1,039 research outputs found

    A bibliographic review of production line design and balancing under uncertainty

    Get PDF
    This bibliography reviews the solution methods developed for the design and balancing problems of production lines such as assembly and disassembly lines. The line design problem aims in determining the number of workstations along with the corresponding assignment of tasks to each workstation, while the line balancing problem seeks an assignment of tasks, to the existing workstations of the line, which ensures that the workloads are as equal as possible among the workstations. These two optimisation problems can be also integrated and treated as a multi-objective optimisation problem. This review considers both deterministic and stochastic formulations for disassembly lines and is limited to assembly line design and balancing under uncertainty. This bibliography covers more than 90 publications since 1976 for assembly and 1999 for disassembly

    Second order conic approximation for disassembly line design with joint probabilistic constraints

    Get PDF
    A problem of profit oriented disassembly line design and balancing with possible partial disassembly and presence of hazardous parts is studied. The objective is to design a production line providing a maximal revenue with balanced workload. Task times are assumed to be random variables with known normal probability distributions. The cycle time constraints are to be jointly satisfied with at least a predetermined probability level. An AND/OR graph is used to model the precedence relationships among tasks. Several lower and upper–bounding schemes are developed using second order cone programming and convex piecewise linear approximation. To show the relevance and applicability of the proposed approach, a set of instances from the literature are solved to optimality

    Modeling and Optimization of Disassembly Systems with a High Variety of End of Life States.

    Full text link
    Remanufacturing is a promising product recovery method that brings new life to cores that otherwise would be discarded thus losing all value. Disassembly is a sub-process of remanufacturing where components and modules are removed from the core, sorted and graded, and directly reused, refurbished, recycled, or disposed of. Disassembly is the backbone of the remanufacturing process because this is where the reuse value of components and modules is realized. Disassembly is a process that is also very difficult in most instances because it is a mostly manual process creating stochastic removal times of components. There is a high variety of EOL states a core can be in when disassembled and an economic downside due to not all components having reuse potential. This thesis focuses on addressing these difficulties of disassembly in the areas of sequence generation, line balancing, and throughput modeling. In Chapter 2, we develop a series of sequence generation models that considers the material properties, partial disassembly, and sequence dependent task times to determine the optimal order of disassembly in the presence of a high variety of EOL states. In Chapter 3, we develop a joint precedence graph method for disassembly that models all possible EOL states a core can be in that can be used with a wide variety of line balancing algorithms. We also develop a stochastic joint precedence graph method in the situation where some removal times of components are normal random variables. In Chapter 4, we further advance the analytical modeling framework to analyze transfer lines that perform routing logics that result from a high variety of EOL states, such as a restrictive split routing logic and the possibility that disassembly and split operations can be performed at the same workstation.PhDIndustrial and Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111570/1/robriggs_1.pd

    Optimisation of Product Recovery Options in End-of-Life Product Disassembly by Robots

    Get PDF
    In a circular economy, strategies for product recovery, such as reuse, recycling, and remanufacturing, play an important role at the end of a product’s life. A sustainability model was developed to solve the problem of sequence-dependent robotic disassembly line balancing. This research aimed to assess the viability of the model, which was optimised using the Multi-Objective Bees Algorithm in a robotic disassembly setting. Two industrial gear pumps were used as case studies. Four objectives (maximising profit, energy savings, emissions reductions and minimising line imbalance) were set. Several product recovery scenarios were developed to find the best recovery plans for each component. An efficient metaheuristic, the Bees Algorithm, was used to find the best solution. The robotic disassembly plans were generated and assigned to robotic workstations simultaneously. Using the proposed sustainability model on end-of-life industrial gear pumps shows the applicability of the model to real-world problems. The Multi-Objective Bees Algorithm was able to find the best scenario for product recovery by assigning each component to recycling, reuse, remanufacturing, or disposal. The performance of the algorithm is consistent, producing a similar performance for all sustainable strategies. This study addresses issues that arise with product recovery options for end-of-life products and provides optimal solutions through case studies

    Optimum assembly line balancing: A stochastic programming approach

    Get PDF
    Assembly line balancing problem is an approach of assigning a set of tasks to an ordered sequence of workstations. This assignment needs to be made in such a way that the underlying precedence constraints are not violated and efficiency measures are optimized subject to the restriction of the cycle time constraint. Research works, reported so far, mainly deal with the minimization of balancing loss, subject to precedence constraints. Lack of uniqueness in those optimum solutions and pressing demand to include system loss in the objective function have led to the present work of minimization of both balancing and system loss. As there is no standard measure for system loss, the current work proposes a measure for system loss and offers solution to this bi-objective problem

    A Survey on Cost and Profit Oriented Assembly Line Balancing

    Get PDF
    http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2014/media/files/0866.pdfInternational audienceProblems, approaches and analytical models on assembly line balancing that deal explicitly with cost and profit oriented objectives are analysed. This survey paper serves to identify and work on open problems that have wide practical applications. The conclusions derived might give insights in developing decision support systems (DSS) in planning profitable or cost efficient assembly lines

    Conception combinatoire des lignes de désassemblage sous incertitudes

    Get PDF
    This thesis is dedicated to the problem of disassembly line design in uncertain context. A disassembly linecan be represented as a succession of workstations where tasks are performed sequentially at each workstation.The design of such a product recovery system can be reduced to a combinatorial optimization problem which seeksa line configuration that optimizes certain objectives under technical, economical and environmental constraints.We begin by describing the principal product recovery activities especially disassembly. Then, after a literaturereview on the design of production lines under uncertainty of task processing times, we focus our study on the consideration of the disassembly task time uncertainties. Hence, we present three main models as well as the associatedsolution approaches. The first one is interested in minimizing the line stoppages caused by the task processing timeuncertainties. The second one seeks to guarantee an operational level closely related with the line speed. The goal of thethird model is to integrate the line design and sequencing problems. At last, the performances of the proposed solutionapproaches are presented by analyzing the optimization results on a set of instances of industrial size.Les travaux présentés dans ce manuscrit portent sur la conception des lignes de désassemblageen contexte incertain. Une ligne de désassemblage consiste en unesuccession de postes de travail où les tâches sont exécutées séquentiellement au niveau de chaque poste. La conception d'un tel système, de revalorisationdes produits en fin de vie, peut être ramenée à un problème d'optimisation combinatoire.Ce dernier cherche à obtenir une configuration permettant d'optimiser certains objectifs enrespectant des contraintes techniques, économiques et écologiques.Dans un premier temps, nous décrivons les activités principales de la revalorisation des produitsen fin de vie, en particulier le désassemblage. Puis, après présentation des travaux de la littératureportant sur la prise en compte des incertitudes des durées opératoires lors de la conception des lignesde production, nous nous focalisons sur l'étude des incertitudes des durées opératoires des tâches de désassemblage.Ainsi, nous présentons trois modélisations principales avec leurs approches de résolution.La première s'intéresse à la minimisation des arrêts de la ligne causés par les incertitudes des durées des opérationsde désassemblage. La deuxième cherche à garantir un niveau opérationnel de la ligne lié à sa cadence de fonctionnement.Le but de la troisième modélisation est l'intégration des problématiques de conception des ligneset de séquencement des tâches de désassemblage. Enfin, les performances des méthodes de résolutionproposées sont présentées en analysant les résultats d'optimisation sur un ensemble d'instances de taille industrielle
    • …
    corecore