6 research outputs found

    Solving Connectivity Problems Parameterized by Treedepth in Single-Exponential Time and Polynomial Space

    Get PDF
    A breakthrough result of Cygan et al. (FOCS 2011) showed that connectivity problems parameterized by treewidth can be solved much faster than the previously best known time ?^*(2^{?(twlog tw)}). Using their inspired Cut&Count technique, they obtained ?^*(?^tw) time algorithms for many such problems. Moreover, they proved these running times to be optimal assuming the Strong Exponential-Time Hypothesis. Unfortunately, like other dynamic programming algorithms on tree decompositions, these algorithms also require exponential space, and this is widely believed to be unavoidable. In contrast, for the slightly larger parameter called treedepth, there are already several examples of matching the time bounds obtained for treewidth, but using only polynomial space. Nevertheless, this has remained open for connectivity problems. In the present work, we close this knowledge gap by applying the Cut&Count technique to graphs of small treedepth. While the general idea is unchanged, we have to design novel procedures for counting consistently cut solution candidates using only polynomial space. Concretely, we obtain time ?^*(3^d) and polynomial space for Connected Vertex Cover, Feedback Vertex Set, and Steiner Tree on graphs of treedepth d. Similarly, we obtain time ?^*(4^d) and polynomial space for Connected Dominating Set and Connected Odd Cycle Transversal

    Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs

    Get PDF
    In this paper, we study the maximum clique problem on hyperbolic random graphs. A hyperbolic random graph is a mathematical model for analyzing scale-free networks since it effectively explains the power-law degree distribution of scale-free networks. We propose a simple algorithm for finding a maximum clique in hyperbolic random graph. We first analyze the running time of our algorithm theoretically. We can compute a maximum clique on a hyperbolic random graph G in O(m + n^{4.5(1-?)}) expected time if a geometric representation is given or in O(m + n^{6(1-?)}) expected time if a geometric representation is not given, where n and m denote the numbers of vertices and edges of G, respectively, and ? denotes a parameter controlling the power-law exponent of the degree distribution of G. Also, we implemented and evaluated our algorithm empirically. Our algorithm outperforms the previous algorithm [BFK18] practically and theoretically. Beyond the hyperbolic random graphs, we have experiment on real-world networks. For most of instances, we get large cliques close to the optimum solutions efficiently

    Drawing the Line: Basin Boundaries in Safe Petri Nets

    Get PDF
    International audienceAttractors of network dynamics represent the long-term behaviours of the modelled system. Understanding the basin of an attrac-tor, comprising all those states from which the evolution will eventually lead into that attractor, is therefore crucial for understanding the response and differentiation capabilities of a dynamical system. Building on our previous results [2] allowing to find attractors via Petri net Un-foldings, we exploit further the unfolding technique for a backward exploration of the state space, starting from a known attractor, and show how all strong or weak basins of attractions can be explicitly computed

    The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids

    Full text link
    Cotutelle avec l'École Normale Supérieure de Cachan, Université Paris-Saclay.Cette thèse porte sur des minorants pour des mesures de complexité liées à des sous-classes de la classe P de langages pouvant être décidés en temps polynomial par des machines de Turing. Nous considérons des modèles de calcul non uniformes tels que les programmes sur monoïdes et les programmes de branchement. Notre première contribution est un traitement abstrait de la méthode de Nečiporuk pour prouver des minorants, indépendamment de toute mesure de complexité spécifique. Cette méthode donne toujours les meilleurs minorants connus pour des mesures telles que la taille des programmes de branchements déterministes et non déterministes ou des formules avec des opérateurs booléens binaires arbitraires ; nous donnons une formulation abstraite de la méthode et utilisons ce cadre pour démontrer des limites au meilleur minorant obtenable en utilisant cette méthode pour plusieurs mesures de complexité. Par là, nous confirmons, dans ce cadre légèrement plus général, des résultats de limitation précédemment connus et exhibons de nouveaux résultats de limitation pour des mesures de complexité auxquelles la méthode de Nečiporuk n’avait jamais été appliquée. Notre seconde contribution est une meilleure compréhension de la puissance calculatoire des programmes sur monoïdes issus de petites variétés de monoïdes finis. Les programmes sur monoïdes furent introduits à la fin des années 1980 par Barrington et Thérien pour généraliser la reconnaissance par morphismes et ainsi obtenir une caractérisation en termes de semi-groupes finis de NC^1 et de ses sous-classes. Étant donné une variété V de monoïdes finis, on considère la classe P(V) de langages reconnus par une suite de programmes de longueur polynomiale sur un monoïde de V : lorsque l’on fait varier V parmi toutes les variétés de monoïdes finis, on obtient différentes sous-classes de NC^1, par exemple AC^0, ACC^0 et NC^1 quand V est respectivement la variété de tous les monoïdes apériodiques finis, résolubles finis et finis. Nous introduisons une nouvelle notion de docilité pour les variétés de monoïdes finis, renforçant une notion de Péladeau. L’intérêt principal de cette notion est que quand une variété V de monoïdes finis est docile, nous avons que P(V) contient seulement des langages réguliers qui sont quasi reconnus par morphisme par des monoïdes de V. De nombreuses questions ouvertes à propos de la structure interne de NC^1 seraient réglées en montrant qu’une variété de monoïdes finis appropriée est docile, et, dans cette thèse, nous débutons modestement une étude exhaustive de quelles variétés de monoïdes finis sont dociles. Plus précisément, nous portons notre attention sur deux petites variétés de monoïdes apériodiques finis bien connues : DA et J. D’une part, nous montrons que DA est docile en utilisant des arguments de théorie des semi-groupes finis. Cela nous permet de dériver une caractérisation algébrique exacte de la classe des langages réguliers dans P(DA). D’autre part, nous montrons que J n’est pas docile. Pour faire cela, nous présentons une astuce par laquelle des programmes sur monoïdes de J peuvent reconnaître beaucoup plus de langages réguliers que seulement ceux qui sont quasi reconnus par morphisme par des monoïdes de J. Cela nous amène à conjecturer une caractérisation algébrique exacte de la classe de langages réguliers dans P(J), et nous exposons quelques résultats partiels appuyant cette conjecture. Pour chacune des variétés DA et J, nous exhibons également une hiérarchie basée sur la longueur des programmes à l’intérieur de la classe des langages reconnus par programmes sur monoïdes de la variété, améliorant par là les résultats de Tesson et Thérien sur la propriété de longueur polynomiale pour les monoïdes de ces variétés.This thesis deals with lower bounds for complexity measures related to subclasses of the class P of languages that can be decided by Turing machines in polynomial time. We consider non-uniform computational models like programs over monoids and branching programs. Our first contribution is an abstract, measure-independent treatment of Nečiporuk’s method for proving lower bounds. This method still gives the best lower bounds known on measures such as the size of deterministic and non-deterministic branching programs or formulæ with arbitrary binary Boolean operators; we give an abstract formulation of the method and use this framework to prove limits on the best lower bounds obtainable using this method for several complexity measures. We thereby confirm previously known limitation results in this slightly more general framework and showcase new limitation results for complexity measures to which Nečiporuk’s method had never been applied. Our second contribution is a better understanding of the computational power of programs over monoids taken from small varieties of finite monoids. Programs over monoids were introduced in the late 1980s by Barrington and Thérien as a way to generalise recognition by morphisms so as to obtain a finite-semigroup-theoretic characterisation of NC^1 and its subclasses. Given a variety V of finite monoids, one considers the class P(V) of languages recognised by a sequence of polynomial-length programs over a monoid from V: as V ranges over all varieties of finite monoids, one obtains different subclasses of NC^1, for instance AC^0, ACC^0 and NC^1 when V respectively is the variety of all finite aperiodic, finite solvable and finite monoids. We introduce a new notion of tameness for varieties of finite monoids, strengthening a notion of Péladeau. The main interest of this notion is that when a variety V of finite monoids is tame, we have that P(V) does only contain regular languages that are quasi morphism-recognised by monoids from V. Many open questions about the internal structure of NC^1 would be settled by showing that some appropriate variety of finite monoids is tame, and, in this thesis, we modestly start an exhaustive study of which varieties of finite monoids are tame. More precisely, we focus on two well-known small varieties of finite aperiodic monoids: DA and J. On the one hand, we show that DA is tame using finite-semigroup- theoretic arguments. This allows us to derive an exact algebraic characterisation of the class of regular languages in P(DA). On the other hand, we show that J is not tame. To do this, we present a trick by which programs over monoids from J can recognise much more regular languages than only those that are quasi morphism-recognised by monoids from J. This brings us to conjecture an exact algebraic characterisation of the class of regular languages in P(J), and we lay out some partial results that support this conjecture. For each of the varieties DA and J, we also exhibit a program-length-based hierarchy within the class of languages recognised by programs over monoids from the variety, refining Tesson and Thérien’s results on the polynomial-length property for monoids from those varieties

    Solving hard subgraph problems in parallel

    Get PDF
    This thesis improves the state of the art in exact, practical algorithms for finding subgraphs. We study maximum clique, subgraph isomorphism, and maximum common subgraph problems. These are widely applicable: within computing science, subgraph problems arise in document clustering, computer vision, the design of communication protocols, model checking, compiler code generation, malware detection, cryptography, and robotics; beyond, applications occur in biochemistry, electrical engineering, mathematics, law enforcement, fraud detection, fault diagnosis, manufacturing, and sociology. We therefore consider both the ``pure'' forms of these problems, and variants with labels and other domain-specific constraints. Although subgraph-finding should theoretically be hard, the constraint-based search algorithms we discuss can easily solve real-world instances involving graphs with thousands of vertices, and millions of edges. We therefore ask: is it possible to generate ``really hard'' instances for these problems, and if so, what can we learn? By extending research into combinatorial phase transition phenomena, we develop a better understanding of branching heuristics, as well as highlighting a serious flaw in the design of graph database systems. This thesis also demonstrates how to exploit two of the kinds of parallelism offered by current computer hardware. Bit parallelism allows us to carry out operations on whole sets of vertices in a single instruction---this is largely routine. Thread parallelism, to make use of the multiple cores offered by all modern processors, is more complex. We suggest three desirable performance characteristics that we would like when introducing thread parallelism: lack of risk (parallel cannot be exponentially slower than sequential), scalability (adding more processing cores cannot make runtimes worse), and reproducibility (the same instance on the same hardware will take roughly the same time every time it is run). We then detail the difficulties in guaranteeing these characteristics when using modern algorithmic techniques. Besides ensuring that parallelism cannot make things worse, we also increase the likelihood of it making things better. We compare randomised work stealing to new tailored strategies, and perform experiments to identify the factors contributing to good speedups. We show that whilst load balancing is difficult, the primary factor influencing the results is the interaction between branching heuristics and parallelism. By using parallelism to explicitly offset the commitment made to weak early branching choices, we obtain parallel subgraph solvers which are substantially and consistently better than the best sequential algorithms

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore