delay-product-type Lyapunov function

I. INTRODUCTION

NEURAL networks have been successfully applied in
a variety of areas such as image processing, pattern

recognition, associative memory, optimization problem, etc.
[1]–[3]. As a prerequisite of those applications, the stability of
neural networks is always required. During the implementation
of artificial neural networks, time delays would be introduced
inevitably due to the finite switching speed of amplifiers and
the inherent communication time between neurons [4]. Those
delay usually results in undesired dynamics like oscillation
and instability. Thus, it becomes an important issue to assess
the effect of delays on the stability of neural networks, which
in turn requires a suitable delay-dependent stability criterion.
This requirement makes the delay-dependent stability analysis
of delayed neural networks (DNNs) become a hot topic in the
past few decades [5]–[7].

For the engineering applications, it is essential to formulate
discrete-time neural networks that are ananalogue of con-
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tinuous ones, while the discretization may not preserve the
dynamics of the continuous-time counter part even for a small
sampling period [8], which promotes the investigation direct
for the discrete-time DNNs. The delay-dependent stability
criteria for the discrete-time DNNs with constant delay have
been discussed in early literature [9]. Later, the stability
analysis of discrete-time DNNs with time-varying delays has
obtained more attention [10]–[20]. Moreover, by taking into
account the unavoidable uncertainties caused by modelling
errors and the resistance/capacitance parameter fluctuations,
many scholars have investigated the robust stability problem
[21]–[30]. Furthermore, several performances characterized by
input-output relationships have been analyzed considering the
existence of both the time delays and the external noises or
disturbances, such as passivity [30]–[33], dissipativity [34],
and extended dissipativity [35].

No matter what type of stability problems are concerned,
the method used for developing delay-dependent criteria is
always the key consideration. In the huge number of liter-
ature, most delay-dependent criteria are obtained under the
framework of Lyapunov function theory and the linear matrix
inequality (LMI) technique [5], since they can be easily ex-
tended to various time-varying delays and can lead to tractable
LMI-based conditions. However, those criteria are sufficient
conditions such that the results are usually conservative. Thus,
how to reduce the conservatism is always an important issue
in the related research [5]. The conservatism of criteria are
dependent on the Lyapunov function candidate and the tech-
niques for estimating the forward difference of this candidate.

During the construction of Lyapunov function for the DNNs,
the delay-based single and/or double summation terms were
added into the typical quadratic Lyapunov function for delay-
free systems to take into account the effect of delays in early
work [15]–[23], [32], [33]. In the following years, based on a
predictable fact that the conservatism-reducing of criteria can
be achieved by constructing more general Lyapunov function,
the delay-dependent criteria were enhanced by using the delay-
partition-based functions [10], [14], [26] and the augmented-
based Lyapunov functions [11]–[13], [27]–[31], [35]. In recent
years, the functions including triple summation terms were
also applied to study the stability analysis of discrete-time
DNNs for further improving the results [11], [12], [24], [31],
[34], [35]. To the best knowledge of authors, all criteria
based on the aforementioned Lyapunov functions do not take
into account the information of delay change rate. For the
continuous DNNs [42]–[44] and the discrete linear time-
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delay systems [41], it is found that the consideration of such
information is helpful to reduce the conservatism. Similarly,
it is expected that the stability criteria of discrete-time DNNs
could be further improved when such information, if available,
is taken into account.

On the other hand, the key issue for estimating the forward
difference of Lyapunov function is to bound the summation
terms [36]. The main attention for this issue in the early
literature is to decrease the bounding gap as much as possible.
Various free-weighting-matrix (FWM) based stability criteria
[14]–[18], [21], [23], [29], [32], [33] were established to
improve the results obtained by the Jensen-based summation
inequality [10], [13], [19], [22], [25], [26], [31]. The conser-
vatism reduction of the FWM-based criteria is achieved by
avoiding some enlargements required by Jensen-based sum-
mation inequality. However, those less conservative treatments
make the criteria include many decision variables. After the
computational complexity becoming another consideration, the
direct bounding method based on summation inequalities once
again becomes the most popular method [11], [12], [24], [27]–
[29], [34], [35]. Very recently, various types of the Wirtinger-
based summation inequalities, tighter than the Jensen-based
summation inequality, were proposed for discrete-time linear
time-delay systems [36]–[38] and also began to be used for the
study the discrete-time DNNs [30]. Another important reason
for the increasing usage of the bounding method is that the
reciprocally convex combination technique [39] can effectively
avoid the direct enlargements required in early literature.
To the best knowledge of the authors, the current attention
for estimating summation terms is mainly paid to develop
much tighter summation inequalities. For example, a general
form of summation inequality, including most existing ones
as special cases, was developed in [48]. However, no work
that focuses on the improvement of the reciprocally convex
combination technique has been reported. This motivates the
present research.

This paper further investigates the stability of discrete-time
DNNs and aims to find possible solutions of the problems
mentioned above. The main contributions of the paper are
summarized as follows:

1) An extended reciprocally convex matrix inequality is
derived. It improves the widely used reciprocally con-
vex combination technique without requiring any extra
decision variable.

2) Inspired by the authors’ previous work [41], a delay-
product-type Lyapunov function is constructed to take
into account the delay change rate information. This is the
first time to study the effect of both the time delays and
their change rate on the stability of discrete-time DNNs.

3) Benefit from those two techniques, two stability criteria
with less conservatism are derived to judge the delay-
dependent stability of discrete-time DNNs.

The remainder of the paper is organized as follows. Sec-
tion II gives problem formulation and necessary preliminar-
ies. In Section III, a less conservative stability criterion is
established by developing an extended reciprocally convex
matrix inequality, and a delay-product-type term is introduced

to derive a delay-variation-dependent stability criterion. Two
numerical examples are considered to demonstrate the benefits
of the proposed criteria in Section IV. Conclusions are given
in Section V.

Notations: Throughout this paper, the superscripts T and −1
mean the transpose and the inverse of a matrix, respectively;
Rn denotes the n-dimensional Euclidean space; Rn×m is the
set of all n × m real matrices; ∥ · ∥ refers to the Euclidean
vector norm; P > 0 (≥ 0) means that P is a real symmetric
and positive-definite (semi-positive-definite) matrix; diag{· · ·}
denotes a block-diagonal matrix; symmetric term in a symmet-
ric matrix is denoted by ∗; and Sym{X} = X+XT . Matrices,
if their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

II. PROBLEM FORMULATION AND PRELIMINARY

Consider the following discrete-time neural networks with
an interval time-varying delay:

y(k + 1) = Cy(k) +Ag(y(k)) +Adg(y(k − d(k))) + J (1)

where y(k) = [y1(k) y2(k) · · · yn(k)]
T ∈ Rn is the

state vector associated with the n neurons; g(y(k)) =
[g1(y1(k)) g2(y2(k)) · · · gn(yn(k))]

T ∈ Rn represents the
neuron activation function; C = diag{c1, c2, · · · , cn} is the
state feedback coefficient matrix; A and Ad are the connection
weight matrices; J = [J1 J2 · · · Jn]T ∈ Rn is a constant ex-
ternal input vector; and d(k) is a time-varying delay satisfying

1 ≤ h1 ≤ d(k) ≤ h2 (2)

and

µ1 ≤ ∆d(k) = d(k + 1)− d(k) ≤ µ2 (3)

where hi and µi, i = 1, 2 are known integers; let h12=h2−h1.
The neuron activation function is assumed to be bounded

and satisfy the following condition:

σ−
i ≤ gi(s1)− gi(s2)

s1 − s2
≤ σ+

i , s1 ̸= s2, i = 1, 2, · · · , n (4)

where σ−
i and σ+

i are known real constants. This type of
activation function is firstly defined in [51].

Suppose y∗ is an equilibrium point of neural network [5],
i.e., y∗ = Cy∗+Ag(y∗)+Adg(y

∗)+J . Using transformation
x(k) = y(k) − y∗, one can shift the equilibrium point y∗ of
(1) to the origin and rewrite system (1) as [10]:

x(k + 1) = Cx(k) +Af(x(k)) +Adf(x(k − d(k))) (5)

where f(x(k)) = [f1(x1(k)) f2(x2(k)) · · · fn(xn(k))]
T and

fi(xi(k)) = gi(xi(k) + y∗i )− gi(y
∗
i ) with fi(0) = 0. Then,

fi(s1)− fi(s2)

s1 − s2
=

gi(s1 + y∗i )− gi(s2 + y∗i )

s1 + y∗i − (s2 + y∗i )

Thus, it follows from (4) and fi(0) = 0 that

σ−
i ≤ fi(s1)− fi(s2)

s1 − s2
≤ σ+

i , s1 ̸= s2 (6)

σ−
i ≤ fi(s)

s
≤ σ+

i , s ̸= 0 (7)
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This paper aims to develop new stability criteria of discrete
time DNN (1) to understand the effect of the delay on system
stability and find the allowable delay region for stability of the
discrete-time DNN. The conservatism of the criterion and the
number of decision variables included in the criteria related to
computational burden are two issues to be addressed for this
research.

Remark 1: To the best of the authors’ knowledge, no
stability criterion with constraint (3) has been reported. Based
on the authors’ previous work [41], this paper will derive a
delay-variation-dependent stability criterion considering this
constraint at the first time.

The Wirtinger-based summation inequalities to be used for
estimating summation term are given as follows:

Lemma 1: ( [36]) For a given symmetric positive definite
matrix R, integers b ≥ a, any sequence of discrete-time
variable x: Z[a, b] → Rn, the following inequality holds

(b−a)
b−1∑
i=a

ηT (i)Rη(i) ≥
[
ϑ1

ϑ2

]T[
R 0
0 ρ(a, b)3R

][
ϑ1

ϑ2

]
(8)

≥
[
ϑ1

ϑ2

]T [
R 0
0 3R

] [
ϑ1

ϑ2

]
(9)

where η(k) = x(k + 1) − x(k), ϑ1 = x(b) − x(a), ϑ2 =

x(b) + x(a) − 2
b∑

i=a

x(i)
b−a+1 , ρ(a, b) = b−a+1

b−a−1 for b − a ̸= 1,

and ρ(a, b) = 1 for b− a = 1.

III. STABILITY ANALYSIS VIA AN EXTENDED
RECIPROCALLY CONVEX MATRIX INEQUALITY

In this section, an extended reciprocally convex matrix
inequality is developed to derive a less conservative stability
criterion. Furthermore, a delay-variation-dependent stability
criterion is established by using a delay-product-type Lya-
punov function.

A. An extended reciprocally convex matrix inequality

During the development of stability criteria for system (1),
the reciprocally convex combination lemma [39] plays an
important role in the estimation of the forward difference of
Lyapunov function, and its simple form is summarized as the
following matrix inequality [40]:

Lemma 2: ( [40]) For a real scalar α ∈ (0, 1), a symmetric

matrix R > 0, and any matrix S satisfying
[R S
∗ R

]
≥ 0, the

following matrix inequality holds[
1
αR 0
0 1

1−αR

]
≥

[
R S
∗ R

]
(10)

In this part, an extended reciprocally convex matrix inequal-
ity is proposed, shown as follows:

Lemma 3: For a real scalar α ∈ (0, 1), a symmetric matrix
R > 0, and any matrix S, the following matrix inequality holds[

1
αR 0
0 1

1−αR

]
≥

[
R+ (1− α)T1 S

∗ R+ αT2

]
(11)

where T1 = R− SR−1ST and T2 = R− STR−1S.

Proof: Define two functions, g1 =
√

1−α
α and g2 = −

√
α

1−α .
Let ε1 and ε2 be two vectors. Then the following holds

Θ1(α) =

[
ε1
ε2

]T [
1
αR 0
0 1

1−αR

] [
ε1
ε2

]
(12)

=

[
g1ε1
g2ε2

]T [
1

1−αR 0

0 1
αR

] [
g1ε1
g2ε2

]
Θ2(α) =

[
ε1
ε2

]T [
R S
∗ R

] [
ε1
ε2

]
(13)

=

[
g1ε1
g2ε2

]T [
α

1−αR −S

∗ 1−α
α R

] [
g1ε1
g2ε2

]
Θ3(α) =

[
ε1
ε2

]T [
(1− α)T1 0

0 αT2

] [
ε1
ε2

]
(14)

=

[
g1ε1
g2ε2

]T [
αT1 0
0 (1− α)T2

] [
g1ε1
g2ε2

]
Thus, carrying out necessary calculations yields

Θ1(α)−Θ2(α)−Θ3(α)

=

[
g1ε1
g2ε2

]T [
R− αT1 S

∗ R− (1− α)T2

] [
g1ε1
g2ε2

]
= (1− α)

[
g1ε1
g2ε2

]T [
R S
∗ STR−1S

] [
g1ε1
g2ε2

]
+α

[
g1ε1
g2ε2

]T [
SR−1ST S

∗ R

] [
g1ε1
g2ε2

]
(15)

Based on R ≥ 0 and Schur complement, the following is true:[
R S
∗ STR−1S

]
≥ 0,

[
SR−1ST S

∗ R

]
≥ 0 (16)

Thus, it follows from (12)-(16) that[
ε1
ε2

]T{[ 1
αR 0
0 1

1−αR

]
−

[
R+ (1− α)T1 S

∗ R+ αT2

]}[
ε1
ε2

]
= Θ1(α)−Θ2(α)−Θ3(α)

≥ 0

Since the above inequality holds for all vectors ε1 and ε2, it
implies (11). This completes the proof. �

Remark 2: Compared with (10), the proposed inequality

(11) does not require
[
R S
∗ R

]
≥ 0. Thus matrix S in (11) can

be chose more freely than that in (10) such that the feasibility
of (11)-based criterion (Theorem 1) is better than the (10)-

based one (Corollary 1). On the other hand, if
[
R S
∗ R

]
≥ 0,

which leads to R−SR−1ST ≥ 0 and R−STR−1S ≥ 0, then
(11) has less estimation gap compared with (10) because of[

R+ (1− α)T1 S
∗ R+ αT2

]
≥

[
R S
∗ R

]
Therefore, the proposed inequality (11) is less conservative
and has potential to derive less conservative results. Moreover,
it is worthy pointing out that inequality (11) just introduces
one free matrix, S, which is also introduced by the original
reciprocally convex matrix inequality (10).
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B. A stability criterion via the new matrix inequality

Constructing an augmented Lyapunov function and applying
the proposed matrix inequality (11), together with Wirtinger-
based inequalities (8) and (9), lead to the following stability
criterion.

Theorem 1: For given integers h1 and h2, system (1) with
time-varying delay satisfying (2) is asymptotically stable, if
there exist positive-definite symmetric matrices P ∈ R3n×3n,
Qi ∈ R2n×2n, and Ri ∈ Rn×n, i = 1, 2, positive-definite
diagonal matrices Hi ∈ Rn×n and Gj ∈ Rn×n, i = 1, 2, 3, 4
j = 1, 2, 3, and any matrix S ∈ R2n×2n, such that the
following LMIs hold:

Υ1 =

[
Ψ1 ET

2 S

∗ −R̃2

]
< 0 (17)

Υ2 =

[
Ψ2 ET

3 S
T

∗ −R̃2

]
< 0 (18)

where

Ψ1 = Φ1(h1) + Φ2 +Φ3 − Φ4a +Φ5 +Φ6

Ψ2 = Φ1(h2) + Φ2 +Φ3 − Φ4b +Φ5 +Φ6

Φ1(d(k)) = FT
2 PF2 − FT

3 PF3 + d(k)Sym{FT
1 P (F2 − F3)}

Φ2 =

[
e1
e5

]T
Q1

[
e1
e5

]
−
[
e2
e6

]T
(Q1 −Q2)

[
e2
e6

]
−
[
e4
e8

]T
Q2

[
e4
e8

]
Φ3 = eTs (h

2
1R1 + h2

12R2)es − ET
1 R̃1E1

Φ4a =

[
E2

E3

]T [
2R̃2 S

∗ R̃2

] [
E2

E3

]
Φ4b =

[
E2

E3

]T [
R̃2 S

∗ 2R̃2

] [
E2

E3

]
Φ5 = Sym

{
4∑

i=1

[Σ1ei − ei+4]
T
Hi [ei+4 − Σ2ei]

}

Φ6 = Sym

{
3∑

i=1

[Σ1(ei − ei+1)− (ei+4 − ei+5)]
T
Gi

× [(ei+4 − ei+5)− Σ2(ei − ei+1)]
}

F1 =

 e0
e0

e10 − e11


F2 =

 e1 + es
(h1 + 1)e9 − e2

(1− h1)e10 + (h2 + 1)e11 − e3 − e4


F3 =

 e1
(h1 + 1)e9 − e1

(1− h1)e10 + (h2 + 1)e11 − e2 − e3


Ei =

[
ei−ei+1

ei+ei+1−2ei+8

]
, i = 1, 2, 3, R̃2=

[
R2 0
0 3R2

]
R̃1 =

[
R1 0
0 ρ(h1)3R1

]
, ρ(h1) =

{
h1+1
h1−1 , h1 > 1

1, h1 = 1

ei = [0n×(i−1)n, I, 0n×(11−i)n], i = 1, 2, · · · , 11
e0 = 0n×11n, es = (C − I)e1 +Ae5 +Ade7

Σ1 = diag{σ+
1 , · · · , σ+

n }, Σ2 = diag{σ−
1 , · · · , σ−

n }

Proof: Construct the following Lyapunov function candi-
date:

V (k) = V1(k) + V2(k) + V3(k) (19)

where

V1(k) = ξT1 (k)Pξ1(k)

V2(k) =
k−1∑

i=k−h1

ξT2 (i)Q1ξ2(i) +

k−h1−1∑
i=k−h2

ξT2 (i)Q2ξ2(i)

V3(k) = h1

−1∑
j=−h1

k−1∑
i=k+j

ηT (i)R1η(i)

+h12

−h1−1∑
j=−h2

k−1∑
i=k+j

ηT (i)R2η(i)

with h12 = h2 − h1, η(i) = x(i+ 1)− x(i) and

ξ1(k) =

[
xT (k),

k−1∑
i=k−h1

xT (i),

k−h1−1∑
i=k−h2

xT (i)

]T

ξ2(k) =
[
xT (k), fT (x(k))

]T
and P > 0, Qi > 0, and Ri > 0, i = 1, 2, are positive-definite
symmetric matrices. It is easily found that the Lyapunov
function satisfies V (k) ≥ ϵ1||x(k)||2 with ϵ1 > 0.

Denote the forward difference of Vi(k), i = 1, 2, 3 as
∆Vi(k) = Vi(k+1)−Vi(k) and define the following notations:

ζ(k) =
[
ζT1 (k), ζT2 (k), vT1 (k), vT2 (k), vT3 (k)

]T
ζ1(k) =


x(k)

x(k − h1)
x(k − d(k))
x(k − h2)

 , ζ2(k)=


f(x(k))

f(x(k − h1))
f(x(k − d(k)))
f(x(k − h2))


v1(k) =

k∑
i=k−h1

x(i)

h1 + 1

v2(k) =

k−h1∑
i=k−d(k)

x(i)

d(k)− h1 + 1

v3(k) =

k−d(k)∑
i=k−h2

x(i)

h2 − d(k) + 1

The forward difference of V1(k) along the solution of
system (5) can be obtained as [35]:

∆V1(k) = ξT1 (k + 1)Pξ1(k + 1)− ξT1 (k)Pξ1(k)

= ζT (k)(d(k)F1 + F2)
TP (d(k)F1 + F2)ζ(k)

−ζT (k)(d(k)F1 + F3)
TP (d(k)F1 + F3)ζ(k)

= ζT (k)Φ1(d(k))ζ(k) (20)

where Φ1(d(k)) is defined in (17).
The forward difference of V2(k) along the solution of

system (5) can be obtained as [30]:

∆V2(k) = ξT2 (k)Q1ξ2(k)− ξT2 (k − h1)(Q1 −Q2)ξ2(k − h1)

−ξT2 (k − h2)Q2ξ2(k − h2)

= ζT (k)Φ2ζ(k) (21)
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where Φ2 is defined in (17).
The forward difference of V3(k) along the solution of

system (5) can be obtained as [46]:

∆V3(k) = ηT (k)(h2
1R1 + h2

12R2)η(k) (22)

−h1

k−1∑
i=k−h1

ηT (i)R1η(i)− h12

k−h1−1∑
i=k−h2

ηT (i)R2η(i)

On one hand, using (8) to estimate the R1 dependent term
yields [46]:

h1

k−1∑
i=k−h1

ηT (i)R1η(i) ≥
[
ε1(k)
ε2(k)

]T[
R1 0
0 ρ(h1)3R1

][
ε1(k)
ε2(k)

]
= ζT (k)ET

1 R̃1E1ζ(k) (23)

where[
ε1(k)
ε2(k)

]
=

[
x(k)− x(k − h1)

x(k) + x(k − h1)− 2v1(k)

]
= E1ζ(k)

On the other hand, for d(k) ̸= hi, i = 1, 2, setting S be
any matrix with approximate dimension and using (9) and the
proposed matrix inequality (11) to estimate the R2 dependent
term yield

h12

k−h1−1∑
i=k−h2

ηT (i)R2η(i)

≥ h12

d(k)− h1
εT3 (k)R̃2ε3(k) +

h12

h2 − d(k)
εT4 (k)R̃2ε4(k)

≥
[
ε3(k)
ε4(k)

]T [
R̃2 +

h2−d(k)
h12

U1 S

∗ R̃2 +
d(k)−h1

h12
U2

][
ε3(k)
ε4(k)

]
= ζT (k)Φ̃4(d(k))ζ(k) (24)

where U1 = R̃2 − SR̃−1
2 ST , U2 = R̃2 − ST R̃−1

2 S, and

ε3(k) =

[
x(k − h1)− x(k − d(k))

x(k − h1) + x(k − d(k))− 2v2(k)

]
= E2ζ(k)

ε4(k) =

[
x(k − d(k))− x(k − h2)

x(k − d(k)) + x(k − h2)− 2v3(k)

]
= E3ζ(k)

Φ̃4(d(k)) =

[
E2

E3

]T [
R̃2 S

∗ R̃2

] [
E2

E3

]
+
h2 − d(k)

h12
ET

2 (R̃2 − SR̃−1
2 ST )E2

+
d(k)− h1

h12
ET

3 (R̃2 − ST R̃−1
2 S)E3

It can be easily checked that the above still holds for the case
of d(k) = hi, i = 1, 2.

Thus, combining (22), (23), and (24) yields

∆V3(k) ≤ ζT (k)(Φ3 − Φ̃4(d(k)))ζ(k) (25)

where Φ3 is defined in (17).
Under the assumption on the activation function, (6) and

(7), the following inequalities hold:

hi(s) = 2[Σ1x(s)−f(x(s))]
T
Hi [f(x(s))−Σ2x(s)] ≥ 0

uj(s1, s2) = 2 [Σ1(x(s1)−x(s2))− (f(x(s1))−f(x(s2)))]
T
Gj

× [(f(x(s1))−f(x(s2)))−Σ2(x(s1)−x(s2))] ≥ 0

where

Hi = diag{h1i, h2i, · · · , hni} ≥ 0, i = 1, 2, 3, 4

Gj = diag{u1j , u2j , · · · , unj} ≥ 0, j = 1, 2, 3

Thus, the following inequalities hold:

h1(k) + h2(k − h1) + h3(k − d(k)) + h4(k − h2)

= ζT (k)Φ5ζ(k) ≥ 0 (26)
u1(k, k − h1) + u2(k − h1, k − d(k)) + u3(k − d(k), k − h2)

= ζT (k)Φ6ζ(k) ≥ 0 (27)

where Φ5 and Φ6 are defined in (17).
Therefore, by combining (20), (21) and (25)-(27), the for-

ward difference of V (k) is obtained as

∆V (k) ≤ ζT (k)Φ(d(k))ζ(k) (28)

where

Φ(d(k)) = Φ1(d(k)) + Φ2 +Φ3 − Φ̃4(d(k)) + Φ5 +Φ6

It follows from convex combination technique [49] that
Φ(d(k)) < 0 if the following two inequalities hold

Φ(h1) = Ψ1 + ET
2 SR̃

−1
2 STE2 < 0

Φ(h2) = Ψ2 + ET
3 S

T R̃−1
2 SE3 < 0

which are equivalent to (17) and (18), respectively, based
on Schur complement. Therefore, when (17) and (18) hold,
∆V (k) ≤ −ϵ2||x(k)||2 for a sufficient small scalar ϵ2 > 0,
which shows that system (1) is asymptotically stable. This
completes the proof. �

In order to clearly show the advantage of inequality (11),
summarized in Remark 2, the following criterion obtained by
using inequality (10) to estimate R2-dependent integral term
in (22) is also given.

Corollary 1: For given integers h1 and h2, system (1) with
time-varying delay satisfying (2) is asymptotically stable, if
there exist positive-definite symmetric matrices P ∈ R3n×3n,
Qi ∈ R2n×2n, and Ri ∈ Rn×n, i = 1, 2, positive-definite
diagonal matrices Hi ∈ Rn×n and Gj ∈ Rn×n, i = 1, 2, 3, 4
j = 1, 2, 3, and any matrix S ∈ R2n×2n, such that the
following LMIs hold:

Υ3 =

[
R̃2 S

∗ R̃2

]
> 0 (29)

Υ4 = Φ1(h1) + Φ2 +Φ3 − Φ4 +Φ5 +Φ6 < 0 (30)
Υ5 = Φ1(h2) + Φ2 +Φ3 − Φ4 +Φ5 +Φ6 < 0 (31)

where

Φ4 =

[
E2

E3

]T [
R̃2 S

∗ R̃2

] [
E2

E3

]
and other related notations are defined in Theorem 1.

Proof: The above criterion can be easily proved by con-
structing the same Lyapunov function, V (k), and following
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the similar procedure for proving Theorem 1 but replacing
(24) therein with the following one

h12

k−h1−1∑
i=k−h2

ηT (i)R2η(i)

≥ h12

d(k)− h1
εT3 (k)R̃2ε3(k) +

h12

h2 − d(k)
εT4 (k)R̃2ε4(k)

≥
[
ε3(k)
ε4(k)

]T [
R̃2 S

∗ R̃2

] [
ε3(k)
ε4(k)

]
= ζT (k)Φ4ζ(k)

C. A delay-variation-dependent stability criterion

To the best of the authors’ knowledge, most existing stability
criteria, as well Theorem 1 and Corollary 1 in this paper,
cannot take into account the delay change rate constraint (3).
Inspired by the authors’ previous work [41], a delay-product-
type term is introduced into the original function (19) such
that the following delay-variation-dependent stability criterion
is obtained.

Theorem 2: For given integers µ1, µ2, h1, and h2, system
(1) with time-varying delay satisfying (2) and (3) is asymptot-
ically stable, if there exist symmetric matrices P ∈ R3n×3n

and P1 ∈ R2n×2n, positive-definite symmetric matrices
Qi ∈ R2n×2n and Ri ∈ Rn×n, i = 1, 2, positive-definite
diagonal matrices Hi ∈ Rn×n and Gj ∈ Rn×n, i = 1, 2, 3, 4
j = 1, 2, 3, and any matrix S ∈ R2n×2n, such that the
following LMIs hold:

Υ6(h1) > 0 (32)
Υ6(h2) > 0 (33)

Υ7 =

[
Ψ3 ET

2 S

∗ −R̃2

]
< 0 (34)

Υ8 =

[
Ψ4 ET

3 S
T

∗ −R̃2

]
< 0 (35)

Υ9 =

[
Ψ5 ET

2 S

∗ −R̃2

]
< 0 (36)

Υ10 =

[
Ψ6 ET

3 S
T

∗ −R̃2

]
< 0 (37)

where

Υ6(d(k)) = P + d(k)

[
P1 0
0 0

]
Ψ3 = Ψ1 +Φ7(µ1) + Φ8(h1)

Ψ4 = Ψ2 +Φ7(µ1) + Φ8(h2)

Ψ5 = Ψ1 +Φ7(µ2) + Φ8(h1)

Ψ6 = Ψ2 +Φ7(µ2) + Φ8(h2)

Φ7(∆d(k)) = ∆d(k)FT
4 P1F4

Φ8(d(k)) = d(k)[FT
4 P1F4 − FT

5 P1F5]

F4 =

[
e1 + es

(h1 + 1)e9 − e2

]
F5 =

[
e1

(h1 + 1)e9 − e1

]
and other related notations are defined in Theorem 1.

Proof: Construct the following Lyapunov function candidate
with a delay-product-type term:

Vd(k) = V4(k) + V (k) (38)

where V (k) is given in (19) excluding the requirement of P >
0 and

V4(k) = d(k)ξT3 (k)P1ξ3(k)

with

ξ3(k) =

[
xT (k),

k−1∑
i=k−h1

xT (i)

]T

Two non-summation terms in Vd(k) can be rewritten as

ξT1 (k)Υ6(d(k))ξ1(k)

where Υ6(d(k)) is defined in (32). Based on the convex
combination technique, it follows from (32) and (33) that
Υ6(d(k)) > 0, which, together with Qi > 0, and Ri > 0,
i = 1, 2, leads that the Lyapunov function Vd(k) satisfies
Vd(k) ≥ ϵ3||x(k)||2 with ϵ3 > 0.

The forward difference of V4(k) along the solution of
system (5) can be obtained as

∆V4(k)

= d(k + 1)ξT3 (k + 1)P1ξ3(k + 1)− d(k)ξT3 (k)P1ξ3(k)

= [d(k)+∆d(k)]ζT(k)FT
4 P1F4ζ(k)−d(k)ζT(k)FT

5 P1F5ζ(k)

= ζT (k)Φ7(∆d(k))ζ(k) + ζT (k)Φ8(d(k))ζ(k) (39)

where Φ7(∆d(k)) and Φ8(d(k)) are defined in (34).
By combining (28) and (39), the forward difference of Vd(k)

is obtained as

∆V (k) ≤ ζT (k)Φ(d(k),∆d(k))ζ(k)

where

Φ(d(k),∆d(k)) = Φ1(d(k)) + Φ2 +Φ3 − Φ̃4(d(k)) + Φ5

+Φ6 +Φ7(∆d(k)) + Φ8(d(k))

It follows from the convex combination technique that
Φ(d(k),∆d(k))<0 if the following four inequalities hold

Φ(h1, µ1) = Ψ3 + ET
2 SR̃

−1
2 STE2 < 0

Φ(h2, µ1) = Ψ4 + ET
3 S

T R̃−1
2 SE3 < 0

Φ(h1, µ2) = Ψ5 + ET
2 SR̃

−1
2 STE2 < 0

Φ(h2, µ2) = Ψ6 + ET
3 S

T R̃−1
2 SE3 < 0

where Ψi, i = 3, 4, 5, 6 are defined in (34)-(37), respectively.
Based on Schur complement, they are equivalent to (34)-
(37), respectively. Therefore, when (34)-(37) hold, ∆Vd(k) ≤
−ϵ4||x(k)||2 for a sufficient small scalar ϵ4 > 0, which shows
that system (1) is asymptotically stable. �

Remark 3: The stability conditions given in Theorem 2
can be used to understand the effect of both the delay and
its change rate on the system stability. No similar result has
been reported for the delayed discrete-time neural networks.
The delay change rate information (3) is introduced into
the criterion by using the delay-product-type term V4(k),
which is directly recalled from our previous work for linear
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systems [41]. Moreover, similar to the discussion of [7], the
introduction of V4(k) helps to relax the condition of P > 0 in
(19). It can be predicted that more delay-product-type terms
can be introduced following this idea to further improve the
results. The details are not given in this paper and will be
investigated in the future work.

Remark 4: This paper has constructed a simple Lyapunov
function, V (k), compared with some literature, in which
the Lyapunov functions with more general form, including
more augmented terms [11]–[13], [27]–[31], [35] and triple
summation terms [11], [12], [24], [31], [34], [35], are applied
to reduce the conservatism of the resulting criteria. On the
other hand, the Wirtinger-based summation inequality has been
used to estimate the summation term appearing in the forward
difference of the Lyapunov function. Very recently, several
summation inequalities [45]–[48] were proposed to improve
the Wirtinger-based summation inequality. Those more general
Lyapunov functions and tighter summation inequalities have
potential to reduce the conservatism of the results, while usu-
ally requiring the obvious increase of the number of decision
variables. On the contrary, the extended reciprocally convex
matrix inequality proposed in this paper has improved the
widely used reciprocally convex combination lemma without
requiring any extra decision variable. Moreover, similar to the
procedure of developing stability criteria for continuous DNNs
summarized in [7], the function-constructing, the summation
inequality based bounding, and the matrix inequality based
estimating are three different steps during the development of
stability criteria, thus the proposed matrix inequality can be
combined with more general Lyapunov functions and tighter
summation inequalities aforementioned to further reduce the
conservatism. In additional, the proposed inequality, com-
bined with many elegant techniques developed for continuous-
time DNNs [50], [52]–[55], could be used to improve the
results of continuous-time DNNs.

IV. NUMERICAL EXAMPLES

In this section, the advantages of the proposed criteria are
verified based on two numerical examples from the viewpoints
of the conservatism and the computational complexity.

Example 1: Consider discrete-time neural network (1) with
the following parameters

C =

[
0.1 0
0 0.3

]
, A =

[
0.02 0
0 0.004

]
, J =

[
0.2
0.2

]
Ad =

[
−0.01 0.01
−0.02 −0.01

]
, g(y) =

[
tanh(y1)
tanh(y2)

]
The activation function g(y) satisfying (4) with σ+

1 =
1, σ+

2 = 1; σ−
1 = σ−

2 = 0. This example is given to show
the advantages of Theorem 1 in compared with Corollary 1
and some existing criteria. The maximal upper bounds of h2

with respect to various h1 calculated by the proposed criteria,
together with the ones reported in some literature, are listed in
Table I, where Th. and Co. indicate Theorem and Corollary,
respectively, and the number of decision variables are also
given to show the computation complexity.

Due to the usage of the Wirtinger-based inequality, Theorem
1 and Corollary 1 greatly reduces the conservatism of the

existing criteria derived by the Jensen-based inequality [12],
[19], [24], [27] or the FWM-based approach [17], [21]. Since
the Wirtinger-based inequality and two types of reciprocally
convex matrix inequalities applied in this paper just require
one extra free matrix, Theorem 1 and Corollary 1 include less
decision valuables compared with the criteria based on the
FWM approach [17], [21] and complex Lyapunov functions
[12], [24], both of which introduce many decision valuables.
Moreover, Theorem 1 provides less conservative results in
compared with Corollary 1, while the number of decision
variables required by both of them is identical. This shows
the advantage of the proposed extended reciprocally convex
matrix inequality, as summarized in Remark 2.

For the given parameters, the equilibrium point of the DNN
is obtained as y∗ = [0.2277, 0.2770]T . From Table I, the
DNN is stable for the case of d(k) ∈ [20, 117]. For the initial
condition y(k) = [0.27, 0.23]T , k ∈ [120, 0] and the random
delay d(k) ∈ [20, 117] obtained from band-limited white noise
(shown in subfigure in Fig. 1), the response of the DNN is
given in Fig. 1. The DNN with given parameters is stable at
its equilibrium point, which further verifies the effectiveness
of the proposed criterion.

Time
0 50 100 150 200

St
at

e 
ve

ct
or

s:
 y

(k
)

0.22
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0.25

0.26
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0.29
y

1
(k)

y
2
(k)

Time
0 50 100 150 200
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k)

20

40

60

80

100

120

Fig. 1. State trajectories of the DNN of Example 1.

TABLE I
THE MAXIMAL UPPER BOUNDS OF h2 FOR VARIOUS h1 (EXAMPLE 1).

Criteria h1 No. of variables2 4 6 8 10 20

Th.1 [17] 11 12 13 14 16 23 15n2 + 5n
Th.1 [19] 12 14 16 18 20 30 4.5n2 + 7.5n
Co.3.2 [21] 13 15 17 19 21 31 68n2 + 10n
Th.1 [12] 15 17 18 20 23 32 29n2 + 12n
Co.3.3 [24] 30 32 34 36 38 48 22.5n2 + 4.5n
Co.3.3 [27] 32 34 36 38 40 52 20n2 + 14n
Co.1 97 99 101 103 105 115 13.5n2 + 11.5n
Th.1 99 101 103 105 107 117 13.5n2 + 11.5n

Example 2: Consider discrete-time neural network (1) with
the following parameters

C =

[
0.8 0
0 0.9

]
, A =

[
0.001 0
0 0.005

]
, J =

[
0.3
0.5

]
Ad =

[
−0.1 0.01
−0.2 −0.1

]
, g(y) =

[
tanh(y1)
tanh(y2)

]
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One can check that the activation function g(y) satisfying
(4) with σ+

1 = 1, σ+
2 = 1; σ−

1 = σ−
2 = 0. The maximal upper

bounds of h2 with respect to various h1 provided by different
criteria, together with the number of decision variables, are
summarized in Table II, where µ = −µ1 = µ2.

On the one hand, it is found that the proposed criteria have
improved the results reported in literature (except for Corollary
1 in the case of h1 = 4) under less computational burden
(compared with [11], [14], [16], [17], [35]) or at the cost of
increased computational burden (compared with [15], [19]).
Moreover, compared with Theorem 1, the delay-variation-
dependent criterion (Theorem 2) may provide less conservative
results (µ ∈ {0, 1}). Since only P1-dependent term in Theorem
2 contains the information of delay change rate bounds, the
results of Theorem 2 for µ ≥ 2 are same to that of Theorem 1.
It is expected that the delay-variation-dependent criteria will
become more effective if such information is considered fully.

For the given parameters, the equilibrium point of the DNN
is obtained as y∗ = [2.4322, 1.1452]T . From Table II, the
DNN is stable for the case of d(k) ∈ [15, 25] and |∆d(k)| ≤ 1.
For the initial condition y(k) = [3, 1]T , k ∈ [25, 0] and the
time-varying delay,

d(k)=

{
k+15−20i, 20i ≤ k ≤ 20i+9
35−k+20i, 20i+10 ≤ k ≤ 20i+19

, i = 0, 1, · · ·

the response of the DNN is given in Fig. 2. The DNN with
given parameters is stable at its equilibrium point, which
further verifies the effectiveness of the proposed criterion.
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Fig. 2. State trajectories of the DNN of Example 2.

V. CONCLUSIONS

This paper has investigated the stability of discrete-time
neural networks with an interval time-varying delay. An ex-
tended reciprocally convex matrix inequality has been devel-
oped to obtain less conservative stability criteria while keeping
the decision variables as few as possible. A stability criterion
with less conservatism has been established by combining the
proposed matrix inequality and Wirtinger-based summation
inequality. Moreover, a delay product-type Lyapunov function
has been introduced at first time to take into account the
delay change rate information of the delayed neural networks

TABLE II
THE MAXIMAL UPPER BOUNDS OF h2 FOR VARIOUS h1 (EXAMPLE 2).

Criteria h1 No. of variables4 6 8 10 12 15

Th.1 [16] 11 12 13 14 15 17 17.5n2 + 4.5n
Th.1 [17] 12 13 14 16 17 19 15n2 + 5n
Th.1 [15] 16 17 18 19 19 22 13n2 + 7n
Th.1 [14] 16 17 18 19 19 22 57n2 + 11n
Th.1 [19] 18 18 20 20 20 23 4.5n2 + 7.5n
Th.1 [11] 20 20 21 21 21 23 61.5n2 + 17.5n
Co.1 [35] 20 20 21 21 22 23 44n2 + 13n
Co.1 19 20 21 21 22 24 13.5n2 + 11.5n
Th.1 20 20 21 22 22 24 13.5n2 + 11.5n
Th.2 (µ ≥ 2) 20 20 21 22 22 24 15.5n2 + 12.5n
Th.2 (µ = 1) 20 21 21 22 23 25 15.5n2 + 12.5n
Th.2 (µ = 0) 21 21 22 23 23 26 15.5n2 + 12.5n

such that a delay-variation dependent stability criterion has
been established. The advantages of the proposed matrix
inequality and the corresponding criteria have been shown via
two numerical examples. The proposed matrix inequality can
be extended to other problems of neural networks with time-
varying delays, such as stabilization, synchronization, and so
on.
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