394 research outputs found

    Fuzzy Self-Learning Controllers for Elasticity Management in Dynamic Cloud Architectures

    Get PDF
    Cloud controllers support the operation and quality management of dynamic cloud architectures by automatically scaling the compute resources to meet performance guarantees and minimize resource costs. Existing cloud controllers often resort to scaling strategies that are codified as a set of architecture adaptation rules. However, for a cloud provider, deployed application architectures are black-boxes, making it difficult at design time to define optimal or pre-emptive adaptation rules. Thus, the burden of taking adaptation decisions often is delegated to the cloud application. We propose the dynamic learning of adaptation rules for deployed application architectures in the cloud. We introduce FQL4KE, a self-learning fuzzy controller that learns and modifies fuzzy rules at runtime. The benefit is that we do not have to rely solely on precise design-time knowledge, which may be difficult to acquire. FQL4KE empowers users to configure cloud controllers by simply adjusting weights representing priorities for architecture quality instead of defining complex rules. FQL4KE has been experimentally validated using the cloud application framework ElasticBench in Azure and OpenStack. The experimental results demonstrate that FQL4KE outperforms both a fuzzy controller without learning and the native Azure auto-scalin

    Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge Evolution

    Get PDF
    Cloud controllers aim at responding to application demands by automatically scaling the compute resources at runtime to meet performance guarantees and minimize resource costs. Existing cloud controllers often resort to scaling strategies that are codified as a set of adaptation rules. However, for a cloud provider, applications running on top of the cloud infrastructure are more or less black-boxes, making it difficult at design time to define optimal or pre-emptive adaptation rules. Thus, the burden of taking adaptation decisions often is delegated to the cloud application. Yet, in most cases, application developers in turn have limited knowledge of the cloud infrastructure. In this paper, we propose learning adaptation rules during runtime. To this end, we introduce FQL4KE, a self-learning fuzzy cloud controller. In particular, FQL4KE learns and modifies fuzzy rules at runtime. The benefit is that for designing cloud controllers, we do not have to rely solely on precise design-time knowledge, which may be difficult to acquire. FQL4KE empowers users to specify cloud controllers by simply adjusting weights representing priorities in system goals instead of specifying complex adaptation rules. The applicability of FQL4KE has been experimentally assessed as part of the cloud application framework ElasticBench. The experimental results indicate that FQL4KE outperforms our previously developed fuzzy controller without learning mechanisms and the native Azure auto-scaling

    Iterative test suites refinement for elastic computing systems

    No full text
    Elastic computing systems can dynamically scale to continuously and cost-effectively provide their required Quality of Service in face of time-varying workloads, and they are usually implemented in the cloud. Despite their wide-spread adoption by industry, a formal definition of elasticity and suitable procedures for its assessment and verification are still missing. Both academia and industry are trying to adapt established testing procedures for functional and non-functional properties, with limited effectiveness with respect to elasticity. In this paper we propose a new methodology to automatically generate test-suites for testing the elastic properties of systems. Elasticity, plasticity, and oscillations are first formalized through a convenient behavioral abstraction of the elastic system and then used to drive an iterative test suite refinement process. The outcomes of our approach are a test suite tailored to the violation of elasticity properties and a human-readable abstraction of the system behavior to further support diagnosis and fix

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Adaptive prediction models for data center resources utilization estimation

    Get PDF
    Accurate estimation of data center resource utilization is a challenging task due to multi-tenant co-hosted applications having dynamic and time-varying workloads. Accurate estimation of future resources utilization helps in better job scheduling, workload placement, capacity planning, proactive auto-scaling, and load balancing. The inaccurate estimation leads to either under or over-provisioning of data center resources. Most existing estimation methods are based on a single model that often does not appropriately estimate different workload scenarios. To address these problems, we propose a novel method to adaptively and automatically identify the most appropriate model to accurately estimate data center resources utilization. The proposed approach trains a classifier based on statistical features of historical resources usage to decide the appropriate prediction model to use for given resource utilization observations collected during a specific time interval. We evaluated our approach on real datasets and compared the results with multiple baseline methods. The experimental evaluation shows that the proposed approach outperforms the state-of-the-art approaches and delivers 6% to 27% improved resource utilization estimation accuracy compared to baseline methods.This work is partially supported by the European Research Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitiveness (TIN2015-65316-P and IJCI2016-27485), the Generalitat de Catalunya (2014-SGR-1051), and NPRP grant # NPRP9-224-1-049 from the Qatar National Research Fund (a member of Qatar Foundation) and University of the Punjab, Pakistan.Peer ReviewedPostprint (published version

    A Survey and Taxonomy of Self-Aware and Self-Adaptive Cloud Autoscaling Systems

    Get PDF
    Autoscaling system can reconfigure cloud-based services and applications, through various configurations of cloud software and provisions of hardware resources, to adapt to the changing environment at runtime. Such a behavior offers the foundation for achieving elasticity in a modern cloud computing paradigm. Given the dynamic and uncertain nature of the shared cloud infrastructure, the cloud autoscaling system has been engineered as one of the most complex, sophisticated, and intelligent artifacts created by humans, aiming to achieve self-aware, self-adaptive, and dependable runtime scaling. Yet the existing Self-aware and Self-adaptive Cloud Autoscaling System (SSCAS) is not at a state where it can be reliably exploited in the cloud. In this article, we survey the state-of-the-art research studies on SSCAS and provide a comprehensive taxonomy for this field. We present detailed analysis of the results and provide insights on open challenges, as well as the promising directions that are worth investigated in the future work of this area of research. Our survey and taxonomy contribute to the fundamentals of engineering more intelligent autoscaling systems in the cloud

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Smaller, Faster, Greener: Compressing Pre-trained Code Models via Surrogate-Assisted Optimization

    Full text link
    Large pre-trained models of code have been adopted to tackle many software engineering tasks and achieved excellent results. However, their large model size and expensive energy consumption prevent them from being widely deployed on developers' computers to provide real-time assistance. A recent study by Shi et al. can compress the pre-trained models into a small size. However, other important considerations in deploying models to have not been addressed: the model should have fast inference speed and minimal energy consumption. This requirement motivates us to propose Avatar, a novel approach that can reduce the model size as well as inference latency and energy consumption without compromising effectiveness (i.e., prediction accuracy). Avatar trains a surrogate model to predict the performance of a tiny model given only its hyperparameters setting. Moreover, Avatar designs a new fitness function embedding multiple key objectives, maximizing the predicted model accuracy and minimizing the model size, inference latency, and energy consumption. After finding the best model hyperparameters using a tailored genetic algorithm (GA), Avatar employs the knowledge distillation technique to train the tiny model. We evaluate Avatar and the baseline approach from Shi et al. on three datasets for two popular software engineering tasks: vulnerability prediction and clone detection. We use Avatar to compress models to a small size (3 MB), which is 160×\times smaller than the original pre-trained models. Compared with the original models, the inference latency of compressed models is significantly reduced on all three datasets. On average, our approach is capable of reducing the inference latency by 62×\times, 53×\times, and 186×\times. In terms of energy consumption, compressed models only have 0.8 GFLOPs, which is 173×\times smaller than the original pre-trained models.Comment: 12 pages, a working-in-progress versio
    corecore