4 research outputs found

    Verbesserung der Anwendbarkeit von organischen Leuchtdioden durch integrierte Nanostrukturen

    Get PDF
    The organic light-emitting diode (OLED) is a promising technology for a variety of applications, such as displays, large-area lighting, integrated sensing, smart packaging, and signage. OLEDs are thin-film devices comprising organic semiconductors, which allow for cost-efficient high-volume manufacturing using solution-based fabrications methods and therefore hold great potential towards disposable and recyclable electronic products. In this thesis, three different approaches to improve the applicability of OLEDs through integrated nanostructures are explored. Nanostructuring the carrier substrate's outside surface provides a way to enhance light extraction as well as customize tactile and visual device perception. Here, a polymer coating containing tetrapodal zinc oxide nanoparticles and color pigments is investigated with respect to surface roughness characteristics and optical properties. Electrical device properties can be altered by integrating nanostructures directly into the OLED semiconductor stack. In this work, periodic nanopatterning of a metal electrode is shown to improve charge injection into the organic semiconductor layer of a single-carrier device through local electric field enhancements. A current increase of up to 300 % is observed, exceeding the planar current injection limit and indicating a local transition to space charge limited operation. Integration of a photonic crystal slab into the waveguide formed by the OLED can also lead to resonant light outcoupling. Here, a fabrication method is presented to create two-dimensional nanogratings with variable grating designs in the commonly used electrode material indium tin oxide. Furthermore, a novel device structure is investigated in which a fluorescent nanopatterned waveguide is placed outside the OLED for directional light emission leading to sharp angle-dependent outcoupling peaks in the emission spectra

    Synthese von bifunktionellen polymerummantelten Silika-Nanopartikeln fĂŒr die Herstellung von druckbaren OLEDs

    Get PDF
    In der vorliegenden Arbeit wird die Entwicklung einer neuartigen, tensidfreien Drucktinte auf Basis polymerummantelter Silika-Nanopartikel fĂŒr die Anwendung im Bereich lösungspozessierbarer OLEDS (printing OLEDs) beschrieben. HierfĂŒr wurden Partikeldispersionen unterschiedlicher PartikelgrĂ¶ĂŸe mit zwei unterschiedlichen Polymeren an der OberflĂ€che modifiziert. Die erste Polymerschale sorgt fĂŒr eine ausreichende Stabilisierung der Partikel wĂ€hrend der weiteren Syntheseschritte. Die zweite Polymerschale trĂ€gt die eigentliche FunktionalitĂ€t fĂŒr den Anwendungsbereich. Des Weiteren wurden die Syntheseschritte auf Siliziumwafer ĂŒbertragen, um polymerspezifische Daten zu erhalten. Die Synthese der niedermolekularen Verbindungen sowie der funktionalisierten Partikel und der flachen Substrate wurden mittels verschiedener spektroskopischen sowie mikroskopischen Methoden charakterisiert

    Functionalized DNA origami nanostructures for electronics

    Get PDF
    DesoxyribonukleinsĂ€ure (DNS) ermöglicht die Selbstorganisation von nanoskopischen Elementen zu dreidimensionalen Einheiten mit vorgegebener Form, Zusammensetzung und GrĂ¶ĂŸe wie sie in der Nanoelektronik, Nanophotonik und Metamaterialien Verwendung finden. In dieser Arbeit werden DNS Origami Strukturen, in der Gestaltvon Nanoformen, NanoblĂ€tchen und Nanoröhren, als GerĂŒste fĂŒr den Aufbau von NanodrĂ€hten und Metall/Halbleiter/Metall Heterostrukturen aus Goldnanoteilchen, Halbleiterquantenpunkten und HalbleiterstĂ€bchen verwendet. Die so hergestellten Einheiten wurden mittels Elektronenstrahllithographie kontaktiert um ihre elektrische Leitwerte zwischen 4:2K und Raumtemperatur zu charakterisieren. Ein neues Konzept fĂŒr die lösungsbasierte Herstellung von leitenden GoldnanodrĂ€hten mittels DNS-Templates wurde eingefĂŒhrt: hierbei wurden DNS-Nanoformen eingesetzt in denen positionsspezifisch angedockte Goldkeime durch auĂżenstromlose Goldabscheidung wachsen. Durch konfigurierbare Verbindungsstellen können sich die einzelnen Formen zu mikrometerlangen Strukturen verbinden. WĂ€hrend der folgendenden Abscheidung von Gold schrĂ€nken die WĂ€nde der Gussformen ĂŒber das Wachstum so ein, dass sehr homogene NanodrĂ€hte gewonnen werden können. GoldnanodrĂ€hte wurden auch C-förmig hergestellt indem Goldnanoteilchen in der gewĂŒnschten Form auf DNS Origami-NanoblĂ€ttchen angeordnet und wiederum durch außenstromlose Goldabscheidung zu durchgĂ€ngigen DrĂ€hten vergröbert wurden. Einige Abschnitte der DNS-Nanoform-geprĂ€gten DrĂ€hte zeigen metallische LeitfĂ€higkeit, wĂ€hrend andere durch LĂŒcken zwischen den Goldkörnern deutlich höhere WiderstĂ€nde aufweisen. Alle hergestellten C-förmigen NanodrĂ€hte stellten sich als nicht-metallisch heraus, sie zeigten Eigenschaften von Hopping-, thermionischem und Tunneltransport in AbhĂ€ngigkeit von der Temperatur. Die Anwesenheit dieser verschiedenen Transportmechanismen deutet darauf hin, dass die C-förmigen NanodrĂ€hte aus metallischen Abschnitten bestehen welche aber nur schwach miteinander verbunden sind. Zwei verschiedene Metall/Halbleiter/Metall-Heterostrukturen wurden hergestellt: Metall/HalbleiternanstĂ€bchen/Metall-Strukturen mittels DNS-Nanoformen und Metall/Quantenpunkt/Metall-Strukturen mittels DNS-Nanoröhren-Vorlagen Goldnanoteilchen konnten durch die DNA templates mit hoher Ausbeute neben den Halbleiterelementen platziert werden. Nach der erfolgter Anordnung wurden die Goldnanoteilchen gewachsen um durchgĂ€ngige Heterostrukturen zu erhalten. Die EinflĂŒsse des Inkubationsmediums und der -zeit, des Buffers, sowie der Quantenpunkt- und Goldnanopartikelkonzentrationen auf die Abscheidungseffzienz von Goldnanotailchen auf DNS Nanoröhren wurden systematisch untersucht. ZusĂ€tzlich zur Bestimmung der Morphologie der durch Selbstorganisation hergestellten Heterostrukturen, wurden auch ihre elektrischen Eigenschaften im Hinblick auf ihre Anwendung in nanelektronischen Bauelementen, wie Einzelelektronentransitoren untersucht.:1. Introduction 2. Overview on DNA Nanotechnology 2.1. Basic Concepts of DNA 2.1.1. Nanoscale Dimensions 2.2. Self-Assembled Architectures from DNA 2.3. DNA Origami: Nanomolds, Nanosheets and Nanotubes 2.3.1. DNA Origami Method 2.3.2. Nanomolds 2.3.3. Nanosheets 2.3.4. Nanotubes 2.4. DNA/DNA Origami-Templated Metallic Nanowire Fabrication 2.4.1. DNA/DNA Origami Templates 2.4.2. Metal Nanoparticle Attachment Yield 2.4.3. Metal Growth 2.5. Electron Transport Mechanisms of DNA-Templated Metallic Nanowires 2.5.1. Lithographically Defined Contacts and I-V Measurements of the DNA-Templated Metal Wires 2.5.2. Lithographically Defined Contacts and I-V Measurements of the DNA Origami-Templated Metal Nanowires 2.6. Applications 2.6.1. Introduction to Metamaterials: DNA-Templated Metamaterial Fabrication 2.6.2. Introduction to Single Electron Tunneling: A DNA-Templated Self-Assembly Concept 3. Experimental Details 3.1. Preparation of Substrates 3.2. DNA Origami Preparation and Deposition 3.2.1. DNA Nanomolds and Formation of linear mold superstructures 3.2.2. DNA Nanotubes 3.2.3. DNA Nanosheets 3.3. Metallization of DNA Origami Structures 3.3.1. DNA Nanomolds 3.3.2. DNA Nanotubes 3.3.3. DNA Nanosheets 3.3.4. Gold Growth on the DNA Origami Nanotube and Nanosheet 3.4. Semiconductor Nanoparticle Preparation and Assembly 3.4.1. CdS Semiconductor Quantum Rods for DNA Nanomold. 3.4.2. CdSe/ZnS Core-shell quantum Dots for DNA Nanotube 3.5. Deposition of DNA origami structures on SiO2 /Si surface 3.5.1. Deposition of DNA Nanomolds 3.5.2. Deposition of DNA Nanosheets and Nanotubes 3.6. Structural Characterization 3.6.1. Atomic Force Microscopy 3.6.2. Scanning Electron Microscopy 3.7. Electrical Characterization 4. Results and Discussion 4.1. DNA Nanomold-Templated Assembly of Conductive Gold Nanowires 4.1.1. Introduction 4.1.2. Results and Discussion 4.1.3. Conclusion 4.2. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds 4.2.1. Introduction 4.2.2. Results and Discussion 4.2.3. Conclusion 4.3. C-shaped Gold Nanowires Templated by DNA Nanosheet 4.3.1. Introduction 4.3.2. Results and Discussion 4.3.3. Conclusion 4.4. Self-Assembled Gold/Semiconductor/Gold heterojunctions templated by DNA Nanotube 4.4.1. Introduction 4.4.2. Results and Discussion 4.4.3. Conclusion 5. Conclusion and Future Work A. Supplement for DNA Nanomold-Templated Assembly of Conductive Gold Nanowires B. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds C. Supplement for C-shaped Gold Nanowires Templated by DNA Nanosheet D. Supplement for heterojunctions templated by DNA NanotubeDNA allows self-assembly of nanoscale units into three dimensional nanostructures with definite shape and size in fields such as nanoelectronics, metamaterials and nanophotonics. Different DNA origami templates, such as: nanomold, nanosheet and nanotube templates have been used to assemble gold nanoparticles, quantum dots and semiconductor rods into nanowires and metal/semiconductor/metal heterostructures. Structures have been contacted using electron-beam lithography for electrical conductance characterization at temperatures between 4:2K and room temperature has been performed. A new concept has been introduced for the solution-based fabrication of gold nanowires. To this end, DNA nanomolds have been employed, inside which electroless gold deposition is initiated by site-specifically attached seeds. Using configurable interfaces, individual mold elements self-assemble into micrometer-long mold structures. During subsequent internal gold deposition, the mold walls constrain the metal growth, such that highly homogeneous nanowires are obtained. Gold nanowires have also been manufactured in a C-shape using gold nanoparticles arranged in the desired shape on a DNA origami nanosheet and enhanced to form a continuous wire through electroless gold deposition. Some sections of the DNA nanomold-templated wires show metallic conductance, while other sections of the wires have a much higher resistance which is caused by boundaries between gold grains. All C-shaped wires have been found to be resistive showing hopping, thermionic and tunneling transport characteristics at different temperatures. The different transport mechanisms indicate that the C-shaped nanowires consist of metallic segments which are weakly coupled along the wire. Two types of metal/semiconductor/metal heterostructures have been fabricated: Metal/semiconductor-rod/metal using DNA nanomolds and metal/quantum-dot/metal structures using DNA nanotube. AuNPs were assembled with high yield adjacent to the semiconductor material using origami templates. After the assembly, the gold nanoparticles were grown to produce continuous heterostructures. The influence of the incubation medium, time, buffer, quantum dot and gold nanoparticle concentration on nanoparticle attachment yield was systematically investigated for the nanotube templates. In addition to the determination of the self-assembled heterostructures' morphology, electrical properties were investigated to evaluate their applicability nanoelectronic devices such as single electron transistors.:1. Introduction 2. Overview on DNA Nanotechnology 2.1. Basic Concepts of DNA 2.1.1. Nanoscale Dimensions 2.2. Self-Assembled Architectures from DNA 2.3. DNA Origami: Nanomolds, Nanosheets and Nanotubes 2.3.1. DNA Origami Method 2.3.2. Nanomolds 2.3.3. Nanosheets 2.3.4. Nanotubes 2.4. DNA/DNA Origami-Templated Metallic Nanowire Fabrication 2.4.1. DNA/DNA Origami Templates 2.4.2. Metal Nanoparticle Attachment Yield 2.4.3. Metal Growth 2.5. Electron Transport Mechanisms of DNA-Templated Metallic Nanowires 2.5.1. Lithographically Defined Contacts and I-V Measurements of the DNA-Templated Metal Wires 2.5.2. Lithographically Defined Contacts and I-V Measurements of the DNA Origami-Templated Metal Nanowires 2.6. Applications 2.6.1. Introduction to Metamaterials: DNA-Templated Metamaterial Fabrication 2.6.2. Introduction to Single Electron Tunneling: A DNA-Templated Self-Assembly Concept 3. Experimental Details 3.1. Preparation of Substrates 3.2. DNA Origami Preparation and Deposition 3.2.1. DNA Nanomolds and Formation of linear mold superstructures 3.2.2. DNA Nanotubes 3.2.3. DNA Nanosheets 3.3. Metallization of DNA Origami Structures 3.3.1. DNA Nanomolds 3.3.2. DNA Nanotubes 3.3.3. DNA Nanosheets 3.3.4. Gold Growth on the DNA Origami Nanotube and Nanosheet 3.4. Semiconductor Nanoparticle Preparation and Assembly 3.4.1. CdS Semiconductor Quantum Rods for DNA Nanomold. 3.4.2. CdSe/ZnS Core-shell quantum Dots for DNA Nanotube 3.5. Deposition of DNA origami structures on SiO2 /Si surface 3.5.1. Deposition of DNA Nanomolds 3.5.2. Deposition of DNA Nanosheets and Nanotubes 3.6. Structural Characterization 3.6.1. Atomic Force Microscopy 3.6.2. Scanning Electron Microscopy 3.7. Electrical Characterization 4. Results and Discussion 4.1. DNA Nanomold-Templated Assembly of Conductive Gold Nanowires 4.1.1. Introduction 4.1.2. Results and Discussion 4.1.3. Conclusion 4.2. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds 4.2.1. Introduction 4.2.2. Results and Discussion 4.2.3. Conclusion 4.3. C-shaped Gold Nanowires Templated by DNA Nanosheet 4.3.1. Introduction 4.3.2. Results and Discussion 4.3.3. Conclusion 4.4. Self-Assembled Gold/Semiconductor/Gold heterojunctions templated by DNA Nanotube 4.4.1. Introduction 4.4.2. Results and Discussion 4.4.3. Conclusion 5. Conclusion and Future Work A. Supplement for DNA Nanomold-Templated Assembly of Conductive Gold Nanowires B. Conductance measurements on Gold/Semiconductor/Gold heterojunctions templated by DNA Nanomolds C. Supplement for C-shaped Gold Nanowires Templated by DNA Nanosheet D. Supplement for heterojunctions templated by DNA Nanotub
    corecore