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Abstract: In a circular economy, strategies for product recovery, such as reuse, recycling, and remanu-
facturing, play an important role at the end of a product’s life. A sustainability model was developed
to solve the problem of sequence-dependent robotic disassembly line balancing. This research aimed
to assess the viability of the model, which was optimised using the Multi-Objective Bees Algorithm
in a robotic disassembly setting. Two industrial gear pumps were used as case studies. Four ob-
jectives (maximising profit, energy savings, emissions reductions and minimising line imbalance)
were set. Several product recovery scenarios were developed to find the best recovery plans for
each component. An efficient metaheuristic, the Bees Algorithm, was used to find the best solution.
The robotic disassembly plans were generated and assigned to robotic workstations simultaneously.
Using the proposed sustainability model on end-of-life industrial gear pumps shows the applicability
of the model to real-world problems. The Multi-Objective Bees Algorithm was able to find the best
scenario for product recovery by assigning each component to recycling, reuse, remanufacturing,
or disposal. The performance of the algorithm is consistent, producing a similar performance for
all sustainable strategies. This study addresses issues that arise with product recovery options for
end-of-life products and provides optimal solutions through case studies.

Keywords: Bees Algorithm; disassembly; end-of-life; product recovery; recycle; remanufacture;
reuse; sustainability

1. Introduction

The United Nations’ Sustainable Development Goal 12 states that unsustainable
production and consumption are the root causes of climate change, biodiversity loss, and
pollution [1]. The circular economy is a way to address these problems by keeping products
and materials in use for longer [2]. This is different from the linear economy, in which
products are made from raw materials, then used, and finally thrown away. There are
four main options in a circular economy: recycling, remanufacturing, repair and reuse.
Recycling is the outermost loop in the circular economy technical cycle [2]. Recycling
should be considered the last option at the end of a product’s life [2] because it consumes
more energy, generates waste, and causes pollution [3–5] when compared to other options,
the aim of which is to extend the product’s life span. Remanufacturing is expected to
become an increasingly significant component of the future manufacturing sector, as it
has the potential to generate an EU market of €90 billion by 2030 [6] and is considered the
backbone of a circular economy [7–9]. Remanufacturing is a process of transforming an
end-of-life (EoL) product to its original performance with a warranty that it is the same or
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better than a new product [10–16]. Remanufacturing benefits the environment as it reduces
waste, raw material usage, CO2 emissions, energy consumption and the need for landfill
space [17–27].

Disassembly is the first activity in remanufacturing [28–37], and due to complexities
in EoL products, disassembly has generally to be kept a manual activity [38–40]. However,
technological developments in the current era of Industry 4.0 have facilitated the shift
from human labour to automated processes. To ensure future success and be competitive,
remanufacturing companies have to embrace automation [41]. Research interest in disas-
sembly automation is reflected in the number of publications on that subject since 2014.
Disassembly sequence planning and line balancing are two important research lines that
promise to improve remanufacturing plant efficiency and productivity. Previous research
in robotic disassembly has shown that it is important to consider the interconnection of
sequence planning and line balancing, which are intertwined problems [39,42–44]. To re-
flect this, the term “sequence-dependent line balancing” is used in the majority of previous
publications in this area, as it will be throughout the remainder of this article. Disassembly
problems are NP-complete, meaning that the solution time grows exponentially as the
number of components increases [45,46]. Previous research reports that a metaheuristic
can find the optimal solution efficiently using a multi-objective approach when there are
conflicting objectives [43,47–55]. The Bees Algorithm (BA) is a robust metaheuristic that
can find the optimal solution to a complex problem, such as those involved in robotic
disassembly [39,42,56,57]. Hence, a Multi-Objective Bees Algorithm (MOBA) was used as
an optimisation tool for this study.

Most previous research on disassembly line balancing has been oriented toward max-
imising profit [58–63], the same with robotic disassembly line balancing. However, recent
developments in robotic disassembly line balancing have incorporated sustainability as
one of the objectives. This research was motivated by the need to expand the focus beyond
profitability and address sustainability concerns. Sustainability was defined by the United
Nations in 1987 as meeting the current needs without undermining the needs of future
generations [64]. Sustainability is also described as the intersection of economic, social, and
environmental factors — the-so-called triple bottom line [65]. A total of 35 articles on robotic
disassembly line balancing published between 2014 and 2023 were found using the Scopus
search engine. However, only 17 of those articles had sustainability as one of their objectives.
Of those 17 articles, 10 focus on reduction of energy consumption [43,47–50,52,54,55,66,67],
while two articles target the reduction of carbon emissions [51,53]. The present study
contributes to the development of a sustainability model to fill a gap in robotic disassembly
line balancing research, whereas prior studies have only focused on environmental aspects
of sustainability. The model considers four objectives, namely, maximising profit, energy
savings and environmental benefits and minimising line imbalance. In addition, this study
provides a recovery path for each part such as recycling, reusing, or remanufacturing, and
the last option of disposal if the parts cannot be recovered, which previous research did not
address. This article considers optimal recovery options overlooked in previous research
to propose a model for end-of-life products, taking real industrial products as examples.
Four sustainability scenarios were developed, and the optimal solutions are presented. The
scenarios are based on the characteristics of each component and developed after discus-
sion with remanufacturers in England and Spain. In the REC (recycling) scenario, most of
the components are recycled. In the REU (reuse) and REM (remanufacturing) scenarios,
most of the components are reused or remanufactured, respectively. Unlike in previous
work, the product recovery was optimised for each component by the algorithm in the
OPT (optimal) scenario. The proposed model was applied to two industrial gear pumps
under these four sustainability scenarios. Industrial gear pumps were chosen for their
low wear, making them excellent subjects for studying complete disassembly sequence
planning (DSP) without destruction. A hypervolume indicator was used to evaluate the
optimal results found by the MOBA and to assess the performance of the algorithm.
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The paper is structured as follows. The next section describes relevant previous
work, the research steps, the proposed sustainability model, the case studies and the
MOBA. The results obtained are then presented and analysed. The final section discusses
the significance of the findings, summarises the main conclusions, outlines the study’s
strengths and limitations, and suggests future research directions.

2. Relevant Work

As previously highlighted, the impact of disassembly sequences on line balancing is
beginning to emerge. Existing research has shown that sequence-dependent manual disas-
sembly line balancing [68–76] is an increasingly significant phenomenon. Recent scholarly
work, outlined in Table 1, further underscores the central role of sequence dependency in
the field of robotic disassembly line balancing. Table 1 presents relevant publications in
robotic disassembly line balancing.

Table 1. Overview of Robotic Disassembly Line Balancing Research.

References Metaheuristic Sustainability
Related Objective(s) MO-ND Sequence-Dependent

[77]
[78]
[79]
[80]
[42] X X X
[43] X X X
[81] X
[82]
[47] X X X X
[48] X X X X
[66]
[51] X X X
[83] X
[50] X X X
[84] X X X
[39] X X
[49] X X X X
[85] X X X X
[44] X X X
[52] X X X
[53] X X X
[86] X X
[28] X X X
[67] X X
[87] X
[88] X X X
[54] X X X
[55] X X X
[89] X X X
[90] X
[91] X X X
[92] X X X
[93] X X X
[94] X X X
[95] X X

This work X
energy savings,

environmental benefits X X
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3. Methods

The first step in this research was to create a sustainability model for the sequence-
dependent robotic disassembly line balancing (RDLBSD) problem. In the second step, input
data for experiments and product recovery scenarios are prepared. In the final step, the
optimisation algorithm used to find the optimal solution is described.

3.1. Sustainability Model for RDLBSD

The approach used in this research was to aggregate the first three objectives (profit,
energy savings, and environmental benefits) and treat them as one goal and then use the
non-dominated approach for the aggregated goal and the fourth objective (unbalanced
line) using MOBA. This approach was used because the first three objectives have the
same unit of measure, Euros (or dollars, or another currency), and the aim is maximisation.
In contrast, the fourth objective measures imbalance in the disassembly line and aims to
minimise it. The objective is expressed in Equation (1).

Objective = max (O1), min (O2) (1)

For these three objectives, a scalar approach was adopted using an aggregation method
by adding the objective function in a linear way [96]. This is expressed in Equation (2).
The objectives are to maximise profit, save energy and reduce environmental impact (see
Equations (3)–(5)). The fourth objective is to minimise the unbalanced lines, as presented
in Equation (6). This equation will result in zero if the disassembly line is in the perfect
balance state [97]. Tables 2–5 describe the variables for each objective.

O1 = Pro f it + Energy Savings + Environmental Bene f its (2)

Equation (3) assesses the economic profit of the whole disassembly process, obtained
as the disassembly gains minus the disassembly costs. Disassembly gains include the
revenues obtained from the components to be reused or remanufactured, and the revenues
from the components to be recycled. Disassembly costs consist of the disposal costs of the
components to be thrown away, the costs involved in the disassembly operations, the costs
involved in the moving path of the robot, the recovery costs of the components to be reused
or remanufactured, the overhead costs of the company, and the depreciation costs of the
machinery (robotic cells).

Pro f it =
N

∑
i=1

2

∑
j=1

RPi ri,j αi +
N

∑
i=1

RCi ri,3 αi −
N

∑
i=1

CDi ri,4 (1− αi)−

[ N−1

∑
i=1

tb(xi) αi cT +
N−1

∑
i=1

(
PD(xi, M)

ve
+ tc(xi, xi+1) +

PD(M, xi+1)

ve
+ tu(xi, M) +

tw(M, xi+1)

)
γi αi cT +

N−1

∑
i=1

(
PD(xi, xi+1)

ve
+ tz(xi, xi+1)

)
(1− γi) αi cT

]
−

N

∑
i=1

2

∑
j=1

rci,j ri,j αi −
N

∑
i=1

4

∑
j=1

ohi,j ri,j αi −
N

∑
i=1

4

∑
j=1

dpi,j ri,j αi

(3)

Equation (4) defines the energy savings obtained in the whole disassembly process,
obtained as the reclaimed energy from the components to be reused or remanufactured
less the energy consumption in the disassembly process. Energy consumption includes
the energy consumption of the robot in the disassembly of the components, the energy
consumption of the robot in the movement between the position of disassembly and
the magazine tools, the energy consumption of the robot in the tool change, the energy
consumption of the robot in the movement between the magazine tools and the disassembly
position, the energy consumption of the robot in the movement between disassembly
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points, the energy consumption involved in recovering the components to be reused,
remanufactured, recycled or disposed of.

Energy savings =
N

∑
i=1

2

∑
j=1

ri,j gri,j fW αi −
N−1

∑
i=1

[
gd1,i(xi) + gd2,i(xi, M) γi + gd3,i(M) γi+

gd4,i(M, xi+1) γi + gd5,i(xi, xi+1) (1− γi)

]
fW αi −

N

∑
i=1

3

∑
j=1

ri,j gci,j fW αi −
N

∑
i=1

ri,4 gci,4 fW (1− αi)

=
N

∑
i=1

2

∑
j=1

ri,j gri,j fW αi −
N−1

∑
i=1

[
tb(xi) PR1 γi +

PD(M, xi) PR2 γi
ve

+ tc(xi, xi+1) PR2 γi+

PD(M, xi+1) PR2 γi
ve

+
PD(xi, xi+1) PR2 (1− γi)

ve

]
fW αi
3600

−

N

∑
i=1

3

∑
j=1

ri,j gci,j fW αi −
N

∑
i=1

ri,4 gci,4 fW (1− αi)

(4)

Table 2. Description of variables for economic profit.

Variable Description

αi an indicator that takes the value of 1 if component i is to be disassembled and
0 otherwise

CDi disposal cost of component i
cT cost per unit of time
dpi,j depreciation cost assigned to component i to be disassembled
γi indicator taking the value 1 if operation xi+1 requires changing the tool used in

previous operation xi
i index for each component and varies from 0 to N
j indicator for part recovery. It is 1 if the component is reused, 2 if remanufactured,

3 if recycled, and 4 if it is disposed of
ohi,j overhead cost assigned to component i to be disassembled
PD(M, xi+1) length between the position of the tool magazine (M) and the point of the

disassembly operation xi+1
PD(xi, M) distance between the point of the disassembly operation xi and the position of

the tool magazine (M)
PD(xi, xi+1) distance between the point of the disassembly operation xi and the point of

disassembly operation xi+1
RCi revenue obtained from component i being recycled
rci,j recovery cost of component i being reused or remanufactured
ri,j indicator of the recovery mode: 1 if mode j is assigned to component i
RPi the revenue obtained due to the component i being reused or remanufactured

not having been manufactured again for a new product
tb(xi) basic time to perform disassembly operation xi
tc(xi, xi+1) tool change time and depends on the tool type
tu(xi, M) penalty time for process direction changes along the path between xi and

the tool magazine (M), given 0 if the direction is not changed, p1 if the direction
is changed by 90º, p2 if the direction is changed by 180º

tw(M, xi+1) penalty time for process direction changes along the path between the tool
magazine (M) and xi+1, which is formulated as tw

tz(xi, xi+1) penalty time for process direction changes along the path between xi and xi+1,
which is formulated as tz

ve line velocity of the industrial robot’s end effector

Equation (5) assesses the environmental benefit obtained in the whole disassembly
process, expressed as the reclaimed environmental impact from components being reused or
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remanufactured, less the environmental impact caused by the disassembly operations and
the recovery of the components, which includes the environmental impact in the recovering
process, the environmental impact in the disassembly operations, and the environmental
impact produced by the movement of the robot between disassembly operations.

Environmental Bene f its =
N

∑
i=1

2

∑
j=1

ri,j eri,j αi −
N

∑
i=1

3

∑
j=1

ri,j eci,j αi −
N

∑
i=1

ri,4 eci,4 (1− αi)−

N−1

∑
i=1

ed(xi) αi −
N−1

∑
i=1

ed(xi, xi+1) αi

(5)

O2 =
NWS

∑
i=1

(CyT − STi)
2 (6)

Table 3. Description of variable for energy savings.

Variable Description

fW conversion factor from kWh to monetary units
gci,j energy consumption involved in recovering component i with mode j
gd1,i(xi) energy consumption of the robot in the disassembly operation of component i
gd2,i(xi, M) energy consumption of the robot in the movement between the position xi and M
gd3,i(M) energy consumption of the robot in the tool change
gd4,i(M, xi+1) energy consumption of the robot in the movement between M and xi+1
gd5,i(xi, xi+1) energy consumption of the robot in the movement between xi and xi+1
gri,j energy reclaimed from component i being reused or remanufactured
PR1 power of the robot used in the disassembly operation
PR2 power of the robot used in the movements between the disassembly points

Table 4. Description of variables for environmental benefits.

Variable Description

eci,j environmental impact in the recovering process of component i with mode j
ed(xi) environmental impact in disassembly operation xi
ed(xi, xi+1) environmental impact produced by the movement of the robot between disassembly

operations xi and xi+1, considering that the robot must change the tool in M if
operation xi+1 requires using a tool different from the one used in the
previous operation xi

eri,j reclaimed environmental impact from component i being reused or remanufactured

Table 5. Description of variables for unbalanced line.

Variable Description

CyT cycle time
NWS number of workstations
ST station time

The constraints are expressed in Equations (7)–(10). Equation (7) ensures that there is
only one doable way to retrieve each component, either recycle, remanufacture, reuse, or
dispose. Equation (8) ensures that each part has been completely taken apart. Equation (9)
is needed to ensure that the precedence sequence is adhered to. Equation (10) ensures
that the total number of removed components is lower than the product’s total number
of components.

4

∑
j=1

ri,j = 1 ∀i (7)
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ri,1 + ri,2 + ri,3 ≤ αi (8)

αi ≥ αi+1 (9)

N

∑
i=1

αi ≤ N − 1 (10)

The model is based on several underlying assumptions. First, it presupposes that
complete disassembly of all components is feasible. Second, it relies on the assumption that
task times are both known and deterministic. Third, the model is founded on the premise
that the remanufacturing company operates for 220 days annually, with 8-h shifts each
day. Additionally, it takes into account an initial investment cost of 150,000 euros for the
robotic cell and an hourly operating cost of 120 euros. Furthermore, the model considers
the expected lifetime of the robotic cell.

3.2. Case Study

Two industrial gear pumps were chosen as case studies (see Figures 1 and 2). The
Bill of Materials (BOM) is provided in Tables 6 and 7. The input data were prepared
as follows. Data on the CAD model, component materials, gear pump properties, and
disassembly tools were gathered. The space interference matrix was designed to represent
the disassembly precedence in directions Y+ and Y−, as the gear pumps could only be
dismantled in these two directions. These matrices considered the fastener and the so-called
modified feasible solution generation (MFSG). The interested reader is referred to the article
by Liu et al. [42] on the development of MFSGs.

Figure 1. Gear pump A: (a) assembled view; (b) exploded view. Source: Liu et al. [42].

Figure 2. Gear pump B: (a) assembled view; (b) exploded view. Source: Ramírez et al. [98].
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Table 6. BOM for Gear Pump A.

Part Number Part Name Weight (g) Material

1 Bolt A 7.90 Steel
2 Bolt B 7.90 Steel
3 Bolt C 7.90 Steel
4 Bolt D 7.90 Steel
5 Bolt E 7.90 Steel
6 Bolt F 7.90 Steel
7 Cover 538.14 Steel
8 Gasket 4.23 Rubber
9 Gear A 119.44 Steel
10 Gear B 119.44 Steel
11 Driven Shaft A 40.88 Steel
12 Base 1534.98 Steel
13 Driven Shaft B 143.40 Steel
14 Packing Gland 21.27 Steel
15 Gland Nut 94.57 Steel

Table 7. BOM for Gear Pump B.

Part Number Part Name Weight (g) Material

1 Bolt A 9.76 Steel
2 Bolt B 9.76 Steel
3 Bolt C 9.76 Steel
4 Bolt D 9.76 Steel
5 Bolt E 9.76 Steel
6 Bolt F 9.76 Steel
7 Cover 753.39 Steel
8 Gasket 5.22 Rubber
9 Gear A 167.22 Steel
10 Gear B 167.22 Steel
11 Shaft A 50.48 Steel
12 Base 2148.98 Steel
13 Shaft B 177.10 Steel
14 Gland A 7.14 PTFE
15 Gland B 7.14 PTFE
16 Gland C 7.14 PTFE
17 Gland D 7.14 PTFE
18 Gland E 113.48 Steel
19 Bolt stud A 7.83 Steel
20 Bolt stud B 7.83 Steel
21 Nut A 2.27 Steel
22 Nut B 2.27 Steel
23 Nut C 2.27 Steel
24 Nut D 2.27 Steel

The KUKA LBR-iiwa 14 R820 robot was chosen for this study. Information about the
robot was obtained from the manufacturer’s technical data sheet. Information and other
data were collected from recycling and remanufacturing companies in the United Kingdom
and Spain. As described earlier, the product recovery scenarios REC, REM, REU, and OPT
for gear pumps were developed and are shown in Tables 8 and 9. Figure 3 depicts a robotic
disassembly line using two KUKA robots to disassemble a gear pump.
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Figure 3. Robotic disassembly line.

Table 8. The product recovery options for the case study gear pump A.

Component No REC Scenario REM Scenario REU Scenario OPT Scenario

1 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
2 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
3 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
4 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
5 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
6 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
7 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
8 Disposal Disposal Disposal Disposal
9 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *

10 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
11 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
12 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
13 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
14 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
15 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *

* MOBA assigned the best product recovery options.

3.3. Multiobjective Bees Algorithm

As mentioned in the introduction, the disassembly problem is an NP-complete prob-
lem [45,46]. This designation indicates that it would take a significant amount of time to
find the optimal solutions, making it inappropriate for real-world problems that require
prompt solutions. In the past two decades, metaheuristic algorithms have been utilised by
the majority of researchers as a method for acquiring optimal solutions more quickly, with
this strategy being suitable for complex problems such as disassembly.

The Bees Algorithm is a population-based metaheuristic inspired by the foraging
behaviour of bees, which can find sources of nectar by exploring the solution space and
exploiting abundant nectar sources therin [99]. Recent research in remanufacturing applica-
tions that used the Bees Algorithm (BA) shows that it is a robust algorithm [42,57,100]. In
addition, it has been demonstrated that the BA outperforms other algorithms in the robotic
disassembly line balancing problem [39,44]. A hybrid MOBA combining the aggregate and
non-dominated approaches, as previously mentioned, was developed for this RDLBSD
problem. Figure 4 depicts a flowchart of the hybrid MOBA.
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Table 9. The product recovery options for the case study gear pump B.

Component No REC Scenario REM Scenario REU Scenario OPT Scenario

1 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
2 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
3 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
4 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
5 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
6 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
7 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
8 Disposal Disposal Disposal Disposal
9 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *

10 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
11 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
12 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
13 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
14 Disposal Disposal Disposal Disposal
15 Disposal Disposal Disposal Disposal
16 Disposal Disposal Disposal Disposal
17 Disposal Disposal Disposal Disposal
18 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
19 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
20 Recycle Remanufacture Reuse Recycle/Remanufacture/Reuse *
21 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
22 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
23 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *
24 Recycle Recycle Recycle Recycle/Remanufacture/Reuse *

* MOBA assigned the best product recovery options.

Figure 4. Hybrid MOBA flowchart.

The setting parameters for MOBA are as follows: number of elite sites (e) = 1, number
of selected sites (m) = 5, number of recruited bees around elite sites (nep) = 10, and number
of recruited bees around selected sites (nsp) = 5 [57]. The maximum number of iterations
and population size are varied to evaluate the algorithm’s performance under different
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parameter settings. The iteration was set to 100 and increased by 100 until 500, whereas
the bees population was set to 50 and increased by 10 until 80. The experiments were run
50 times in MATLAB 2020a on the University of Birmingham’s BEAR Cloud Service.

4. Results

The hypervolume indicator (HI), which has become a standard, was the most widely
used method for evaluating the performance of multiobjective algorithms [101]. Higher
HI values are better because they show that the set of Pareto optimal solutions (POSs) is
more diverse [102]. The indicator measures convergence and diversity [96,103]. The HI for
both gear pumps is presented in Figure 5. The diagram demonstrates that for gear pump
A, the HI in each scenario is reasonably similar. This indicates that the MOBA performs
consistently. On the other hand, the HI for gear pump B is lower when a lower number
of iterations and a smaller bee population are utilised. It becomes more consistent after
300 iterations. This is logical considering that gear pump A has fewer components than
gear pump B.

Figure 5. Hypervolume Indicator.

The following figures and tables show the output of the highest HI for each scenario.
The Pareto optimal solutions are depicted in Figures 6 and 7. The four scenarios show
similar results; the difference can be seen in the x-axis, which measures the monetary goals.
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(a) (b)

(c) (d)

Figure 6. Plot of gear pump A best solutions under four sustainability scenarios (a) REC scenario;
(b) REM scenario; (c) REU scenario; (d) OPT scenario.

(a) (b)

(c) (d)

Figure 7. Plot of gear pump B best solutions under four sustainability scenarios (a) REC scenario;
(b) REM scenario; (c) REU scenario; (d) OPT scenario.
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The best outputs of the experiments are presented in Tables 10 and 11, showing the
disassembly sequence, the disassembly direction, the product recovery for each component,
the disassembly tool, the robotic workstation, and the value of the objectives for the
case study.

Table 10. Example output of Gear Pump A under four scenarios.

Output REC Scenario REM scenario

Disassembly sequence 15-6-2-1-3-4-5-7-11-9-13-8-10-14-12 15-3-1-2-5-4-6-7-9-11-10-14-13-8-12
Disassembly direction 1-2-2-2-2-2-2-2-2-2-2-2-2-1-1 1-2-2-2-2-2-2-2-2-2-2-1-2-2-2
Component recovery 3-3-3-3-3-3-3-3-3-3-3-4-3-3-3 2-3-3-3-3-3-3-2-2-2-2-2-2-4-2

Disassembly tools 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4 2-1-1-1-1-1-1-4-3-3-3-3-3-3-4
Robotic workstation 1-1-1-1-1-1-2-2-2-2-2-2-3-3-3 1-1-1-1-1-2-2-2-2-2-2-3-3-3-3

O1 (Euros) −13.52 36.15
O2 31,140.35 22,514.56

Output REU scenario OPT scenario

Disassembly sequence 3-4-5-2-1-6-15-7-10-11-9-14-13-8-12 3-2-5-6-1-4-15-7-10-9-11-14-13-8-12
Disassembly direction 2-2-2-2-2-2-1-2-2-2-2-1-2-2-1 2-2-2-2-2-2-1-2-2-2-2-1-2-2-2
Component recovery 3-3-3-3-3-3-1-1-1-1-1-1-1-4-1 1-1-1-1-1-1-1-1-1-1-1-1-1-4-1

Disassembly tools 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4 1-1-1-1-1-1-2-4-3-3-3-3-3-3-4
Robotic workstations 1-1-1-1-1-1-2-2-2-2-2-3-3-3-3 1-1-1-1-1-1-2-2-2-2-2-3-3-3-3

O1 (Euros) 64.82 66.40
O2 30,795.94 31,530.36

Direction 1 = Y+, 2 = Y-; recovery options 1 = reuse, 2 = remanufacturing, 3 = recycling, 4 = disposal;
Tools 1 = Spanner-I, 2 = Spanner-II, 3 = Gripper-I, 4 = Gripper-II

Table 11. Example output of Gear Pump B under four scenarios.

Output REC Scenario

Disassembly sequence 2-3-5-4-1-24-23-22-21-19-20-6-18-7-13-11-17-16-9-10-8-12-14-15
Disassembly direction 2-2-2-2-2-1-1-1-1-1-1-2-1-2-1-2-1-1-2-2-2-2-2-2
Component recovery 3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-4-4-3-3-4-3-4-4

Disassembly tools 1-1-1-1-1-3-3-3-3-2-2-1-4-5-4-4-4-4-4-4-4-5-4-4
Robotic workstation 1-1-1-1-1-1-1-1-1-2-2-2-2-3-3-3-3-3-3-3-3-3-3-3

O1 (Euros) −22.6
O2 1310.7

Output REM scenario

Disassembly sequence 4-5-6-3-2-1-24-23-21-22-20-7-8-19-9-18-11-13-10-17-12-14-15-16
Disassembly direction 2-2-2-2-2-2-1-1-1-1-1-2-2-1-2-1-2-1-2-1-2-2-2-2
Component recovery 3-3-3-3-3-3-3-3-3-3-2-2-4-2-2-2-2-2-2-4-2-4-4-4

Disassembly tools 1-1-1-1-1-1-3-3-3-3-2-5-4-2-4-4-4-4-4-4-5-4-4-4
Robotic workstation 1-1-1-1-1-1-1-1-1-1-2-2-2-2-3-3-3-3-3-3-3-3-3-3

O1 (Euros) 63.94
O2 3946

Output REU scenario

Disassembly sequence 3-5-4-1-2-6-7-8-10-9-11-23-24-22-21-19-20-18-17-13-12-16-15-14
Disassembly direction 2-2-2-2-2-2-2-2-2-2-2-1-1-1-1-1-1-1-1-1-2-1-1-2
Component recovery 3-3-3-3-3-3-1-4-1-1-1-3-3-3-3-1-1-1-4-1-1-4-4-4

Disassembly tools 1-1-1-1-1-1-5-4-4-4-4-3-3-3-3-2-2-4-4-4-5-4-4-4
Robotic workstations 1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-3-3-3-3-3-3-3-3-3

O1 (Euros) 78.88
O2 4712.87



Automation 2023, 4 372

Table 11. Cont.

Output OPT scenario

Disassembly sequence 4-1-3-2-5-6-7-24-9-10-11-8-22-23-21-20-19-18-13-12-14-17-16-15
Disassembly direction 2-2-2-2-2-2-2-1-2-2-2-2-1-1-1-1-1-1-1-2-2-1-1-2
Component recovery 1-1-1-1-1-1-1-1-1-1-1-4-1-1-1-1-1-1-1-1-4-4-4-4

Disassembly tools 1-1-1-1-1-1-5-3-4-4-4-4-3-3-3-2-2-4-4-5-4-4-4-4
Robotic workstations 1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-3-3-3-3-3-3-3-3-3

O1 (Euros) 82
O2 4155

Direction 1 = Y+, 2 = Y-; recovery options 1 = reuse, 2 = remanufacturing, 3 = recycling, 4 = disposal;
Tools 1 = Spanner-I, 2 = Spanner-II, 3 = Spanner-III, 4 = Gripper-I, 5 = Gripper-II

5. Discussion

The proposed sustainable product recovery model was implemented using the Bees
Algorithm to optimise the integration of robotic disassembly sequence planning and disas-
sembly line balancing, with two industrial gear pumps as case studies. The MOBA was
able to find the best solutions for the proposed four strategies of REC (recycling), REM
(remanufacturing), REU (reuse), and OPT (optimal). Comparing the four strategies, the
REU and OPT show similar results, which is logical given that if the parts are retained
and reused in remanufacturing, they will yield higher profit, energy savings and environ-
mental benefits. The difference is that OPT, which is the strategy generated by the MOBA,
outperforms the REC, REM and REU strategies, producing higher Euro values.

The maximum value was generated by the OPT scenario for both gear pumps A and
B. This scenario is the best recovery option for each part and yields the maximum value
for the first three objectives, which use Euros as the unit of measurement. As has been
seen, the REC scenario results in negative monetary values as the activities involving
recycling demand a greater amount of energy and other resources. Recycling presents
greater challenges than the other product recovery options, including the separation of
EoL product materials to achieve a higher quality of material, energy consumption, and
environmental impact. This finding supports the notion that recycling should be the last
product recovery option. The proposed model could be adopted by industries to extend
the life of resources and environmental benefits, allowing them to make the best product
recovery decisions.

Although the sustainability model and product recovery options presented in this
study show good results, a limitation is that it assumes that the EoL product can be
completely disassembled and is in good condition. However, it is known that the condition
of an incoming EoL product is uncertain. It might be worn out or corroded or have missing
parts and other problems. This should be investigated in the future.

Nonetheless, the encouraging results obtained should motivate academic researchers
and companies to investigate the possibility of incorporating the proposed model, given that
doing so would increase productivity, efficiency, and monetary value while simultaneously
making a positive contribution to the environment.

6. Conclusions

The viability of the sustainability model was demonstrated on real EoL products
by optimising it using the Multi-Objective Bees Algorithm. This demonstrated that the
model could be applied to a robotic disassembly cell. The recovery strategies show that
recycling should be the final option, which is consistent with the circular economy’s
goals. Since robotic disassembly is emerging research while manual disassembly has
matured, future work should consider tools in manual disassembly research, such as
machine learning (including deep learning), that could also be used to investigate robotic
disassembly. Additionally, other metaheuristic optimisation algorithms could be added as
benchmarks. Furthermore, future studies will involve other more complex EoL products to
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demonstrate the versatility of this method. Finally, further studies could be conducted on
the impact of incoming product uncertainty on disassembly.
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