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1. Introduction

Neural networks (NNs) have been one of the hottest issues because of their successful applications
in various fields, such as pattern recognition, image decryption, optimization issues, and associative
memory. These advancements are due to the dynamic nature of NNs, which are expected to remain
stable. However, to execute complex tasks, NNs require a large number of neurons, resulting in latency
delays in information flow. This delay negatively impacts the overall performance and stability of NNs.
As a result, researchers have shown interest in studying delay-dependent stability analysis for NNs over
the past few decades [1–9].

Moreover, in the NNs, signals that are transferred from one location to another may come into
contact with many network segments while being used in specific practical applications of NNs, such
as networked control systems and those that are operated remotely. These segments have the potential
to generate consecutive delays with variable qualities as a result of the shifting circumstances of the
transmission [10]. When examining the stability of these NNs, a single delay model cannot be used
because there are several delays involved. The issue was addressed by proposing the idea of NNs
with additive time-varying delays (ATVDs), which was first introduced in [11]. Studying the stability
of NNs that have two time-varying delay components is more challenging than those with a single
time delay. Moreover, the approach used to analyze the stability of NNs with a single delay cannot
be directly applied to those with two ATVD components because the delays are additive. As a result,
this discovery has received considerable attention in the industry, with numerous notable publications
dedicated to analyzing the stability of NNs that account for ATVDs in the system state. Some examples
of such publications include [12–16].

Several stability criteria have been proposed for NNs with delays in recent years, including
the improved free-weighting matrix approach [17], Jensen’s inequality [18], and other integral
inequalities [16]. In one study [16], various stability criteria were compared. Meanwhile, another
study [19] focused on global asymptotic stability criteria for complex-valued NNs with leakage delay
and ATVDs. Two other studies [12,13] utilized the reciprocally convex combination lemma to develop
new stability criteria for NNs with additive delays. Another approach proposed in a paper [20] involved
stability analysis and stabilization design for systems with additive delays, which was based on delay-
partitioning-based Lyapunov-Krasovskii functionals (LKFs). Lastly, a study [21] explored finite-time
control design for NNs with both additive delays and average dwell time.

Recently, researchers have been utilizing a variety of methods of analysis to investigate NNs for their
dynamic behavior. The dissipative analysis of NNs with time-varying delays is an example of this type
of technique, and it has been investigated in a number of papers [22–25]. In [26], the dissipative system
and theory provide a framework for developing and analyzing control systems based on energy-related
issues. Because dissipation inequalities constitute a useful tool that possesses distinctive benefits, such
as the ability to efficiently attenuate interference; therefore, it is essential to do research on this subject.
Extended dissipativity analysis was first developed by Zhang et al. [27]. The study of H∞ performance,
L2 − L∞ performance, passivity and (Q, S ,R)-γ-dissipativity performance simultaneously yielded an
extended dissipativity theory for continuous-time delayed NNs in [28]. The authors introduced
the neuron activation function in two cases, which enabled them to modify the weighting matrices
and incorporate various performance indices, including H∞ performance, L2 − L∞ performance,
passivity, and (Q, S ,R)-γ-dissipativity. In [29], the authors proposed an extended dissipativity approach
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to solve the stabilization problem for a class of uncertain time-delayed NNs. In [30], the same
authors extended their previous work by proposing an extended dissipativity-based approach for the
stabilization of switched time-delayed NNs. In [31], the authors studied the problem of finite-time
extended dissipativity for a class of time-delayed NNs. In [32], the authors focused on the extended
dissipativity problem for a class of time-delayed NNs with stochastic perturbations. They developed an
extended dissipativity-based fuzzy networked controller to guarantee the H∞ extended dissipativity of
the closed-loop system. Lastly, in [33], the authors proposed an extended dissipativity-based approach
for the sample-data control of time-delayed NNs. They utilized a new extended dissipativity concept
and developed a stochastic controller that guarantees the finite-time H∞ extended dissipativity of the
closed-loop system. The authors of [16] proposed novel and robust criteria to analyze the delay-
dependent stability of uncertain NNs that incorporate two ATVD components. The issues of passivity
and passification for NNs with ATVDs are addressed [34]. A study of Markovian jump NNs with
ATVDs was conducted in [35]. Moreover, [36] explores asymptotic stability analysis for generalized
NNs with ATVDs. However, the existing literature has not yet addressed the improved results regarding
the extended dissipativity of NNs with ATVDs. This has also motivated our present research.

Motivated by the preceding discussion, the objective of this study was to explore and address the
problem of extended dissipative analysis for NNs incorporating ATVDs. The research presents novel
stability criteria that are specifically for NNs with ATVD components, aiming to get less conservative
results. The key contributions of this work can be summarized as follows:

(i) The introduction of the concept of ATVD components, denoted as δ(t) = δ1(t) + δ2(t), where δ1(t)
represents the lower bound and δ2(t) represents the upper bound of the system’s delay.

(ii) The proposal of an innovative method for designing stability criteria suitable for NNs with ATVD
components, subject to certain conditions. This approach utilizes techniques based on auxiliary
function-based integral inequalities (AFBIIs) and incorporates an augmented LKF that integrates
information from the ATVD components.

(iii) The derivation of an improved integral inequality through a parameter transformation approach.
This inequality stands apart from existing ones and enables the derivation of tighter bounds for various
types of integral quadratic terms. It also contributes to the development of less conservative stability
criteria for NNs with ATVD components, surpassing the achievements of previous results.

(iv) The introduction of the concept of extended dissipativity for ATVDs, encompassing diverse
performance measures such as L2 − L∞, H∞, passivity, and (Q, S ,R)-γ-dissipativity performances
of NNs.

(v) The validation of the proposed method is demonstrated through the presentation of four numerical
examples. These examples serve to highlight the effectiveness of the method in designing stable NNs
with reduced conservatism.

(vi) In addition, to demonstrate the possibility of a benchmark problem, the quadruple tank process
system (QTPS) is studied in this work in terms of the NN model.
Notations: The notations throughout this paper are standard, which can be found in [16].
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2. System description and preliminaries

Consider the following neural network with ATVDs:

ζ̇(t) = −Aζ(t) + B f (ζ(t)) + C f (ζ(t − δ1(t) − δ2(t)) + u(t),
y(t) = Dζ(t), (2.1)

where ζ(t) ∈ Rn is a state vector, A is the positive diagonal matrix and B, C, and D are known
constant matrices with appropriate dimensions. The function f (ζ(t)) ∈ Rn denotes the neuron activation
function, u(t) ∈ Rm is the disturbance input belonging to L2 ∈ [0,∞) and y(t) ∈ Rq is the output of the
NNs. The delays δ1(t) and δ2(t) are both non-negative, differentiable functions that satisfy

0 ≤ δ1(t) ≤ δ1, 0 ≤ δ2(t) ≤ δ2 (2.2)

and

0 ≤ δ̇1(t) ≤ µ1 < ∞, 0 ≤ δ̇2(t) ≤ µ2 < ∞, (2.3)

where δ1, δ2, µ1, and µ2 are constants. We denote

δ(t) = δ1(t) + δ2(t), δ = δ1 + δ2, µ = µ1 + µ2, (2.4)

and µ is supposed as µ ≤ 1 in this paper.
This article aims to propose novel and less conservative stability criteria for NNs that are described

by (2.1) and meet the conditions specified in (2.2) and (2.3). To achieve this objective, we will employ
a range of technical lemmas, along with other useful inequalities, in our analysis.

Our approach focuses on developing an improved LKF that can enable us to establish a delay-
dependent stability criterion for the NN (2.1). The resulting criterion can overcome the limitations
of the existing methods, which are often conservative and may lead to overly restrictive stability
conditions.
Assumption 1. For all ζ1, ζ2 ∈ R, ζ1 , ζ2, the neuron activation function fi(·) satisfies:

%−i ≤
fi(ζ1) − fi(ζ2)
ζ1 − ζ2

≤ %+
i f or all ζ1, ζ2 ∈ R, ζ1 , ζ2.

For presentation convenience, the following notations are defined:

∆1 = diag{%−1%
+
1 , %

−
2%

+
2 , ..., %

−
n%

+
n },

∆2 = diag
{%−1 + %+

1

2
,
%−2 + %+

2

2
, ...,

%−n + %+
n

2
}
.

Assumption 2. [28] Matrices Φ1,Φ2,Φ3, and Φ4 satisfy the following conditions:

1) Φ1 = ΦT
1 ≤ 0, Φ3 = ΦT

3 > 0, Φ4 = ΦT
4 ≥ 0,

2) (||Φ1|| + ||Φ2||).||Φ4|| = 0.
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Definition 2.1. [28] For given matrices Φ1,Φ2,Φ3 and Φ4 satisfying Assumption 2, the NN (2.1) is
said to be extended dissipative for any T f ≥ 0 and u(t) ∈ L2[0,∞), under the zero initial state, such
that the following inequality holds:∫ T f

0
J(t)dt ≥ sup

0≤t≤T f

yT (t)Φ4y(t),

where J(t) = yT (t)Φ1y(t) + 2yT (t)Φ2u(t) + uT (t)Φ3u(t).

Lemma 2.2. [37] For a positive definite matrix R > 0 and a differentiable function {x(α)|α ∈ [a, b]}
the following inequality holds:∫ b

a
xT (α)Rx(α)dα ≥

1
(b − a)

( ∫ b

a
x(α)dα

)T

R
( ∫ b

a
x(α)dα

)
+

3
b − a

ΘT
1 RΘ1,∫ b

a
ẋT (α)Rẋ(α)dα ≥

1
(b − a)

ΘT
2 RΘ2 +

3
(b − a)

ΘT
3 RΘ3,

where,

Θ1 =

∫ b

a
x(α)dα −

2
(b − a)

∫ b

a

∫ b

β

x(α)dαdβ,

Θ2 = x(b) − x(a),

Θ3 = x(b) + x(a) −
2

(b − a)

∫ b

a
x(α)dα.

Lemma 2.3. [38] Let f1, f2, ..., fN : Rm → R have positive values in an open subset D of Rm that
satisfies

min
{αi |αi>0,Σiαi=1

Σi
1
αi

fi(t) = Σi fi(t) + max
g j,i(t)

Σi, jgi, j(t)

subject to {
gi, j : Rm → R, g j,i(t) ≡ gi, j(t),

 fi(t) gi, j(t)

gi, j(t) fi(t)

 ≥ 0
}
. (2.5)

Lemma 2.4. [39] For the function αi(t) ∈ (0, 1) (i = 1, 2, 3, 4),Σ4
i=1αi(t) = 1, vectors

χ1(t), χ2(t), χ3(t), χ4(t) and a matrix R1 > 0, define the function φ as follows:

φ =
1

α1(t)
χT

1 (t)R1χ1(t) +
1

α2(t)
χT

2 (t)R1χ2(t) +
1

α3(t)
χT

3 (t)R2χ3(t) +
1

α4(t)
χT

4 (t)R2χ4(t).

Assume that there exists a symmetric matrix Z satisfying

 R1 Z

ZT R2

 > 0 such that the following

inequality holds:
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φ ≥ ηT (t)


R1 −R1 Z Z

∗ R1 Z Z

∗ ∗ R2 −R2

∗ ∗ ∗ R2


η(t), (2.6)

where ηT (t) = [χT
1 (t), χT

2 (t), χT
3 (t), χT

4 (t)].

Remark 2.5. It is important to highlight the significance of the improved integral inequality (referred
to as inequality (2.6)), which introduces a novel approach to bounding integral quadratic terms
with varying time delays. This approach differs from the reciprocally convex combination inequality
proposed by Park et al. in [38]. Unlike the previous inequality, there is no requirement to restrict the
condition as described in (2.5) for the improved integral inequality. Furthermore, as compared to [38],
the improved integral inequality (2.6) involves fewer free-weighting matrices, while maintaining the
same number of scales, denoted as αi. This reduction in the number of weight matrices indicates that
the computational complexity of the improved inequality is lower than that of the inequality in [38].
Additionally, the improved integral inequality (2.6) enhances the upper bounds of integral quadratic
terms as compared to [38] when considering the same number of scales αi. This enhancement in the
upper bounds can be beneficial in deriving stability results that are less conservative.

3. Main results

3.1. Extended dissipative analysis

This section introduces a novel approach to derive delay-dependent stability conditions for NNs
with ATVDs, which satisfy conditions (2.2) and (2.3). To achieve this, a new class of LKF is
proposed and combined with an AFBII technique and an improved integral inequality technique. This
combination allows for the analysis of extended dissipativity in the NN described by (2.1).

Theorem 3.1. For given positive scalars δ1, δ2, µ1 and µ2, the NNs with ATVDs given by (2.1) is
extended-dissipative if there exist appropriate symmetric matrices such as P = [Pi]7×7 > 0, Qi > 0
(for i = 1, 2, ..., 7), Ri > 0 and Si > 0 (for i = 1, 2, 3), as well as matrices T11,T12,T22,Y11,Y12 and
Y22 with the appropriate dimensions and diagonal matrices U and Ū. Furthermore, there should exist
a scalar γ such that certain linear matrix inequalities hold.

S1 0 T11 T12

∗ 3S1 T T
12 T22

∗ ∗ S2 0

∗ ∗ ∗ 3S2


≥ 0, (3.1)


S3 0 Y11 Y12

∗ 3S3 YT
12 Y22

∗ ∗ S3 0

∗ ∗ ∗ 3S3


≥ 0, (3.2)
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P1 − DT Φ4D ≥ 0, (3.3)

Ψ(δ1(t), δ2(t)) =

[
sym

{[
eT

1 δ2(t)eT
10 + (δ2 − δ2(t))eT

11 δ1(t)eT
12 + (δ1 − δ1(t))eT

13

δ(t)eT
14 + (δ − δ(t))eT

15 δ2
1eT

16 δ2
2eT

17 δ2eT
18

]
P

[
ωT eT

4 − eT
9 eT

6 − eT
9

eT
1 − eT

9 δ2eT
4 − δ2(t)eT

10 − (δ2 − δ2(t))eT
11 δ1eT

6 − δ1(t)eT
12 − (δ1 − δ1(t))eT

13

δeT
1 − δ(t)e

T
14 − (δ − δ(t))eT

15

]T
}

+ eT
1 (Q1 + Q2 + Q6)e1 − eT

4 (Q1 −Q4)e4

− eT
6 (Q2 −Q5)e6 − eT

9 Q3e9 − (1 − µ2)eT
5 Q4e5 − (1 − µ1)eT

7 Q5e7 − (1 − µ)
× eT

8 (Q6 −Q3)e8 + δωT (δ2S1 + δ1S2 + δS3)ω + eT
1 (δ2R1 + δ1R2 + δR3)e1

− ΞT
1ψ1Ξ1 − ΞT

2ψ2Ξ2 −
1
δ2

ZT
1 R1Z1 −

3
δ2

ZT
2 R1Z2 −

1
δ1

ZT
3 R2Z3

−
3
δ1

ZT
4 R2Z4 −

1
δ

ZT
5 R3Z5 −

3
δ

ZT
6 R3Z6 − eT

1 ∆1Ue1 + 2e1∆2Ue2 − eT
2 Ue2

− eT
8 ∆1Ūe8 + 2eT

8 ∆2Ūe3 − eT
3 Ue3 − eT

1 DT Φ1De1 − eT
1 ΦT

2 e19 − eT
19Φ3e19

]
< 0, (3.4)

where

Υ1 = e4 − e5, Υ2 = e4 + e5 − 2e10, Υ3 = e5 − e9,

Υ4 = e5 + e9 − 2e11, Υ5 = e6 + e7, Υ6 = e6 + e7 − 2e12,

Υ7 = e7 − e9, Υ8 = e7 + e9 − 2e13, Υ9 = e1 − e8, Υ10 = e1 + e8 − 2e14,

Υ11 = e8 − e9, Υ12 = e8 + e9 − 2e15, Z1 = δ2(t)e10 + (δ2 − δ(t))e11,

Z2 = δ2(t)e10 + (δ2 − δ(t))e11 − 2δ2e16, Z3 = δ1(t)e12 + (δ1 − δ1(t))e13,

Z4 = δ1(t)e12 + (δ1 − δ1(t))e13 − 2δ1e17, Z5 = δ(t)e14 + (δ − δ(t))e15,

Z6 = δ(t)e14 + (δ − δ(t))e15 − 2δe18,

ei =

[
0n×(i−1)n In 0n×(19−i)n

]
, i = 1, 2, ..., 19.

Proof. Choose an LKF candidate for the NN (2.1),

V(ζ(t)) =

3∑
i=1

Vi(ζ(t)), (3.5)

where

V1(ζ(t)) = ηT (t)Pη(t),

V2(ζ(t)) =

∫ t

t−δ1

ζT (s)Q1ζ(s)ds +

∫ t

t−δ2

ζT (s)Q2ζ(s)ds +

∫ t−δ(t)

t−δ
ζT (s)Q3ζ(s)ds

+

∫ t−δ1

t−δ1−δ2(t)
ζT (s)Q4ζ(s)ds +

∫ t−δ2

t−δ2−δ1(t)
ζT (s)Q5ζ(s)ds
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+

∫ t

t−δ(t)
ζT (s)Q6ζ(s)ds +

∫ t

t−δ(t)
f T (ζ(s))Q7 f (ζ(s))ds,

V3(ζ(t)) = δ

∫ −δ1

−δ

∫ t

t+θ
ζ̇T (s)S1ζ̇(s)dsdθ + δ

∫ −δ2

−δ

∫ t

t+θ
ζ̇T (s)S2ζ̇(s)dsdθ

+ δ

∫ 0

−δ

∫ t

t+θ
ζ̇T (s)S3ζ̇(s)dsdθ +

∫ −δ1

−δ

∫ t

t+θ
ζT (s)R1ζ(s)dsdθ

+

∫ −δ2

−δ

∫ t

t+θ
ζT (s)R2ζ(s)dsdθ +

∫ 0

−δ

∫ t

t+θ
ζT (s)R3ζ(s)dsdθ,

where
ηT (t) =

[
ζT (t)

∫ t−δ1

t−δ
ζT (s)ds

∫ t−δ2

t−δ
ζT (s)ds

∫ t

t−δ
ζT (s)ds

∫ t−δ1

t−δ

∫ t−δ1

θ
ζ(s)dsdθ∫ t−δ2

t−δ

∫ t−δ2

θ
ζ(s)dsdθ

∫ t

t−δ

∫ t

θ
ζ(s)dsdθ

]
.

Our objective now is to compute the time derivative of each Vi(ζ(t)) term, where (i = 1, ..., 3). To
simplify the computations, we introduce the following vectors:

χT (t) =

[
ζT (t) f T (ζ(t)) f T (ζ(t − δ(t)) ζT (t − δ1) ζT (t − δ1 − δ2(t)) ζT (t − δ2) ζT (t − δ2 − δ1(t))

ζT (t − δ(t)) ζT (t − δ)
1

δ2(t)

∫ t−δ1

t−δ1−δ2(t)
ζT (s)ds

1
δ2 − δ2(t)

∫ t−δ1−δ2(t)

t−δ
ζT (s)ds

1
δ1(t)

∫ t−δ2

t−δ2−δ1(t)
ζT (s)ds

1
δ1 − δ1(t)

∫ t−δ2−δ1(t)

t−δ
ζT (s)ds

1
δ(t)

∫ t

t−δ(t)
ζT (s)ds

1
δ − δ(t)

∫ t−δ(t)

t−δ
ζT (s)ds

1
δ2

2

∫ t−δ1

t−δ

∫ t−δ1

θ

ζT (s)dsdθ
1
δ2

1

∫ t−δ2

t−δ

∫ t−δ2

θ

ζT (s)dsdθ

1
δ2

∫ t

t−δ

∫ t

θ

ζT (s)dsdθ uT (t)
]
,

ω = Ae1 + Be2 + Ce3 + u(t).

Now, we obtain the time derivative of V(ζ(t)):

V̇1(ζ(t)) = 2ηT (t)P η̇(t)

= 2
[
eT

1 δ2(t)eT
10 + (δ2 − δ2(t))eT

11 δ1(t)eT
12 + (δ1 − δ1(t))eT

13

δ(t)eT
14 + (δ − δ(t))eT

15 δ2
1eT

16 δ2
2eT

17 δ2eT
18

]
P η̇(t)

= 2χT (t)
[(

eT
1 δ2(t)eT

10 + (δ2 − δ2(t))eT
11 δ1(t)eT

12 + (δ1 − δ1(t))eT
13

δ(t)eT
14 + (δ − δ(t))eT

15δ
2
1eT

16 δ2
2eT

17 δ2eT
18

)
P

(
ωT eT

4 − eT
9 eT

6 − eT
9 eT

1 − eT
9

δ2eT
4 − δ2(t)eT

10 − (δ2 − δ2(t))eT
11 δ1eT

6 − δ1(t)eT
12 − (δ1 − δ1(t))eT

13 δeT
1 − δ(t)e

T
14 − (δ − δ(t))eT

15

)]T

χ(t).

(3.6)
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V̇2(ζ(t)) ≤ ζT (t)Q1ζ(t) + ζT (t)Q2ζ(t) + ζT (t)Q6ζ(t) − ζT (t − δ1)(Q1 −Q4)ζ(t − δ1)
− ζT (t − δ2)(Q2 −Q5)ζ(t − δ2) − ζT (t − δ)Q3ζ(t − δ) − (1 − µ2)ζT (t − δ1 − δ2(t))
×Q4ζ(t − δ1 − δ2(t)) − (1 − µ1)ζT (t − δ2 − δ1(t))Q5ζ(t − δ2 − δ1(t))
− (1 − µ)ζT (t − δ(t))(Q6 −Q3)ζ(t − δ(t)) + f T (ζ(t))Q7 f (ζ(t)) − f T (ζ(t − δ(t)))Q7 f (ζ(t − δ(t))),

= χT (t)
[
eT

1 (
2∑

i=1

Qi + Q6)e1 − eT
4 (Q1 −Q4)e4 − eT

6 (Q2 −Q5)e6 − eT
9 Q3e9 − (1 − µ2)eT

5 Q4e5

− (1 − µ1)eT
7 Q5e7 − (1 − µ)eT

8 (Q6 −Q3)e8

]
χ(t), (3.7)

V̇3(ζ(t)) = δδ2ζ̇
T (t)S1ζ̇(t) + δδ1ζ̇

T (t)S2ζ̇(t) + δ2ζ̇T (t)S3ζ̇(t) + δ2ζ
T (t)R1ζ(t) + δ1ζ

T (t)R2ζ(t)

δζT (t)R3ζ(t) − δ
∫ t−δ1

t−δ
ζ̇T (s)S1ζ̇(s)ds − δ

∫ t−δ2

t−δ
ζ̇T (s)S2ζ̇(s)ds − δ

∫ t

t−δ
ζ̇T (s)S3ζ̇(s)ds

−

∫ t−δ1

t−δ
ζT (s)R1ζ(s)ds −

∫ t−δ2

t−δ
ζT (s)R2ζ(s)ds −

∫ t

t−δ
ζT (s)R3ζ(s)ds. (3.8)

Based on the integration mentioned above, we can utilize Lemmas 2.2–2.4 to analyze the following:

−δ

∫ t−δ1

t−δ
ζ̇T (s)S1ζ̇(s)ds − δ

∫ t−δ2

t−δ
ζ̇T (s)S2ζ̇(s)ds − δ

∫ t

t−δ
ζ̇T (s)S3ζ̇(s)ds,

and

−

∫ t

t−δ
ζT (s)R3ζ(s)ds −

∫ t−δ1

t−δ
ζT (s)R1ζ(s)ds −

∫ t−δ2

t−δ
ζT (s)R2ζ(s)ds;

this can be managed as follows by applying (3.8) in Lemma 2.2, respectively.

−δ

∫ t−δ1

t−δ
ζ̇T (s)S1ζ̇(s)ds ≤ −

δ

δ1(t)

 Υ1

Υ2

T  S1 0

0 3S1

  Υ1

Υ2


−

δ

δ1 − δ1(t)

 Υ3

Υ4

T  S1 0

0 3S1

  Υ3

Υ4

 , (3.9)

−δ

∫ t−δ2

t−δ
ζ̇T (s)S2ζ̇(s)ds ≤ −

δ

δ2(t)

 Υ5

Υ6

T  S2 0

0 3S2

  Υ5

Υ6


−

δ

δ2 − δ2(t)

 Υ7

Υ8

T  S2 0

0 3S2

  Υ7

Υ8

 , (3.10)

−δ

∫ t

t−δ
ζ̇T (s)S3ζ̇(s)ds ≤ −

δ

δ(t)

 Υ9

Υ10

T  S3 0

0 3S3

  Υ9

Υ10


−

δ

δ − δ(t)

 Υ11

Υ12

T  S3 0

0 3S3

  Υ11

Υ12

 , (3.11)
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where

Υ1 = ζ(t − δ1) − ζ(t − δ1 − δ2(t)) = (e4 − e5)χ(t),

Υ2 = ζ(t − δ1) − ζ(t − δ1 − δ2(t)) −
2

δ2(t)

∫ t−δ1

t−δ1−δ2(t)
ζ(s)ds = (e4 + e5 − 2e10)χ(t),

Υ3 = ζ(t − δ1 − δ2(t)) − ζ(t − δ) = (e5 − e9)χ(t),

Υ4 = ζ(t − δ) + ζ(t − δ1 − δ2(t)) −
2

δ2 − δ2(t)

∫ t−δ1−δ2(t)

t−δ
ζ(s)ds = (e5 + e9 − 2e11)χ(t),

Υ5 = ζ(t − δ2) − ζ(t − δ2 − δ1(t)) = (e6 − e7)χ(t),

Υ6 = ζ(t − δ2) + ζ(t − δ2 − δ1(t)) −
2

δ1(t)

∫ t−δ2

t−δ2−δ1(t)
ζ(s)ds = (e6 + e7 − 2e12)χ(t),

Υ7 = ζ(t − δ2 − δ1(t)) − ζ(t − δ) = (e7 − e9)χ(t),

Υ8 = ζ(t − δ2 − δ1(t)) + ζ(t − δ) −
2

δ1 − δ1(t)

∫ t−δ2−δ1(t)

t−δ
ζ(s)ds = (e7 + e9 − 2e13)χ(t),

Υ9 = ζ(t) − ζ(t − δ(t)) = (e1 − e8)χ(t),

Υ10 = ζ(t) + ζ(t − δ(t)) −
2
δ(t)

∫ t

t−δ(t)
ζ(s)ds = (e1 + e8 − 2e14)χ(t),

Υ11 = ζ(t − δ(t)) − ζ(t − δ) = (e8 − e9)χ(t),

Υ12 = ζ(t − δ(t)) + ζ(t − δ) −
2

δ − δ(t)

∫ t−δ(t)

t−δ
ζ(s)ds = (e8 + e9 − 2e15)χ(t).

By using Lemmas 2.3 and 2.4, it is easy from (3.1) and (3.2) to obtain that

δ

∫ t−δ1

t−δ
ζ̇T (s)S1ζ̇(s)ds − δ

∫ t−δ2

t−δ
ζ̇T (s)S2ζ̇(s)ds − δ

∫ t

t−δ
ζ̇T (s)S3ζ̇(s)ds ≤ −ΞT

1ψ1Ξ1 − ΞT
2ψ2Ξ2,

(3.12)

with

Ξ1 =
[
Υ1 Υ2 Υ3 Υ4 Υ5 Υ6 Υ7 Υ8

]
, Ξ2 =

[
Υ9 Υ10 Υ11 Υ12

]
,

ψ1 =



S1 0 −S1 0 T11 T12 T11 T12

∗ 3S1 0 −3S1 T T
12 T22 T T

12 T22

∗ ∗ S1 0 T11 T12 T11 T12

∗ ∗ ∗ 3S1 T T
12 T22 T T

12 T22

∗ ∗ ∗ ∗ S2 0 −S2 0

∗ ∗ ∗ ∗ ∗ 3S2 0 −3S2

∗ ∗ ∗ ∗ ∗ ∗ S2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 3S2



,
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ψ2 =


S3 0 Y11 Y12

∗ 3S3 YT
12 Y22

∗ ∗ S3 0

∗ ∗ ∗ 3S3


.

On the other hand, with Lemma 2.2, one can get that

−

∫ t−δ1

t−δ
ζT (s)R1ζ(s)ds ≤ −

1
δ2

ZT
1 R1Z1 −

3
δ2

ZT
2 R1Z2,

−

∫ t−δ2

t−δ
ζT (s)R2ζ(s)ds ≤ −

1
δ1

ZT
3 R2Z3 −

3
δ1

ZT
4 R2Z4,

−

∫ t

t−δ
ζT (s)R3ζ(s)ds ≤ −

1
δ

ZT
5 R3Z5 −

3
δ

ZT
6 R3Z6,

where

Z1 =
[
δ2(t)e10 + (δ2 − δ2(t))e11

]
χ(t), Z2 =

[
δ2(t)e10 + (δ2 − δ2(t))e11 − 2δ2e16

]
χ(t),

Z3 =
[
δ1(t)e12 + (δ1 − δ1(t))e13

]
χ(t), Z4 =

[
δ1(t)e12 + (δ1 − δ1(t))e13 − 2δ1e17

]
χ(t),

Z5 =
[
δ(t)e14 + (δ − δ(t))e15

]
χ(t), Z6 =

[
δ(t)e14 + (δ − δ(t))e15 − 2δe18

]
χ(t).

Furthermore, on account of Assumption 1, the following inequalities hold:[
ζ(t)

f (ζ(t))

]T [
∆1U −∆2U
∗ U

] [
ζ(t)

f (ζ(t))

]
≤ 0, (3.13)

[
ζ(t − δ(t))

f (ζ(t − δ(t)))

]T [
∆1Ū −∆2Ū
∗ Ū

] [
ζ(t − δ(t))

f (ζ(t − δ(t)))

]
≤ 0. (3.14)

According to (3.6)–(3.14) and V̇(ζ(t)) ≤ 0, we now define the performance index:

J(t) = yT (t)Φ1y(t) + 2yT (t)Φ2u(t) + uT (t)Φ3u(t),
= ζT (t)DT Φ1Dζ(t) + 2ζT (t)DT Φ2u(t) + uT (t)Φ3u(t). (3.15)

Then, it follows that

V̇(ζ(t)) − J(t) ≤ χT (t)Ψχ(t) < 0, (3.16)

where J(t) = yT (t)Φ1y(t).
In order to prove that the NN (2.1) are extended-dissipative, according to Definition 2.1, we need to
show that: ∫ t

0
J(s)ds ≥ V(ζ(t)) (3.17)
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holds for matrices Φ1–Φ4 with the initial condition V(0) = 0. Using the zero initial condition, it can be
proven that

V(ζ(t)) ≥ ζT (t)P1ζ(t) > 0. (3.18)

We also have ∫ t

0
J(s)ds ≥ ζT (t)P1ζ(t). (3.19)

To satisfy (3.16) and thus prove that the NN (2.1) are extended-dissipative, the following inequality
must hold: ∫ T f

0
J(t)dt − sup

0≤t≤T f

yT (t)Φ4y(t) ≥ 0. (3.20)

The criteria for extended dissipativity given in Assumption 2 states the following:
(i) Φ4 = 0 when the H∞ performance, the passivity and the (Q, S ,R)-γ-dissipativity conditions are
satisfied. ∫ T f

0
J(t)dt = sup

0≤t≤T f

yT (s)Φ4y(s) for any Tf ≥ 0.

(ii) When Φ4 > 0, the L2 − L∞ performance condition is satisfied. We obtain Φ1 = 0, Φ2 = 0 and
Φ3 > 0 from Assumption 2. Then, it can be shown that∫ t

0
J(s)ds > 0, (3.21)

and for any t ≥ 0, T f ≥ 0, T f ≥ t, 0 ≤ t ≤ T f , for all t ∈ [0,T f ], we have∫ T f

0
J(s)ds >

∫ t

0
J(s)ds ≥ ζT (t)P1ζ(t) > 0;

from (3.3), we get

yT (t)Φ4y(t) = ζT (t)DT Φ4Dζ(t). (3.22)

Using these inequalities, we can obtain∫ T f

0
J(s)ds ≥ ζT (t)P1ζ(t) ≥ ζT (t)DT Φ4Dζ(t). (3.23)

This ultimately leads to the inequality∫ T f

0
J(t)dt − sup

0≤t≤T f

yT (t)Φ4y(t) ≥ 0, (3.24)

as required by Definition 2.1. Thus, we can conclude that the NN (2.1) is extended-dissipative.
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Remark 3.2. The inequality (3.4) is dependent on the time-varying delays δ1(t) and δ2(t). In
Theorem 3.1, we consider the upper bounds of these two time-varying delays in order to calculate
the LMI condition based on (3.4) with the following conditions: Ψ(0, δ2), Ψ(δ1, 0), Ψ(δ1, δ2), and
Ψ(0, 0).

Remark 3.3. [28] Definition 2.1 defines the concept of extended dissipativity, which encompasses
several commonly used performance indices when the weighting matrices are set accordingly.
This flexibility allows for a broad range of systems to be analyzed using the extended dissipativity
framework, making it a valuable tool for system analysis and design:
(1) L2 − L∞ performance: Φ1 = 0, Φ2 = 0, Φ3 = γ2I and Φ4 = I;
(2) H∞ performance: Φ1 = −I, Φ2 = 0, Φ3 = γ2I and Φ4 = 0;
(3) Passivity performance: Φ1 = 0, Φ2 = I, Φ3 = γI and Φ4 = 0;
(4) (Q, S ,R)-γ-dissipativity performance: Φ1 = Q, Φ2 = S , Φ3 = R − γI and Φ4 = 0.

Remark 3.4. We can further investigate the effectiveness of our stability criteria by examining a special
case of NNs with ATVDs described by (2.1). Specifically, we will consider a simplified scenario where
the system can be described by an NN without the input (u(t) = 0) and without output (y(t) = 0) terms.
In this case, the NN is modeled using a single equation of the form

ż(t) = −Aζ(t) + B f (ζ(t)) + C f (ζ(t − δ1(t) − δ2(t))). (3.25)

By analyzing this simplified case, we employ the same proof line in Theorem 3.1, and we can gain
insights into the performance of our stability criteria and evaluate their conservativeness.

Remark 3.5. To address the issue of less conservative stability conditions, we drew inspiration from
the concepts presented in [28, 39]. Specifically, we incorporated single- and double-integral terms
with the AFBII technique. Moreover, we combined these with improved integral inequalities within
the framework of the LMIs defined by (3.1)–(3.4) during the computation of the LKF V(ζ(t)). By
employing the improved integral inequality technique described in Theorem 3.1, we can achieve further
enhancements in the stability criterion. It is worth noting that the inclusion of an augmented LKF, an
AFBII and the utilization of the improved integral inequality technique can yield less conservative
results compared to other methodologies [12, 14, 15, 17, 34–36, 40]. This observation is easily verified
by referring to Tables 6 and 7.

Remark 3.6. For NNs with ATVDs, constructing the LKF (3.5) is challenging. The most
important feature of the derived results of this paper is constructing the novel LKF (3.5)
with a quadratic and augmented term in V1(ζ(t)), which is very challenging when the goal
is to obtain less conservative results than the results presented in the literature. More
specifically to improve the feasible region for the corresponding system, by taking the states
with the available information of LKF (3.5) as 1

δ2(t)

∫ t−δ1

t−δ1−δ2(t)
ζT (s)ds, 1

δ2−δ2(t)

∫ t−δ1−δ2(t)

t−δ
ζT (s)ds,

1
δ1(t)

∫ t−δ2

t−δ2−δ1(t)
ζT (s)ds, 1

δ1−δ1(t)

∫ t−δ2−δ1(t)

t−δ
ζT (s)ds, 1

δ(t)

∫ t

t−δ(t)
ζT (s)ds and 1

δ−δ(t)

∫ t−δ(t)

t−δ
ζT (s)ds, the stability

conditions in Theorem 3.1 sufficiently utilize more information on state variables, which can yield less
conservative results than the existing ones.
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4. Numerical examples

In this section, we will give four examples to illustrate the correctness and effectiveness of the
proposed method

Example 4.1. Consider the NNs with ATVDs represented by (2.1) with the following parameters

A =

[
3.5 0
0 4

]
, B =

[
1.1 0.2
−0.1 1.3

]
, C =

[
0.6 0.7
0.3 −0.2

]
,

D =

[
−0.6 0.4
0.5 0.5

]
;

the given activation function is f (ζ(t)) = 0.1 tanh(ζ(t)), and the values are %−1 = %−2 = 0 and
%+

1 = %+
2 = 1 which satisfy Assumption 1; the time-varying delays are µ1 = 0.1 and µ2 = 0.2. By

utilizing Theorem 3.1, we compute the maximum upper bound of δ2 for a fixed δ1 = 1. To establish the
extended dissipative conditions for the NN (2.1), including passivity, L2 − L∞ performance, (Q, S ,R)-
γ-dissipativity, and H∞ performance, we used the MATLAB LMI toolbox to solve the corresponding
LMIs in Theorem 3.1. When examining the extended dissipative properties of the NN (2.1), we focus
on the weighting matrices Φ1–Φ4. By establishing these conditions, we can ensure that the system
remains stable and achieves the desired performance in the presence of ATVDs.
L2 − L∞ Performance: We conducted an analysis of the L2 − L∞ performance of the NN (2.1), with
parameters Φ1 = 0, Φ2 = 0, Φ3 = γ2I and Φ4 = I. To determine the feasibility of the problem, we
utilized the LMIs in Theorem 3.1 and the MATLAB LMI toolbox, and we calculated the minimum γ on
different δ2 as per Theorem 3.1. The results are presented in Table 3. The state trajectories of the NNs
with given parameters µ1 = 0.1, µ1 = 0.15, µ2 = 0.2 and µ2 = 0.25 were observed and are plotted in
Figures 1 and 2. It was observed that the system was able to maintain stability and converge to zero,
demonstrating the L2 − L∞ performance under the aforementioned parameter values. Based on the
simulation results, the proposed approach was deemed feasible and efficient.

0 5 10 15 20 25 30

t/sec

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(t
)

Figure 1. State trajectory of L2−L∞
performance of ζ1(t) and ζ2(t) with
µ1 = 0.1 and µ2 = 0.2 for Example
4.1.

0 5 10 15 20 25 30

t/sec

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(t
)

Figure 2. State trajectory of L2 −

L∞ performance of ζ1(t) and ζ2(t)
with µ1 = 0.15 and µ2 = 0.25 for
Example 4.1.
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H∞ Performance: We examined the H∞ performance of the (2.1), with parameters Φ1 = −I, Φ2 = 0,
Φ3 = γ2I and Φ4 = 0. The feasibility of the problem was easily obtained using the LMIs described
in Theorem 3.1, and the minimum γ on different δ2 was calculated as per Theorem 3.1. The results
are presented in Table 4. To gain further insight into the performance of the system, simulations were
conducted; the subsequent evolution of the state response curves with respect to the given parameters
µ1 = 0.1, µ1 = 0.15, µ2 = 0.2 and µ2 = 0.25 are plotted in Figure 3. Additionally, the state response of
the NNs is shown in Figure 4. It was observed that the system performed well under the aforementioned
parameters.

0 5 10 15 20 25 30

t/sec

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(t
)

Figure 3. State trajectory of H∞
performance of ζ1(t) and ζ2(t) with
µ1 = 0.1 and µ2 = 0.2 for Example
4.1.
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0.5
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Figure 4. State trajectory of H∞
performance of ζ1(t) and ζ2(t) with
µ1 = 0.15 and µ2 = 0.25 for
Example 4.1.

Passivity Performance: The aim of this study was to examine the passivity performance of NNs
described by (2.1), with parameters Φ1 = 0, Φ2 = I, Φ3 = γ, and Φ4 = 0. The feasibility of the
problem was easily obtained using the LMIs described in Theorem 3.1, and the upper bound on δ2 was
calculated as per Theorem 3.1. The results are presented in Table 1. To validate the results, simulations
were conducted using the MATLAB LMI toolbox; the resulting state responses under given parameters
µ1 = 0.1, µ1 = 0.15, µ2 = 0.2 and µ2 = 0.25 were plotted in Figure 5. Additionally, the performance
of the inputs that converged to zero is demonstrated in Figure 6. It was observed that the passivity
performance of both figures was consistent with the available parameters.

Table 1. Allowable upper bounds of δ2 for passivity analysis and different values of δ1 with
fixed µ1 = 0.1 and µ2 = 0.2.

δ1 0.1 0.2 0.3 0.5 1
δ2 3.2688 2.8642 2.6342 2.3002 1.8720
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Figure 5. State trajectory of
passivity performance of ζ1(t) and
ζ2(t) with µ1 = 0.1 and µ2 = 0.2 for
Example 4.1.
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Figure 6. State trajectory of
passivity performance of ζ1(t) and
ζ2(t) with µ1 = 0.15 and µ2 = 0.25
for Example 4.1.

(Q, S ,R)-γ-dissipativity: The parameters used in this study were Φ1 = Q, Φ2 = S , Φ3 = R − γI,

and Φ4 = 0, where Q, S and R denote matrices with specific values: Q =

[
−0.1 0

0 −0.1

]
, S =[

0.2 0
0.4 0.25

]
, R =

[
0.3 0
0 0.3

]
. By solving the LMIs in Theorem 3.1 with these parameters, the

dissipativity performance was determined to be γ = 0.08, and the upper bound on δ2 was calculated
as per Theorem 3.1. These results are presented in Table 2. To validate the results, simulations
were conducted using the MATLAB LMI toolbox; the resulting state trajectories under given initial
conditions are plotted in Figures 7–10. The simulation results were also explored for the initial
condition [−5; 5]T with different values of µ1 and µ2. It was observed that the state trajectories
converged to zero, indicating that the (Q, S ,R)-γ-dissipativity performance requirement was satisfied.

Table 2. Allowable upper bounds of δ2 for (Q, S ,R)-γ-dissipativity and different values of δ1

with fixed µ1 = 0.1 and µ2 = 0.2.

δ1 0.1 0.2 0.3 0.5 1
δ2 2.6124 2.3984 2.1303 1.8816 1.5420

Table 3. Minimum L2 − L∞ performance of γ given different values of δ2 with fixed δ1 = 0,
µ1 = 0.1 and µ2 = 0.2.

δ2 0.1 0.2 0.3 0.4 0.5
γ 0.3488 0.3645 0.3908 0.4203 0.4821
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Table 4. Minimum H∞ performance γ with different values of δ2 and fixed δ1 = 0, µ1 = 0.1
and µ2 = 0.2.

δ2 0.1 0.2 0.3 0.4 0.5
γ 0.2531 0.3016 0.4505 0.4620 0.5199
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Figure 7. State trajectory
of (Q, S ,R)-γ-dissipativity
performance of ζ1(t) and ζ2(t)
with µ1 = 0.1 and µ2 = 0.2 for
Example 4.1.
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Figure 8. State trajectory
of (Q, S ,R)-γ-dissipativity
performance of ζ1(t) and ζ2(t)
with µ1 = 0.15 and µ2 = 0.25 for
Example 4.1.
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Figure 9. State trajectory
of (Q, S ,R)-γ-dissipativity
performance of ζ1(t) and ζ2(t)
with µ1 = 0.2 and µ2 = 0.3 for
Example 4.1.
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Figure 10. State trajectory
of (Q, S ,R)-γ-dissipativity
performance of ζ1(t) and ζ2(t)
with µ1 = 0.25 and µ2 = 0.35 for
Example 4.1.
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Example 4.2. For the purpose of this analysis, we will focus on NNs given by (3.25) that incorporate
ATVDs, with matrix values as follows:

A =


1.2769 0 0 0

0 0.6231 0 0
0 0 0.9230 0
0 0 0 0.4480

 , B =


−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015

 ,

C =


0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

 ,
%+

1 = 0.1137, %+
2 = 0.1279, %+

3 = 0.7994, %+
4 = 0.4480, %−1 = %−2 = %−3 = %−4 = 0.

To investigate the asymptotic stability of NNs given by (3.25) with ATVDs, we employed the Matlab LMI
toolbox and determined the feasibility of conditions (3.1)–(3.4). Specifically, we solved Theorem 3.1
to obtain the maximum allowable upper bounds (MAUBs) of δ2 for different values of δ1, assuming
that µ1 = 0.1 and µ2 = 0.8. We compared our proposed method with existing approaches [34, 36],
and the results are shown in Table 5. The maximum upper bound of δ2 obtained by Theorem 3.1
is determined for different values of δ1. Our approach yielded significantly better results than those
in [34, 36], indicating that our stability condition is less conservative and more effective. We set the
initial condition as ζ(0) = [−0.5, 0.3, 0.5,−0.3]T ; the simulation results of the state responses are
shown in Figures 11 and 12 for different parameter values. Our analysis indicates that the NN (3.25)
with ATVDs is asymptotically stable.
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Figure 11. State responses of NNs
(3.25) with µ1 = 0.1 and µ2 = 0.8
for Example 4.2.
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Figure 12. State responses of NNs
(3.25) with µ1 = 0.3 and µ2 = 0.6
for Example 4.2.

AIMS Mathematics Volume 8, Issue 9, 21221–21245.



21239

Table 5. MAUBs of δ2 for different values of δ1 with fixed µ1 = 0.1 and µ2 = 0.8.

Method 1.0 1.2 1.5
[36](δ = 0, 1) 1.7308 1.5245 1.2236
[34] 3.258 3.024 2.678
Remark 3.4 3.8507 3.3196 3.0735

Example 4.3. For the purpose of this analysis, we will focus on NNs described by (3.25) that
incorporate ATVDs, with matrix values as follows:

A =

[
2 0
0 2

]
, B =

[
1 1
−1 −1

]
, C =

[
0.88 1

1 1

]
, %−1 = %−2 = 0, %+

1 = 0.4, %+
2 = 0.8.

To investigate the asymptotic stability of NNs with ATVDs, we employed the Matlab LMI toolbox and
determined the feasibility of conditions (3.1)–(3.4).

Our purpose was to calculate the MAUBs of δ1 and δ2 when the other is known, below which the
NNs (3.25) is asymptotically stable. For δ1 = 0.8, 1.0, 1.2, by using the Matlab LMI toolbox to solve the
LMIs in Remark 3.4, it is concluded that system (3.25) is asymptotically stable while δ2 is up to 3.7044,
3.3346, 2.4920, respectively. Similarly, for δ2 = 0.8, 1.0, 1.2, the corresponding δ1 is up to 3.6326,
3.3684, 2.8029, respectively. Furthermore, to show the reduced conservatism of the derived result in
this paper, the MAUB δ2 is obtained as in [12,14,15,17,34–36,40] and Remark 3.4 for different values
of δ1 and the MAUB δ1 is obtained as in [12, 34, 40] and Remark 3.4 for different values of δ2, which
are listed in Tables 6 and 7, respectively.

Table 6. MAUBs of δ2 for different values of δ1 with µ1 = 0.7 and µ2 = 0.1.

δ1 [40] [12] [14] [15] [34] [35] [17] [36](δ = 0, 1) Remark 3.4
0.8 1.5666 1.9528 2.0164 1.9666 2.2448 2.3547 2.5680 2.6160 3.7044
1 1.3668 1.7992 1.8203 1.8351 1.9642 2.0053 2.3678 2.4160 3.3346

1.2 1.1664 1.6441 1.6197 1.6803 1.8591 1.9217 2.1678 2.2160 2.4920

Table 7. MAUBs of δ1 for different values of δ2 with µ1 = 0.7 and µ2 = 0.1.

δ2 [40] [12] [34] Remark 3.4
0.8 2.6928 2.7248 2.8545 3.6326
1 2.2389 2.3325 2.4856 3.3684

1.2 2.0639 2.2187 2.4579 2.8029

Example 4.4. In this example, we will demonstrate the practical application of the proposed result
using a real-world model known as the QTPS, depicted in Figure 13. The use of NNs in this
context extends beyond biological models and includes practical models like the QTPS. The overall
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physical model of the system is governed by a mathematical equation, which was initially studied
by Johansson [41]. The QTPS comprises four interconnected water tanks, two water pumps and
two valves. The primary objective is to control the water level in the two lower tanks by utilizing
the two pumps. The inputs to the system are the voltages (ν1 and ν2) applied to Pumps 1 and 2,
respectively. The outputs are measured by the water levels (h1 and h2) in Tanks 1 and 2. Tanks 1 and 2
were positioned below Tanks 3 and 4, allowing water to flow into them through the force of gravity.
Therefore, in the context of practical real-world applications, the four-tank water pumping system can
be effectively modeled as an NN. Previous studies [41–44] have proposed state-space equations for
this four-tank system, demonstrating the application of NNs in modeling its behavior. These equations
can be expressed as follows:

˙̂x(t) = Â0(x̂(t)) + Â1(x̂(t − τ1)) + B̂0(̂u(t − τ2)) + B̂1(̂u(t − τ3)), (4.1)

where

Â0 =


−0.0021 0 0 0

0 −0.0021 0 0
0 0 −0.0424 0
0 0 0 −0.0424

 ,

Â1 =


0 0 0.0424 0
0 0 0 0.0424
0 0 0 0
0 0 0 0

 ,
B̂0 =

[
0.1113ρ1 0 0 0

0 0.1042(1 − ρ2) 0 0

]
,

B̂1 =

[
0 0 0 0.1113(1 − ρ1)
0 0 0.1042(1 − ρ2) 0

]
,

ρ1 = 0.333, ρ2 = 0.307, û = K̂ x̂(t),

K̂ =

[
−0.1609 −0.1765 −0.0795 −0.2073
−0.1977 −0.1579 −0.2288 −0.0772

]
.

Another control problem of our interests is obtained by adding transport delays δ(t) = δ1(t) + δ2(t)
by delaying the inlet of incoming water into the tanks. Hence, the proposed approach has been used to
study this problem here. In this work mainly focuses on transporting time delay signals between valves
and tanks being time-varying. For simplicity, it was assumed that τ1 = 0, τ2 = 0 and τ3 = δ(t) (since
δ(t) ≤ δ). In this example, the control input û(t) indicates the amount of water pumped. Therefore, it is
naturally a nonlinear function and can be written as follows:

û(t) = K̂ f̂ (x̂(t)),

f̂ (x̂(t)) = [ f̂1(x̂1(t)), ...., f̂4(x̂4(t))]T ,

f̂i(x̂i(t)) = 0.1(|̂xi(t) + 1| − |̂xi(t) − 1|), i = 1, 2, ...4.
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The four-tank system (4.1) can be rewritten to the form of system (3.25) as follows:

ζ̇(t) = −Aζ(t) + B f (ζ(t)) + C f (ζ(t − δ(t))), (4.2)

where A = Â0 − Â1, B = B̂0K̂, C = B̂1K̂. In addition, ∆1 = diag{0, 0, 0, 0} and ∆2 =

diag{0.1, 0.1, 0.1, 0.1} with δ1 = 1.5, δ2 = 3.1, µ1 = 0.1 and µ2 = 0.5. Using the MATLAB LMI
toolbox and solving the inequalities in Theorem 3.1 applicable to Remark 3.4, we were able to obtain a
feasible solution; Figure 14 shows the state trajectories of the system converging to zero with an initial
state [−0.5, 0.5, 0.5,−0.5]T , which leads to the conclusion that QTPS (4.2) is stable.

Figure 13. Schematic representation of the QTPS.
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Figure 14. State trajectory of the system (4.2) in Example 4.4.

AIMS Mathematics Volume 8, Issue 9, 21221–21245.



21242

5. Conclusions

In this paper, we studied improved extended dissipativity performance of NNs that have ATVDs. We
proposed delay-dependent stability criteria for the NNs by using a more general and augmented type
of LKF, as well as the AFBII technique and improved integral inequality. Our extended dissipativity
criteria take into account the relationship between the ATVDs and their upper delay bounds. To
demonstrate the effectiveness of our approach, we provided four numerical examples. The results show
that our proposed method leads to less conservatism compared to some existing methods. Additionally,
the proposed approach has been validated through numerical simulations of a benchmark problem
that incorporates ATVDs. In future work, we plan to explore more advanced technologies to design
controllers with even less conservatism. Furthermore, we aim to extend our results to more realistic
systems, such as delayed nonlinear switched systems and fuzzy switched network systems.
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