
Algorithms for Computing Maximum Cliques in
Hyperbolic Random Graphs
Eunjin Oh #

Department of Computer Science, POSTECH, Pohang, South Korea

Seunghyeok Oh #

Department of Computer Science, POSTECH, Pohang, South Korea

Abstract
In this paper, we study the maximum clique problem on hyperbolic random graphs. A hyperbolic
random graph is a mathematical model for analyzing scale-free networks since it effectively explains
the power-law degree distribution of scale-free networks. We propose a simple algorithm for
finding a maximum clique in hyperbolic random graph. We first analyze the running time of our
algorithm theoretically. We can compute a maximum clique on a hyperbolic random graph G in
O(m + n4.5(1−α)) expected time if a geometric representation is given or in O(m + n6(1−α)) expected
time if a geometric representation is not given, where n and m denote the numbers of vertices and
edges of G, respectively, and α denotes a parameter controlling the power-law exponent of the degree
distribution of G. Also, we implemented and evaluated our algorithm empirically. Our algorithm
outperforms the previous algorithm [BFK18] practically and theoretically. Beyond the hyperbolic
random graphs, we have experiment on real-world networks. For most of instances, we get large
cliques close to the optimum solutions efficiently.

2012 ACM Subject Classification Theory of computation → Random network models

Keywords and phrases Maximum cliques, hyperbolic random graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.85

Related Version Full Version: https://arxiv.org/abs/2306.16775

Supplementary Material Software (Source Code): https://github.com/Menborong/HRG_maxClique
archived at swh:1:dir:e721e2b75d1878c69a07cb1a383a6eff65dcfc5b

Funding This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIT) (No.RS-2023-00209069).

1 Introduction

Designing algorithms for analyzing large real-world networks such as social networks, World
Wide Web, or biological networks is a fundamental problem in computer science that has
attracted considerable attention in the last decades. To deal with this problem from the
theoretical point of view, it is required to define a mathematical model for real-world networks.
For this purpose, several models have been proposed. Those models are required to replicate
the salient features of real-world networks. One of the most salient features of real-world
networks is scale-free. In general, a graph is considered as a scale-free network if its diameter
is small, one connected component has large size, it has subgraphs with large edge density,
and most importantly, its degree distribution follows a power law. Here, for an integer k ≤ n,
let P (k) be the fraction of nodes having degree exactly k. If P (k) ∼ k−β , we say that the
degree distribution of the graph follows a power law. In this case, β is called the power-law
exponent.

One promising model for scale-free real-world networks is the hyperbolic random graph
model. A hyperbolic random graph is constructed from two parameters. First, points in the
hyperbolic plane are chosen from a certain distribution depending on the parameters. Then

© Eunjin Oh and Seunghyeok Oh;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 85;
pp. 85:1–85:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eunjin.oh@postech.ac.kr
mailto:seunghyeokoh@postech.ac.kr
https://doi.org/10.4230/LIPIcs.ESA.2023.85
https://arxiv.org/abs/2306.16775
https://github.com/Menborong/HRG_maxClique
https://archive.softwareheritage.org/swh:1:dir:e721e2b75d1878c69a07cb1a383a6eff65dcfc5b;origin=https://github.com/Menborong/HRG_maxClique;visit=swh:1:snp:c85963fb294ec116fbfabf61d48303b7f6ebeb99;anchor=swh:1:rev:af0eb95c5cfe0d1745c88569054f37a70465cd55
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

85:2 Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs

we consider the points as the vertices of the constructed hyperbolic random graph. For two
vertices whose distance is at most a certain threshold, we add an edge between them. For
illustration, see Figure 1. It is known that the degree distribution of a hyperbolic random
graph follows a power-law [15]. Moreover, its diameter is small with high probability [14, 16],
and it has a giant connected component [10, 17]. Including these results, the structural
properties of hyperbolic random graphs have been studied extensively [11]. However, only a
few algorithmic results are known. In other words, the previous work focuses on why we can
use hyperbolic random graphs as a promising model, but only a few work focuses on how to
use this model for solving real-world problems. We focus on the latter type of problems.

In this paper, we focus on the maximum clique problem for hyperbolic random graphs
from theoretical and practical point of view. The maximum clique problem asks for a
maximum-cardinality set of pairwise adjacent vertices. For general graphs, this problem
is NP-hard. Moreover, it is W[1]-hard when it is parameterized by the solution size, and
it is APX-hard even for cubic graphs [2]. Therefore, the theoretical study on the clique
problem focuses on special classes of graphs. In fact, this problem can be solved in polynomial
time for special classes of graphs such as planar graphs, unit disk graphs and hyperbolic
random graphs [7, 12, 13]. More specifically, the algorithm by Bläsius et al. [7] for computing
a maximum clique of a hyperbolic random graph takes O(mn2.5) worst-case time. The
randomness in the choice of vertices is not considered in the analysis of the algorithm. One
natural question here is to design an algorithm for this problem with improved expected time.

To analyze our algorithm, we use the average-case analysis. A traditional modeling choice
in the analysis of algorithms is worst-case analysis, where the performance of an algorithm is
measured by the worst performance over all possible inputs. Although it is a useful framework
in the analysis of algorithms, it does not take into account the distribution of inputs that
an algorithm is likely to encounter in practice. It is possible that an algorithm performs
well on most inputs, but poorly on a small number of inputs that are rarely encountered in
practice. In this case, the worst-case analysis can mislead the analysis of algorithms. The
field of ”beyond worst-case analysis” studies ways for overcoming these limitations [25]. One
simple technique studied in this field is the average-case analysis. As the hyperbolic random
graph model intrinsically defines an input distribution, the average-case analysis is a natural
model for analyzing algorithms for hyperbolic random graphs.

Previous Work. While the structural properties of hyperbolic random graphs has been
studied extensively, only a few algorithmic problems have been studied. The most extensively
studied algorithmic problem on hyperbolic random graphs is the generation problem: Given
parameters, the goal is to generate a hyperbolic random graph efficiently. The best-known
algorithms run in expected linear time [5] and in worst-case subquadratic time [26]. Also,
Bläsius et al. [8] studied the problem of embedding a scale-free network into the hyperbolic
plane and presented heuristics for this problem.

Very recently, classical algorithmic problems such as shortest path problems, the maximum
clique problem and the independent set problem have been studied. These problems can be
solved significantly faster in hyperbolic random graphs. More specifically, given a hyperbolic
random graph, the shortest path between any two vertices can be computed in sublinear
expected time [4, 9]. A hyperbolic random graph admits a sublinear-sized balanced separator
with high probability [6]. As applications, Bläsius et al. [6] showed that the independent set
problem admits a PTAS for hyperbolic random graphs, and the maximum matching problem
admits a subquadratic-time algorithm. Also, the clique problem can be solved in polynomial
time for hyperbolic random graphs in the worst case [7].

E. Oh and S. Oh 85:3

The clique problem has been studied extensively because it has numerous applications in
various field such as community search in social networks, team formation in expert networks,
gene expression and motif discovery in bioinformatics and anomaly detection in complex
networks [19]. From a theoretical perspective, the best-known exact algorithm runs in 20.276n

time in [23]. However, it is not sufficiently fast for massive real-world networks, leading
to the proposal of lots of exact algorithms and heuristics for this problem on real-world
networks [1, 19, 21, 24]. While these algorithms and heuristics work efficiently in practice,
there is no theoretical guarantee of their efficiency.

Our results. We present algorithms for computing a maximum clique in a hyperbolic
random graph and analyze their performances theoretically and empirically.

Given a hyperbolic random graph with parameters α and C together with its geometric
representation, we can compute a maximum clique in O(m + n4.5(1−α)) expected time, where
n and m denotes the numbers of vertices and edges of the given graph. Here, we have
1/2 < α < 1, and the O-notation hides a constant depending on α and C. With high
probability, our algorithm outperforms the previously best-known algorithm by Bläsius et
al. [7] running in O(mn2.5) time. In the case that a geometric representation is not given,
our algorithm runs in O(m + n6(1−α)) expected time. This is the first algorithms for the
maximum clique problem on hyperbolic random graphs not using geometric representations.

Also, we implemented our algorithms and analyzed it empirically. We run our algorithms
on both synthetic data (hyperbolic random graphs) and real-world data. For hyperbolic
random graphs, since it is proved that our algorithm computes a maximum clique correctly,
we focus on the efficiency of the algorithms. We observed that our algorithms perform
efficiently; it takes about 100ms for n = 106. For real-world networks, our algorithm gives a
lower bound on the optimal solution. We observed that our algorithm performs well especially
for collaboration networks and web networks. These are typical scale-free real-world networks.

2 Preliminaries

Let H2 be the hyperbolic plane with curvature −1. We can handle hyperbolic planes with
arbitrary (negative) curvatures by rescaling other model parameters which will be defined
later. Thus it suffices to deal with the hyperbolic plane with curvature −1. Since the
hyperbolic plane is isotropic, we choose an arbitrary point o and consider it as the origin
of H2. Also, we fix a half-line ℓo from o going towards an arbitrary point, say w, as the
axis. Then we can represent a point v of H2 as (rv, ϕv) where rv is the hyperbolic distance
between v and o, and ϕv is the angle from ℓo to the half-line from o going towards v. We
call rv and ϕv the radial and angular coordinates of v.

For any two points x and y in H2, we use d(x, y) to denote the distance in H2 between x

and y. Then we have the following.

d(u, v) = cosh−1(cosh(ru) cosh(rv) − sinh(ru) sinh(rv) cos(∆ϕu,v)
≤ cosh−1(cosh(ru) cosh(rv) + sinh(ru) sinh(rv)),

where ∆ϕu,v denotes the small relative angle between v and u [3]. For a point x ∈ H2

and a value r ≥ 0, we use Bx(r) to denote the disk centered at x with radius r. That is,
Bx(r) = {v ∈ H2 | d(v, x) ≤ r}.

ESA 2023

85:4 Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs

Figure 1 HRGs with different parameters. As C gets larger, the average degree gets larger (See
(a–b)). As α gets larger, the points gets closer to the boundary of D (See (b–c)).

2.1 Hyperbolic Random Graphs
A hyperbolic unit disk graph (HRG) is a graph whose vertices are placed on H2, and two
vertices are connected by an edge if the distance between them on H2 is at most some
threshold. This threshold is called the radius threshold of the graph. This is the same as the
unit disk graph except that the hyperbolic unit disk graph is defined on H2 while the unit
disk graph is defined on the Euclidean plane.

In this paper, we focus on the hyperbolic random graph model introduced by Papadopoulos
et al. [20]. It is a family {Gn,α,C} of distributions, indexed by the number n of vertices, a
parameter C adjusting the average degree of a graph, and a parameter α determining the
power-law exponent. A sample from {Gn,α,C} is a hyperbolic unit disk graph on n points
(vertices) chosen independently as follows. Let D be the disk centered at o with radius
R = 2 ln n + C. To pick a point v in D, we first sample its radius rv, and then sample its
angular coordinate ϕv. The probability density ρ(r) for the radial coordinate rv is defined as

ρ(r) = α sinh(αr)
cosh(αR) − 1 . (1)

Then the angular coordinate is sampled uniformly from [0, 2π). In this way, we can sample
one vertex with respect to parameters α and C, and by choosing n vertices independently
and by computing the hyperbolic unit disk graph with radius threshold R on the n vertices,
we can obtain a sample from the distribution {Gn,α,C}.

An intuition behind the definition of ρ(r) is as follows. To choose a point v uniformly at
random in D, we first choose its angular coordinate uniformly at random in [0, 2π) as we
did for Gn,α,C , and choose its radial coordinate according to the distribution with density
function ρ(r) = sinh(r)

cosh(αR)−1 . But in this case, the power-law exponent of a graph is fixed. To
add the flexibility to the model, the authors of [20] introduced a parameter α and defined
the density function as in (1). Here, For α < 1, this favors points closer to the center of D,
while for α > 1, this favors points closer to the boundary of D. For α = 1, this corresponds
to the uniform distribution [15]. For illustration, see Figure 1.

Properties of HRGs. Let µ(S) be the probability measure of a set S ⊆ D, that is,

µ(S) =
∫

x∈S

α sinh(αrx)
2π cosh(αR) − 1dx.

For a vertex v of a hyperbolic random graph G with n vertices, the expected degree of v in G

is n · µ(Bv(R) ∩ D) by construction. Moreover, notice that µ(Bv(R) ∩ D) = µ(Bv′(R) ∩ D)
for any two vertices v, v′ with rv = rv′ . Thus to make the description easier, we let Br(r′)
denote B(r,0)(r′) if it is clear from the context. Note that D = B0(R).

E. Oh and S. Oh 85:5

Hyperbolic random graphs have all properties for being considered as scale-free networks
mentioned above. In particular, hyperbolic random graphs with parameter α have power-law
exponent β, where β = 2α + 1 if α ≥ 1/2, and β = 2 otherwise. Most real-world networks
have a power-law exponent larger than two. Thus we assume that α > 1/2 in the paper.

2.2 Algorithms for the Maximum Clique Problem

In this section, we review the algorithm for this problem on hyperbolic random graphs de-
scribed in [7], which is an extension of [12]. This algorithms requires geometric representations
of hyperbolic random graphs. Let G = (V, E) be a hyperbolic random graph.

For α ≥ 1, they showed that a hyperbolic random graph has O(n) maximal cliques with
high probability. Therefore, a maximum clique can be computed in linear time with high
probability by just enumerating all the maximal cliques.

For 1
2 < α < 1, they showed that the algorithm in [12] can be extended to hyperbolic

random graphs. Assume first that, for a maximum clique K, we have two vertices u and
v of K with maximum r = d(u, v). Then all vertices in K are contained in the region
Ruv = Bu(r) ∩ Bv(r). Then we can compute K by considering the vertices in Ruv as follows.
We partition Ruv into R1

uv and R2
uv with respect to the line through u and v. They showed

that the diameter of R1
uv (and R2

uv) is at most one, and thus V ∩ R1
uv (and V ∩ R2

uv)) forms
a clique. Therefore, the subgraph Guv of G induced by V ∩ Ruv is the complement of a
bipartite graph with bipartition (V ∩R1

uv, V ∩R2
uv). Moreover, K is an independent set of the

complement of Guv. Therefore, it suffices to compute an independent set of the complement
of Guv, and we can do this in in O(n2.5) time using the Hopcroft-Karp algorithm. However,
we are not given the edge uv in advance. Thus we apply this procedure for every edge uv of
G, and then take the largest clique as a solution. This takes O(mn2.5) time in total.

Throughout this paper, we use P[A] to denote the probability that an event A occurs.
For a random variable X, we use E[X] to denote the expected value of X. Due to lack of
space, some proofs and details are omitted. Missing proofs and details can be found in the
full version of this paper.

3 Efficient Algorithm for the Maximum Clique Problem

In this section, we present an algorithm for the maximum clique problem on a hyperbolic ran-
dom graph drawn from Rn,α,C running in O

(
m + n4.5(1−α)) expected time. This algorithm

correctly works for any hyperbolic unit disk graph, but its time bound is guaranteed only for
hyperbolic random graphs. As we only deal with the case that 1/2 < α < 1, this algorithm
is significantly faster than the algorithm in [7].

A main observation is the following. A clique of size k consists of vertices of degree at
least k − 1. That is, to find a clique of size at least k, removing vertices with degree less
than k − 1 does not affect the solution. Thus once we have a lower bound, say k, on the size
of a maximum clique, we can remove all vertices of degree less than k. Our strategy is to
construct a sufficiently large clique (which is not necessarily maximum) as a preprocessing
step so that we can remove a sufficiently large number of vertices of small degree. After
applying a preprocessing step, we will see that the number of vertices we have decreases to
O(n1−α) with high probability. Then we apply the algorithm in [7] to the resulting graph.

ESA 2023

85:6 Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs

3.1 Computing a Sufficiently Large Clique Efficiently

In this section, we show how to compute a clique of size Ω(n1−α) with probability 1−2−Ω(n1−α).
The algorithm is simple: Scan the vertices in the non-increasing order of their degrees, and
maintain a clique Q, which is initially set as ∅. If the next vertex can be added to Q to form
a larger clique, then add it, otherwise exclude it. We can sort the vertices with respect to
their degrees in O(n + m) time using counting sort. Also, we can construct the clique Q in
O(n + m) time. In the following, we call Q the initial clique.

Now, we show that the size of the initial clique is Ω(n1−α) with probability 1 − 2−Ω(n1−α).
First, we show that a sufficient large clique can be found by collecting all vertices in B0(R/2)
with high probability. in Lemma 1. For its proof, see the full version.

▶ Lemma 1. For any constant c′ > 0, the vertices in B0(R/2 − c′) forms a clique of size
Ω(n1−α) with probability 1 − 2−Ω(n1−α).

Thus, we can get desired clique by choosing Ω(n1−α) vertices in B0(R/2) with high
probability. However, as we scan the vertices in the decreasing order of their degrees, this
does not immediately imply that the size of the initial clique is Ω(n1−α). In the following
lemma, we show that the initial clique has the claimed size by showing that the Ω(n1−α)
vertices with highest degrees are contained in B0(R/2) with high probability.

▶ Lemma 2. The initial clique has size Ω(n1−α) with probability 1 − 2−Ω(n1−α).

Proof. Here, we give a brief sketch of the proof. For details, see the full version. First, we
show that no vertex lying outside of B0(R/2) has degree greater than 2ec1

√
n with high

probability for some constant c1 depending only on C, α. Then we show that no vertex in
B0(R/2 − c2) has degree smaller than 2ec1

√
n with high probability for some constant c2.

To construct the initial solution, we scan the vertices in the decreasing order of their degrees.
Therefore, with probability 1 − 2−Ω(

√
n), we consider all vertices in B0(R/2 − c2) before

considering any vertex lying outside of B0(R/2). Therefore, the initial clique contains all
vertices in B0(R/2 − c2) with high probability. By Lemma 1, the initial clique has size at
least Ω(n1−α) with high probability. ◀

3.2 Removing All Vertices of Small Degree

In this section, we show how to remove a sufficiently large number of vertices, and show that
the size of the remaining graph is O(n1−α) with high probability. This algorithm is also
simple: given the initial clique of size k, we repeatedly delete all vertices of degree smaller
than k. We call the resulting graph the kernel. Then no vertex in the kernel has degree
smaller than k at the end of the process. This process can be implemented in linear time as
follows: maintain the queue of vertices of degree smaller than k, and maintain the degree
of each vertex. Then remove the vertices in the queue in order. Whenever a vertex v is
removed, update the degree of each neighbor w of v and insert w to the queue if its degree
gets smaller than k.

We show that the kernel has size O(n1−α). Notice that we do not specify the order of
vertices we consider during the deletion process. Fortunately, the kernel size remains the
same regardless of the choice of deletion ordering. A proof of Lemma 3 can be found in the
full version of this paper.

▶ Lemma 3. In any order of deleting vertices, we can get a unique kernel.

E. Oh and S. Oh 85:7

Because of the uniqueness of the kernel, for analysis, we may fix a specific deletion ordering
and slightly modify the deletion process as follows. Imagine that we scan the vertices in
the decreasing order of their radial coordinates. If the degree of a current vertex (in the
remaining graph) is at least the size of the initial clique size, then we terminate the deletion
process. Otherwise, we delete the current vertex, and consider the next vertex. By Lemma 3,
the number of remaining vertices is at least the size of the kernel. In the following lemma,
we analyze the number of remaining vertices.

▶ Lemma 4. Given an initial solution of size Ω(n1−α), then the size of the kernel is O(n1−α)
with probability 1 − 2−Ω(n1−α).

Proof. Here, we give a sketch of the proof only. For details, see the full version.
Let K be the initial solution, and let r′ be a value such that nµ(B0(r′) ∩ Br′(R)) is |K|

2e .
Then we show that all the vertices with radial coordinates larger than r′ are removed with
probability 1 − 2−Ω(n1−α). To do this, for a vertex v, we define the inner degree of v as
the number of its neighboring vertices whose radial coordinates are smaller than the radial
coordinate of v. The expected inner degree of a vertex with radial coordinate r ≥ r′ is at
most nµ(B0(r′) ∩ Br′(R)) = |K|

2e .
Chernoff bound implies that for a vertex with radial coordinate larger than r′, the

probability that its inner degree is larger than the size of the initial clique is at most 2−|K|.
By the union bound over at most n vertices with radial coordinates larger than r′, the
probability that no vertex with radial coordinate larger than r′ has inner degree larger
than than the size of the initial clique is at most n2−|K| = 2−Ω(n1−α). In other words, with
probability 1 − n2−c3n1−α = 1 − 2−Ω(n1−α), all vertices with radial coordinates larger than r′

have inner degree larger than the size of the initial clique.
If this event happens, we remove all vertices with coordinates larger than r′. We show

that the number of vertices with coordinates at most r′ is at most O(n1−α) with probability
1−2−Ω(n1−α). Therefore, the probability that the number of remaining vertices after applying
the deletion process is at most O(n1−α) is at least 1 − 2−Ω(n1−α). ◀

Although the deletion process we use for analysis requires the geometric representation
of G, the original deletion process does not require the geometric representation of G. By
combining the argument in Section 3.1 and Section 3.2, we have the following theorem.

▶ Theorem 5. Given a graph drawn from Gn,α,C with 1
2 < α < 1 and its geometric

representation, we can compute its maximum clique in O
(
m + n4.5(1−α)) expected time.

4 Efficient Robust Algorithm for the Maximum Clique Problem

In this section, we present the first algorithm for the maximum clique problem on hyperbolic
random graphs which does not require geometric representations. In many cases, a geometric
representation of a graph is not given. In particular, real-world networks such as social and
collaboration networks are not defined based on geometry although they share properties
with HRGs. As we want to use hyperbolic random graphs as a model for such real-world
networks, it is necessary to design algorithms not requiring geometric representations.

Our main key tool in this section is the notion of co-bipartite neighborhood edge elimination
ordering (CNEEO) introduced by Raghavan and Spinrad [22]. It can be considered as a variant
of a perfect elimination ordering. Let G be an undirected graph. Let L = (e1, e2, . . . em)
be an edge ordering of all edges of G. Let GL[i] be the subgraph of G with the edge set
{ei, ei+1 . . . em}. For a vertex v ∈ V , let NG(v) denote the set of neighbors of v in G. Then

ESA 2023

85:8 Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs

L is called a co-bipartite neighborhood edge elimination ordering (CNEEO) if for each edge
ei = (ui, vi), the subgraph of G induced by NGL[i](ui) ∩ NGL[i](vi) is co-bipartite. Here, a
co-bipartite graph is a graph whose complement is bipartite.

Raghavan and Spinrad [22] presented an algorithm for computing a CNEEO in polynomial
time if it exists. It uses a simple greedy algorithm: compute the edges of a CNEEO one
by one, and add an edge immediately if it does not violate the condition of a CNEEO.
Moreover, they presented a polynomial-time algorithm for computing a maximum clique in
polynomial time assuming a CNEEO is given. Since Raghavan and Spinrad [22] did not give
an explicit time bound on their algorithm, we analyzed their algorithm and confirmed that
their algorithm takes O(m3 +mn2.5) time in the full version. Note that this time bound holds
for an arbitrary graph (not necessarily a hyperbolic unit disk graph) admitting a CNEEO.

We show that a hyperbolic unit disk graph admits a CNEEO. This immediately leads to
an O(m3 + mn2.5)-time algorithm for the maximum clique problem. Its proof can be found
in the full version. In the case of hyperbolic random graphs, we can solve the problem even
faster. As we did in Section 3, we compute an initial clique, remove vertices of small degrees,
and then obtain a kernel of small size. Recall that these procedures do not require geometric
representations. Note that the kernel is also a hyperbolic unit disk graph because we remove
vertices only. The number of vertices of the kernel is O(n1−α) and the edges is O(n2−2α) in
probability 1 − 2−Ω(n1−α). Thus, we have the following theorem.

▶ Corollary 6. Given a graph drawn from Gn,α,C with 1
2 < α < 1, we can compute a maximum

clique in O
(
m + n6(1−α)) expected time without its geometric representation.

Heuristics for real-world networks. A main motivation of the study of hyperbolic random
graphs is to obtain heuristics for analyzing real-world networks. Many real-world networks
share salient features with hyperbolic random graphs, but this does not mean that many
real-world networks are hyperbolic random graphs. Because the algorithm in Corollary 6
is aborted for a graph not admitting a CNEEO, one cannot expect that this algorithm
works correctly for many real-world networks. In fact, only a few real-world networks admit
CNEEO as we will see in Section 6. That is, for most of real-world networks, the algorithm
in Corollary 6 is aborted.

However, in this case, we can obtain a lower bound on the optimal clique sizes, and
moreover, we can reduce the size of the graph. Although we do not have any theoretical
bound here, our experiments showed that the size of the clique we can obtain is close to the
optimal value for many instances. For details, see the full version.

5 Improving Performance through Additional Optimizations

For implementation, we introduce the following two minor techniques for improving the
performance of the algorithms. Although these techniques do not improve the performance
theoretically, they improve the performance empirically. Recall that our algorithms consist
of two phases: Computing a kernel of size O(n1−α), and then computing a maximum clique
of the kernel. As the first phase can be implemented efficiently, we focus on the second
phase here. Again, the second phase has two steps. With geometric representations, we
first compute a CNEEO, and then compute a maximum clique using the CNEEO. Without
geometric representations, we consider every edge, and then compute a maximum clique
in the subgraph induced by the common neighbors of the endpoint of the edge. The first
technique applies to both of the two steps, and the second technique applies to the first step.

E. Oh and S. Oh 85:9

5.1 Skipping Vertices with Low Degree

The main observation of our kernelization algorithm is that, for any lower bound k on the
size of a maximum clique, a vertex of degree less than k does not participate in a maximum
clique. The first technique we use in the implementation is to make use of this observation
also for computing a CNEEO, and for computing a maximum clique using the CNEEO.

While computing a CNEEO, the lower bound k we have does not change; it is the size of
the initial clique. Whenever we access a vertex, we check if its degree is less than k. If so, we
remove this vertex from the kernel, and do not consider it any more. One can consider this
as “lazy deletion.” Then once we have a CNEEO, we scan the edges in the CNEEO, and
for each edge, we compute a maximum clique of the subgraph defined by the edge. If it is
larger than the lower bound k we have, we update k accordingly. In this process, whenever
we find a vertex of degree less than k, we remove it immediately. Moreover, if the subgraph
defined by each edge of CNEEO has vertices less than k, we skip this subgraph as it does
not contain a clique of size larger than k.

5.2 Introducing the Priority of Edges

Recall that the second phases consists of two steps: computing a CNEEO, and computing a
maximum clique using the CNEEO. In this section, we focus on the first step.

With Geometric Representations. In this case, we use the O(m′n′2.5)-time algorithm by [7]
for computing a maximum clique of the kernel with n′ vertices and m′ edges. Although it
is the theoretically best-known algorithm, we observed that computing a maximum clique
using a CNEEO is more efficient practically. By the proof in the full version, the list of
the edges sorted in the non-decreasing order of their lengths is a CNEEO. Without using a
CNEEO, for each edge uv, we have to compute the subgraph of G induced by the common
neighbors of u and v in G. On the other hand, once we have a CNEEO, it suffices to consider
the subgraph of G induced by the common neighbors of u and v in GL, where GL is the
subgraph of G with the edges coming after uv in the CNEEO. If uv lies close to the last
edge in the CNEEO, the number of common neighbors of u and v in GL can be significantly
smaller than the number of their common neighbors in G. This can lead to the performance
improvement.

Without Geometric Representations. In this case, we compute a CNEEO in a greedy
fashion. Starting from the empty sequence, we add the edges one by one in order. For each
edge e not added to the current ordering, we check if the common neighbors of the endpoints
of e in the kernel is co-bipartite. If an edge passes this test, we add it to the ordering. It is
time-consuming especially when only a few edges can pass the test. To avoid considering
the same edge repeatedly, we use the following observation. Once an edge e fails this test, it
cannot pass the test unless one of its incident edges are added to the ordering. Using this
observation, we classify the edges into two sets: active edges and inactive edges. In each
iteration, we consider the active edges only. Once an edge fails the test, then it becomes
inactive. Once an edge passes the test, we make all its incident edges active. In this way, we
can significantly improve the running time especially for graphs that do not accept CNEEO.

ESA 2023

85:10 Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs

(a) (b)

Figure 2 (a) Comparison of the kernel sizes with varying α. Here, δ = 10. (b) Cactus plot of the
kernel size versus the number of accepted instances for each value of α with fixed n = 107.

6 Experimental Evaluation

In this section, we evaluate the performance of our algorithm mainly on hyperbolic random
graphs and real-world networks.

Environment and data. We implemented our algorithm using C++17. The code were
compiled with GNU GCC version 11.3.0 with optimization flag “-O2”. All tests were run on
a desktop with Rygen 7 3800X CPU, 32GB memory, and Ubuntu 22.04LTS.

We evaluate the performance of our algorithm on hyperbolic random graphs and real-world
networks. For hyperbolic random graphs, we generate graphs using the open source library
GIRGs [5] by setting parameters differently. Recall that we have three parameters n, C and
α. Here, instead of C, we use the average degree, denoted by δ, as a parameter because δ

can be represented as a function of C and α. As we consider the average performance of
our algorithm, we sampled 100 random graphs for fixed parameters n, δ and α, and then
calculate the average results (the size of kernels or the running times).

For real-world networks, we use the SNAP dataset [18]. It contains directed graphs and
non-simple graphs as well. In this case, we simply ignore the directions of the edges and
interpret all directed graphs as undirected graphs. Also, we collapse all multiple edges into a
single edge and remove all loops.

6.1 Experiment on Hyperbolic Random Graphs: Kernel Size
We showed that the size of the kernel of the hyperbolic random graph is O(n1−α) with
probability 1 − 2Ω(n1−α). In this section, we evaluated the tendency on the size of the kernel
experimentally as n, α and δ change. Here, α controls the power-law exponent, and δ is the
average degree of the graph. For experiments for δ, see the full version.

Figure 2 shows the tendency on the size of the kernel as α changes. Here, we fix δ = 10.
Figure 2(a) shows a plot of the kernel size versus the number of vertices of a graph on a
log–log scale for each value of α. We generate 100 instances randomly and take the average
of their results for each point in the plot. Figure 2(b) shows a cactus plot of the kernel size
versus the number of accepted instances for each value of α. Here, for a fixed kernel size k,
an instance is said to accepted if our algorithm returns a kernel of size at most k for this
instance. Here, we fix n = 107 and δ = 10.

E. Oh and S. Oh 85:11

(a) (b)

Figure 3 (a) Comparison of running times of different versions of our algorithm. (b) Comparison
of running times with and without geometric representations. Here, α = 0.75 and δ = 10.

Table 1 Running time for each operation. The unit of time is a millisecond.

INIT KERNEL CNEEO CONST INDEP OTHER TOTAL
MaxClique - - - 21 516.34 4 470.38 8.18 25 994.90
MaxCliqueRed 15.67 89.27 - 1 126.95 37.92 2.88 1 272.70
MaxCliqueSkip 15.59 88.62 - 925.33 30.77 2.88 1 063.19
MaxCliqueOpt 15.64 88.61 1.07 12.55 1.19 2.88 121.94
MaxCliqueNoGeo 15.32 89.25 258.45 5.82 0.93 2.96 372.74

For α ≤ 0.8, the size of the average kernel decreases for sufficiently large n, say n = 107,
as α increases in Figure 2(a). Also, the kernel sizes for all instances are concentrated on the
average kernel size for each α ≤ 0.8 in Figure 2(b). This is consistent with Lemma 4 stating
that the kernel size is O(n1−α) with high probability. However, this fact does not hold for
α > 0.8 in Figure 2(a), and the reason for this can be seen in Figure 2(b). At α = 0.85,
approximately 10% of instances did not have kernels of size at most 1500, and at α = 0.9,
over 60% of instances did not have such kernels. Notice that the plot sharply increases when
the kernel size exceeds 1500. The success probability stated in Lemma 4 is 1 − 2Ω(n1−α),
which decreases as α increases. In other words, if n is not sufficiently large, it is possible
that the success probability 1 − 2Ω(n1−α) is not sufficiently large for α > 0.8. That is, if we
increase the number of vertices on our experiments, we would get the desired tendency on
the kernel size for all values α. Nevertheless, at n = 107, our algorithm removes a significant
number of vertices, leaving only 0.01% of vertices at α = 0.85 and only 1% at α = 0.9.

6.2 Experiment on Hyperbolic Random Graphs: Running Time
In this section, we conducted experiments for evaluating the running times of different
versions of our algorithms. Figure 3 shows a plot of the number of vertices versus the
running time of each version of our algorithm. Here, we fix α = 0.75 and δ = 10. Each
point of the plot is averaged for 100 instances. Figure 3(a) shows a plot for the algorithm,
denoted by MaxClique, by Bläsius et al. [7] and three different versions of the algorithm
using geometric representations: MaxCliqueRed, MaxCliqueSkip, and MaxCliqueOpt. More
specifically, MaxCliqueRed denotes the algorithm described in Section 4. MaxCliqueSkip
denotes the algorithm described in Section 5.1 that skips low-degree vertices. MaxCliqueOpt
denotes the algorithm described in Section 5.2 that introduces priorities of edges. As expected,
MaxCliqueOpt outperforms all other versions of the algorithms in this experiment.

ESA 2023

85:12 Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs

Table 2 The performance of our algorithm on the real-world data.

|V | |E| |Vkernel| |Vleft| |Eleft| runtime ωkernel ωeval ω

as-skitter 1 696,415 11 095,298 28 787 17 033 693 272 342.63 37 ≥ 63 67
ca-AstroPh 18 771 198 050 3 679 0 0 1.18 23 57 57
ca-CondMat 23 133 93 439 13 464 0 0 0.07 4 26 26
ca-HepPh 11 204 118 489 0 0 0 0.00 239 239 239
com-amazon 334 863 925 872 255 473 0 0 0.55 3 7 7
com-dblp 317 080 1 049 866 1 716 0 0 0.21 26 114 114
com-lj 3 997 962 34 681 189 1 713 237 126 388 4 587 418 2 316.20 7 ≥ 289 327
com-youtube 1 134 890 2 990 443 36 716 7 919 211 051 53.48 13 ≥ 14 17
Gnutella31 62 586 147 892 33 816 0 0 0.05 2 4 4
Slashdot0811 77 360 469 180 14 315 1 503 40 418 7.94 10 ≥ 17 26
Slashdot0902 82 168 504 229 13 964 1 543 42 215 9.24 11 ≥ 17 27
soc-Epinions1 75 879 405 740 9 337 3 717 148 354 26.09 10 ≥ 22 23
soc-pokec 1 632 803 22 301 964 1 252 317 54 101 924 531 288.37 4 ≥ 29 29
web-BerkStan 685 230 6 649 470 27 058 25 593 589 913 1 224.22 18 ≥ 201 201
web-Google 875 713 4 322 051 193 406 2 068 20 426 8.60 10 ≥ 44 44
web-NotreDame 325 729 1 090 108 51 227 760 8 181 4.86 6 ≥ 155 155
web-Stanford 281 903 1 992 636 32 123 10 721 249 272 177.79 18 ≥ 61 61
WikiTalk 2,394 385 4 659 563 70 130 10 421 520 338 447.69 7 ≥ 16 26
Wiki-Vote 7 115 100 762 2 913 1 802 62 893 6.34 9 ≥ 13 17

For a precise analysis, we evaluated the running time of each task for our algorithms
and reported them in in Table 1. More specifically, the algorithms conduct six tasks: INIT
denotes the task of finding an initial solution. KERNEL denotes the task of finding the kernel.
CNEEO denotes the task of computing a CNEEO. CONST denotes the task of constructing
a co-bipartite graph by considering the common neighbors of the endpoints of each edge.
INDEP denotes the task of computing a maximum independent set of the complement of a
co-bipartite graph. OTHER denotes all the other tasks such as the initialization for variables
and caches. TOTAL denotes the entire tasks of our algorithm.

As expected, MaxCliqueRed outperforms MaxClique significantly. However, CONST
is still a time-consuming task for MaxCliqueRed. Thus we focus on optimization tech-
niques for CONST and provides MaxCliqueSkip and MaxCliqueOpt in Section 5. Although
MaxCliqueSkip gives a performance improvement, it still takes a significant amount of time
in CONST and INDEP. MaxCliqueOpt computes a CNEEO by sorting the edges with respect
to their lengths. This allows us to manage degree efficiently and apply low-degree skip
technique to a larger number of vertices. This significantly improves the running time of
MaxCliqueSkip for CONST and INDEP. This algorithm runs in about 100ms even at n = 106,
exhibiting a performance improvement over 200 times compared to MaxClique.

Next, we compared the running times of two algorithms with and without geometrical
representations. In the case that a geometric representation is given, we use MaxCliqueOpt.
If a geometric representation is not given, we use the algorithm in Section 4 and denote it by
MaxCliqueNoGeo. In MaxCliqueOpt, we can quickly compute a CNEEO by sorting the edges
in non-decreasing order of length. However, MaxCliqueNoGeo computes a CNEEO in a greedy
approach which incurs significant overhead. Despite this, the performance of MaxCliqueNoGeo
in Figure 3(b) does not show a significant difference compared to MaxCliqueOpt, and it even
outperforms MaxCliqueSkip.

E. Oh and S. Oh 85:13

6.3 Experiment on Real-World Dataset
Our algorithm can heuristically find large cliques for real-world data. We conducted experi-
ments on several real-world datasets and recorded these results in Table 2. The unit of the
running time is a second. |V | and |E| denote the numbers of vertices and edges of the input
graph, respectively. |Vkernel| denotes the number of vertices of the kernel. |Vleft| and |Eleft|
denote the numbers of vertices and edges of the remaining graph. Also, ωkernel denotes the
size of the initial clique, ωeval denotes the size of the clique computed from our algorithm,
and ω denotes the size of the maximum clique of the graph. Here, ω is the correct answer
given by the dataset. If a given graph accepts a CNEEO, it is theoretically guaranteed that
ωeval is the exact solution and |Vleft| = |Eleft| = 0. Otherwise, ωeval is a lower bound on the
exact solution, and Gleft = (Vleft, Eleft) has a maximum clique if ωeval is strictly smaller than
the exact solution.

The collaboration networks such as ca-AstroPh, CondMat, HepPh, and com-dblp are one
of the well-known scale-free networks. These networks accept a CNEEO, allowing us to find
the exact maximum clique. Moreover, we were able to find a CNEEO considerably faster for
these networks than for other graphs in our experiments. Web graphs such as web-BerkStan,
web-Google, web-Notre Dame, and web-Stanford are also one of the well-known scale-free
networks. Although these graphs do not accept a CNEEO, we were able to reduce the
number of vertices and edges significantly, and we obtained maximum cliques. For the other
graphs we tested, we were able to obtain lower bounds that were close to the maximum
clique size in most cases, and we were able to significantly reduce the size of the graphs.

7 Conclusion

We presented improved algorithms for the maximum clique problem on hyperbolic random
graphs. Our algorithms find a sufficiently large initial solution and find a sufficiently small
kernel in linear time, which greatly improves the average time complexity and practical
running time. Also we gave the first algorithm for the maximum clique problem on hyperbolic
random graphs without geometrical representations. Beyond the hyperbolic random graph,
we applied these algorithms to real-world dataset and obtained lower bounds close to the
optimum solutions for most of instances.

There are two possible directions for further improvement on our algorithms. First, we
compute a maximum clique of hyperbolic random graphs using the framework for computing
a maximum clique of unit disk graphs in [12]. Recently, Espenant et al. [13] improved
the algorithm [12] and presented an O(n2.5 log n)-time algorithm for the maximum clique
problem on unit disk graphs. It would be interesting if this technique can be applied to
hyperbolic geometry. Second, the bottleneck of our algorithm lies in constructing a CNEEO.
Especially, for most of real-world dataset, most of the running time is devoted to constructing
a CNEEO. Thus to speed up the overall performance, this step must be improved.

References
1 James Abello, Mauricio GC Resende, and Sandra Sudarsky. Massive quasi-clique detection.

In LATIN 2002: Theoretical Informatics: 5th Latin American Symposium Cancun, Mexico,
April 3–6, 2002 Proceedings 5, pages 598–612. Springer, 2002.

2 Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs. Theoretical
Computer Science, 237(1-2):123–134, 2000.

3 James W Anderson. Hyperbolic geometry. Springer Science & Business Media, 2006.

ESA 2023

85:14 Algorithms for Computing Maximum Cliques in Hyperbolic Random Graphs

4 Thomas Bläsius, Cedric Freiberger, Tobias Friedrich, Maximilian Katzmann, Felix Montenegro-
Retana, and Marianne Thieffry. Efficient shortest paths in scale-free networks with underlying
hyperbolic geometry. ACM Transactions on Algorithms (TALG), 18(2):1–32, 2022.

5 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck,
and Christopher Weyand. Efficiently generating geometric inhomogeneous and hyperbolic
random graphs. Network Science, 10(4):361–380, 2022.

6 Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic random graphs: Separators
and treewidth. In 24th Annual European Symposium on Algorithms (ESA 2016). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

7 Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Cliques in hyperbolic random graphs.
Algorithmica, 80(8):2324–2344, 2018.

8 Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient embedding of
scale-free graphs in the hyperbolic plane. IEEE/ACM transactions on Networking, 26(2):920–
933, 2018.

9 Thomas Bläsius, Tobias Friedrich, and Christopher Weyand. Efficiently computing maximum
flows in scale-free networks. In 29th Annual European Symposium on Algorithms (ESA 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

10 Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. On the largest component of a
hyperbolic model of complex networks. The Electronic Journal of Combinatorics, pages P3–24,
2015.

11 Elisabetta Candellero and Nikolaos Fountoulakis. Clustering and the hyperbolic geometry of
complex networks. In Algorithms and Models for the Web Graph: 11th International Workshop,
WAW 2014, Beijing, China, December 17-18, 2014, Proceedings 11, pages 1–12. Springer, 2014.

12 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

13 Jared Espenant, J. Mark Keil, and Debajyoti Mondal. Finding a maximum clique in a
disk graph. In Erin W. Chambers and Joachim Gudmundsson, editors, 39th International
Symposium on Computational Geometry, SoCG 2023, June 12-15, 2023, Dallas, Texas, USA,
volume 258 of LIPIcs, pages 30:1–30:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.SoCG.2023.30.

14 Tobias Friedrich and Anton Krohmer. On the diameter of hyperbolic random graphs. SIAM
Journal on Discrete Mathematics, 32(2):1314–1334, 2018.

15 Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs: degree
sequence and clustering. In Automata, Languages, and Programming: 39th International
Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II 39, pages
573–585. Springer, 2012.

16 Marcos Kiwi and Dieter Mitsche. A bound for the diameter of random hyperbolic graphs.
In 2015 Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), pages 26–39. SIAM, 2014.

17 Marcos Kiwi and Dieter Mitsche. On the second largest component of random hyperbolic graphs.
SIAM Journal on Discrete Mathematics, 33(4):2200–2217, 2019. doi:10.1137/18M121201X.

18 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

19 Can Lu, Jeffrey Xu Yu, Hao Wei, and Yikai Zhang. Finding the maximum clique in massive
graphs. Proceedings of the VLDB Endowment, 10(11):1538–1549, 2017.

20 Fragkiskos Papadopoulos, Dmitri Krioukov, Marián Boguná, and Amin Vahdat. Greedy
forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In 2010
Proceedings IEEE Infocom, pages 1–9. IEEE, 2010.

21 Bharath Pattabiraman, Md Mostofa Ali Patwary, Assefaw H Gebremedhin, Wei-keng Liao,
and Alok Choudhary. Fast algorithms for the maximum clique problem on massive sparse
graphs. In Algorithms and Models for the Web Graph: 10th International Workshop, WAW
2013, Cambridge, MA, USA, December 14-15, 2013, Proceedings 10, pages 156–169. Springer,
2013.

https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.4230/LIPIcs.SoCG.2023.30
https://doi.org/10.1137/18M121201X
http://snap.stanford.edu/data

E. Oh and S. Oh 85:15

22 Vijay Raghavan and Jeremy Spinrad. Robust algorithms for restricted domains. Journal of
algorithms, 48(1):160–172, 2003.

23 John Michael Robson. Algorithms for maximum independent sets. Journal of Algorithms,
7(3):425–440, 1986.

24 Ryan A Rossi, David F Gleich, Assefaw H Gebremedhin, and Md Mostofa Ali Patwary.
Fast maximum clique algorithms for large graphs. In Proceedings of the 23rd International
Conference on World Wide Web, pages 365–366, 2014.

25 Tim Roughgarden. Beyond the worst-case analysis of algorithms. Cambridge University Press,
2021.

26 Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating random hyperbolic
graphs in subquadratic time. In Algorithms and Computation: 26th International Symposium,
ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 467–478. Springer,
2015.

ESA 2023

	1 Introduction
	2 Preliminaries
	2.1 Hyperbolic Random Graphs
	2.2 Algorithms for the Maximum Clique Problem

	3 Efficient Algorithm for the Maximum Clique Problem
	3.1 Computing a Sufficiently Large Clique Efficiently
	3.2 Removing All Vertices of Small Degree

	4 Efficient Robust Algorithm for the Maximum Clique Problem
	5 Improving Performance through Additional Optimizations
	5.1 Skipping Vertices with Low Degree
	5.2 Introducing the Priority of Edges

	6 Experimental Evaluation
	6.1 Experiment on Hyperbolic Random Graphs: Kernel Size
	6.2 Experiment on Hyperbolic Random Graphs: Running Time
	6.3 Experiment on Real-World Dataset

	7 Conclusion

