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A B S T R A C T

With the wide spread use of the Internet, the popularity of web applications has

significantly increased. Such applications are subject to unpredictable workload

conditions that vary from time to time. For example, an e-commerce website may

face higher workloads than normal during festivals or promotional schemes. Such

applications are critical and performance related issues, or service disruption can

result in financial losses. Cloud computing with its attractive feature of dynamic

resource provisioning (elasticity) is a perfect match to host such applications.

The rapid growth in the usage of cloud computing model, as well as the rise in

complexity of the web applications poses new challenges regarding the effective

monitoring and management of the underlying cloud computational resources.

This thesis investigates the state-of-the-art elastic methods including the models

and techniques for the dynamic management and provisioning of cloud resources

from a service provider perspective.

An elastic controller is responsible to determine the optimal number of cloud re-

sources, required at a particular time to achieve the desired performance demands.

Researchers and practitioners have proposed many elastic controllers using ver-

satile techniques ranging from simple if-then-else based rules to sophisticated

optimisation, control theory and machine learning based methods. However,

despite an extensive range of existing elasticity research, the aim of implementing

an efficient scaling technique that satisfies the actual demands is still a challenge

to achieve. There exist many issues that have not received much attention from

a holistic point of view. Some of these issues include: 1) the lack of adaptability

and static scaling behaviour whilst considering completely fixed approaches; 2)

the burden of additional computational overhead, the inability to cope with the

sudden changes in the workload behaviour and the preference of adaptability

over reliability at runtime whilst considering the fully dynamic approaches; and 3)
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the lack of considering uncertainty aspects while designing auto-scaling solutions.

This thesis seeks solutions to address these issues altogether using an integrated

approach. Moreover, this thesis aims at the provision of qualitative elasticity rules.

This thesis proposes a novel biologically-inspired switched feedback control

methodology to address the horizontal elasticity problem. The switched meth-

odology utilises multiple controllers simultaneously, whereas the selection of a

suitable controller is realised using an intelligent switching mechanism. Each

controller itself depicts a different elasticity policy that can be designed using the

principles of fixed gain feedback controller approach. The switching mechanism

is implemented using a fuzzy system that determines a suitable controller/-

policy at runtime based on the current behaviour of the system. Furthermore,

to improve the possibility of bumpless transitions and to avoid the oscillatory

behaviour, which is a problem commonly associated with switching based control

methodologies, this thesis proposes an alternative soft switching approach. This

soft switching approach incorporates a biologically-inspired Basal Ganglia based

computational model of action selection.

In addition, this thesis formulates the problem of designing the membership func-

tions of the switching mechanism as a multi-objective optimisation problem. The

key purpose behind this formulation is to obtain the near optimal (or to fine tune)

parameter settings for the membership functions of the fuzzy control system in

the absence of domain experts’ knowledge. This problem is addressed by using

two different techniques including the commonly used Genetic Algorithm and

an alternative less known economic approach called the Taguchi method. Lastly,

we identify seven different kinds of real workload patterns, each of which reflects

a different set of applications. Six real and one synthetic HTTP traces, one for

each pattern, are further identified and utilised to evaluate the performance of

the proposed methods against the state-of-the-art approaches.
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Part I

I N T R O D U C T I O N



1
I N T R O D U C T I O N

1.1 context

The advent of cloud computing has reshaped the way Information Techno-

logy (IT) is used to design, deliver and operate software. Businesses or Service

Providers (SPs) no longer require to purchase and maintain expensive hardware

needed to run their software, rather they exploit the computational infrastructure

provided by Cloud Providers (CPs). This model of computing provided by CPs

facilitates the usage of computational infrastructures such as networking, storage

and computation as a utility on a pay per usage basis, thus fulfilling the long-

held dream of computing as a utility [2]. The SPs, by adopting such a model of

computation, can reduce or eliminate their upfront computational infrastructure

cost as well as maintenance costs. Moreover, it allows them to be more focused

on their primary objectives [8].

The CPs are responsible for provision and management of the computational

resources, whereas the SPs are consumers who rent these resources as required

for their needs, e.g. deploying their applications (or services) for the end users,

storage, computational requirements, etc. With the permeation of the Internet,

the adoption of cloud computing has significantly and rapidly increased both

in the industrial and academic worlds [9]. This increased shift towards cloud

computing has resulted in the development of large-scale computing data centres

to satisfy these growing needs. Such data centres contain an extensive number of

computing machines that consume an enormous amount of energy, i.e. approx-

imately 1.5% of the total electricity usage worldwide [10]. Moreover, they also

release a large quantity of CO2 into the environment [11], which was estimated
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as 0.6% of the global total in 2008 and this number is expected to rise to 2.6% in

2020 [12].

The key aim of a cloud computing model is to use the computational resources

as efficiently as possible to reduce energy consumption as well as operational

costs. However, this goal is still challenging as is evident from the low utilisation

of most data centres, which is estimated as less than 30 percent [13]. The efficient

use of cloud resources can be viewed from two perspectives: (1) The CPs aim to

increase the efficiency of their under-utilised computational nodes by shutting

down some servers and shifting their load to others, hence minimising energy

consumption to reduce electricity costs as well as CO2 emission; alternatively,

CPs could oversubscribe their resources, hence maximising their revenue; (2) the

SPs are concerned with the efficient use of their rented computational resources,

so that they can release any under-utilised or unused Virtual Machines (VMs) to

reduce their service operating costs.

This thesis explores the cloud resource management by focusing on the dy-

namic resource provisioning (elasticity) feature of cloud computing. The thesis

goes on to investigate the current state-of-the-art elastic methodologies, highlight-

ing the open issues and proposing new methods to contribute towards resolving

the identified problems.

1.2 background and motivation

With the widespread use of the Internet, the popularity of web applications

such as social networking, wikis, news portals and e-commerce applications has

increased significantly. Such applications are subject to unpredictable workload

conditions that vary across time. For example,
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1. The higher than usual workload on e-commerce websites during festivals or

promotional schemes such as Amazon’s Christmas sale [14], China’s recent

’singles day’ sale [15], etc.

2. Facebook experienced a 10-fold increase in their active users within a span

of three hours [16].

3. The diurnal pattern of web applications where the workload arrival rate

during day time is higher than night, e.g. Wikipedia website traffic [17] (see

Figure 1.1a).

4. The traffic on Al-Jazeera’s news website observed an increase of 2,500%

during the fourth day of the Egyptian revolution in 2011 [18].

5. The increase of workload on Animoto (an image processing web application)

in April 2008 raised the Amazon based cluster size from 50 VMs to 4000

VMs within the span of just three days followed by a sharp decline back to

normal [19].

Such applications are critical to each specific business, and the SPs do not want

their applications to suffer from any performance related issues or service dis-

ruption. The degradation in the Quality of Service (QoS) of such applications has

a direct consequence in the loss of customers and ultimately results in financial

losses [20]. For example, every 100 ms of latency costs Amazon 1% in sales [21].

Similarly for Google, traffic drops by 20%, when page loading takes longer than

500 ms [20].

The examples mentioned above indicate that the real world web applications are

subject to dynamically varying workload conditions that change from time to

time. In some cases, the workload may follow a particular pattern, e.g. the diurnal

pattern as in Wikipedia trace [17] given in Figure 1.1a, whereas in other cases,

the pattern cannot be determined or predicted, e.g. the flash crowd behaviour

in the case of the FIFA world cup trace [22] that can be seen in Figure 1.1b. The

fluctuating workload conditions of such applications indicate different needs of
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computational resources at different times [23, 24].

The pool of virtually unlimited on-demand computational resources and many at-

tractive features of cloud computing, such as pay-as-you-go pricing and on-the-fly

re-adjustment of hired computational resources (elasticity), can be a perfect match

to host web applications, as they are subject to fluctuating workload behaviours.

The cloud’s elasticity allows applications to dynamically adjust the underlying

computational resources in response to the changes observed in the environment,

thus enabling SPs to fulfil the changing application demands by paying only for

the resources they are using [25]. The elasticity is of two types, i.e. Horizontal

and Vertical. The Horizontal enables increases or decreases in the number of VMs,

whereas, Vertical elasticity allows changes in the specification of existing VMs, e.g.

the increase or decrease in CPU and/or memory capacity of one or a set of VMs.

The SPs have to provide an auto-scaling policy to exploit this type of elastic

model. Such a policy is responsible for making runtime resource provisioning

decisions. Over the years, researchers and practitioners have proposed many

elastic methods using versatile techniques including but not limited to rule-based

[26, 27, 28, 29, 30], control theory [31, 32, 33, 34], fuzzy logic [16, 35], optimisa-

tion [36, 37, 38] and machine learning [21, 39]. However, despite a large range of

existing elasticity research work, the aim of implementing an efficient scaling tech-

nique that satisfies the actual demands is still a challenge to achieve [40, 41, 42].

This is evident from the low utilisation, estimated as 8% to 20%, of the server capa-

(a) Wikipedia website trace log (b) FIFA world cup website trace log

Figure 1.1: Real workload examples
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city purchased by the SPs [43]. The existing research literature on cloud elasticity

differs in various aspects, e.g. triggering behaviour (Reactive/Predictive/Hybrid),

scope (CPs/SPs perspective), dependency on metrics (CPU utilisation/Response

time, etc.), and the implementation technique (Control Theory/Rule-based, etc.).

Despite such differences most of the existing methods can generally be grouped

into Fixed or Adaptive based on their design and working mechanism to analyse

their pros and cons as a whole [44].

The Fixed class refers to the family of all elastic methods, which are designed

off-line and remain fixed at runtime, whereas the Adaptive class refers to those

methods which are equipped with an online learning capability that is respons-

ible for adaptation at runtime in response to changes in the working environment.

The Fixed approaches are simple, easy to design and better for systems with uni-

form workload behaviour, e.g. rule-based systems and fixed gain elastic feedback

controllers. However, the performance severely affects for systems with variable

workloads due to lack of adaptability at runtime. In contrast, the Adaptive ap-

proaches are more flexible, due to online learning capabilities, and perform better

for systems with a slowly varying workload. However, they are also criticised

for their additional computational cost caused due to the online learning [45],

long training delays, its associated risk of reducing the quality assurance of the

resulted system and the impossibility of deriving a convergence or stability proof

[44]. Moreover, they are unable to cope with the sudden changes in the workloads.

In contrast to the families mentioned above, this thesis advocates a fixed-adaptive

(also referred to as Hybrid by Gambi et al. [44]) approach, a method commonly as-

sociated with the biologically-inspired Multi-Modal Switching and Tuning (MMST).

Using such an approach, an elastic method follows a Fixed design principle and

also achieves certain level of adaptive behaviour at runtime. The review of exist-

ing state-of-the-art elasticity research (presented in Chapter 3) indicates that such

an approach for implementing cloud elasticity has not received much attention.

Another important consideration identified in the existing elasticity literature is
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the importance of addressing the uncertainty related issues, e.g. impreciseness

in domain knowledge and noise in monitoring data. Jamshidi et al [16, 46] and

Farokhi et al [47] stressed the importance of the uncertainty aspects to be taken

into consideration while designing the elastic controller. However, despite the

importance, the implementation of uncertainty in the context of cloud elasticity

has not yet been well received [47]. This thesis is a step forward in this direction.

1.3 thesis statement

This thesis addresses the horizontal elasticity problem and particularly focuses

on contributing towards resolving the issues in the existing elasticity literature.

The issues includes: (1) The lack of adaptability and static scaling behaviour

whilst considering completely fixed approaches; (2) The burden of additional

computational overhead, the inability to cope with sudden changes in workload

behaviour and preference of adaptability over reliability at runtime whilst con-

sidering the fully dynamic approaches; (3) The lack of considering uncertainty

aspects while designing auto-scaling solutions; (4) Lastly, the lack of providing

qualitative elasticity rules to resolve the corresponding quantitative nature of the

commonly used rule-based approaches.

There exist some limited elastic methodologies that address the aforementioned

issues separately. In contrast, this thesis investigates the feasibility to address

the aforementioned issues altogether using a single integrated approach. This

research investigates the possibility of developing an elastic method using fixed-

adaptive principle that incorporates the inherent uncertainty aspects present

in the cloud environment and facilitates the composition of qualitative elasti-

city rules. For such a methodology, this thesis investigates the synergy between

the biologically-inspired multi-controller approach and fuzzy control system to

achieve the desired adaptability behaviour in the presence of uncertainty and

reliability due to the statically designed nature of the control methodology.

7



1.4 executive summary

Biological systems have the ability to identify and analyse a naturally occurred

situation, and trigger an appropriate response action based on their existing

knowledge of different behaviours particularly suited to various situations [48].

This results in an efficient and quick adaptation of the system to a changing en-

vironment. This phenomenon motivated methods like MMST [48] where adaptive

behaviour is achieved using a repertoire of multiple models and the best model

selection mechanism at runtime. Based on a similar principle to MMST, this thesis

proposes a switched feedback control methodology to address the problem of

horizontal elasticity. The switched controller utilises multiple controllers simul-

taneously, and the selection of a suitable controller is realised using an intelligent

switching mechanism at runtime.

Each of the controllers is particularly designed to suit a different situation. A

situation in this context represents the requirement of a scaling action. In other

words, each controller determines the number of VMs needed at any point in time

but at a different level of intensity, which responds appropriately to the changes

in the environment. Each controller depicts a different elasticity policy and can

be designed using the principles of fixed gain feedback controller approach. The

selection of a suitable controller is achieved using a fuzzy system at runtime

based on the system behaviour at that point in time. We will refer to this approach

as Hard switching from this point onward. Using such an approach, we aim to

achieve the required adaptive behaviour by switching among the controllers in

response to the changes in the application workloads without the involvement of

any online estimation technique, thus avoiding additional computational over-

head.

The fuzzy system makes use of the latest status of different metrics includ-

ing CPU utilisation, application Response time and workload Arrival rate to

determine the suitable controller at runtime. The inclusion of these metrics into
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the decision-making mechanism covers three different aspects of the system:

application performance, disturbance and system resource utilisation. Covering

these aspects makes the proposed elastic methodology Hybrid, a term coined

by Farokhi et al. [49] to differentiate from other methodologies that are either

capacity-based (relying only on system metrics) or performance-based (relying

only on application metrics).

The aim of using the fuzzy system is to capture the uncertainty aspects as-

sociated with the cloud environment, as a deployed application is subject to

uncertainty related challenges [50]. The various cloud-related uncertainty aspects

include impreciseness in domain knowledge, noise in monitoring data, inac-

curacies in the performance model, and unpredictability in the workload. The

explicit consideration of such uncertainty aspects is important whilst designing

an elastic method. Otherwise, scaling decisions often result in unreliability as the

available resources may fail to fulfil the requirements, or may not be cost-effective

[47]. However, despite the importance, the implementation of uncertainty in the

context of cloud elasticity has not yet been well received in the existing research

[47]. Therefore this thesis utilises a fuzzy system due to its natural ability to deal

with scenarios, where the system knowledge is imprecise, uncertain and highly

dynamic [51]. The second important issue that the fuzzy system tackles is the

provision of qualitative elasticity rules in contrast to the quantitative nature of the

commercially available rule-based elasticity mechanisms. The existing elasticity

rules require detailed knowledge of the system to set the different thresholds of

the rule quantitatively.

The existing work on considering uncertainty and qualitative rules are very

limited. Jamshidi et al. [16] initially highlighted and proposed a new fuzzy logic

based methodology using a set of qualitative fuzzy rules. However, their ap-

proach itself suffers from the static scaling behaviour. This thesis compliments

and extends their idea of incorporating the uncertainty prospects and qualitative

elasticity rules mentioned above.
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The proposed Hard switching methodology achieves the required adaptive beha-

viour using switching among the controllers at runtime. However, such a method

is often criticised for an associated unwanted behaviour, commonly termed as

bumpy transition, that could lead the system to an oscillatory state [52, 53, 54],

where the cloud resources can be acquired/released periodically. The occurrences

of bumpy transition can be due to an inappropriate switching or a larger change

in the system state. Oscillation is undesirable, and therefore, it should be avoided.

For this purpose, we also propose a Soft switching approach. Different to the

Hard switching method, the Soft switching approach allows the possibility of se-

lecting more than one controller. In such a case, the final decision will consider

the output of all selected controllers. The Soft switching approach integrates a

biologically-inspired Basal Ganglia (BG) based computational model. This model

is built on the functional anatomy of BG, which is a central switching mechanism

in animal’s brain. The key aim of Soft switching methodology is to improve the

possibility of bumpless transitions and to avoid any oscillatory behaviour.

1.5 contributions

This thesis proposes novel, biologically-inspired, elastic methodologies. For the

evaluation of this research, we have used and extended where necessary a well-

known cloud simulation environment called CloudSim [55]. Moreover, we have

adopted real HTTP traces based on the commonly used workload patterns as

test scenarios to demonstrate the suitability and effectiveness of the proposed

methodologies for dynamic web applications. The key contributions of this thesis

are summarised as following:

1. A state-of-the-art review is conducted to understand and analyse the exist-

ing control theoretical based elasticity solutions. The review is carried out

considering a novel proposed taxonomy and classification that highlights

aspects of both control theory and cloud elasticity domain. Its key purpose
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is to fill the gap in the existing literature, where the existing reviews mostly

focus on elasticity based classification. We review the existing solutions

based on the various types of control methodologies and highlight the open

issues and challenges.

2. A novel, multi-controller based feedback control methodology is proposed

to address the problem of horizontal elasticity, where each controller works

well in a different situation/operating region and the selection of a suitable

controller is realised at runtime. There is no standard mechanism to partition

a system among multiple sub-models/controllers [56]. Therefore in the

absence of such a mechanism, this thesis utilises the domain experts’ based

classification of workload intensity as a criteria for the partitioning of the

system among multiple controllers.

3. This thesis develops a fuzzy system based switching mechanism that de-

termines the selection of a suitable controller at runtime. This mechanism

accepts various system and application level metrics as inputs. The use of

the fuzzy system is motivated due to its ability to deal with uncertainty that

arises at runtime due to various factors, e.g. impreciseness in domain know-

ledge, and noise in monitoring data. Moreover, it facilitates the composition

of qualitative elasticity rules.

4. A soft switching mechanism, where the selection process for suitable control-

lers is formulated as an action selection problem. This mechanism integrates

a biologically-inspired BG based computational model of action selection

[57, 58]. The soft switching approach aims at exploring the possibility to

improve the bumpless transition and to avoid the oscillatory behaviour.

5. A detailed system evaluation is performed in comparison with the state-of-

the-art approaches using various real workload traces, whereas the evalu-

ation criteria consist of the various aspects including performance, cost, and

oscillatory behaviour.
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6. This thesis formulates the problem of designing the membership functions

of the switching mechanism as a multi-objective optimisation problem. The

key objective of this work is to obtain the near optimal parameter settings for

the membership functions of the fuzzy control system using multi-objective

GA.

7. The near optimal design problem of fuzzy membership functions is also

addressed with an alternative, less known approach called the Taguchi

method. The use of this approach is employed considering the scenarios

where a larger exploration of search space, usually required by GA, is not

feasible.

1.6 thesis structure

This thesis consists of 8 chapters. The summary of each chapter is provided

below:

• Chapter 1 introduces the thesis and explains the context, motivation and

the contributions of this research work.

• Chapter 2 explains the related concepts to establish a necessary under-

standing and foundation of this work. More specifically, it introduces and

describes the technical view of cloud elasticity, target system and the basics

of related implementation techniques, upon which the proposed work is

based.

• Chapter 3 reviews the state-of-the-art control theoretical based approaches

for cloud elasticity. This chapter initially summarises the existing survey

based research work to establish the need for reviewing the literature from a

new perspective required for the understanding of control theoretical view

of cloud elasticity. It proposes a novel taxonomy to carry out the review. An

exhaustive review of the existing control theoretical approaches proposed

for elasticity problem is carried out considering the proposed taxonomy.
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Lastly, it summarises and discusses some open issues and challenges to lay

the foundation for the focus of this thesis.

• Chapter 4 presents the proposed Hard switching framework. This chapter

starts by identifying the requirements based on the analysis of existing

work that leads to the proposition of this framework. It then discusses the

main concept of the framework, followed by the details and design of its

components including the feedback control and the switching mechanism.

The section on feedback control component includes the necessary details

on the essential elements of the proposed control methodology, the SID

experimentations and controllers’ design. Whereas the section on switching

mechanism presents the design of the proposed FIS including details on

domain knowledge, membership functions and fuzzy rules.

• Chapter 5 implements experimentations to evaluate the Hard switching

framework against some state-of-the-art auto-scaling approaches. Firstly, it

introduces the self-customised experimental environment, which utilises a

well-known cloud simulation environment called CloudSim and an external

Java-based library called JFuzzyLogic. Secondly, the chapter provides details

about the various workload patterns and the real HTTP traces utilised for

the experimentations. Moreover, the details on the evaluation criteria and

methods used for comparison are provided. Lastly, the chapter presents the

obtained computational result and discusses them in light of the pre-defined

criteria to evaluate the performance of the proposed framework against the

benchmark methods.

• Chapter 6 covers the proposed biologically-inspired Soft switching approach.

The chapter starts with the motivation of the soft switching method. It

then introduces the basics of action selection, followed by a description

of BG and the proposed BG based Soft switching mechanism. Finally, it

reports the experiments of this enhanced method and discusses the obtained

computational results in comparison with that of Hard switching approach.
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• Chapter 7 formulates the construction of the fuzzy membership functions,

required for the implementation of switching mechanism, as a multi-

objective optimisation problem to explore the near optimal parameter

settings for their design. This problem is addressed using two different

techniques including the commonly used multi-objective GA and an altern-

ative, less known approach called the Taguchi method. The chapter starts

with the motivation followed by the details of each employed technique in

the context of the underlying problem. Finally, it reports the experiments

carried out with both techniques and discuss the obtained computational

results comparatively.

• Chapter 8 concludes this thesis. It provides a summary of the research

undertaken, reviews the contributions made and discusses how they are

addressed. Finally, limitations of the research in this thesis and possible

future research directions are discussed.
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2
B A C K G R O U N D A N D F O U N D AT I O N

This chapter provides background of the cloud elasticity and explains the related

concepts to establish the necessary understanding and foundation of this thesis.

Section 2.1 provides basic overview of cloud computing followed by a technical

overview of the elasticity. Related concepts including an introduction to web

applications, QoS and workload are explained in Section 2.3. Finally, Section 2.4

describes the elasticity implementation techniques, used to develop the methods

proposed in this thesis.

2.1 the cloud computing

2.1.1 Historical View

The term cloud computing was initially coined around 2006, referring to a new

model of computation that provides on-demand pay-as-you-go based compu-

tational, storage and network services over the internet. It provides a practical

shape to the idea of utility computing [2]. The idea of using computing as a

utility dates back to 1961, when John McCarthy in his speech at MIT Centennial

presciently stated “If Computers of the kind I have advocated becomes the computers of

the future, then computing may someday organise as a public utility just as the telephone

system is a public utility.". However, this idea did not attract much attention until

the introduction of grid computing in mid-1990s.

Grid computing was initiated based on the concept of the electric power grid,

which led to the formation of a computing grid, that could provide computing

power on demand to consumers [59]. Such ideas were famous only in the sci-

entific community, and as a result, various large-scale federated grid systems
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such as TeraGrid [60], Earth science grid [61] and Open science grid [62] were

developed [59]. These grids provide computing power as well as various software

services on demand. These systems, however, were predominantly used by the

research and scientific community only. As such grid computing could not attract

famous commercial giants for investment or adoption. Hence, no commercial

grid computing providers have emerged thus far [59].

Subsequently, in 1999 a commercial company named Salesforce initiated a web-

based service for the deployment of enterprise-level applications over the Internet.

Amazon adopted the same idea in 2002 when they introduced Amazon Web

Service (AWS) that provided access to computation and storage using the Internet.

This release was followed by the launch of the first commercially available cloud

infrastructure named Amazon Elastic Computing Cloud in 2006 [63]. Owing

to its economic viability and commercial benefits, many big IT companies like

Google and Microsoft immediately followed this paradigm shift of distributed

computing and cloud enabled their existing hardware and software infrastructure

[64].

2.1.2 Definition and Key Benefits

Cloud computing is defined in many different ways, and there is little consensus

about it [65]. However, the following definition provided by National Institute

of Standards and Technology (NIST) [66] is predominantly accepted both in

the IT industry as well as in academia. “Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or service provider

interaction.". This definition identifies the following five key characteristics of

cloud computing [66]:
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1. On-demand self-service: This facilitates provisioning of the computational

resources on demand without human interaction.

2. Broad network access: The availability of computational resources that can

be accessed through a standard mechanism over the Internet using any

computing device, e.g. Laptop, Tablet and Mobile, etc.

3. Resource pooling: The computing and storage resources are pooled together

that are further used by multiple users through the multi-tenant model.

4. Rapid elasticity: The computational resources are acquired and released

dynamically. From the cloud consumer perspective, these resources appear

to be unlimited and can be obtained at any point in time.

5. Services measurement: The cloud systems provide monitoring services that

help to measuring resource usage. The cloud consumers have access to

the resources measurement reports. These reports help in assisting further

decision making process for both the stakeholders, i.e. cloud provider as

well as the consumer of the service.

These characteristics of the cloud computing infrastructure entails the following

key benefits from both the SPs and CPs perspectives:

• The on-demand and unlimited availability of computational resources

provide a sense of relief to the SPs. Thus avoiding the risk associated with

setting up the new business regarding infrastructure facilities needed for

the deployment of any computational service.

• Whilst adopting the cloud computing model, the SPs can eliminate up-

front infrastructure and maintenance cost required for the deployment and

running of their services.

• The SPs by adopting this model of computing shifts the responsibilities to the

CPs regarding infrastructure maintenance, backups, recovery and necessary

support services. This helps the SPs to focus more on their actual pursuit
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that includes the improvement and maintenance of their applications and

services.

• The pay-as-you-go pricing model of cloud computing enables to pay only

for the resources used.

• The rapid elasticity reacts to the changes in demand of the resources. Hence

it facilitates an efficient management of the hired computational resources

at run time. The rapid elasticity helps in improving the performance of the

system by acquiring more resources when there is an increase in demand

and releases some of the resources if there is a decrease in demand. Thus it

also helps in saving the overall operational cost of the hired resources.

• The monitoring services enable CPs to monitor the utilisation of cloud

resources dynamically. This helps in the efficient management of the cloud

resources, e.g. if the utilisation of computational nodes is low, the CPs shifts

the load to a few computational nodes and switches off unnecessary nodes

to reduce the energy consumption. Alternatively, the CPs can maximise their

revenue by allocating resources to the customers based on their utilisation

and renting out the free resources to more customers. Such a phenomenon

is referred to oversubscribing. Similarly, the SPs can also gather monitoring

reports and manage their rented resources as per their utilisation.

2.1.3 Technical View

From a technical point of view the cloud computing architecture can be viewed

as a layered model, consist of three layers including Infrastructure, Platform

and Application (also refers as Service). The main idea of such a model is

shown in Figure 2.1 (borrowed from [1]). Each of these layers is responsible to

provide a service and therefore, they are commonly known as Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). The

short description of each of these services is as following:
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Figure 2.1: Cloud computing model [1]

1. IaaS refers to the service that provides infrastructural resources like storage,

network and computational. Once these resources are made available, they

are further used by the cloud consumers for the deployment of their own

services or utilise them for any storage or computational purposes.

2. PaaS refers to the services that provide computational tools to the cloud

consumers for the development and deployment of their applications (or

services). Examples of these tools include the programming languages,

libraries, database services and various other deployment tools.

3. SaaS (also known as Application as a Service) refers to the services delivered

to the end user in the form of software (or application) that execute over

a cloud infrastructure. The application itself is accessed using either a

web-based or a programming interface.
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The description of service models mentioned above hints three different kinds of

cloud users. Figure 2.2 (borrowed from [2]) depicts their relationship from a web

application perspective. The CPs provide all the infrastructure related services

and the necessary software/services/utilities needed by the SPs and the end users.

The SaaS provider use the services provided by the CPs to deploy and host their

software/applications/services. The SaaS users are the end users that consume

the services and applications of SaaS providers (also called SPs as in this thesis).

Figure 2.2: Various cloud users [2]

Another essential aspect of cloud computing is known as the deployment model,

which refers to the type of cloud environment. According to NIST, there are the

following four types of cloud deployment models available:

1. Public cloud: Such a cloud infrastructure owns and manages by a business

organization, e.g. AWS [67] by Amazon. Such a cloud deployment model

provides infrastructure services be used by the public.

2. Private cloud: A private cloud infrastructure is for the exclusive use of a

single private organisation, e.g. business or institute specific. The manage-

ment of such a cloud environment may handles by the private organisation

itself or by a third party and it may exist in the premises of the private

organisation or outside of its vicinity. Common examples of such a cloud

model include SAVI [68] and the Ubuntu enterprise cloud [69], etc.
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3. Community cloud: A community cloud infrastructure is for the exclusive

use of a specific community that comprises of multiple organisations sharing

some common or mutual interests, e.g. Government cloud [70].

4. Hybrid cloud: A hybrid cloud infrastructure is the composition of two

or more types of clouds mentioned above. In this model, each individual

cloud entity works independently, however, combinely they are using a

standardized technology to enable collaboration at some specific situations

or as when needed, e.g. netApp [71], etc.

2.2 cloud elasticity

2.2.1 Overview

Cloud elasticity refers to the ability of a system to dynamically reconfigure the

computational resources as a result of a change in demand. It is one of the most

appealing feature of the cloud computing, and therefore, some refer to it with

the combination of on-demand provisioning as a game-changing attribute for IT

[72]. Herbst et al. in [25] defines cloud elasticity as “the degree to which a system

is able to adapt to workload changes by provisioning and de-provisioning resources in

an autonomic manner, such that at each point in time the available resources match the

current demand as closely as possible". This definition refers to the following two

characteristics of elasticity: (1) Scalability - the ability to scale the infrastructure

when there is a change in demand, and (2) Flexibility - performing the scaling

action at runtime as and when needed.

The key objective of implementing cloud elasticity is to improve utilisation

of computational resources whilst maintaining desired performance of the system

and reducing its operational cost. This objective can be viewed differently by CPs

and SPs. The CPs perspective of better resource utilisation is to improve perform-

ance of the system and reduce the operational cost of data centre, e.g. decrease in
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electricity consumption, increase in revenue generations using over-subscription,

and reduction in the CO2 emissions. From the SPs perspective, it is to reduce the

operational cost of the services consumed whilst simultaneously maintaining

performance and reliability of their deployed services. These different points of

views promote the design of resource management methods for various purposes

such as energy-aware resource allocation [8] and cost-efficient proactive scaling

[34], etc. This thesis, however, focuses on the SPs perspective of cloud elasticity;

therefore, we are proposing an application specific methodology. Thus, we are

focusing on factors like performance and operational cost concerning evaluation

and not considering other factors like the consumption of energy or revenue

generation, etc. However, the methods proposed are generic and can be equally

adopted by the CPs to provide elasticity services to their customers by configuring

for each application.

2.2.2 Technical View

Figure 2.3 presents a functional block diagram of an autoscaling system. This

system is equipped with an elastic policy, which is responsible for the required

resource management. The policy, in general, is referred to "any type of formal

behavioural guide" [73] provided as an input to the system. The elastic policy, in

this case, determines when and how an elastic scaling action must be performed

[4].

The elastic action is of two types, i.e. Scale-up and Scale-down. The Scale-up is an

increase in the quantity of current computational resources by some quantity

computed by the elastic policy. In contrast, the Scale-down refers to the decrease

in current computational resources by some quantity. The Scale-up action is per-

formed to improve the performance of the system in response to the increase

in demands. Whereas, a Scale-down is carried out to reduce the operating cost

when there is a decline in demand of the resources. The nature of an elastic

action depends on the type of elasticity, i.e. Horizontal or Vertical. In the case of
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Figure 2.3: Block diagram of an autoscaling system

Horizontal elasticity, an elastic action increases or decreases the number of VMs.

Whereas, in the case of a Vertical elasticity, the change occurs in the specification

of existing VMs, e.g. the increase or decrease in CPU and/or memory capacity of

a particular VM or the set of VMs.

The Objective in Figure 2.3, in general, refers to the input criteria that specify the

goals of the system. The elastic policy makes use of these inputs and performs

elastic decisions to satisfy or maintain the desired objective. The nature of such

input criteria depends on the method of implementation. For example, such

inputs specify the up/down thresholds for various metrics of the system as in

the case of commonly used Rule-based methods (see Section 2.4.1 for details).

Alternatively for feedback controllers (see Section 2.4.2 for details), the Objective

is represented in the form of desired reference input.

The Performance metrics refers to the set of various system or application level

parameters that inform the most recent status regarding the various aspects of

the system. Common examples of such metrics at the system level include CPU

utilisation and memory usage, whereas the application level include Response

time and Throughput. Such metrics help in designing the elastic policies as the
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elastic actions are dependent on their values. The monitoring services provided

by the CPs (see Section 2.1.2) are responsible to record the status of system level

metrics continuously. The application itself is incharge of keeping track of the

required application level metrics. An elastic policy can access the necessary

metrics either by using the CPs monitoring service via Application Programming

Interface (API) or by implementing a customized monitoring component of its

own. A detailed list of different metrics used in implementing various elastic

methods are shown in the tables provided in [4, 74].

The elastic policy reaches to a scaling decision by taking into account the objective

and the latest measurement of the performance metrics. The target system sub-

sequently takes the scaling decision and performs the actual operation using the

CPs provided infrastructure management API. The triggering of scaling decisions

itself is of three types:

1. Reactive: Such an approach performs the scaling decision in response to

changes in the behaviour of the system. Such changes can be identified

through a change in demand or measurement of the performance metrics.

2. Predictive: This approach anticipates future behaviour of the system and

performs the scaling decision in advance. The prediction itself can be

performed using forecasting the future workload behaviour and/or future

utilisation level.

3. Hybrid: Such an approach combines both the Reactive and Predictive meth-

ods.

The Reactive and Prediction based approaches (i.e. both Predictive and Hybrid)

have their own shortcomings. The Reactive approaches are criticised for the delay

elapsed between the time of reaction to a change and the actual completion time

of the reconfiguration process. Whereas, the performance of prediction based

approaches (i.e. both Predictive and Hybrid) rely on the accuracy of predictions.

They may fail or perform poorly in situations where the predictions are either
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not possible or not accurate, e.g. when there are abrupt changes in the workload

[75]. Prediction based approaches are also criticised for the associated additional

computational cost caused due to the on-line learning and analysis required for

predictions [45]. This thesis, however, follows a Reactive approach as it avoids

the complexity of incorporating a prediction method and it does not involve

additional computational overhead. Moreover, the focus of this research is to

demonstrate the effectiveness of biologically-inspired methods for the cloud

resource provisioning problem rather than to introduce a new prediction based

approach.

2.2.3 Key Issues in Cloud Elasticity

The key aim of an elastic method is to maintain the desired application perform-

ance at the lowest possible cost. The implementation of an auto-scaling method,

irrespective of its underlying implementation technique, must consider avoiding

the following commonly known generic issues of elasticity domain. More specific

issues and challenges in the context of this research are listed in Section 3.4.

• Over-provisioning: The over-provisioning issue is referred to the scenarios,

when more than required computational resources are running at a time.

The key reason to over-provision the resources is to avoid performance

violation considering peak workload scenarios [76, 77]. Such an approach

provides better performance, however, at a higher price than necessary. A

certain degree of over-provisioning may be unavoidable while considering

the unpredictable nature of workload fluctuation at a smaller level [45].

However, in general, over-provisioning at a large scale should be avoided.

• Under-provisioning: The under-provisioning problem is referred to the

scenario when the available resources are not sufficient enough to fulfil

the requirements of the incoming workload. Such a situation produces bad

performance and possibly results in the violations of Service Level Agree-

ment (SLA) (explained in Section 2.3.2). Under-provisioning can sometime be
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catastrophic as poor performance may results in the loss of customers and

ultimately lead to the financial losses [21, 20]. Moreover, in some situations,

the violation of SLA can cost financial penalties [78].

• Oscillation: The problem of oscillation refers to the scenarios of auto-scaling,

where both the unwanted scenarios mentioned above (over and under-

provisioning) occurs more frequently. Such a behaviour is usually caused

when the scaling actions are performed either too quickly or too aggressively

or even when the impact of the reconfiguration is not considered in the next

scaling action [45].

2.3 target system

A Target system in Figure 2.3 refers to a system, which is equipped with auto-

scaling behaviour. This thesis focuses on the Internet-based systems and exploits

web applications as an example of the target system because of the following

reasons: (1) The growing popularity of using cloud computing for hosting web-

based applications and (2) A large quantity of existing resource provisioning

methods are introduced and evaluated for such systems [79]. This section provides

a brief overview of web applications and how it works in an elastic environment

of the cloud. Moreover, it introduces related concepts including QoS, SLA, Service

Level Objective (SLO) and Workload.

2.3.1 Web Applications Overview

The design and deployment of a web application follows a tiered architecture,

where different parts of the application execute at different levels. A three tiers

architecture is commonly adopted. Figure 2.4 shows the block diagram of such

an architecture, which consists of three tiers known as the Client, Business and

Database. The end-user at the Client tier accesses a web application through an

Internet browser by generating an HTTP request. The Business tier at the server
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Figure 2.4: General architecture of web applications

side is responsible for the response to the end user requests by executing any

necessary action required at the server side. The Business tier itself is often exten-

ded to multiple tiers depending on the complexity of the underlying application.

The usual practice in such scenarios is to separate them between a Web server and

Application tiers. A Web server tier is responsible to handle the incoming end-user

HTTP requests, whereas the Application tier is used to handle the complex queries

and database interactions. The Database tier at the server side is responsible for

the data storage related functionalities.

Figure 2.5 (borrowed from [3]) shows the block diagram of the hosting of a

web application in the AWS cloud environment. The Web and Application Servers

in the figure under label 5 are the Elastic Compute Cloud (EC2) VMs instances,

which hosts the Web and Application tiers respectively. The Database Servers on the

other hand hosts the corresponding Database tier. Label 6 in the figure represents

the Auto-scaling group, which governs and manages the Web and Application

Servers. The Auto-scaling group implies that the underlying servers will auto-
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matically scale up and down based on the applied elasticity rules. Alternatively,

auto-scaling can also be performed at individual tier level. Label 4 in the figure

represents an Elastic Load balancing component that receives the incoming HTTP

requests. It further distributes them amongst the running EC2 instances. The

above description explains the working mechanism of how a web application

works in cloud environment in integration with the auto-scaler and load balancer.

The auto-scaling methodologies proposed in this thesis work similarly as the

Auto-scaling component in Figure 2.5.

2.3.2 Quality of Service and Service Level Agreement

The QoS refers to the measurement that describes the performance or quality of

an offered service. More specifically, it is used to describe the quality of network

related services. The various aspects of a service considered for measurement de-

pend on the nature of the service itself. In the context of this thesis, the commonly

considered aspects to measure the quality of an Internet-based system deployed

over cloud includes Availability, Throughput, and Response time, etc. Availability

refers to the quantitative measure that describes the availability (up-time) of

a service. Throughput determines the total number of completed requests in a

Figure 2.5: Architectural view of web application hosting at Amazon cloud [3]
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specific time unit, whereas Response time defines the elapsed time between the

arrival of the end-user request till completion.

In the cloud context, the QoS requirements of a service are recorded in a contract

known as SLA [80]. The formal definition of an SLA is “a document that includes a

description of the agreed service, service level parameters, guarantees, and actions and

remedies for all cases of violations" [81]. SLA is an agreement between the provider

and consumers of the service, and it contains all the details related to the agreed

characteristics of the provided service regarding QoS, cost and responsibilities

of both parties. The QoS related details are specified in the form of individual

measurable units of SLA. The measurable unit is formally known as Service

Level Objective (SLO), which is the combination of three distinct parts, i.e. a

performance metric, numeric quantity and a relational operator. For example, a

commonly used SLO for an Internet application is "The Response time of 99% HTTP

requests must be less than 1 second".

2.3.3 Workload

The term workload is often referred to any form of inputs provided to the

e-infrastructure or benchmark application for processing purposes [82]. An e-

infrastructure is referred to any digital based hardware or software facility. In the

cloud computing context, the workload refers to the interactions/transactions

made by end-users to the cloud-based services. Each interaction represents a job

to be processed by the cloud service. The workloads in the cloud can be classified

into two types: transactional and batch [4, 45]. A transactional workload is the

most well-known type that consists of job requests. These requests include brows-

ing or update queries to access or modify content like HTML pages, pictures,

streams of videos and transactional data. These requests will return or execute

contents that are either statically stored or dynamically rendered by the server ap-

plications. In contrast, a batch workload consists of time-consuming and resource

intensive jobs submitted in a group or batch. The batch workloads are commonly
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used by the scientific domain or applications like large-scale video processing [45].

As mentioned earlier, this thesis focuses on web applications as a target sys-

tem. Therefore, we only use the transactional workloads as test case scenarios

for the evaluation purposes. The job arrivals in web related workloads follow

two different models, i.e. an Open or Closed models [83]. The workloads based

on Open models are those where every job request is independent of each other.

In contrast, in the case of Closed models, new arrivals of jobs are dependent on

the successful completion of the previous job in addition to the extra think time

between the consecutive jobs. In this thesis, we only consider workloads based

on Open model.

A workload is characterised mainly by the Arrival rate, which refers to the number

of arrived jobs in a particular time period. The jobs of a workload arrive at differ-

ent points in time and they vary from each other regarding Service time demands.

A Service time specifies the amount of CPU time required for a job to complete its

execution. The different workloads utilised in this thesis for evaluation purposes

consider both these attributes. More importantly, we use the Arrival rate as one

factor in the decision-making process. In some research works [84], workloads

are characterised based on various patterns and then different policies are used

for various kinds of workloads. Such a characterisation of workload is beyond

the scope of this thesis. However, this thesis makes use of diverse real workloads’

examples that follow different workload patterns for the evaluation purposes (see

Section 5.2 for details).

2.4 related implementation methods of elasticity

The existing cloud elasticity proposals are implemented using versatile techniques

ranging from rule-based systems to complex optimisation and machine learning

based methods. This section, however, provides an overview of the following

three methods due to their relevance to this thesis.
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2.4.1 Rule-based Auto-scaling

The Rule-based auto-scaling method facilitates the collection of elasticity rules

that follows an "if Condition then Action" based pattern. The Condition in the

rule specifies the criteria of interest and is designed using a system provided

metrics based on the QoS requirements. A detailed list of the various metrics

is shown in the tables provided in [4, 74]. The Action to perform as a result of

evaluation of a rule specifies the decision. The action may be the acquisition or

release of VMs in the case of Horizontal elasticity or the increase/decrease of VM

level specification (memory size, for example) in the case of Vertical elasticity. The

increase or decrease in the quantity of resources in a scaling action part of the

rule is a constant number or percentage based on the existing resources. The

process of setting up the scaling rules does not involve any systematic method,

and is mostly based on the empirical judgements of SPs [79]. An example of such

a rule is given below [45]:

if x1 > thrU1 and/or x2 > thrU2 and/or ...

for durL seconds then

n= n + s and

do nothing for inL seconds

The rule mentioned above specifies a Scale-up action. In the case of a Scale-down

action, "n = n+ s" is replaced by "n = n− s". The condition part may consist

of one or multiple metrics of interests, e.g. x1 and x2 in this case. The paramet-

ers thrU1 and thrU2 indicate their target threshold levels respectively. These

threshold values represent the desired objective. The durL parameter represents

the time duration on which the condition is based. The term s represents the

number of additional VMs in the case of Horizontal elasticity, whereas it represents

the increase in VM capacity in the case of a Vertical elasticity. A Cooldown period

of certain time, e.g. inL in this case, is usually applied, where the auto-scaling

mechanism does not take further scaling action. The key reason for restricting

this period is to avoid oscillation. Based on the above format of the rule, a real
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Horizontal elasticity rule becomes like the following: "If Average CPU utilisation

> 60% for 5 minutes then add 2 VMs and do nothing for 5 minutes".

Figure 2.6 (borrowed from [4]) presents the architecture of a Rule-based auto-

scaler. The Rules encode the QoS targets (or expectations) in the format described

earlier, whereas the Rule Engine is responsible for the execution of the rules

that determine the scaling actions. The Monitoring component of the auto-scaler

provides the up-to-date values for the metrics used in conditions, e.g. x1 and x2 in

the example rule mentioned above. The elastic application carries out the scaling

actions using the management API provided by CPs.
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Figure 2.6: Architectural view of Rule-based auto-scaler [4]

The Rule-based auto-scaling techniques are more popular and used by commercial

CPs such as Amazon [26]. Moreover, there are also some third-party solutions

available that provide Rule-based auto-scaling facilities, e.g. Rightscale [27]. The

key reasons behind the popularity of such an approach are the commercial avail-

ability and their simplistic nature for designing the elasticity rules. This thesis

uses the Rightscale [27] method as one benchmark methodology (See Section

5.3.2 for further details).
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2.4.2 Elastic Feedback Controllers

A Control system is responsible to manage and regulate the behaviour of a system

using control loops. In the context of cloud elasticity, the main objective of a

control system is to automate the resource management task of a target system.

This is achieved by maintaining the value of system output, e.g. Response time,

close to a desired value by changing the value of system input, e.g. number of

VMs. There are the following three main types of control systems [45].

1. Open Loop: The Open Loop system computes the value of system (or control)

input using only the system model and current state of the system without

considering the system output as a feedback signal. Hence, such systems

are independent of the system output.

2. Feedback: The Feedback control system, in contrast to the Open Loop system

observes and measures the system output for taking into consideration the

deviation of the system output from the desired value.

3. Feed-forward: The Feed-forward control system predict the behaviour of the

system using a model to anticipate control error and correct any deviation

in advance before its occurrence.

From this point onward, we focus on Feedback control systems due to (1) their

frequent use in cloud elasticity literature and (2), the methodologies proposed

in this thesis are based on feedback loop. This section briefly explains the basics

of feedback loop in the context of cloud elasticity, whereas the classification of

various control strategies such as Classic, Optimal, Advanced and Intelligent are

further provided in Section 3.2.

The use of feedback control approaches were well received even before the

invention of the cloud computing and various systems were using it for self-

adaptivity purposes such as web servers [85, 86], database servers [87] and cache

storage systems [88]. The key idea of the feedback loop model is to use the
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measurement of a system output and adjust the control inputs to achieve a par-

ticular goal. For example, the cruise control system of a vehicle achieves a target

speed by readjusting the accelerator based on the speedometer’s measurement.

Similarly, an elastic feedback controller maintains the output of a system, e.g.

Response time, to a desired value by adjusting the control input, e.g. number of

servers. Such a control system can be used to satisfy a constraint or guarantee an

invariant on the outputs of the system [4]. More specifically, the controllers are

particularly designed for a specific purpose commonly referred to as a control

objective, e.g. to maintain an overall average Response time of less than t seconds.

The commonly used control objectives are one of the following types:

• Regulatory control: A feedback controller developed for regulatory purposes

maintains system output close to the desired reference value. For example,

the average CPU utilisation of the Cluster must be 60%.

• Optimisation: Such a controller solves an optimisation problem to ensure

the optimum value of the system output in the presence of certain con-

straints. For example, minimisation of system’s response time with the

lowest possible cost.

• Disturbance rejection: Such a controller is used to manage and adjust the

level of disturbances, e.g. Admission control system. It only allows enough

workload that does not affect the performance of the system.

Figure 2.7 (borrowed from [5]) depicts the architecture of a feedback loop model,

where a controller observes the system output to correct any deviation from the

desired value. This figure shows, the design of a feedback control system consist

of various essential elements. A short description of these elements is as follow:

• Reference input: It refers to the desired value of the system output that the

controller is required to maintain. For example, the overall average CPU

utilisation of all acquired VMs (Cluster) must be 60%.

• Control error: This refers to the difference between desired Reference input

and the measured value of a system’s output.
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• Control input: It refers to the dynamic parameter computed by the controller

that affects the behaviour of the target system to achieve the Reference input.

For example, the number of VMs used by the Target system.

• Actuator: This component executes the decision made by the controller.

• Target system: This refers to the underlying system managed by the con-

troller. For example, the corresponding Elastic application in this case.

• Sensor: A sensor measures the values of metrics needed by the controller

for making the next scaling decision. For example, to measure the CPU

utilisation of VMs.

• Controller: A controller is the mechanism that computes the values for

the control input required to achieve the desired objective value (Reference

input) by taking into account various measurements, e.g. the Control error

mentioned in the figure.

The Disturbance in Figure 2.7 refers to the workload, whereas the Measured output

is the latest measurement of the system output. The design of a control system
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Figure 2.7: Block diagram of a feedback control system [5]

is composed of the following two steps. Firstly, the formal construction of a

system model that determines the relationship between inputs and outputs of

the system. Secondly, the design of the controller using the obtained model. The

implementation of a controller varies in various aspects consisting of modelling

approach, controller type and the architectural complexity. A detailed state-

of-the-art review is undertaken in Chapter 3 which provide a comprehensive
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survey of the research regarding the existing feedback controllers. This review

highlights and analyses the various aspects of control-theoretical approaches

used to implement auto-scaling.

2.4.3 Fuzzy Control System

The fuzzy control system can be viewed as an advance form of a Rule-based

system, where a collection of rules are implemented using the incorporation of

human knowledge. Such a system is based on fuzzy inferencing rather than a

classical decision mechanism, where a rule executes to a true or false value. More

specifically, a fuzzy control system refers to a control methodology based on the

use of Fuzzy logic theory. The Fuzzy Logic initially introduced by Zadeh [89] is

a computing approach based on the notion of degree of truth rather than an

exact truth, i.e. true or false. It is one kind of many-valued logic that relies on

approximate reasoning rather than fixed reasoning like Boolean logic. In contrast

to the Boolean logic, a variable in Fuzzy logic can take a value in the range from 0

to 1 rather than a true or false. This value determines the degree of membership

in the fuzzy set.

The use of Fuzzy logic theory is employed for those control and decision-making

problems, where system knowledge is imprecise, uncertain and highly dynamic

[51]. Moreover, it is used in situations, where a mathematical illustration of the

system may not be viable. Another important aspect of the use of Fuzzy logic

theory is that it enables the qualitative decision-making process by designing the

rule based system. The rules are constructed from meaningful words (also called

labels) and therefore they are easily understood by humans.

The construction of a fuzzy control system consists of the following three in-

gredients: (1) The Domain knowledge includes the identification of system related

knowledge, i.e. inputs and outputs. The inputs and outputs are represented by

a fuzzy set using different linguistic terms; (2) The Membership functions defines
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the degree of crisp input against its linguistic variables in the range [0 to 1];

(3) Rules can be created using a combination of linguistic terms of fuzzy sets.

Once these ingredients are ready, a fuzzy control system works according to

the block diagram provided in Figure 2.8. As can be seen from this figure, the

Fuzzification accepts the System’s input in the crisp form and converts it to the

corresponding Fuzzy values using the Input membership functions. The Fuzzy

Inferencing is responsible for executing the fuzzy rules and generating the fuzzy

output values, which are then converted to System’s output values in the crisp

form using the Defuzzification process.
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Figure 2.8: Architectural view of a fuzzy system

The use of a fuzzy system as an auto-scaler follow the structure provided in

Figure 2.8, or it can also be adapted as a feedback loop model. In such a case, the

Controller part of Figure 2.7 is replaced with a fuzzy system. The block diagram

of such a structure is provided in Figure 2.9. The various fuzzy based elasti-

city proposals are reviewed and presented in Section 3.3.4. This thesis uses a

fuzzy control system for the implementation of the switching mechanism of the

proposed method (see Section 4.5 for details).
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Figure 2.9: Architectural view of a fuzzy system as a feedback loop model
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Part II

C O N T R I B U T I O N S



3
C O N T R O L T H E O R E T I C A L V I E W O F E L A S T I C I T Y:

TA X O N O M Y, S U RV E Y A N D C H A L L E N G E S

This chapter discusses the state-of-the-art control theoretical view of cloud elasti-

city, summarising initially the existing survey-based research works in Section

3.1. This establishes the need for reviewing the literature from a new perspective

required for the understanding of control theoretical view of cloud elasticity.

The chapter then introduces a novel taxonomy in Section 3.2, which includes

aspects from implementation technique perspective (i.e. control theory) as well as

from application domain perspective (i.e. cloud elasticity). An exhaustive review,

following the proposed taxonomy, of the existing control theoretical approaches

proposed for elasticity problem is carried out in Section 3.3. Lastly, this chapter

summarises and discusses some open issues and challenges in Section 3.4 to lay

the foundation for the focus of this thesis.

3.1 overview

With the rise in popularity of Internet-based applications, the notion of providing

better elasticity management has considerably increased. This has a proportional

effect on cloud elasticity literature, where researchers and practitioners make use

of various techniques to exploit cloud elasticity. Many research undertakings are

carried out on cloud elasticity, and its different aspects are explored. Moreover,

there are also different survey papers available that provide a concise review on

elasticity research. However, the scope of all such papers are broad. They have

focused on the high-level view of overall elasticity research rather than specific

details on one implementation technique to better understand the differences

amongst related approaches. Hence, this thesis focuses on the control theoretical

approach of cloud elasticity, therefore a standalone review of control theoretical
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methodologies are provided.

The review here is carried out with a novel taxonomy and classification. There-

fore, this section briefly describes the current survey papers as related work

and provides a brief explanation of how the review conducted in this chapter

is different. For this purpose, we classified the relevant review papers in the

following three categories based on their primary strengths.

1. Cloud resource management: The review articles in this category mainly

cover an extensive range of cloud resource management related problems

such as provisioning, allocation, scheduling, mapping, adaptation, discovery

and brokering. Amongst these problems, cloud elasticity (or dynamic cloud

resource provisioning) approaches are covered either partially or in a lim-

ited capacity. Singh and Chana [42] focused on autonomic computing with

a particular emphasis on QoS-aware management of resources; Jennings

and Stadler [90] used resource management functions as a classification

method; Mustafa et al. [91] reviewed the literature based on the metrics

used and discussed the underlying research problems. Manvi and Shyam

[92] classified the literature into problem specific categories such as resource

provisioning, and allocation. Whereas Singh and Chana [93] targeted re-

source provisioning in general, wherein elasticity is considered as a trait of

resource provisioning mechanism.

2. Adaptability using control theory: The review papers in this category are

related as their primary focus is on the use of control theory in similar con-

text, e.g. QoS management or adaptation in general. However, none of them

have considered the elasticity proposals. Yfoulis and Gounaris [94] briefly

investigated the control theoretical perspective in cloud computing context

with a focus on SLA management. More relevant but brief discussions on

the use and suitability of feedback controllers in larger cloud computing

domain for performance management is carried out in [95]. Whereas, Gambi

et al. [44] focused on the assurance and adaptability perspective of cloud
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controllers. However, their scope is wider and also includes other techniques

such as Rule-based and Machine learning. Patikirikorala et al.[96] carried

out a systematic survey of the design of self-adaptive systems using con-

trol solutions. They presented a quantitative review based on a taxonomy

consisting of attributes such as target system, control system and validation

mechanism. The scope of their research, however, is much wider, i.e. general

adaptive systems rather than cloud elasticity. Moreover, they only presented

a quantitative analysis of the existing research works rather than a detailed

review.

3. Cloud elasticity: A comprehensive survey on cloud elasticity is carried out

in [45], where the authors classified the elasticity literature based on the

underlying implementation techniques. However, they only focused on

cloud application provider based approaches. Whereas, PaaS systems are

focused in [97, 98]. Galante and DeBona [99] classified the existing literature

based on infrastructure and application level. A taxonomy consisting of

features like scope, purpose, decision-making mechanism, action type and

evaluation is proposed in [75]. A similar taxonomy is also adopted in [100,

101]. The authors of [78] focused on strategy, action type and architecture

perspective. Whereas, an adaptability view of computational resources with

a larger scope including concepts like node adaptation and VM migration

is provided in [102]. They, however, used adaptation techniques as one

of the dimensions to review the literature. Elasticity functions such as

reactive migration, resizing and proactive replication are used as a means

of classification in [74]. At last, Galante and da Rosa Righi [103] reviewed

cloud elasticity in the scientific application perspective.

All the survey papers mentioned above are very innovative and mostly over-

lapped regarding essential elasticity features, e.g. type (Reactive/Proactive), action

(Horizontal/Vertical), scope (CPs/SPs), etc. However, their scope is wider, i.e. over-

all elasticity research and apart from [45], they lack details on the underlying

implementation techniques. Moreover, the exhaustive review of the proposals of
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each implementation technique is missing. This chapter is a step forwards toward

a technique specific (control theoretic in this case), up-to-date and exhaustive

review of cloud elasticity solutions.

3.2 proposed taxonomy

Figure 3.1 presents the proposed taxonomy, which consists of characteristics

from both control theoretical as well as cloud elasticity perspective. The brief

explanation of some of the attributes of this taxonomy is covered already in

Section 2.4.2, whereas the description of the remaining attributes is provided

below.

3.2.1 Control Solution View

3.2.1.1 Controller

As mentioned earlier in 2.4.2, the systematic design of a feedback control solution

consists of the following two steps. Firstly, the formal construction of a system

model. Secondly, the implementation of a control mechanism. Based on this

description, the Controller is divided into the following two subcategories.

1. Model: Generally, the various modelling approaches used in the design

of control systems are categorized into the following three main classes

[104, 105, 106]:

• White-box: Such models are used when it is possible to construct the

model based on the prior knowledge and the availability of the physical

insight about the system. White-box modelling derive mathematical

models based on the use of first principles.

• Black-box: Such models are data driven and no physical insights or

prior knowledge of the system is required. Statistical methods are used

to derive the model based on the measurement of data using well
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designed experiments, where the underlying system is considered as

black-box.

• Grey-box: Such models are hybrid in nature and are used in situations

where some physical insights or prior knowledge about system is

available, however, certain parameters are required to be derived from

observed measurements.

The use of white-box modelling approaches in the context of cloud elasticity

are rare. However, in certain few cases Queuing Theory and State-space

modelling approaches are utilized. Thus, in the context of cloud elasticity,

we found the following types of modelling techniques are used in the

construction of control systems to address dynamic resource provisioning

problem:

• Queuing Theory: The elastic system is considered as a queue so that

different analysis can be performed such as prediction of queue length,

average service rate, and average waiting time.

• Black-box/Grey-box: As earlier described, such methods are used

when the detailed knowledge of the target system is not available.

Such approaches involve the construction of SID experiments, where

well-designed system input signal is generated to record outputs of the

system. Statistical techniques are then utilised to infer system input

and output relationship.

• State-space: The target system using such an approach is characterised

and represented using a set of state variables to express their dynamics.

For detail description of these modelling techniques, please refer to

[53].

2. Type: There are various types of controller used for the implementation of

elasticity. We have clustered them into the following four groups inspired

by the controller types used in [96]:
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• Classic: This category contains the most commonly used controller

types that are comparatively simpler in nature. This includes the fol-

lowing three types: Fixed gain, Adaptive and State-space feedback.

The Fixed gain refers to that class of controllers, where the tuning/-

gain/model parameters are estimated off-line and then remains fixed

at runtime. For example, the most commonly used controller of this

category is the Proportional Integral Derivative (PID) or its different

variants such as Proportional Integral (PI) or only Integral (I). The

Adaptive refers to the group of controllers that have the ability to es-

timate the parameters at runtime thus adjusting itself to changes in the

environment such as self-tuning PID controllers [95]. The State-space

feedback controllers are used for systems that are modelled using state

space [53].

• Optimal: This class of controllers consist of an optimisation base con-

trol strategy and includes the following two types: Model Predictive

Controller (MPC) and Limited Lookahead Controller (LLC). The MPC

is based on a twofold concept [107]. Firstly, it uses an internal dynamic

model to predict future system behaviour, and optimise the forecast

to generate the best decision at the current time. Secondly, it uses the

previous moves of the controller to determine the best possible initial

state of the system as the current move of the optimal control depends

on it. For further details on MPC, refer to [107]. The LLC follows the

similar concept as MPC, where the next action of the controller is de-

termined using the projected behaviour of the system over a limited

look-ahead horizon [108]. However, MPC deals with the systems operat-

ing in continuous, whereas LLC deals in discrete input-output domains

[109].

• Advanced: This category clustered all those control solution methodo-

logies that either combine multiple control methods into one or have

some notion of runtime adaptive behaviour. However, the adaptation

mechanism is not based on runtime parameter estimation, which is
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described earlier for the Adaptive type in the Basic category. This family

of controllers includes the following types: Hybrid refers to all those

control solutions that combine more than one controllers and they all

are active at the same time; Gain scheduling/Switched refers to all

those control methods, where multiple models/controllers/gain para-

meters are used simultaneously. Such methodologies are accompanied

with an associated reconfigurable/switching/gain scheduler layer to

select the suitable model/controller/gains at runtime. Our proposed

elastic methods also fall in this category.

• Intelligent: This set of controllers includes all those control systems,

which are based on the use of various artificial intelligence techniques

such as knowledge-based fuzzy controller, neural models based fuzzy

control, neural networks, etc.

3.2.1.2 Key Ingredients

The attributes of this section include all the essential elements of the control

methodology earlier explained in Section 2.4.2. These attributes can be seen in

Figure 3.1.

3.2.1.3 Architecture

The architecture of a control system refers to the pattern of how a particular

control methodology is implemented. The most common patterns observed in

cloud elasticity research include Centralised and Decentralised (also known as

Distributed). However, there are also few cases, where Cascade and Hierarchical

patterns are used as well. The brief description of each of these patterns is as

follow:

• Centralised: The control system following this architecture is implemented

as one unit, which is responsible for managing the control objective from a

central place, e.g. at a global system level.
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• Distributed: The control system adopting distributed pattern implements

at sub system level. Thus the control method is responsible for achieving

the control objective at sub system level, e.g. the implementation of the

controller at each VM of the cluster.

• Hierarchical: The control system in this case is implemented at two levels:

lower and upper level. At the lower level, the distributed controllers man-

age sub-systems, whereas, at the upper level, another controller mediate

distributed controllers to achieve the control objective at the global scale.

• Cascade: Using such an approach, multiple controllers work simultaneously

in a way, where the decision of one controller becomes input for the next

one.

3.2.2 Elasticity View

This section cover the attributes from the cloud elasticity perspective that defines

the different aspects of an autoscaling approach. The brief description of each

attribute is as follow:

1. Provider: An elasticity proposal targets the aims of a particular stakeholder,

e.g. the proposed methods in this thesis is for SPs. Other possibilities include

CPs or may be for both, i.e. CPs and SPs.

2. Application type: Various auto-scaling approaches are proposed for different

kinds of applications. This attribute refers to the nature of the application

for which the elasticity method is proposed. Possible types can be seen from

Figure 3.1.

3. Trigger: This represents the triggering behaviour of an elasticity method.

The possible types include Reactive, Predictive or Hybrid.

4. Type: The type of resource scaling can be either Horizontal or Vertical.
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5. Evaluation - This attribute of taxonomy highlights how the assessment of a

particular approach is carried out. This consists of the following specifica-

tion:

• Workload used: The workload used for the evaluation can be either

real or synthetically generated. This attribute represents the nature of

the workload and its brief description.

• Applications used: It includes the details of any application used either

for the generation of workload or experimentation purposes.

• Environment: This attribute includes the particulars of the experimental

set-up.

• Compared with: This attribute specifies the approaches or scenarios

used for comparison purposes.

3.3 state-of-the-art review

This section provides the state-of-the-art review of existing cloud elasticity ap-

proaches that are implemented using control theory. The review is carried out by

classifying the relevant proposals using controller types. The following subsec-

tions briefly discuss the proposals, whereas their details in accordance with the

characteristics listed in the proposed taxonomy are provided in respective tables.

3.3.1 Classic

3.3.1.1 Fixed Gain

A generic proportional threshold based control policy using an Integral controller

is proposed in [31] that adjusts the number of VMs to maintain the CPU utilisa-

tion within a desired range. The same control policy has been further utilised to

maintain the performance (Response time) of storage tier of a multi-tier applic-

ation in [114]. Whereas, a PID controller is proposed in [32] to adjust nodes of
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a cloud-based storage system (named Voldmart [118]) to maintain the desired

service time.

Gergin et al. [33] and Barna et al. [110] also adopted PID approach for maintain-

ing the Response time of web applications using CPU utilisation as a reference

input. In both papers, the design of the controller is similar but the adaptation is

different. More specifically, Barna et al. [110] only considered one tier, whereas

Gergin et al. [33] considered n-tiered transactional application and proposed a

distributed architecture, i.e. using multiple controller in parallel but one for each

tier. Ashraf et al. [112, 34] focused on the dynamic scaling of the application tier

using a Proportional Derivative (PD) controller. This approach is not dependent

on any performance model and is therefore different from all other approaches

mentioned earlier, i.e. [31, 114, 33]. A PI feedback controller was introduced in

[111] considering big data application that adjusts the nodes of a map reduce

cluster to guarantee a desired service time and the authors of [113] focused on

the readjustments of memory and CPU resources at VM level to comply with the

SLO requirements.

The gains of the controllers mentioned above are estimated off-line either using a

trial-and-error methods or performance model [31], application specific model

[112] or using a standardised method such as Ziegler Nichols, root-locus. How-

ever, they remain fixed at runtime. Table 3.1 summarises the characteristics of the

proposals reviewed in this category.

3.3.1.2 SSF

Li et al. [119] proposed an integrated three-layer approach. The three layers

include VM, node and cloud level, amongst which the method of VM level is

only relevant. Where they proposed a Multi Input Multi Output (MIMO) based SSF

controller responsible for determining VM resource requirements including CPU

power, memory and I/O to achieve application SLO requirements consisting of

Throughput and Response time. Their method uses an on-line model estimator to
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capture input-output relationships at runtime. Similarly, Moulavi et al. [120] also

used SSF, however for horizontal scaling of distributed cloud storage system’s

computational nodes.

Both approaches use Linear Quadratic Regulator (LQR) method to obtain the

gains (Proportional and Integral) of their controllers. However, in [119], the gain

is adaptive and may change at runtime, whereas the gain remains fixed in [120].

Moreover, Moulavi et al. [120] also used an additional fuzzy controller, which is

responsible for allowing or discarding the control decision considering the stand-

ard deviations of CPU loads. The purpose of the additional controller is to avoid

unnecessary fluctuations. However, no description is provided for the design of

fuzzy controller. Their approach also considers cost as one of the reference input.

However, it is not clear how it influences the decision of the controller. A similar

approach is utilised in [121] with a difference of using Throughput as one of

the reference input rather than cost. The details of the papers mentioned in this

category are provided in table 3.2.

3.3.1.3 Adaptive

Farokhi et al. [122] proposed a performance-based adaptive feedback controller

focusing on the business tier of cloud applications to adjust the memory size of a

virtual machine. Their method uses an on-line linear regression method to capture

the effects of controller over the performance (Response time) and to estimate

a model parameter. The approach is further extended in [49], where memory

utilisation is considered as a monitoring metric during model construction. Zhu

et al. [130], in contrast, focused on CPU allocation using a nested control design

comprising of two feedback loops. Their inner loop is an adaptive Integral control-

ler that maintains a target CPU utilisation by adjusting the CPU allocation of VM.

Whereas, the outer loop is also an Integral controller that maintains the target

QoS goal (Response time) by adjusting the target CPU utilisation of the inner

loop. Their research, however, lacks details on the model construction of the work.
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Padala et al. [125] also proposed a two layered hierarchical controller to ad-

just CPU allocation of VMs that host individual tiers of multi-tier applications. At

the VM layer, they introduced a utilisation controller (i.e. an adaptive Integral

controller like the one in [130]) that maintains a desired CPU utilisation level,

while adjusting the CPU entitlement thus focusing on the resource utilisation

perspective. Whereas, at the top (node) layer, an arbiter controller (using fixed

Integral controller) is proposed to allocate the CPU share based on the requested

CPU entitlements by the utilisation controllers and the target performance ob-

jectives of multi-tiered applications sharing the same physical node. Padala et

al. further enhanced this approach in [131], where they adjusted not only CPU

entitlement but also Disk I/O allocation. Moreover, they changed the adaptive

Integral controller with an optimiser controller aiming to minimise a cost func-

tion comprise of performance cost and control cost while obtaining the values of

required resource allocations for next interval.

In contrast to CPU allocation approaches mentioned above, Kalyvianaki et al.

[135] exploited the use of Kalman filter as a performance modelling technique by

integrating it with feedback controller, to adjust the CPU allocation for multi-tier

applications. They proposed three Kalman filter based control solutions including

a Single Input Single Output (SISO), MIMO process noise covariance controller

(PNNC) and an adaptive MIMO PNCC controller. The SISO is responsible for

the CPU allocation of individual VMs that hosts a single application tier. MIMO

PNNC is responsible for the CPU allocation of all VMs of a multi-tier application.

However, both their controllers (i.e. SISO and MIMO PNNC) are fixed, where the

gain of the Kalman filter does not change at runtime. The adaptive MIMO PNNC

is the adaptive counterpart of MIMO PNNC where the gain of the controller is

obtained at runtime. Spinner et al. [123] focused on a different perspective of

CPU entitlement, wherein they adjusted the number of virtual CPUs of VMs to

meet target latency of an application using queuing theory based on layered per-

formance modelling approach in collaboration with a runtime model estimation

component. The details on adaptivity are, however, not very clear. Moreover, the
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final output (i.e. scaling decision) of the controller is fixed where at each control

interval only one virtual CPU can be added or removed.

There are several papers that propose the adaptive version of PI controller. For

example, Liu et al. [132] used it to maintain the desired Response time of web

server by adjusting the CPU entitlement of a shared resource container. Park and

Humphrey [133] focused on the scientific domain to achieve a target progress

of high-performance computing jobs adjusting the CPU entitlement using an

adaptive PI. Whereas, Zhu and Agrawal [134] focused not only on CPU but also

on memory size adjustment by proposing an adaptive version of MIMO PI con-

troller in collaboration with a reinforcement learning component. This approach,

however, is different in two aspects from any other approaches mentioned in

this section. Firstly, it does not directly control resources but rather change some

adaptive parameters of the cloud applications. Secondly, it aims to maximise

the application specific benefits QoS within a pre-specified time and budget con-

straints.

In contrast, to the above approaches, Ali-Eldin et al. [40] proposed an adaptive

hybrid controller for horizontal scaling using queuing theory as a modelling tech-

nique. The queuing based model determines the total service capacity required

per control interval while considering the arrival rate of the concurrent requests.

The output of the controller is dependent on a dynamic gain parameter. The value

of the parameter itself is obtained at runtime using the change in demand on the

past time unit and the necessary service capacity. The same approach is applied

in [124] with an enhanced model and controller design, which also considers

buffer size, the delay caused due to the VM start process, allocated capacity and

changing request service rate of the VM. Table 3.2 and 3.3 summarize various

aspects of the adaptive approaches mentioned in this section.
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3.3.2 Optimal

3.3.2.1 MPC

The readjustment problem of data centre capacity with a focus on energy saving

perspective is address using an MPC based approach in Zhang et al. [36]. They

consider and include aspects like cluster reconfiguration cost (due to saving/-

loading/migration of systems’ state), electricity price fluctuation (as rates vary at

different time of the day in some countries, e.g. the USA). Their work, however,

assumes that (1) all data centre machines have the same computational capab-

ilities and (2) the instances of incoming workload share similar characteristics,

e.g. task length, resource requirements. Their work is further extended in [37],

where they considered heterogeneous hardware and workload behaviour. They

approached the heterogeneity issue using MPC controller coupled with a k-means

clustering algorithm, which is used to cluster the tasks into various groups based

on the identical characteristics, i.e. performance and resource requirements.

The MPC based approach in [38] decides a sequence of resource reservations

actions for N steps rather than a single decision for next control input. The

paper, however, lacks details about the results obtained. Whereas, Cerf et al.

[142] focused on the idea of reducing the number of elasticity decisions for big

data cloud systems using an MPC controller coupled with an event triggering

mechanism. The event triggering mechanism serves as an additional layer to

determine whether the MPC decision will be carried out or not. The mechanism

is based on the optimal cost function rather than the state of the system or any

form of control error mechanism.

In contrast to MPC approaches mentioned above, Lama et al. [143] proposed

a distributed MIMO control solution to address vertical elasticity. They used mul-

tiple MPC to manage the allocation of resources (CPU and memory) to achieve

the target performance requirements of the co-located multi-tier web applications
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deployed on shared computational nodes of a data center. Each MPC handles

one application and controls the allocation of resources of all their respective

VMs whilst considering that each tier of the application deployed on a separate

VM, which may reside in different computational nodes than other tiers’ VMs.

They used neural network based fuzzy models and considered variables of the

local controller as well as the neighbour controller, which manages VMs of other

applications that share the underlying physical resources.

A few other MPC based proposals include reconfiguration of storage system

[144], resource management of multiple client classes in shared environment

[145], performance optimisation using power control [146], and dynamic resource

allocation using an integrated approach of fuzzy model and MPC [147].

3.3.2.2 LLC

Kusic and Kandasamy [148] utilised an LLC mechanism for enterprise comput-

ing system by formulating the resource provisioning problem as a sequential

optimisation problem. They approached the problem by considering multiple,

i.e. fixed three client classes, each with different QoS requirements. A different

cluster is used to manage one client class focusing on reducing operating cost

regarding switching cost and minimisation of energy consumption. The distinct

feature of their approach is the consideration of provisioning decision risk as

a factor and encoding it into the cost function while considering the variability

of workload patterns. Each of their decision determines not only the number of

machines in each cluster but also the operating processing frequencies associated

with different pricing regarding power.

The same approach is adopted in [109] for virtualised environments with the

following modifications. The controller decision concludes the allocation of CPU

share of each virtual machine for each cluster rather than specifying operating

frequencies, the indication of active host machines and the share of workload to

be assigned to each virtual machine. Bai and Abdelwahed [149] demonstrated the
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use of artificial intelligence based search methods on a case study of processor

power management to address the problem of computational overhead caused

while using LLC.

3.3.3 Advanced

3.3.3.1 Hybrid

Dawoud et al. [156] proposed a hybrid scheme, which consists of three feedback

controllers to dynamically allocate CPU and memory resources to VMs. Each

of the controller is responsible for CPU allocation, memory allocation and ap-

plication performance tuning respectively. All of the three controllers run in

parallel albeit independent from each other. Therefore, it is not clear how and

why the decision of one controller does not have any effect on others. Similarly,

Farokhi et al. [141] focused on both CPU and memory allocation of VMs by using

two controllers. Their approach, however, consists of a fuzzy based coordination

control that determines the contribution of CPU and memory allocation based on

the application performance.

In contrast to the above approaches, Xiong et al. [157] only focused on the

CPU share allocation to individual virtual machines using a two-level hybrid

control scheme. This approach consists of an inter-dependent optimal and PI

feedback controller to allocate CPU budget to each VM hosting distinct tiers

of an N-tier web application. The PI controller is responsible for calculating the

required CPU budget for each VM while considering the application performance

target. Similarly, the optimal controller decides the actual (to be allocated) CPU

share of each VM by solving an optimisation problem. This approach, however,

considers the total CPU budget for an application is fixed, and each VM will get

a share of the total budget. Rao et al. [158] approached the problem of multi-

objective resource management using a two-level approach. At the first level, an

individual fuzzy controller per objective decides the resources needed to maintain
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the desired performance level, whereas, at the second level, a gain scheduler

component aggregates the individual requests and forms a final decision using

the dynamically computed gains (weights) based on the control errors.

Other hybrid approaches use the combination of a feedback and feed-forward

methods, e.g. [159, 160, 161, 162]. The idea behind such merging is to exploit

feed-forward to control the large spikes in workload using any model predictive

method, whereas, the gradual changes in the workload, as well as the rectification

of modelling errors, using the feedback approach. Al-Shishtawy and Vlassov

[159] used such an approach to perform horizontal scaling of cloud-based key-

value stores. According to their methodology, the scaling decision will be either

carried out with feed-forward or feedback and it depends on the intensity of the

workload. Their approach, however, is different in general than any other related

horizontal approaches as they use average throughput per server as the control

input in contrast to the commonly used number of servers.

Wang et al. [160] focused on vertical elasticity to adjust CPU allocation of virtual

containers that hosts different tiers of an application. Their feed-forward method

estimates optimal CPU utilisation level, whereas the feedback controller further

tunes the utilisation target for individual containers that are maintained by the

distributed utilisation controllers. In the case of [159], either feedback or feed-

forward control executes at a time as their control interval is the same, whereas, in

the case of [160], all controllers run at different control intervals. Their approach

is further extended in [161] to manage the performance of multiple applications.

The extension includes the consideration of hybrid controller of [160] as the ap-

plication controller, which is responsible for calculating required CPU entitlement

necessary to obtain the desired performance target. Furthermore, the addition of

a node level controller (Integral) to manage the CPU entitlement of the respective

VMs on a given node. Kjaer et al. [162] combined a PI and a Proportional based

feed-forward method. Their feed-forward approach is, however, different as it
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uses an on-line performance model in contrast to other related hybrid approaches

mentioned in this category which use off-line performance model.

3.3.3.2 Gain Scheduled/Switched Controllers

Grimaldi et al. [167] proposed a PID gain scheduling approach to dynamically

adjust the number of VMs to maintain the desired CPU utilisation. The gain

scheduler is based on the minimisation of a cost function to obtain optimised

values of the controller gains in a particular operating region (characterised by

different workload and timeslots) with an objective to reduce the control error

close to zero. Certain details such as modelling aspects and how CPU utilisation

is related to the end-user performance are missing. A Linear Parameter Varying

(LPV) modelling approach is followed in [168] to guarantee web server perform-

ance (Throughput and Response time) by dynamically adjusting the number

of VMs. They utilised a gain scheduled LQR design approach, where the CPU

utilisation of VMs is used as a scheduling parameter. In contrast, Qin and Wang

[169] used LPV −H∞ controllers as their design approach for calculating the

aggregate CPU frequency needed to maintain a target Response time, which was

then used to compute the number of VMs. They used arrival rate of the workload

and average service rate as the scheduling parameter for the characterisation of

time-varying operating conditions. Similarly, Tanelli et al. [170] also used arrival

rate and effective service rate per application as their scheduling variables in their

proposed MIMO LPV approach. However, they focused on the dynamic allocation

of CPU capacity to individual VMs that share the same physical system.

Patikirikorala et al. [171] proposed a multi-model switching control system to

dynamically allocate CPU capacity to the VMs of a physical machine to maintain

response time objectives of an individual application. Their approach distributes

the overall system in two operating regions using a threshold level of Response

time. A specific model is then designed to represent the behaviour of the system

in each operating region. Their approach uses multiple fixed PI feedback con-

trollers, which on runtime change based on the operating region using if-else
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based switching mechanism. In contrast, Saikrishna et al. [172] used ten distinct

operating regions and arrival rate as the switching signal.

3.3.4 Intelligent

Jamshidi et al. [16] proposed a fuzzy controller to address the uncertainty in

cloud environments and to provide horizontal elasticity rules using qualitative

specification in contrast to the commercially provided quantitative if-else rules.

They designed the membership functions and rules using the knowledge (con-

sisting of the intensity of workload and Response time) extracted directly from

the domain experts. However, they followed a static scaling approach, where the

number of VMs to be added or removed as a result of scaling action is pre-defined

fixed numbers. Their approach is further extended in [35, 174], where they make

use of fuzzy Q-Learning to learn the best elastic policies (fuzzy rules) at runtime

considering scenarios of systems, where the domain knowledge may not or par-

tially available.

In contrast to the approaches mentioned above, Xu et al. [175] focused on vertical

elasticity. They proposed two fuzzy based methods (i.e. modelling and prediction

as referred by them) to dynamically estimate the computational resources of a

VM needed by an application. Their modelling approach builds a fuzzy model at

runtime by directly monitoring/learning the relationship between application

workload, resource usage and performance. Whereas, their adaptive prediction

technique only considers the observations of resource usage to estimate future

resources. A similar approach (adaptive fuzzy modelling) is followed in [176]

that estimates multi-type resources (i.e. CPU capacity and disk IO bandwidth) of

VMs specifically for database systems.

The approach in [177] on multi-tier applications for guaranteeing 90th percentile

end-to-end delay by computing the number of servers to application tiers. This

method considers control error (i.e. the difference between measured and the
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desired end-to-end delay) and rate of change in error as performance metrics

and not rely on any workload related attribute. An alternative mode of their

approach involves the use of an additional optimisation-based component. In

such a case, the output of the fuzzy controller becomes an adjustment parameter

to the output of the optimisation component. The approach in [178] have focused

on vertical elasticity and adjust the CPU capacity assigned to VMs by considering

the differences between (1) measured and target performances, and (2) the current

CPU allocation and the actual utilisation. This approach is further extended in

[179] to also take into account the memory readjustment in collaboration of CPU

capacity. Moreover, they provided a cascade based coordination mechanism at

the time of scaling decision to consider the joint effect of both kinds of resources.

Such coordination mechanism has not been considered by many authors for

the same problem, e.g. [154, 156, 147] except in [141]. Some other examples of

fuzzy approaches include neural fuzzy control [180], fuzzy logic based feedback

controller [181], fuzzy model coupled with a performance prediction model [182]

and multi-agent fuzzy control [183].

3.4 issues and challenges

Irrespective of the considerably wide range of control theoretical approaches to

implement cloud elasticity, there are still various issues and challenges that have

not receive much attention. Based on our analysis, we list the following such

issues and challenges that require further attention:

1. Lack of adaptation: The fixed approaches are designed off-line. They do not

involve any on-line learning mechanism to adapt at runtime in response to

changes. Therefore, they often get credit for (i) their simplistic design, (ii)

computationally economical behaviour due to the absence of any computa-

tional overheads. Such approaches are better for systems subject to uniform

workload behaviour. However, the performance of the system largely suffers,

in situations when workload fluctuates at different times.
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2. Computational overhead: The lack of adaptability issue in fixed approaches

is addressed with the use of adaptive control methodologies, where adapt-

ive behaviour is obtained by exploiting machine learning algorithms and

constant monitoring. Such methods result in comparatively better perform-

ance and efficient decision making. However, this only applies, where the

workload behaviour is predictable or when it changes slowly. The achieve-

ment of better performance comes at the cost of being computationally

expensive due to the use of on-line learning algorithms or predictive model-

ling. Moreover, such methods also fail when workload behaviour is unable

to predict, and they are therefore unable to cope with sudden changes in

workloads.

3. Oscillation: The design of elastic feedback controllers requires careful atten-

tion and detailed evaluation because badly designed controller may result

in oscillation and instability [5]. The control methodologies based on mul-

tiple models/controllers are criticised specifically for the phenomenon like

bumpy transitions that leads to oscillatory behaviour. In such a situation,

the cloud resources are acquired and released periodically. The existing

researches on elastic feedback controllers lack on providing an explanation

and evaluation on how a proposed method deals with the undesirable

oscillatory behaviour.

4. Over-provisioning and resource usage: Over-provisioning is commonly used

to avoid performance violation considering peak workload scenarios [76, 77].

However, this results in the wastage of resources. It is therefore undesirable

and should be avoided. In the existing research works, the authors mostly

provide the evaluation of the proposed methodologies regarding achieving

performance objective. However, an explanation or comparative analysis of

the methodology in the prospect of minimising the computational resources

is missing. A comparative cost analysis of the state of the art approaches is

needed to justify that a proposed method is not costly and do not acquire

more than needed resources to improve system performance.
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5. Uncertainty: An elastic method depends and collaborates with other com-

ponents of the system irrespective of the nature of underlying implement-

ation technique. For example, the dependency of an elastic method on

monitoring component of the system to obtain the latest status of system

metrics to make scaling decision. Thus a system, with a lot of dependencies

on other parts/components of the system is likely to face challenges related

to uncertainty. Some examples of such uncertainty behaviour include inac-

curacy in monitoring information, delays caused due to actuator operation,

failure of a VM, noise in input data, the unpredictability of workload, inac-

curacies in performance model [47, 186, 46]. The existing research works on

cloud elasticity, in general, has not paid much attention to consider such

aspects while designing auto-scaling system.

6. Evaluation and Benchmarking: The performance of a control methodology

is sensitive to the changes in workload. Therefore, an extensive evaluation of

the control methodology is required. However, most of the existing methods

have been evaluated only using less than three workload scenarios [187].

Moreover, as can be seen from tables (3.1 to 3.7), the majority of papers

also lack on providing details of comparative evaluation. Furthermore, the

unavailability of benchmark frameworks makes it difficult to evaluate the

related approaches. A recent development in this regard is the performance

evaluation framework proposed in [187]. However, this framework is in

general for an auto-scaling strategy. There is also a need for specific control

theoretic benchmarks that have the ability to facilitate analysis of control

theoretic specific characteristics, e.g. SASO (Stability, Accuracy, Short settling

and Overshoot) properties as discussed and suggested in [188].

7. Scalability: It is observed, during our analysis that most of the control

methods are either designed or tested for web applications. The evaluation

and analysis by the authors of respective approaches are performed at small

scale, i.e. using a workload spanning of hours/days or fewer number of

VMs [187]. However, experimentation and description on the suitability of
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control methodology at larger scale considering realistic enterprise level

web applications is missing.

8. Heterogeneity: In the case of horizontal scaling, most of the existing ap-

proaches consider VMs with same computational specifications. Similarly, in

the case of vertical scaling, the focus of most approaches are either on the dy-

namic adjustments of one computational resource, i.e. either memory, CPU

or I/O. Alternatively, if in the case of multiple resources, the management of

each computational resource is independent of each other. However, renting

homogeneous servers or management of one computational resource is

not always pragmatic. Considering heterogeneous servers for horizontal

elasticity creates challenges for building efficient and accurate perform-

ance models because of their different computational capabilities. Similarly,

controlling multiple computational resources at fine-grained level requires

methods to identify and establish better coordination protocol between

controllers at runtime and with the environment.
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4
T O WA R D S A M U LT I - C O N T R O L L E R B A S E D H A R D

S W I T C H I N G E L A S T I C I T Y F R A M E W O R K

This chapter proposes a novel, multi-controller with fuzzy switching based ho-

rizontal elasticity framework. The chapter starts with a brief definition of the

horizontal elasticity problem in Section 4.1. Section 4.2 identifies the key require-

ments for the development of the proposed framework. Section 4.3 elaborates the

proposed framework. The key components of our proposed framework including

the feedback control loop and switching mechanism are explained in Sections 4.4

and 4.5 respectively.

4.1 problem definition

This thesis considers that a web application is deployed in a cloud environment

using a pool of N VMs. For the sake of simplicity we also assume that all VMs

are identical regarding their hardware specification. A load balancer is used to

support the deployed web application by managing the assignment of incoming

requests to the available VMs. The load balancer has an access to the updated

information of all the VMs and follows a specified scheduling policy such as a

First come first serve, Round robin or a Priority based. The detail explanation of

scheduling policies or determining their impact is beyond the scope of this thesis.

All the experimentations in this thesis are conducted using a Round robin policy

where the arrived jobs are assigned to VMs in a circular order and without consid-

ering any kind of priority. The proposed multi-controller elasticity framework is

responsible to govern the dynamic scaling of the deployed web application. Thus,

whilst considering the horizontal elasticity problem, the proposed framework

dynamically determines an optimal number of required VMs, sufficient enough

to achieve a targeted performance objective at a lowest possible cost.
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4.2 requirements identification

Over the last decade, researchers and practitioners have introduced a large num-

ber of auto-scaling solutions to cover different aspects of resource management

aiming to achieve better performance [75, 78, 45]. A subset of these solutions

using control theoretical techniques are reviewed in Chapter 3. Based on this

review, we have identified the following three shortcomings that have not received

much attention in the existing research.

1. The nature of existing methods varies from each other in different dimen-

sions including but not limited to the triggering behaviour, scope, purpose,

dependency on metrics and implementation techniques [45, 99, 74, 91].

Despite such differences they can be mainly grouped into Fixed or Adaptive

based on their design and working mechanism to analyse their pros and

cons as a whole [44].

• Fixed: This family of elasticity approaches are designed off-line and

remain fixed at runtime such as the auto-scaling approaches developed

using Rules-based [27, 28, 29, 30], Fuzzy logic based approaches (re-

viewed in Section 3.3.4) and Fixed gain feedback control approaches

(reviewed in Section 3.3.1.1). The approaches following a Fixed based

design methodology are (1) simple and easy to design, (2) they do

not involve additional computational overhead and (3) they are better

for systems with uniform workload behaviour. However, the perform-

ance severely affect systems with variable workloads due to lack of

adaptability at runtime.

• Adaptive: The Adaptive on the other hand include those approaches

that involve some sort of an on-line learning algorithm responsible for

the reconfiguration at run time due to the change of system behaviour.

For example, the elastic methods developed using machine learning

techniques [21, 189, 190], adaptive control theoretical approaches (re-

viewed in Section 3.3.1.3) and optimisation based methods (reviewed
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in Section 3.3.2). In general, such adaptive control methodologies have

the ability to modify themselves to the changing behaviour in the sys-

tem environment that makes it suitable for the systems with changing

workload conditions. However, such approaches are also criticised for

an additional computational overhead caused by the on-line analysis

required for predictions [45], e.g. the on-line estimation of gain para-

meters in case of adaptive feedback controllers [45], the long training

delays in the case of reinforced learning [45], the brute-force search

time in the case of optimisation based approaches [109]. Furthermore,

they are also blamed for their associated risk of reducing the quality

assurance of the resulted system, and the impossibility of deriving a

convergence or stability proof [44]. The methodologies developed using

an Adaptive approach are predictive in nature and perform better in

comparison to Fixed approaches. However, they fail or perform poorly

in situations where the predictions are not possible or not accurate

[75], e.g. when there are abrupt changes in the workload behaviour.

Based on the two-way classification mentioned above and considering their

pros and cons, this thesis advocates the idea of adopting the best of both

worlds, i.e. an elastic methodology which can be developed using fixed

design approach but which also inherit an adaptive behaviour at run time.

Such an approach will have the inherent advantage of ease in design with

no additional computational overhead. Some of such existing proposals,

e.g. [167, 168, 169, 170, 171, 172] are reviewed in Section 3.3.3 and will be

further discussed in Section 8.1 comparative to the proposed method.

2. The auto-scaler in the cloud environment face many challenges raised due

to uncertainty aspects present in the cloud environment. Some examples of

such uncertainty behaviour include inaccuracy in monitoring information,

delays caused due to actuator operation, failure of the VMs themselves,

noise in the input data, the unpredictability of workload and inaccuracies

in the performance model [47, 186, 46]. The implementation of uncertainty
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related aspects in the existing elasticity research work has not received much

attention, therefore, the research work carried out in this thesis advocates

the use of fuzzy control system to take into account the uncertainty related

aspects into auto-scaling decisions.

3. Another important consideration is the popularity of Rule-based method

explained earlier in Section 2.4.1. The key benefit of such an approach is

its simplistic design. However, it suffers mainly from the following two

shortcomings i.e. (1) A detailed knowledge of the system itself is required to

set the thresholds quantitatively; (2) it is unable to cope with unpredictable

events because of its static scaling behaviour. Thus, whilst considering the

drawbacks of static scaling and quantitative rules, this chapter complements

and extends the idea of qualitative elasticity rules initially proposed by

Jamshidi et. al [16].

In light of the above discussion, this chapter proposes a multi-controller with

fuzzy switching based elasticity framework aiming to address the above men-

tioned points. The simultaneous use of multiple controllers with switching ability

facilitates to achieve the adaptive behaviour using a fixed design approach.

Whereas, the implementation of fuzzy based switching mechanism helps to

address the uncertainty related challenges.

4.3 multi-controller with fuzzy switching framework

The proposed multi-controller with fuzzy switching framework consists of the

use of an array of controllers, where each controller is particularly designed to

achieve better performance in a different situation and the selection of a suitable

controller is realised at runtime. The architectural diagram of the proposed con-

trol methodology is given in Figure 4.1 that extends and builds on the feedback

loop model. A detailed explanation of feedback control loop model is provided

in Section 2.4.2. The key components of the proposed control method are shown

in Figure 4.1 that consists of the Feedback control loop, a System Monitor and
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Figure 4.1: Architectural view of the proposed cloud elasticity framework using multiple

controllers with fuzzy switching

the FIS. The individual design details and working mechanism of Feedback con-

trol loop and Switching mechanism are discussed in Sections 4.4 and 4.5 respectively.

The key idea behind the proposed framework is to divide the complexity of

the overall system by constructing multiple fixed gain controllers, where each

controller depicts a separate elastic policy that carries out scaling actions at differ-

ent intensity level. The switching based multiple controller approach with some

variations is analogous to other popular methods like MMST and Gain scheduling.

We treat these methods similarly and therefore, all the existing auto-scaling meth-

ods based on any of these mechanisms are considered as related works. Such

proposals are reviewed in Section 3.3.3.2 and are further discussed in comparison

to our proposed method in Section 8.1.

Designing the proposed methodology (or any switched method in general) in-

volves the following two key challenges including: (1) how to partition the system

among multiple controllers? (2) How to switch (or formulate) the final decision?

Due to the lack of a standard approach for partitioning the system among sub
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controllers [56], this research realises the use of expert-oriented distribution of

workload intensity into various categories such as low, moderate and high. For

each category, a system model is constructed, based on which a controller is

designed. Whereas the final decision is carried out by the selection of a suitable

controller at runtime using the FIS.

The proposed control method is responsible for the readjustment of the number of

VMs to maintain the average CPU utilisation of hired VMs running at that time. We

will refer Cluster to represent the running VMs at a time from this point onward.

The proposed methodology incorporates three Fixed gain controllers termed Lazy,

Moderate and Aggressive. In theory, the number of controllers depends on the ad-

aptation and application scenario. Increasing the number of controllers facilitates

more fine-grained control over cloud resources, however, it also increases the

design and complexity of the elastic method. Each controller depicts a different

elasticity policy, and theoretically they can be implemented using any suitable

technique. However, this thesis focuses on the utilisation of three controllers to

demonstrate the effectiveness of the proposed methodology, and we consider the

types of controllers as Fixed gain.

The incorporation of fixed controllers with switching ability enables the adaptive

behaviour of the system to respond appropriately to the needs of the system in

case of changes in workload without the need of any on-line learning algorithm.

Each of the controllers is designed to react differently in the various situation. In

this case, as their name specifies, they indicate three different scenarios, i.e. to

perform scaling action at slower, moderate and aggressive levels of intensity. The

selection of one of this policy depends on the behaviour of the system at that

point in time. The behaviour of the system is identify using the latest status of

the following three aspects including application performance, workload arrivals,

and resource utilisation. These aspects are represented as Response time, Arrival

rate and Control error respectively in Figure 4.1.
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The System Monitor component of the proposed methodology is responsible

for obtaining the latest status of the three parameters mentioned above. These

measurements (as shown in Figure 4.1) are provided to the FIS. The FIS then de-

cides using the collection of elastic fuzzy rules (Section 4.5), what level of intensity

is needed for the readjustment of resources (VMs) to meet the desired performance

objective (explained in Section 4.5.2.1). The output of the FIS is one of the em-

ployed controller. The controllers are responsible for making the scaling decisions.

The simultaneous use of multiple policies in the existing cloud elasticity re-

search, apart from the related methods discussed in Section 3.3.3.2, exists as

follows:

1. Combination of reactive/predictive: This class of methodologies include the

use of different triggering behaviour, i.e. Reactive and Predictive for different

scaling actions. A commonly followed pattern is to use a Predictive approach

to perform a Scale-up operation, whereas a Reactive approach is used for the

Scale-down operation [128, 40].

2. Correction of prediction error: This class of methods include the use of a

Predictive approach to take a scaling action in advance for a longer period.

Whereas a Reactive approach used for the correction of any prediction error,

and to handle unpredictable changes [159, 160, 161, 162].

Other methodologies include like [21], where the Scale-up action follows an

aggressive approach by acquiring more than required resources to avoid per-

formance degradation followed by the Scale-down actions to release the unwanted

resources, if required.

In contrast to the classes of methodologies mentioned above, the proposed

method consists of multiple policies, and they are independent of scaling action

or trigger type association. Moreover, we aim to acquire the exact amount of re-

sources, i.e. sufficient to satisfy the demands rather than buy more than required.

This helps to avoid over-provisioning as described in Section 2.2.3. Further details
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on the components of the proposed framework are provided in the following

sections.

4.4 feedback control

This section discusses the design and development of the feedback control part

of our proposed methodology. We follow the process flow proposed by Antonio

et al. [6] for the design of control system. The diagrammatic representation of

this process flow is shown in Figure 4.2 (borrowed from [6]), which consists of six

steps distributed in three levels. The first level involves defining the goal of the

control methodology followed by the identification of control input and devising

of system’s model at the second level. Finally, the development, deployment and

evaluation of the control methodology are part of the last level. The details of

the control system goal, control input, system model and control design of our

proposed methodology are provided in the following subsections. Whereas, the

deployment and evaluation are discussed in Chapter 5.
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Figure 4.2: Design and development process steps of a feedback control methodology [6]
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4.4.1 Goal of Control Methodology

The goal of the proposed method is to adjust the number of VMs dynamically in

response to changes in workload to maintain the CPU utilisation of the Cluster

at a desired reference value, which reflects the target performance level. This

description indicates that the CPU utilisation is the Measured output of the system

and we have to identify the Reference input, i.e. the target CPU utilisation, which

results in achieving the desired performance level. We consider mRT as the QoS

parameter to measure the application performance and accept a value of (mRT 6

0.6 seconds) as the desired performance measurement. Thus, we need to identify

the corresponding CPU utilisation level that maintains the mRT 6 0.6 seconds.

The key reasons for using CPU utilisation as the system output are the following:

(1) The CPU utilisation is directly obtained from the monitoring API provided by

CPs. Hence it does not require application level monitoring or efforts. (2) It is a

system specific metric and no runtime relation identification between application

metric, e.g. Response time, is required. Hence it does not involve additional over-

head at runtime. (3) More importantly with respect to our methodology, we have

already catered application level metric (i.e. Response time) for decision-making.

Thus using CPU utilisation as another metric strengthens the decision-making

mechanism by taking into account the system’s resource utilisation perspective.

Hence, the proposed methodology becomes hybrid in contrast to most of the

existing methods that either rely on application or system level metrics.

The measurement for Reference CPU utilisation can be obtained using SID ex-

periments (explained briefly in Section 3.2.1.1) by establishing a relationship

between VM CPU utilisation versus performance. This experiment and all other

such SID experiments are conducted using an extended version of a well-known

cloud simulation tool named CloudSim [55]. A brief description of this simulation

environment is provided in Section 5.1.
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Figure 4.3: VM performance
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The SID experiment records the measurement of CPU utilisation and mRT against

several workloads that differentiate regarding the number of incoming requests

ranging from 50 rpm to 950 rpm. Each measurement of CPU utilisation and mRT

against the specified rpm is obtained from sub experiment, where the correspond-

ing number of rpm are sent for 30 minutes to the system, which consists of one

VM. The arrival time of job requests in a minute and the service time of each

request is randomly assigned. This whole experiment is repeated 100 times and

the average for each measurement is recorded. The obtained results are presented

in Figure 4.3.

It is evident from Figure 4.3a that the increase in the number of rpm makes

the mRT slower. The dashed line in 4.3a represents the desired performance meas-

urement, and we are interested in the maximum rpm measurement for which

the obtained performance is less than the desired target, i.e. (mRT 6 0.6 seconds).

This criterion is satisfied by 850 rpm. However, in this case, there were 13% SLO

violations observed, which is not acceptable as per the employed performance

objective (explain in Section 4.5.2.1). Therefore, we do not select the 850 rpm and

consider the next measurement (i.e. 800 rpm), which satisfies the criterion men-

tioned earlier. This means that on average one VM can fulfil maximum 800 rpm on

a per minute basis, while obtaining the desired performance level. Analogously

to mRT, the number of rpm has similar effect on CPU utilisation, i.e. the increase

in rpm results in an increase in the CPU utilisation as well. For the Reference input,

we record the corresponding measurement of CPU utilisation from Figure 4.3b

against the 800 rpm, which is 55%. Thus the control methodology is responsible

to maintain the measurement of 55% as the Reference CPU utilisation.

4.4.2 Control Input

We use the number of VMs as the Control input. This choice is obvious considering

horizontal elasticity and is also evident from the review conducted in Chapter

3, where all of the existing horizontal auto-scaling approaches use the number
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of VMs as the Control input. Moreover, we also performed an experiment to

demonstrate the impact on mRT with a change in Cluster size. Figure 4.4 shows

the obtained results from this experiment, which demonstrates that the increase

in the number of VMs reduces the system’s mRT.
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Figure 4.4: mRT vs cluster size with constant workload (2800 rpm)

4.4.3 System Modelling

This section identifies the relationship between input (number of VMs) and output

(CPU utilisation) of the system. Such a relationship refers to the system model

that describes how a change in input effect the corresponding output of the

system. We followed the black box modelling approach (briefly explained in

Section 3.2.1.1) to identify the system model. The black-box approach consists

mainly of the following three steps to derive the model [191]: (1) designing and

executing SID experiments to obtain training data; (2) building a model through

the use of training data; and (3) validating the model. If the model is not valid as

per the validation process, then the above steps are repeated to obtain another

set of training data and different model. The following subsections describe the

details of the steps carried out to obtain the model:
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4.4.3.1 SID Experiments Design

The SID experiments record the training data consisting of the pairs of input and

output of the system by changing the control input in a systematic way during

the experiment. The design of such an experiment ought to take into account

the following three considerations [53]: (1) Range of control input values; (2)

Coverage of values; and (3) Richness that result in exciting system’s dynamics.

Considering these guidelines and following the recommendations provided in

[53] on experimental design related to the adopted model type, i.e. 1st order

Autoregressive Exogenous Model (ARX) model (explain in Section 4.4.3.2), this

thesis implements a discrete Sine wave equation to change the value of control

input during an experiment.

The Sine wave consists of the specification of the following three ingredients: the

time period, mean and amplitude. It satisfies the three considerations mentioned

earlier as it changes the input signal within a defined range in an oscillatory

style, starting from the mean, covering all possible values within the range. The

coverage of the input values are evident from Figures 4.5a, 4.5c and 4.5e and the

corresponding variation of changes in system’s output are provided in Figures

4.5b, 4.5d and 4.5f respectively.

In the following part of this section, we explain the experiments conducted

for recording training data. However, it is noted that we assume that the historical

information related to system workload is available and on that basis, we use

domain experts based distribution of workload into three categories namely Low,

Moderate and High. Using these categories and following principles of Gain schedul-

ing technique where workload-specific models are developed [53], we conducted

three workload category specific experiments. Each experiment implements the

following sine wave equation:

y(t) = m+A ∗ sin(t) (4.1)
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In the above equation, m represents mean, A represents amplitude, where the

time period for each experiment is 540 minutes long. The difference between each

experiment is the use of the different pair of (mean, amplitude) values and the

use of different workload. The settings of each experiment are provided below:

• Experiment 1: mean = 18, amplitude = 15 and workload specification is

rpm = 14400

• Experiment 2: mean = 37, amplitude = 20 and workload rpm = 29400

• Experiment 3: mean = 59, amplitude = 30 and workload rpm = 46800

The workload in each of the above scenario is the average rpm for each respective

category, and the mean is assigned the values (number of VMs) that roughly

results in 55% CPU utilisation for each category respectively. The arrival time

of jobs on a per minute basis and the service time of each request are randomly

assigned. Each experiment is repeated 10 times, and the average results are

recorded. These results are provided in Figure 4.5. The sub figures pairs (4.5a,

4.5b), (4.5c, 4.5d) and (4.5e, 4.5f) represents the input and output signals for

Experiment 1, Experiment 2 and Experiment 3 respectively.

4.4.3.2 System Model and Evaluation

The ARX models are employed commonly for systems that use the black box

modelling approach [53, 191]. This thesis also uses the ARX approach to describe

the relationship between the number of VMs and CPU utilisation. The following

equation (4.2) represents the general form of ARX.

y(k+ 1) = a1y(k) + ....+any(k−n+ 1) +b1u(k) + ....+bmu(k−m+ 1) (4.2)

The equation above represents a single input, single output system. The u and

y represent the input and output of the system respectively. According to this

equation, the output in next time unit (k + 1) depends on the n number of

previous output values and the m number of previous input values. The ak and

bk are the constant coefficients values for each output and input value. Whereas
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Figure 4.5: SID experiments: each pair presents the relationship between cluster size and

CPU utilisation
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the m and n represents the order of the model. We use a 1st order ARX model of

the following form that can be derived from Equation 4.2 by setting m = n = 1.

y(k+ 1) = ay(k) + bu(k) (4.3)

The 1st order model, in contrast to m & n order model, relies on the input &

output from the previous time unit only. The key reason of selecting 1st order

model is its simplistic nature and the ability to avoid over-fitting [53]. We have

to find values for parameter a and b of the above equation from the training

data obtained from the experimentation (described in the previous section). For

this purpose, we employ the commonly used least square regression method to

estimate the model parameters for all the three experiments mentioned in the

previous sections, and the outcome is in the following equations:

y(k+ 1) = 0.89y(k) − 0.18u(k) (4.4a)

y(k+ 1) = 0.93y(k) − 0.07u(k) (4.4b)

y(k+ 1) = 0.95y(k) − 0.03u(k) (4.4c)

These models after validation can be used to design controllers. The following

two approaches can be followed to design controllers from these models. Firstly,

each model could be used to design a different controller as they are obtained

based on the average rate of each workload category and thus can be treated as

workload-specific models. Secondly, one model could be used to design different

controller where each differs from others based on the controller properties. We

use the second approach because we do not only rely on workload arrival as

criteria to differentiate between operating region but use the level of scaling

action intensity required at run time to determine the suitability for a controller.

We use the model of Equation 4.4a for the designing of controllers (explain in

Section 4.4.4).

The next step is to evaluate the model. The purpose of the evaluation is to

quantify the accuracy of the model. For this purpose, we employ a widely used

method known as the coefficient of determination (denoted by R2). The R2 indic-
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ates the variability explained by the model [53]. R2 can be calculated using the

following equation,

R2 = 1−
var(y− ŷ)

var(y)
(4.5)

The y in above equation represents the actual recorded output value, where ŷ

indicates the predicted value computed using model. Thus, var(y− ŷ) is the

variance of the difference between actual and predicted output, whereas var(y)

is the variance of the actual output. The value of R2 lies in the range of 0 to 1.

The magnitude of this value indicates the quality of the model. A higher value

suggests better fit. The value of R2 > 0.8 is an acceptable range [53]. In the case

of the model in Equation 4.4a, the R2 value is 0.96, which indicates a good fit.

However, according to Hellerstein et al. [53], a larger value of R2 can also be

misleading in cases where data points are grouped together around extreme

values. Therefore, to confirm the accuracy of the model, residual analysis plots

are often recommended. Such a plot, in the context of our model, can be seen in

Figure 4.6 where the actual values of the output signal are plotted against the

predicted values. It is evident from this plot that apart from few points, all other

points are grouped around the diagonal line, which indicates the better accuracy

of the model.

4.4.4 Controller Design

The goal of the controller design step is to select the control law and any required

parameters for the Controller component of the feedback control methodology.

The control law determines the structure of Controller component and describes

how it will operates [192]. In this thesis, we adopt the Integral control law for

each of the three employed controllers, i.e. Lazy, Moderate, and Aggressive. The

key reasons behind the Integral control law selection are its simplistic nature and

its extensive use for similar problems, e.g. [31, 114, 125, 130, 156].
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Figure 4.6: Comparison of actual (measured) output vs predicted output

The integral law can be defined using the following equation:

u(t) = u(t− 1) +Kie(t) (4.6)

The u(t) represents the new value for control input in time t, the e(t) is the

control error that represents the difference between the desired and measured

output, i.e. e(t) = yref − yt, and Ki is referred to the integral gain parameter. In

the context of this thesis, the number of VMs is the control input, whereas CPU

utilisation is the measured output. The control error represents the difference

between the desired CPU utilisation (i.e. 55%) and the measured CPU utilisation.

The integral gain parameter indicate the aggressiveness of the controller that

determines how fast the system will respond. The higher this value, the faster

the system will react. However, careful attention is required while deciding the

gain of the controller as higher value of the gain parameter could cause oscilla-

tion and may lead the system to instability. All the three employed controllers

adopt the same integral law specified by Equation 4.6. However, their integral
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gain parameter is different. The following equations represent each employed

controller:

u
L
(t) = u(t− 1) +K

L

i
e(t) (4.7)

u
M
(t) = u(t− 1) +K

M

i
e(t) (4.8)

u
A
(t) = u(t− 1) +K

A

i
e(t) (4.9)

The gains K
L

i
, K

M

i
, and K

A

i
are derived using the standard procedure of Root-locus,

which provides a systematic method to analyse and design feedback controllers.

The Root-locus method require the transfer function of the feedback control

system. Such a transfer function can be obtained by the corresponding transfer

functions of the different components of the feedback loop. In our case, the

different components include the integral controller (represented by Equation

4.6) and the target system (represented by one of the model earlier described in

Section 4.4.3.2). The corresponding transfer function of integral controller is given

in Equation 4.10, whereas the transfer function of the system model of Equation

4.4a is provided in Equation 4.11. Based on these equations, the transfer function

of the entire feedback loop [53] is provided in Equation 4.12.

C(z) =
zKi
z− 1

(4.10)

G(z) =
0.18

z− 0.89
(4.11)

FR(z) =
0.18Kiz

z2 + (0.18Ki − 1.89)z+ 0.89
(4.12)

Using the Root-locus method by taking into account the transfer function of

feedback loop (Equation 4.12), we finalise the following values −0.06, −0.2,

and −0.5 for K
L

i
, K

M

i
, and K

A

i
gains respectively. The analysis performed using

Root-locus indicate that the system remains stable (always reach to equilibrium)

and accurate (steady-state error reach to zero) using all the selected gains. The

finalised value has a settling time of less than 10 time interval, whereas, the

maximum overshoot is recorded less than 15%.
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4.5 the switching mechanism: a fuzzy control system

4.5.1 Overview

The deployed application over cloud environment automatically inherits, the

uncertainty related challenges associated with the cloud environment [50]. Hence

the underlying elastic method, which is responsible for the resource management

of the application, has to deal with these challenges. However, handling uncer-

tainty aspects in the existing elasticity research has not received much attention

[47]. The uncertainty, in general, can be either Stochastic in nature or Subjective

[193]. The Stochastic refers to the randomness in the environment such as the

failure of VMs, and workload unpredictability. Whereas Subjective caused due

to impreciseness in domain knowledge, e.g. lack of expertise to appropriately

set optimal values for configuring a particular application. This section briefly

discusses some of such uncertainty aspects in light of cloud elasticity. These as-

pects are summarised from the limited research works that highlight and address

auto-scaling related uncertainty challenges [47, 186, 46, 50, 16]:

1. Impreciseness in domain knowledge: The design of an elastic policy needs

a careful consideration by the domain experts to define various threshold

values of the specific performance metrics. The elastic policy is thus depend-

ing on the specification of these thresholds values, hence the performance

of policy remains subjective to the accuracy of experts knowledge, which is

usually prone to impreciseness [47].

2. Noise in monitoring data: An elastic method has to rely on a monitoring

component that continuously monitors the latest status of metrics needed

for decision-making mechanism. This monitoring could involve gathering

the following information: (1) the status of application-level metrics such as

Response Time, and Throughput using the application or 3rd party sensor;

(2) the status of resource utilisation such as CPU utilisation, memory con-

sumption using cloud provider specific sensors. In both cases, the collected
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monitoring data is associated with sensory noise [46]. For example, the

hosted application may return different Response Time values at different

times, or the cloud sensor returns slightly inaccurate estimate of resource

utilisation measurement.

3. Inaccuracies in performance model: A performance model interprets the

behaviour of the underlying system. The elastic controller as specified

earlier can be designed using the performance model, which is subject

to inaccuracies. Specifically, in the cloud environment, the VMs of one

application may share the underlying physical resources with the VMs of

other applications. Such phenomenon can lead significant variation in the

performance of VMs [194, 46], which usually not considered at the time of

designing performance models.

4. Delay caused due to actuator operation: The elastic controller takes a scaling

decision, however, its execution is not immediate. The elastic controller has

to interact the cloud provider service to initiate the execution. This process

may take up to several minutes before the new VMs are set-up and ready

to accept the load of the application. Thus the delay between the decision

and the actual execution could cause some problems for the underlying

application [46].

5. Unpredictability in workload: As mentioned earlier, the workload behaviour

changes at different times (Figures 1.1b and 1.1a) and it can be difficult to

predict across time due to unexpected spikes [50].

Jamshidi et al [16, 46] and Farokhi et al [47] stressed the importance of the uncer-

tainty aspects to be taken into consideration while designing the elastic controller.

Otherwise, scaling decisions often result in unreliability as the available resources

may fail to fulfil the requirements, or may not be cost-effective [47]. However,

despite the importance, the implementation of uncertainty in the context of cloud

elasticity has not yet been well received [47].
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A step in this direction is the work of Jamshidi et al in [16], where they proposed

a fuzzy control system. They focused on the following two issues: (1) The quant-

itative nature of the Rules-based method by introducing the idea of qualitative

elasticity rules; and (2) The lack of consideration regarding uncertainty raise due

to noise in monitoring input data. Their fuzzy controller introduces elasticity

rules of the following nature:

IF workload IS high AND responsetime IS slow THEN add 2 VMs

The elasticity engine executes such rules at runtime and make decision, based

on Arrival rate and Response Time. The output of their controller is the number

of VMs to be added or removed. Their approach facilitates a dynamic response

based on the aforementioned two parameters by making a scaling decision with

different intensity level, and consequently it improve the static scaling issue of the

Rule-based approaches. However, the output (number of VMs) are pre-defined

range of constant integers, and these numbers are set-up based on the experiences

of the experts rather than rely on a well-founded design approach. In contrast, the

proposed approach rely on the systematic method of control theory to compute

the number of VMs. Moreover, the proposed approach is hybrid in nature, i.e.

it incorporates both the performance and capacity based metrics as opposed to

their performance based approach only.

We compliment and extend the work of Jamshidi et al. [16], and aim to de-

velop a fuzzy control system to implement the switching mechanism of the

proposed framework. The key reasons of selecting fuzzy logic theory as an imple-

mentation method are two-fold. Firstly, It is well known for its use in scenarios,

where the system knowledge is imprecise, uncertain and highly dynamic [51].

Secondly, it facilitates qualitative decision-making by designing the rule-based

system thus enabling us to provision qualitative elasticity rules.
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4.5.2 The Design Process

The design process of constructing a fuzzy system as described in Section 2.4.3

consists of the following three steps: establishing domain knowledge, designing

membership functions and composing fuzzy rules. The details of each of these

steps in the context of our switching mechanism are provided below.

4.5.2.1 Domain Knowledge

Domain knowledge is concerned with the identification of inputs and outputs of

the system. The inputs specify those factors of the system which are important to

be considered for decision-making purposes. Earlier in Section 4.3, we mentioned

the consideration of the three aspects of the system for decision-making. These

aspects are the inputs of the fuzzy system. Their brief description is provided

below:

1. Response time: It indicates the performance level of the deployed application

and is measured as the percentage number of SLO violations (i.e. when

Response time of a job request > 0.6 seconds) in last time unit.

2. Arrival rate: It indicates the workload behaviour in the last time unit and

is measured as percentage number of job arrivals. The System Monitor

component of the proposed method records the number of arrivals in last

time period to identify the intensity of the workload.

3. Control error: The inclusion of Control error as an input is the consideration

of resource utilisation level into the decision-making. The Control error is

the difference between the measured and desired CPU utilisation.

The inclusion of inputs mentioned above into the decision-making mechanism

covers the following aspects of the system, i.e. performance, disturbance and re-

source utilisation. Such an elastic methodology is referred to as Hybrid, a termed

coined by Faroki et al. [49] to represent methodologies in contrast to either
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capacity-based or performance-based approaches. The capacity-based methodolo-

gies rely on system level resource utilisation metrics such as CPU utilisation, and

memory utilisation [167, 33, 110]. Whereas the performance-based methodologies

rely only on application level metrics such as Response time, and Throughput

[171, 16]. The output of the fuzzy system is one of the employed controller that

will be used to compute the scaling decision. In contrast, the fuzzy controller of

Jamshidi et al in [16], directly produce the pre-defined constant number of VMs

that has to added or removed as the output. Whereas in our case, the scaling

decision is computed by the controller using the Control error at that point in time.

The next step is to define fuzzy set for each input and output (commonly known

as fuzzy variables). The fuzzy set of each variable comprises of defining linguistic

terms and assigns ranges of values to them. Table 4.1 provides the definitions of

all the linguistic terms for each fuzzy variable and their corresponding ranges,

whereas their brief description is as following:

• The linguistic terms and the corresponding ranges for the Workload variable

are adopted from the work of Jamshidi et al in [16], where the knowledge

base is constructed using domain experts, i.e. architects and administrators.

They have constructed a fuzzy set of five linguistic terms for Workload

variable including Very low, Low, Medium, High and Very high. We reduce

them to three to minimise the number of rules, hence reduce the complexity.

However, more fine-grained control over resources can be obtained by

increasing the number of workload categories or the number of controllers.

• The linguistic terms of Response time variable reflect the overall performance

objective of the application that can be defined by the SPs. In Table 4.1, we

use symbols β1, β2, β3 and β4 to represent the customisable aspect of these

parameters. Jamshidi et al. [16] in contrast, distributes the Response time into

five categories with the values obtained from domain experts. However,

considering that the application performance measurement for different

application is different and therefore, the values of the linguistic terms of
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Response time are customisable that reflect the desired performance objective

and has to be defined by the SPs. In the current settings of this thesis, we

adopted the following values for evaluation purposes, i.e. β1 = 3%, β2 = 5%,

β3 = 8%, and β4 = 10%.

• The linguistic terms of Control error are obtained by distributing the Control

error measurement into five categories. The increase in these categories

can provide more fine-grained control. However, it will also increase the

complexity of the proposed method. The ranges of these linguistic terms

are obtained using trial and error method, where various experiments were

carried out using different ranges.

• The linguistic terms of Controller variable are the possible outcomes. These

terms depend on the number of controllers, which in this case are three.

Moreover, we also consider one more output, i.e. No-scaling, which specifies

that none of the controllers are selected and no scaling decision is required.

The ranges of these linguistic terms are set based on the approach adopted

in [54], where no overlapping of the range is required because the final

decision represents a range that indicates a single output rather than a

numerical value.

4.5.2.2 Membership Functions

The next step is to define the membership functions that convert the crisp inputs

into the corresponding fuzzy values. The membership function defines the degree

of the crisp input against its linguistic variables in the range of 0 to 1. In this

thesis, we design the membership functions following the approach adopted in

[16], where they have used only triangular and trapezoidal types of function for

their construction. The triangular and trapezoid functions have the advantage

of being simple and efficient in comparison with other types of membership

functions [195]. Figure 4.7 represents the membership functions of our fuzzy

control system.
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Fuzzy variable Set member Range

Workload(Arrival Rate) Low 0 — 48.9

Medium 30.7 — 67.94

High 56.41 — 100

Response time Desirable 0 — β2

Okay β1 — β3

Bad β4 — 100

Control error Stronger Negative (stNeg) -20 — -100

Weaker Negative (weNeg) -5 — -30

Normal -10 — 10

Weaker Positive (wePos) 5 — 30

Stronger Positive (stPos) 20 — 100

Controller No scaling 0 — 10

Lazy 11 — 20

Moderate 21 — 30

Aggressive 31 — 40

Table 4.1: Ranges for fuzzy variables
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4.5.2.3 Fuzzy Rules

The fuzzy rules describe the relationship between the inputs and outputs of the

fuzzy control system. The fuzzy rules, in this case, determine the type of the

controller that will be used to make the elastic decision. The fuzzy rules are in

the form of if-then and are made of using fuzzy logic statements. The if part

of the rule refers to antecedent and the then part is called the consequent. The

fuzzy rules of the switching mechanism are made using the linguistic terms of

the fuzzy variables explained earlier in Section 4.5.2.1. An example of such a rule

can be seen from Figure 4.8. In this example rule, a Lazy controller is selected

based on the values of Arrival rate, Response time and Control error. Such rules for

an application scenario can be designed using the combination of linguistic terms

µ

0

1

10 20 30 40 50 60 70 80 90 100

low medium high

Workload (Arrivalrate)

µ

0

1

β1 β2 β3 β4
3 6 9 12 .... 100

desirable okay bad

Response time

µ

0

1

-100 ... -30 -20 -10 0 10 20 30 ... 100

stNeg weNeg normal wePos stPos

Control error
µ

0

1

5 10 15 20 25 30 35 40

no-scaling lazy moderate aggressive

Controller

Figure 4.7: Membership functions
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IF arrivalRate IS high AND responseTime IS desirable AND controlError IS wePos

THEN controller IS lazy

high

medium

low

desirable
okay

bad

stNeg

weNeg

normal

wePos

stPos

aggressive
moderate

lazy

no-scaling

Figure 4.8: Example of switching elastic rule

provided for each parameter in the rule (or see Table 4.1). Such rules can also be

tuned for different situations using optimisation approaches. The full list of the

rules employed for the experimentation conducted in this thesis are provided in

Table 4.2. These rules are designed using the following considerations: (1) Select

those rules, which can react quickly if the application performance is poor; (2)

If the application performance is desirable then aims to reduce cost; (3) Aim to

maintain the CPU utilisation around the desired reference value.
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Workload Response time Control error No-scaling Lazy Moderate Aggressive

high desirable wePos

high desirable stPos

medium desirable wePos

medium desirable stPos

low desirable wePos

high desirable stPos

high desirable weNeg

high desirable stNeg

high okay weNeg

high okay stNeg

high bad weNeg

high bad stNeg

medium desirable weNeg

medium desirable stNeg

medium okay weNeg

medium okay stNeg

medium bad weNeg

medium bad stNeg

low desirable weNeg

low desirable stNeg

low okay weNeg

low okay stNeg

low bad weNeg

low bad stNeg

- - normal

Table 4.2: All switching elasticity rules
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4.6 execution flow summary

Sections 4.4 and 4.5 explain the key components of the proposed framework. This

section briefly summarises the execution flow of the framework explaining how

the proposed framework works as a unit at each iteration.

1. The System Monitor component of the framework is responsible for gathering

the latest status of the performance metrics. This monitoring include, the

incoming workload, measuring the application performance and collecting

the CPU utilisation measurement from cloud provided sensors, e.g. Cloud

watch service provided by Amazon.

2. The FIS obtains the latest measurements of inputs from System Monitor

component.

3. The input values are converted to the corresponding fuzzy values using the

defined membership functions.

4. The FIS then evaluates the rules and identifies the output, i.e. Controller.

5. The Switch component of the framework then enables only the selected

controller to compute the number of VMs to be added or removed.

6. The target system (i.e. elastic application) then executes the scaling decision

by triggering the cloud provided API to add or remove the VMs, computed

in the previous steps.
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5
E X P E R I M E N TAT I O N A N D P E R F O R M A N C E E VA L U AT I O N

This chapter presents and discusses the experimentation carried out for the eval-

uation of Hard switching framework. Section 5.1 introduces the self-customised

experimental environment that integrates a well-known cloud simulation envir-

onment called CloudSim and an external Java-based library called JFuzzyLogic.

The details regarding the various workload patterns and the real HTTP traces

employed for evaluation purposes are provided in Section 5.2. The benchmark

methods and the employed evaluation criteria are presented in Section 5.3 and

5.4 respectively. Finally, the obtained computational results are presented and

discussed in Section 5.5.

5.1 experimental set-up

The experimental environment used for the evaluation of Hard switching frame-

work is developed in Java language. This experimental environment integrates

a well-known cloud simulation framework called CloudSim [55] and an external

Java-based library called JFuzzyLogic [196]. The block diagram of this experi-

mental set-up is shown in Figure 5.1, which consists of the following four key

components. This section provides an overview of these components and further

explanation of how it works collectively:

1. Workload Generator: It is responsible to read the Workload file containing

details of the incoming job requests. Each job request is uniquely identified

with a Job ID, and its arrival time and required service time are noted. The

Workload Generator creates a particular Java-based object to represent each

job request and passes it on to the CloudSim (explain shortly in this section)
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Figure 5.1: Architectural view of the experimental set-up

at its specified arrival time. The CloudSim is responsible for the execution of

the job.

2. Elastic Controller: The Elastic Controller component is the implementation of

our proposed elastic method and all other benchmark methods (see Section

5.3). Various experimental settings required to run the elastic methods are

provided at runtime using a configuration file. This file contains all the

parameter settings of the experiment such as the number of initial VMs,

which method to execute and desired Response time, etc.

3. Monitoring: The Monitoring component is responsible to gather the latest

information of the employed metrics. This includes the monitoring of the

Arrival rate and Response time. Whereas, the CPU utilisation is obtained from

the CloudSim.

4. CloudSim: A key component of this experimental set-up is the use of

CloudSim [55]. CloudSim is extensively used in the cloud related research

activities for modelling and simulation of cloud computing systems and

applications [8, 197, 198, 199]. For the sake of these experiments we have

extended CloudSim with features of elasticity and other related concepts

such as load balancing strategies and necessary features for SID experiments.
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CloudSim provides some important entities that can be extended to simulate

the real world cloud objects. In this research, however, we have focused on

the following four of them because of their importance and usage in our

experiments. These include the Data centre, Host, VM and the Cloudlet. The

Data centre entity depicts the Infrastructure as a Service (IaaS) layer, which

manages the Host entities. A Host entity represents a physical server, which

can be possibly shared by several VMs. The VM reflects a virtual machine,

hosted by one of the Host. The Cloudlets simulates an individual task unit or

a job with a pre-defined processing length (service time) measured in MIPS

(millions of instruction per second) and an arrival time.

CloudSim allows the creation and deletion of VMs, which are used as a

result of the scaling decision. Once a VM is created, it must be assigned

to a Host. This assignment is governed by an allocation policy. Each host

also implements a scheduling policy that determines how the assigned VM

must share the available resources. These policies must be defined before

running the simulation. Such configurations are related to the allocation and

scheduling of the related problems (see for details [9]) and are beyond the

scope of this thesis. Therefore, only the default allocation and scheduling

policies concerning VM and Host related assignment and execution are used

in this research.

Analogous to the VM and Host related allocation and scheduling policies,

there are some other application level allocation and scheduling policies

that control the assignment of Cloudlets to the already available VMs. For

this purpose, we have implemented a round robin policy to assigned the

incoming jobs (i.e. Cloudlets) to the available VMs. In the case of a Scale-down

operation, the VMs with the minimum number of jobs are deleted.

The flow of an experiment using the environment mentioned above is as follows:

A specific Workload file and Configuration settings represent one experiment, which

are provided to the environment. The Workload generator reads the Workload file,
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transforms each job request to Cloudlets and keeps sending them to CloudSim

at their pre-specified arrival times. The CloudsSim executes each job as per their

service time requirements. The Monitoring component gathers the performance

metrics information at different time intervals during the entire experiment and

feed them into the Elastic controller component. The scaling decisions, if required,

are performed by the Elastic controller and execute using CloudSim API.

5.2 workloads

The commonly used approach to test an auto-scaling methodology is to evaluate

its performance based on certain desirable criteria against different workloads.

The existing research on cloud elasticity [122, 123, 40, 49, 21] have made used of

various publicly available internet traces, e.g. Wikipedia, FIFA world cup, etc. as

input workloads. Moreover, the use of synthetically generated workloads based

on different patterns is also quite common [45]. The various workloads used in

the existing research are shown in the Tables 3.1 to 3.7.

It is quite common to use various real workloads to evaluate an elastic method.

However, Gandhi et al. in [200] and Jamshidi et al. in [16] evaluated their pro-

posed elastic methods by using workloads that follow different patterns. The key

reason of using such an approach is to evaluate and analyse the performance of

an elastic method in different scenarios. The workload patterns that they have

used include Quickly varying, Slowly varying, Dual-phase, Tri-phase, Big spike and

Large variations. Similarly, Mao and Humphrey [201] used Stable, Cyclic, Growing

and On-off set of patterns. Each of these patterns represents a different class of

applications [45].

This research also adopts the patterns mentioned above to analyse the perform-

ance of the proposed method regarding different classes of applications. We have

used seven different workloads as shown in Figure 5.2. Each of these workloads

represents a single or multiple patterns. Amongst these workloads, six are real
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and one of them is synthetically generated. The real workloads are derived from

the following Internet-based sources, i.e. Wikipedia, FIFA World Cup and WITS.

One of them, however, is generated synthetically. A brief description of each of

these sources and the details of the corresponding workloads are provided below:

• Wikipedia: The Wikipedia has made available its entire HTTP traces target

to their servers from September 2007 to January 2008 in [202]. The Wikipedia

traces as input workload scenarios are amongst the most used for the

evaluation of elastic methods. Some prominent examples of the relevant

research undertaken that utilised Wikipedia traces include [122, 49, 21]. We

have extracted the following two workload scenarios using Wikipedia traces:

(1) The three days (starting from 18th September to 20th September) is

horizontally scaled to one day long. The derived trace is shown in Figure

5.2e and is an example of the Cyclic pattern, and (2) The second workload

consists of the original one day (18th September) trace. This trace is shown

in Figure 5.2f and is an example of a Slowly varying workload pattern.

• FIFA World Cup: This consist of all the HTTP requests targeted to the

website of 1998 FIFA World Cup from 30th April 1998 to 26th July 1998 and

is available in [22]. This workload is shown in Figure 1.1b. The FIFA trace

is one of the mostly used workloads for testing the elastic methods, e.g.

[33, 122, 123, 124]. We have, however, derived a one day trace (starting from

08 AM, 03rd July to 08 AM, 04th July) as an example of the Large variation

and Big spike pattern. The derived trace is shown in Figure 5.2a.

• WITS traces: The WITS (Waikato Internet Traffic Storage) [203] project has

made available a large range of different sets of Internet traces, which

are freely accessible for research purposes. Amongst these traces, we have

derived the following three scenarios, i.e. Quickly varying, Dual-phase and

Tri-phase. The derived workloads are shown in Figures 5.2b, 5.2c and 5.2d

respectively. Some of these traces are also used in Gandhi et al. [200].

• Synthetic: We have also generated one trace synthetically to represent the

On-off pattern. The generated trace is shown in Figure 5.2g. Mao and

105



Humphrey [201] used a similar workload pattern as well. The synthetic

generation of this workload trace consists of 6 hours long on and off pattern,

where the number of arrivals per minute slightly varied in each pattern.

The variation in case the of off pattern time is between 10,000 rpm to 12,000

rpm, whereas in the case of on pattern, it was 41,000 rpm to 44,000 rpm.

All the workloads mentioned above are vertically scaled (up or down) to a

maximum of 60,000 rpm. The number of arrivals on per minute basis is obtained

from the count of actual arrivals except for the synthetically generated one. The

arrival time of each request in a minute is randomly generated for the creation of

Workload files as mentioned in Section 5.1. Moreover, the service time of each job

request is randomly generated between 100 milliseconds to 500 milliseconds to

incorporate the stochastic behaviour of the incoming arrivals whilst considering

different kinds of requests, e.g. read-only, or read/write, etc.
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(b) Quickly varying (WITS_QV)
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(c) Dual phase (WITS_DP)
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(d) Tri phase (WITS_TP)
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(e) Cyclic (Wikipedia)
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(f) Slowly varying (Wikipedia_2)
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Figure 5.2: Various workloads used for experimentation
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5.3 benchmark approaches/scenarios

5.3.1 Fixed gain Feedback Controller

We have used Fixed gain controller as one of the benchmark methods. The general

overview of feedback control as an auto-scaling method is described in Section

2.4.2, whereas Fixed gain controller is introduced in Section 3.2.1.1. The key

reason of using Fixed gain controller as a benchmark approach is that our pro-

posed method is an extension, where we have used multiple Fixed gain controllers

simultaneously.

We consider the individual controllers termed Lazy, Moderate and Aggressive

separately as individual elastic controller. We aim to demonstrate the effect of

using the same controllers independently versus using them collectively as in the

proposed framework. More generally, we aim to demonstrate the effects of using

uniform elastic policy of different natures versus the effects of combining them

with an intelligent switching mechanism.

The nature of the individual controllers, i.e. Lazy, Moderate and Aggressive, in

general are similar to those used in related elastic methodologies reviewed in

Section 3.3.1.1. The individual controllers are implemented following the propor-

tional threshold approach in [31], where the Reference input is considered as a

range rather than a scaler value, e.g. in our case it is 55%. This approach avoids

the unnecessary oscillations by restricting the controller not to take a decision if

the measured output is within a certain range. In our implementation, however,

we consider a range ±10% of Reference input, which is the same as the range

of Normal linguistic term of Control error fuzzy variable used in our proposed

switching mechanism.
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5.3.2 RightScale: A Rule-based Approach

This research also uses RightScale [27] as another benchmark method. The RightS-

cale is a 3rd party commercially available auto-scaling approach, which is based

on the principles of the Rule-based method described in Section 2.4.1. In the RightS-

cale method, each individual VM engages in a voting process, where every VM

decides whether a scaling decision is required or not. The decision by individual

VMs is based on the set of elasticity rules.

The implementation of RightScale includes the setting of decision threshold

value for the voting process, which determines whether the scaling decision will

be carried out or not. For this purpose, we have used the value 51% representing

that if just more than half of the VMs are in favour of the decision, the action

will be performed. Otherwise, it will be ignored. Another important aspect of

RightScale implementation includes the determination of system metric to be used

for setting up the rules. For this purpose, we use CPU utilisation as a system

metric based on its usage as the Reference input in the proposed method. The

elasticity rules used for the implementation are as following:

For scale up

if CPU Utilisation > thrup then

n = n+ sa and

do nothing for t seconds

For scale down

if CPU Utilisation < thrdown then

n = n− sr and

do nothing for t seconds

The value use for thrup is 55%, i.e. the desired Reference input of our proposed

method as we already know, the performance degrades when CPU utilisation

becomes higher than 55%. The value for thrdown obtained by trying different
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possible values such as (20%, 30% and 40%) and then selected, the value that

produces the best result regarding the evaluation criteria (explain in next section).

Another important configuration required is the settings of values for sa and sr.

For this purpose, we use the following four different settings: (1) sa = sr = 2, (2)

sa = 2, sa = 1, (3) sa = 4, sr = 2 and (4) sa = 10%, sr = 5%. Lastly, the t in both of

the above rules specifies the cooldown period, which remains same for all the

methods, i.e. for the proposed method as well as for the benchmark methods.

5.4 evaluation criteria

The key objective of implementing cloud elasticity is to improve the utilisation

of computational resources whilst maintaining the desired performance of the

system and reducing its operational cost. This statement provides us with the

fundamental criteria to assess the quality of an auto-scaling mechanism, which

is Performance and Cost. This section briefly introduces these parameters in the

context of this thesis to set the criteria for evaluation purpose.

1. SLO Violations: Section 2.3.2 provides an overview of performance-related

concepts including the introduction of different aspects like Availability,

Throughput and Response time. The measurements of these aspects represent

the performance of the underlying system. Among these aspects, we con-

sider Response time as a criterion to measure the performance of the elastic

method. The requirements regarding desired performance objective in cloud

computing is defined through SLO specification as explained in Section 2.3.2.

In this thesis, we consider that each job request of the workload must be

completed in the pre-defined desired time, i.e. 6 0.6 seconds. Thus an SLO

violation is considered, if the desired Response time for a job request has

not been achieved.

2. Cost: The Cost refers to the operational cost of the rented VMs. These VMs are

used to execute the workload and each VM is associated with a cost per time

unit. The total running time of all VMs is recorded for the entire experiment.
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It includes the time when a VM starts; to the time it finishes execution,

either as a result of a Scale-down action or when the experiment finishes.

The total time is calculated in minutes and an immediate start and stop of

the VMs are considered to avoid complexities related to the implementation.

The total running time of all the VMs is further converted to hours in the

final calculation. A rate of 0.013$ per hour is applied to calculate the final

cost based on the Amazon pricing [204] for the VM instances of "t2.micro"

type.

Apart from the above mentioned main criteria of evaluation, we have also con-

sidered the number of unsuccessful requests in the entire experiments. The

unsuccessful requests refer to the job requests that were unable to complete

their execution in a maximum time unit. In such a case, we withdraw those job

requests and discard them. For the evaluation purposes, we take 2 seconds as the

maximum time unit.

5.5 computational results and analysis

The computational results obtained from the experiments carried for evaluation

is presented in this section. These results are categorised based on the type of

the workload pattern used. The following subsections discuss the results of each

workload scenario, whereas subsection 5.5.2 provides a summary of the overall

results.

5.5.1 Individualistic Scenario Analysis

5.5.1.1 Dual-phase

Figure 5.3a presents an aggregated view of the Cost versus Performance aspect of

the overall experiment for all methods, i.e. proposed and benchmark methods.

In this figure, rs22, rs21, rs42 and rspro represent the four different settings of

the RightScale method explained in Section 5.3.2. Whereas Lazy, Mod and Agg
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Figure 5.3: Results of Dual-phase scenario. The RightScale methods results in lowest num-

ber of SLO violations, however at a higher cost. Amongst the rest, MC com-

paratively performs better with lowest number of SLO violations, i.e. 1.14% in

comparison of 1.28% and 1.33% of Agg and Mod respectively.
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Figure 5.4: Results of Large variation scenario. The proposed MC approach (a) results in

lowest number of SLO violations, (b) maintain less than 5% SLO violations in

the entire time period in contrast to others where more than 10% are observed

in different hours, and (c) results in lowest number of unsuccessful requests.
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refers to the benchmark methods explained in Section 5.3.1 and MC represents

the proposed Hard switching method.

It is evident from Figure 5.3a that rs22, rs21, rs42 and rspro produce better per-

formance results, i.e. lowest number of SLO violations in comparison to all other

methods, however at a higher cost, i.e. more than 640$ in contrast to ≈ 600$ of

other methods. Amongst other methods, the MC comparatively performs better,

where the exact measurements are 1.14% for MC, 1.28% for Agg and 1.33% for

Mod. Regarding the unsuccessful requests, there was no case observed by any

method.

Figure 5.3b shows the percentage number of SLO violations on a per hour basis

obtained using Agg, Mod and MC methods. This plot demonstrates the following

three aspects when observing in accordance to the Dual-phase workload (as shown

in Figure 5.2c). (1) The first 5 hours of the plot indicates that MC results in lesser

number of SLO violations than other methods. During these hours, due to low

arrivals (almost stable), there was not much change required and therefore, MC

was taking decisions using Lazy controller when required. Whereas, the decision,

using Mod and Agg results in big changes, hence influencing the performance.

(2) There is a continuous rise in the workload from 5th to 10th hours and it is,

therefore, the Agg approach performs better in this period due to the Aggressive

policy and Mod results poor performance comparatively. The MC, however, be-

haves as the average of both Mod and Agg due to its adaptive behaviour. (3) In

the last set of hours, the Agg and MC performs almost similarly due to the fact

that the incoming workload is high, hence the decision taken by the Agg does not

result in a big change in the system and is appropriate with respect to that point

in time.

5.5.1.2 Large variations

The aggregated view of Cost versus Performance results is shown in Figure 5.4a.

This figure does not show results of some of the methods because they result in
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large number of SLO violations (i.e. > 5%) and therefore they are not included.

It is evident from figure 5.4a that the MC and rs42 produce less number of SLO

violations, i.e. 1.42% and 1.43% respectively than other methods. However, the

rs42 method obtained better performance level at a higher cost, i.e. 560$ in com-

parison with 468$ of MC method. It is also evident from this figure that MC has

achieved a better performance with slightly lower cost in comparison to other

methods. Figure 5.4b presents the number of unsuccessful requests for the three

approaches. It is evident from this figure that the number of unsuccessful requests

in the case of MC approach is much lower than that of Agg and Mod.

Figure 5.4c shows the per hour percentage number of SLO violations obtained,

using Agg, Mod and MC methods. The following conclusions can be derived

using this figure when analysing it in accordance with the workload scenario

of Large variations shown in Figure 5.2a. (1) The Agg approach results in poor

performance in the part before 7th hour of the workload and after 14th hour. The

key reason for this poor performance is that the arrival rate in those hours was

low and due to Aggressive intensity of scaling action, the system oscillates. (2) The

Mod approach results in a bad performance, when there is a sharp increase in the

workload at 7th hour. (3) The MC comparatively results in better performance

across the entire duration due to its flexibility of adapting the scaling action based

on the current system behaviour.

5.5.1.3 Quickly varying

Analogous to the previous scenarios, it is evident from the aggregated results

shown in Figure 5.5a that the Rightscale methods including rs21, rs42 and rspro

result in lower number of SLO violations but at a higher cost compared to other

methods. Amongst the rest, the Agg method has comparatively achieved better

performance than MC and Mod, where the precise values of SLO violations are

1.40%, 1.53% and 2.14% respectively. Regarding the cost, all three methods spend

approximately the same amount, i.e. ≈ 417$. However, considering the number of

unsuccessful requests shown in Figure 5.5b, the MC results in the lowest number,
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(c) Timeseries view of performance (SLO)

Figure 5.5: Results of Quickly varying scenario. The RightScale methods results in lowest

number of SLO Violations, however at a higher cost. Amongst the rest, the

Agg approach is overall better, however poor performance, i.e. ≈ 7% of SLO

violations was observed in the 6th hour. In contrast, the MC method maintains

less than 4% of SLO violations in the entire time period.
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Figure 5.6: Results of Tri-phase scenario. The RightScale method (rs_42) results in compar-

atively less number of SLO violations, however, at a higher cost. Amongst

others, the MC has obtained overall better performance, lowest number of

unsuccessful requests and maintained lowest number of SLO violations at the

entire time period.
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i.e. 790 to 7646 of Agg.

It is evident from the aggregated results in this scenario that the Agg approach

results in slightly better performance than the proposed MC approach. However,

analysing the time series view of the percentage number of SLO violations on a

per hour (shown in Figure 5.5c) demonstrates that the Agg approach results in

more than 6% SLO violations in the 7th hour. Whereas, the MC remains lower

than 3.3% at all the time despite a quick variation in the workload. In contrast,

the Mod can also be seen comparatively larger in the later hours, i.e. from 8th to

10th hour, when there is a sharp change in the workload (see Figure 5.2b) at the

beginning of the 8th hour.

5.5.1.4 Tri-phase

The aggregated results for this scenario are shown in Figure 5.6a, which demon-

strate that the MC outperforms other methods in obtaining the lower number of

SLO violations with almost same cost. However the rs42 results in better perform-

ance but at a higher cost, therefore, we do not consider that as a better result. On

the other hand, MC also results in a lower number of unsuccessful requests in

comparison to that of Agg, but similar to the Mod method.

The time series analysis of the percentage number of SLO violations on a per hour

basis is shown in Figure 5.6c. This plot indicates that the MC has maintained

an overall lower number of SLO violations in comparison with other approaches.

Specifically, it is very high in the case of Agg from 2nd to 4th hour when the

incoming workload is low, and slightly more from 4th to 7th hour in the case of

Mod when the incoming arrival rate was high.

5.5.1.5 Cyclic

The aggregated results for this scenario are shown in Figure 5.7a. These results

indicate that the methods rs_42 and rs_pro have comparatively achieved better

performance than all other methods but at a much higher cost. Amongst other,
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Figure 5.7: Results of Cyclic scenario. The RightScale methods (rs_42 and rs_pro) has

achieved an overall better performance, however at a higher cost. Amongst

others, MC has achieved 1.05% of SLO violations in comparison with 1.37%

of Mod and 1.28% of Agg. The number of SLO violations on per hour basis

remains lower than 3% in case of MC, whereas it rise up to 5% in case of Mod

and 10% using Agg approach.
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Figure 5.8: Results of Slowly varying scenario. The MC and RightScale methods has

achieved an overall SLO violations of less than 0.35%. However, the cost

spending in the case of Rightscale is larger than that of MC. The number of

SLO violations observed in all other cases are higher than 0.70%.
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the MC has performed better and results in the lowest number of SLO violations,

i.e. 1.05% in comparison with 1.37% of Mod and 1.28% of Agg. Regarding cost, all

the three methods are same. However, the unsuccessful requests shown in Figure

5.7b, there was none in the case of MC, very few (i.e. 67) in the case of Mod and

more than 20000 in the case of Agg.

Figure 5.7c shows the time series view of the percentage number of SLO violations

on a per hour basis. Analysing this graph per the Cyclic workload scenario (see

Figure 5.2e) inform the following: (1) In the case of Agg, the performance suffers

mostly when the arrival rate remains low, i.e. in the 4th, 12th and 20th hours.

(2) In the case of Mod, the performance degraded when the workload arrival

stays low or high, i.e. in the hours 4th, 6th 14th . (3) Whereas in the case of MC,

the number of SLO violations remains comparatively lower, in almost the entire

duration of the experiment.

5.5.1.6 Slowly varying

It is evident from the aggregated results presented in Figure 5.8a that the various

settings of the Rightscale method result in better performance but at a higher cost.

Amongst others, the MC and Mod result in almost similar results, i.e. 0.89% and

0.86% regarding the SLO violations. However, Mod is slightly expensive, i.e. 872$

to 863$ of MC. Whereas the performances obtained using Lazy and Agg are poorer

in comparison with that of MC and Mod. The time series view of percentage

number of SLO violations (as shown in Figure 5.8c) tell us the following: (1) the

performance suffers largely in the case of Agg in the 10th hour when the arrival

rate is low (see Figure 5.2f); (2) the performance degrades in the case of Lazy

at the 17th hour when the arrival rate is high. Lastly, there are no unsuccessful

requests recorded except in the case of Agg as shown in Figure 5.8b.

5.5.1.7 On-off

The aggregated results for this scenario are shown in Figure 5.9a. It is evident

from this figure that the performance obtained using MC is comparatively much
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Figure 5.9: Results of On-off scenario. The least number of SLO violations observed in

this scenario is using MC, which is recorded as 4.76%. In all other cases, the

number of SLO violations are more than 7.98%. Similarly, the number of

unsuccessful requests in the case of MC is much lower, i.e. 2.55% to that of

Mod method, which is recorded as 5.57%.
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better than all other approaches. The second best approach is the Mod, where the

percentage number of SLO violations are 7.98% to 4.76% of MC. However, in the

case of MC, the Cost is slightly more than that of Mod. Similarly the number of

unsuccessful requests (shown in Figure 5.9b) in the case of MC is much lower, i.e.

2.55% to that of Mod, i.e. 5.57%.

Figure 5.9c displays the time series view of the percentage number of SLO viol-

ations on a per hour basis. It is evident from this figure that the performance

obtained using Agg method suffers largely in the first few hours, i.e. when the

arrival rate of the workload remains low (see Figure 5.2g) and similarly in dur-

ation from 12th to 20th hours. Whereas in the case of Mod, the performance

largely suffers at a time, when the workload changes from low to high, i.e. in

7th and 19th hours. The MC method, in contrast, performs much better in the

hour of swift change of workload from low to high, i.e. in 7th and 19th hours.

However, focusing on the 3rd hour and hours from 15th to 18th, the performance

also degrades using MC approach. This behaviour has not been noticed in the

previous scenarios. The reason of this performance degradation is the oscillation

caused using MC method at those times. Apart from these specific hours, the MC

achieves better performance than all other approaches. The oscillation aspects are

further discussed in Chapter 6.

5.5.2 Summary and Discussion

Sections 5.5.1.1 to 5.5.1.7 explain and analyse the obtained results for each work-

load scenarios employed for the evaluation. In the same realm, this section

summarises the findings and briefly discusses each of the applied methods in

light of the obtained computational results.

1. Rightscale: It is observed from the obtained results that the different settings

of the Rightscale method comparatively produce better performance, with

a higher cost though. This indicates the over-provisioning phenomenon
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described in Section 2.2.3, where more than required resources are allocated

to avoid performance degradation. The better performance with a higher

cost phenomena occurred in workload scenarios, where transitions in work-

loads are comparatively smooth, e.g. in the case of Dual-phase, Cyclic, and

Slowly varying. In other scenarios where sharp changes occurred such as

Large variations and On-off, the performance is comparatively poorer than

other approaches, despite being expensive. A key reason behind is the

underlying static scaling behaviour, where a scaling action is performed

using a uniform quantity.

2. Aggressive: It is observed that the aggregated results of performance ob-

tained using the Aggressive approach in the case of Dual-phase and Quickly

varying scenarios are comparatively better than MC. However, the time

series analysis of those scenarios indicates that the performance of the

system is poor in certain hours specifically when the arrival rate of the

workloads were low. The key reason for this behaviour is the inappropriate

scaling intensity that causes a bigger change in some cases, e.g. observe the

Cluster size and CPU utilisation relationship in Figure 5.10a for the first two

hours & 5th hour in the case of Dual-phase scenario and 6th hour in the case

of Quickly varying scenario. The worst situation arises in the case of Large

variations, where the system resources oscillate (see Figure 5.10c) when the

arrival rate of the workload was low. This indicates that using a uniform

Aggressive method at the entire time is not a good choice and could lead the

system to an unstable state.

3. Moderate: The performance of the Moderate policy works well in the follow-

ing two scenarios. First, when the incoming workload remains stable in a

particular region, e.g. the segment after the 8th hour in the case of Large

variation (see Figure 5.4c). Secondly, when the arrival rate changes slowly,

e.g. in the case of Slowly varying (see the results in Figure 5.8c). However,

the Moderate method performs poorly in comparison to the Agg and MC,

when there are sharp changes in the incoming workloads, e.g. the segment
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Figure 5.10: Cluster size versus CPU Utilisation using Aggressive method. Bumpy trans-

itions are observed in DualPhase and Quickly varying scenario in the first

six hours time period, whereas oscillation episodes are observed in Large

variation scenario.
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after the 7th hour in the case of Quickly varying, the 7th and 19th hours in

the case of On-off etc.

4. MC: The MC, in contrast to the above mentioned methods works well in

scenarios like Large variations, Tri-phase, Cyclic and On-off. In the case of

Dual-phase and Quickly varying scenarios, the aggregate results were slightly

poorer than that of the Aggressive method. However, considering the time

series analysis, the MC approach maintains better performance during the

entire time. Whereas, in the case of Slowly varying, the MC and Moderate

policy have achieved similar performance.

The above discussion indicates that using a uniform fixed policy is unable to cope

with changing workload conditions. In contrast, the proposed Hard switching

consists of the collection of the same policies with an additional switching

mechanism result in an improved system performance without an increase in the

operational cost.
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6
B I O L O G I C A L LY- I N S P I R E D S O F T S W I T C H I N G

I M P R O V E M E N T S

This chapter introduces the proposed biologically-inspired Soft switching approach

to address the cloud elasticity problem. Section 6.1 describes the motivation

behind the proposition of the soft switching method. Section 6.2 briefly introduces

the related concepts including action selection, BG and how these are related to

the cloud resource provisioning. Section 6.3 examines the proposed biologically

inspired soft switching approach in detail. Finally, the experiments and the

computational results obtained using Soft switching method in comparison to the

Hard switching approach are analysed in Section 6.4.

6.1 motivation

The computational results obtained in the previous chapter demonstrate that

the proposed Hard switching based approach has the potential to achieve better

system performance in comparison to the benchmark methods. However, such

methodologies are more often criticised for their associated unwanted behaviour,

termed as bumpy transition, that could lead the system to an oscillatory state

[52, 53, 54]. The occurrences of bumpy transitions may be due to an inappropriate

switching or some larger changes in the system state. The oscillation (explained

in Section 2.2.3) regarding the cloud resource provisioning refers to the scenarios,

where a target system acquires and releases computational resources periodically.

Such events are undesirable and thus need to be avoided.

The effects of a scaling action reflect in the output of the system, which in

our case is the measured CPU utilisation. Analysing the time series view of the
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measured CPU utilisation provides insight regarding the presence of bumpy trans-

itions and oscillatory behaviour. The previous chapter (in Section 5.5.2) mentions

that the oscillatory behaviour occurred in certain scenarios in the case of Aggress-

ive method. Similarly, Figure 6.1 shows the time series view of the measured CPU

utilisation recorded using the proposed Hard switching approach for Dual-phase,

Tri-phase and On-off scenarios.

Focusing on the highlighted parts of Figure 6.1 indicate the presence of bumpy
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Figure 6.1: Time series view of measured CPU utilisation obtained using proposed Hard

switching approach. The highlighted parts in the plots demonstrate the epis-

odes of bumpy transitions that could lead the system to an oscillatory state.

transitions in the case of a Dual-phase and Tri-phase. However, in the case of On-off,

system resources oscillate at different time intervals. This On-off scenario is the

worst amongst all the tested scenarios in the previous chapters. Such oscillatory

behaviour is unwanted and must be avoided. Considering such scenarios, this

research aims to reduce the likelihood of the occurrences of bumpy transitions

and oscillations mentioned above. More specifically, this chapter focuses on the
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phenomenon that how a real biological system (animal for example) selects the

next action to be carried out. We aim to explore the capabilities of biologically

(cognitive) inspired action selection process for seeking the possibility of more

smoother (bumpless) transitions, hence improving the stability perspective of the

proposed elastic method.

6.2 action selection, bg and elastic controller

The process of determining the next action refers to the action selection problem,

which has been the focus of research in many fields [205, 206]. Formally, an action

selection is the process of deciding what to do next from a set of available actions

by an agent, based on some knowledge of the internal state and some provided

sensory information of the environmental context to best achieve its desired goal

[7]. Over a period of time, researchers have learnt that in animal’s brain, the

problem of action selection is handled through the use of a central switching

mechanism [207, 208]. This mechanism is implemented by a group of subcortical

nuclei collectively refers to as BG [207, 208]. A brief description of the functional

anatomy of BG is as following [7].

The key components (nuclie) of a BG include Straitum, Subthalamic nucleus (STN),

Globus pallidus (GPe) and Substantia nigra (SNr). The key function of this group

of inter-connected nuclie is to activate the desired actions and to suppress the

undesirable competing actions. Figure 6.2 (borrowed from [7]) depicts the essen-

tial circuitry of BG. The Straitum is the main input nuclei of a BG that receives

action request in form of neural signals (or channels) from related functional sub

modules of brain. The sensory and associated motivational inputs in larger range

are received by the Straitum neurons at the STN. The activity level of the Straitum

neurons represents the salience of an action. The SNr and GPe are the key output

components of the BG, which are tonically active and are responsible to direct

the continuous flow of inhibition in brain. This inhibition becomes a source for

the generation of movement in brain.
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Figure 6.2: BG functional circuitry [7]

The process of BG as an action selection mechanism is as follows. The input

channels depicts the competing choices (or actions). Providing the sensory and as-

sociated motivational information/inputs, the BG are expected to decide amongst

the possible choices and activate the winner channels by dis-inhibiting the corres-

ponding motor circuits [205]. For a detailed functional anatomy of BG, see [7] for

details.

The elasticity controller works as an autonomous agent to make scaling decision

by utilising the various kinds of available information such as (1) application

status, e.g. current performance level, (2) environmental information, e.g. work-

load arrival rate, (3) internal state of the system, e.g. resource utilisation level.

Based on the autonomous behaviour of an elastic controller and the general nature

of action selection problem, we have formulated the selection of controllers in

the case of proposed multi-controller approach as an action selection problem.

Therefore, we treat each of the controllers as an action and exploit the possibility

to incorporate the BG behaviour into the proposed framework. The key objective
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of this research is to reduce the likelihood of bumpy transitions and oscillatory

behaviour of the Hard switching approach.

6.3 biologically-inspired soft switching framework

The Hard switching approach described in Chapter 4 has the potential to improve

system performance in comparison to the benchmark methods. However, the pos-

sibility of leading the system to an oscillatory state is undesirable. The oscillation

of resources may have deteriorating effects on the system performance as well

as on the operational cost. It is therefore desirable that the proposed framework

should result in smoother transitions to avoid any oscillation. Soft switching, on

the other hand, is an alternative technique used to avoid such unwanted be-

haviour. Such a mechanism in contrast to Hard switching has the possibility to

select multiple actions rather than one best choice. Following are the key benefits

of such an approach: (1) avoidance of singularity and sensitivity problems, (2)

improvement of robustness and stability aspects and (3) elimination of chattering

issues [209].

This research incorporates the BG based mechanism as an action selection method

to implement the Soft switching behaviour. We integrate a well established BG

based computational model of Gurney et al. [57, 58]. The key advantages of

this computational model include its biological plausibility and computational

efficiency [210]. Our inspiration of utilising this model comes from the research

work carried out in the field of autonomous vehicle control (AVC), where a similar

approach has been used for the motion control of autonomous vehicle [210] and

the cruise control system [206].

Figure 6.3 shows the architectural diagram of the proposed BG based soft switch-

ing approach. Comparing this diagram with the Hard switching approach (shown

in Figure 4.1), the following three differences are highlighted: (1) the integration

of the BG component, (2) the output of the FIS component and (3) the final output
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Figure 6.3: Architectural diagram of the proposed biologically-inspired soft switching

cloud elasticity framework

of the control system. The details of each of these differences are provided in the

following subsections:

6.3.1 The BG Component

This component integrates the BG based computational model, which builds on

the functional anatomy of BG briefly described in Section 6.2. Some examples of

such models include [57, 58, 211, 212, 205, 213]. Amongst these models, we util-

ised the computational model proposed in [57, 58]. However, any model can be

used as our aim is not to identify the best action selection or biologically-inspired

computational model rather to demonstrate the effectiveness of such an approach

in the context of the cloud elasticity.

Focusing on Gurney et al. [57, 58] computational model, the brain subsystems

send excitatory signals that represent the behavioural expressions to the BG. Each

behavioural expression defines an action in BG and its strength is determined by

the salience that represents the activity level of its neural representation. These

actions are mediated through the release of inhibitory signals. Thus in each itera-
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tion, the functional model accepts a set of salience signals and produces a set of

selected and unselected signals. The functional model can be run in one of three

modes, i.e. Hard, Soft or Gate mode. In the case of the Hard mode, a maximum

of one action can be selected. Alternatively, multiple actions can be selected in

the case of a Soft and Gate modes. However, in a Soft mode, the selected actions

are returned as an output, whereas in the case of Gate, the model returns the

proportion of each selected action. For a detailed description of the functional

model refers to [57, 58].

The BG component, shown in Figure 6.3, accepts three inputs namely lazySa-

lience, modSalience and aggSalience. These inputs represent the strength of selection

for each controller (depicting as action). The values for these salience signals are

computed by the FIS (details provided in the next section). The output of the BG

component depends on the running mode of the computational model (further

explained in Section 6.3.3).

6.3.2 The Modified FIS

The BG based computational model requires salience signals as inputs. Thus the

first issue to be dealt with is the generation of salience signals. The method to

generate the salience signals can make use of system’s internal state, various

performance metrics or available sensory information [210]. Therefore, we have

extended the FIS, used as a switching mechanism in Chapter 4, to generate the

inputs (salience signals) for the BG component of the framework. The inputs of

the modified FIS remains the same, i.e. Workload, ResponseTime and ControlError.

However, the output is changed from one, i.e. Controller to three lazySalience,

modSalience and aggSalience. Each of these outputs represents the salience strengths

for the selection of each of the three controllers. The details of the changes carried

out are as following:
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1. Membership functions: The inputs of the modified FIS do not change, and

therefore the corresponding membership functions of the input fuzzy vari-

ables remain the same. However, the output is changed, therefore, the

Controller membership function is replaced with three new membership

functions, i.e. one for each newly introduced output. Similar to the Controller

membership function, we have used the basic triangular type for all the

outputs. The membership function for each salience signal variable is of the

form shown in Figure 6.4.

µ

0

1

.1 .2 .3 .4 .5 .6 .7 .8 .9 1

weak average strong

Salience strength

Figure 6.4: Membership functions for each salience variable, i.e. Lazy, Moderate and

Aggressive

2. Fuzzy rules: The fuzzy rules are responsible to generate the salience inputs.

The fuzzy rules described in Chapter 4 are revised accordingly. Figure 6.5

depicts an example of the modified rule. The inputs of the rules are the

same as in the case of Hard switching rules presented earlier in Figure 4.8.

However, the output can be formed using the linguistic terms (weak, average

and strong) for each salience.

6.3.3 Derivation of Final Output

As mentioned earlier, the adopted functional model support three modes includ-

ing Hard, Soft and Gate mode, hence the final decision, i.e. the number of VMs

depends on the running mode of this framework. In this research we have focused

on Soft and Gate modes as they support the soft switching behaviour by allowing

the possibility of selecting more than one controller. The final decision, whilst

considering these two cases can be derived using the output signals returned by
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IF arrivalRate IS medium AND responseTime IS desirable AND controlError IS stPos

THEN modSalience IS strong AND aggSalience IS average

high
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wePos

stPos

strong

average
weak

Figure 6.5: Example of a soft switching rule

the BG component and the outputs of the individual controllers. The following

equation represents this derivation.

ut =
(u

L
(t) ∗ g

L
) + (u

M
(t) ∗ g

M
) + (u

A
(t) ∗ g

A
)

g
(6.1)

The ut in the above equation represent the final decision. u
L
(t), u

M
(t) and u

A
(t)

represents the output of individual controllers, i.e. Lazy, Moderate and Aggressive

respectively. These outputs are computed as per the equations described in

Section 4.4.4. Whereas, g
L
, g

M
and g

A
are the output signals returned by the BG

component (shown in Figure 6.3). The values of these signals in the case of Soft

mode are either 1 or 0. The value 1 represents the selection of that particular

controller, whereas the value 0 indicates no selection and in such a case, the

output of that controller shall not be considered in the final output. On the other

hand, in the case of Gate mode, the value of these output signals represent the

proportion (between 0 to 1). Lastly, the denominator g represents the number of

those output signals with a value higher than zero. However, it is not always the

case that more than one controller to be selected.
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6.4 experimentation and evaluation

The BG based proposed method is implemented as one of the elastic controllers

into our experimental framework (explained in Section 5.1). We have used the

same experimental settings and scenarios (i.e. gains for controllers and workloads)

as in Chapter 5 to evaluate the Soft switching approach. It is already concluded in

Chapter 5 (Section 5.5.2) that Hard switching achieved better results compared to

the benchmark methods. Therefore, in this chapter, we only compare the com-

putational results obtained using Soft switching to that of Hard switching. Hence,

we aim to demonstrate the effectiveness of BG based Soft switching approach

to that of Hard switching approach. Thus, we present and discuss the obtained

computational results in the following two aspects:

6.4.1 Performance

Figure 6.6 shows the aggregated view of the results obtained using both the

proposed approaches, i.e. Soft switching and Hard switching. These approaches

are represented as SS and HS respectively in the reported results. It is evident

from Figure 6.6a, which compares the obtained performance that the SS ap-

proach has obtained a lower number of SLO violations in all of the employed

workload scenarios to that of HS. The comparison of the cost perspective are

shown in Figure 6.6b, where the spending using the SS approach is almost similar

to that of HS. This demonstrates that the SS approach results better perform-

ance compared to that of HS without increasing the operational cost of the system.

Figure 6.7 shows the time series view of the percentage number of SLO viol-

ations on a per hour basis for each workload scenarios. This diagram provides

an insight into the performance of both the approaches on an hourly basis. Each

plot of this diagram represents the result for each of the employed workload

scenario. The analysis of these plots provide the following insights: (1) The per-
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Figure 6.6: Aggregated view of results. In all employed scenarios, the proposed Soft

switching approach results in comparatively better performance with almost

same cost than that of Hard switching approach.
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Figure 6.7: Time series view of performance. In all employed scenarios, the number of

SLO violations on per hour basis using Soft switching remains lower or same

than that of Hard switching approach.
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formance obtained using SS approach in almost each hour for all the workload

scenarios is either similar to that of HS or comparatively better. This indicates a

higher potential to maintain better performance during the entire period of the

experiment. (2) The SS and HS approach behave almost similarly in scenarios,

when there are sharp increases in workload, e.g. the 6th hour in the case of Cyclic,

the 7th hour in the case of Large variations and the 7th & 19th hours in the case

of On-off scenarios. This indicates that the SS approach has figured out a sharp

increase in the workload and behaves similar to HS to avoid the degradation

of the system performance. (3) The SS approach performs comparatively better

when the arrival rate of the workload remains low, e.g. initial 5 hours period

in the case of Dual-phase and the hours from 15th to 18th in the case of On-off.

This indicates that at the time of low workload, the decision of HS affects the

performance more due to its best controller selection strategy in comparison to

that of SS approach.

6.4.2 Oscillatory Behaviour

The results presented in the previous section demonstrate the effectiveness of the

Soft switching approach regarding the improvement of the overall performance.

However, it is mainly adopted to improve the possibility to reduce the likelihood

of bumpy transitions and oscillation in comparison to the Hard switching approach.

This section discusses this possibility by comparing the measurements of system’s

output, i.e. measured CPU utilisation obtained using each approach, i.e. HS and

SS.

Figure 6.1 has shown, the time series view of measured CPU utilisation obtained

using HS approach for the following three workload scenarios, i.e. Dual-phase,

Tri-phase and On-off respectively. Amongst these scenarios, the presence of an

oscillatory behaviour can be clearly seen in the case of On-off, whereas minor

bumpy transitions are visible in the case of Dual-phase and Tri-phase. These key

spots are highlighted in the figure. Similarly, we have recorded the measured
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Figure 6.8: CPU utilisation (HS vs SS). Each pair of plots are obtained using SS and HS

methods. The oscillations did not occur in the On-off scenario using SS, where

the intensity of bumpy transitions in other cases are also reduced.
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CPU utilisation using the SS approach, which is shown in comparison to that of

HS approach in Figure 6.8.

The CPU utilisation of the Cluster is recorded on a per minute basis and an

average of 5 minutes is considered for decision-making and final reporting. Thus,

each measurement of these plots represents the average CPU utilisation of 5

minutes duration. The analysis of these plots provide the following insights:

1. Focusing on the highlighted parts of HS plot (shown in Figure 6.8b) for

On-off scenario clearly hint at the presence of oscillations at two occasions,

i.e. in the 3rd hours and in the 15th to 16th hours. On the other hand, using

SS approach, no such oscillations can be seen in the corresponding SS plot,

which demonstrates clear improvements.

2. Figure 6.8b shows the time series view of CPU utilisation for the Dual-phase

scenario. It is evident from this figure that there is no oscillation using both

the approaches. However, the highlighted part in the case of HS shows

some bumpy transitions, i.e. in the 6th and 8th hours. Whereas in the case

of the SS approach, the intensity of these bumpy transitions is reduced as

is evident by visual inspection of both plots of Figure 6.8b. Moreover, the

variance of CPU utilisation measurements of three hours, i.e. from 6th to 8th

is calculated for both cases. These calculations are recorded as 12.84 and

15.24 for the SS and HS respectively. This demonstrates that the SS results in

fewer variations compared to that of HS in those three hours. Similar results

(shown in Figure 6.8c) are also observed in the case of Tri-phase scenario,

where the variation in the case of SS from 4th to 6th is fewer than that of

HS.

3. The red dashed line in each plot of Figure 6.8 represents the mean CPU

utilisation obtained using the respective methods in each corresponding

scenario. In all of the given three scenarios, the mean obtained using SS

approach is comparatively less than that of HS, e.g. in the case of an On-off,

the means are 52.56 and 54.19 recorded using SS and HS respectively. This
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demonstrates that the SS approach is comparatively better and maintains

the CPU utilisation below 55% more often than the HS approach.

In light of the above discussions, we can claim that the BG based Soft switching

approach has higher potential to reduce the number of SLO violations. Therefore,

we obtain comparatively better system performance. Moreover, compared with

the HS approach, it has demonstrated the possibility of reducing the likelihood

of bumpy transitions and oscillatory behaviour. The intuitive explanation for

this improvement is the integration of controllers (shown in Equation (6.1)) in a

biologically-inspired fashion augmented with the BG process, which facilitates

the natural selection of actions that result in less ’bumping’ at the switching time

[214]. Moreover, the computational model of [57, 58] in particular is successfully

validated to avoid oscillation [205].
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7
O P T I M I S AT I O N O F F U Z Z Y M E M B E R S H I P F U N C T I O N S

This chapter formulates the construction of the fuzzy membership functions,

introduced in Chapter 4, as a multi-objective optimisation problem to explore

the near optimal parameter settings for their design. Section 7.1 describes the

motivation and aims of this research. Section 7.2 formally introduces the problem,

the parameters considered, their ranges and constraints. Section 7.3 provides

details of the employed GA in the context of the underlying problem, whereas

Section 7.4 explains the problem formulation using the Taguchi approach. Finally,

the experiments and the computational results obtained using both employed

techniques are discussed in Section 7.5.

7.1 introduction

The switching mechanism, implemented as a FIS, of our proposed framework

discussed in Section 4.5 is responsible for the selection of an elastic control-

ler to make scaling decisions. This implies that the overall performance of the

framework is primarily dependent on the accuracy of the FIS and ultimately the

corresponding design of its components, i.e. membership functions and fuzzy

rules. The construction of membership functions is the primary step in the design

of a fuzzy control system, which in our case consists of the definition of three

input parameters and one output parameter (see Section 4.5.2 for more details).

Amongst these four parameters, the Workload is based on the knowledge of do-

main experts initially introduced in [16]; the design of the Controller follows the

guidelines in [54]; Control error is obtained using trial and error method; and

Response time reflects the desired performance objective of a service provider.

The adopted design of the parameters mentioned above indicates that the follow-
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ing assumptions were made at the time of switching mechanism implementation:

(1) The design ranges for the linguistic terms of Workload parameter adopted

from Jamshidi et al. [16] is correct, near optimal and suitable to be applied in

any application scenario. (2) The ranges for the linguistic terms of Control error

parameter, obtained using the trial and error method, are correct and fits in any

application scenario. (3) Each range of the output parameter (Controller) represents

a discrete decision and therefore no overlapping was considered. This research

explores the possibility to find near optimal parameter settings for the design of

the membership functions without considering the aforementioned assumptions.

The objective of this research work is twofold. Firstly, to introduce methods to

derive suitable values for the switching mechanism parameters, i.e. Workload,

Control error and Controller. Secondly, to explore the possibility to improve the

obtained computational results by fine tuning the used parameters.

To address the above mentioned problem, this chapter employs two different ap-

proaches including the commonly used evolutionary approach and an alternative,

less known approach called the Taguchi method. The evolutionary approaches

based on the idea of natural biological evolution, where the survival of the fittest

can be assured through natural processes such as randomly created population

followed by reproduction and mutation [215]. They are best known for their

ability to identify near optimal parameter settings from a large search space even

in the absence of a precise description of the underlying problem [216]. The use

of such techniques has successfully proven their suitability and has the potential

to solve optimisation problems from a wide range of domains including their

extended use in fuzzy systems as well. For example, the tuning membership

functions for the regression problems [217, 218], inference engine [219, 220], sim-

ultaneous learning of knowledge base and rule base [221] etc. Alternatively, the

Taguchi method is not a well-known generic optimisation technique. However, it

provides a systematic and economical method to obtain parameter settings with

relatively fewer trials [222]. The key reason behind the employment of Taguchi
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approach is the consideration of scenarios where a larger exploration of search

space (as commonly required by GAs) is not feasible.

7.2 definition of problem and parameters

The role of a membership function in a fuzzy system is to represent the informa-

tion contained in the fuzzy sets to helps in converting to/from crisp and fuzzy

values. The membership function defines the degree of a crisp value in the range

of 0 to 1 in accordance with a given linguistic variable. The membership functions

are of different types, e.g. Triangular, Trapezoidal, Gaussian and Sigmoidal, etc.

The choice of their selection is application dependent though [223]. In our existing

settings, we have only used triangular and trapezoidal as shown in Figure 4.7.

Each membership function, irrespective of the corresponding type, consist of

the following three key ingredients: Support, Boundary and Core (also known as

Prototype) [224]. Figure 7.1 represents these ingredients diagrammatically, whilst

considering triangular and trapezoidal as the types of membership functions,

whereas, their brief descriptions are as following [224]:

• Support: The X refers to the universe of a given fuzzy variable. Thus for a

given fuzzy set A, support refers to that region of the universe X, where all

elements x ∈ X are characterised by µA(x) > 0.

• Core/Prototype: For a given fuzzy set A, core refers to that region of the

universe X, where all elements x ∈ X are characterised by complete mem-

bership of set A, i.e µA(x) = 1. The prototype is characterised by the same

definition as core but with an exception that there is only one such element

where µA(x) = 1.

• Boundary: The boundary refers to that region of the universe X, where all

elements x ∈ X are characterised by 0 < µA(x) < 1.

In light of the above definitions, we are interested to find out the near optimal

values of the above ingredients for each membership function shown in Figure
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7.2. The figure is marked with unique labels in the format of αn, θn and σn

to represent a different point over the universe of a fuzzy variable. Each point
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Figure 7.1: Ingredients of membership functions
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represents an independent parameter, and the collection of these parameters in a

specific order defines the ingredients of a membership function, e.g. the length

from α1 to α4 identifies the support region for medium membership function of

the Workload variable. Similarly, the core and boundaries are also calculated from

these parameters automatically. For example, the length from α1 to α2 defines

the boundary for low and medium membership functions, whereas the length from

0 to the value of α1 identifies the core for low membership function. In total, 18

parameters are shown in Figure 7.2. All these parameters are assigned with a

range of values as shown in Table 7.1. These ranges are not fixed and can be

reduced or increased whilst considering a particular application scenario.

Fuzzy Variable Linguistic Terms

Start range — End range

Control error θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

-45 – -30 -35 – -20 -20 – -5 -15 – 0 0 – 15 5 – 20 20 – 35 30 – 45

Controller σ1 σ2 σ3 σ4 σ5 σ6

10 – 15 5 – 10 20 – 25 15 – 20 30 – 35 25 – 30

Workload α1 α2 α3 α4

15 – 35 30 – 50 50 – 70 60 – 80

Table 7.1: The design range of each parameter

The employed methods, i.e. genetic algorithm and the Taguchi approach (ex-

plained in Section 7.3 and 7.4 respectively) operates to derive the near optimal

combinations of the above parameters. However, during this process, each com-

bination of the parameters shall satisfy the following constraints:

1. α1 6 α2, α3 6 α4 and

2. θ1 6 θ2, θ3 6 θ4, θ5 6 θ6, θ7 6 θ8 and

3. σ2 6 σ1, σ4 6 σ3 and σ6 6 σ5.
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These constraints ensure that every developing fuzzy partition should either be

adjacent or overlapped with a neighbouring partition, hence confirming that

every point x over the universe of a fuzzy variable must exist in at-least one of

the support regions. Therefore, a generated solution during the evolution process

will only be valid if it satisfies the constraints mentioned above. Invalid solutions

are not considered for evaluation and will be replaced with a valid solution.

7.3 the design of membership functions using genetic algorithm

The Genetic Algorithms (GAs) [215] are search mechanisms that are based on the

idea of genetics and natural selection. They are iterative procedures and work

on the population of individuals (also called chromosomes or solutions). The

algorithm usually starts with a randomly generated population of solutions and

aims to evolve towards better solutions by applying different genetic operations

including natural selection, recombination and mutation. Such algorithms are

considered very useful for problems that demand efficient search in the largely

available problem space [225]. Moreover, GAs have the ability to identify near

optimal parameter settings from a large search space even in the absence of a

precise description of the underlying problem [216]. The following subsections

explain the various details in the context of the underlying problem.

7.3.1 Chromosome Encoding and Fitness Criteria

The first stage of employing a GA for a problem is to represent the chromosome

in such a way that it is suitable to be modified by the genetic operations. We have

used the binary encoding and represent each parameter using a fixed (L) number

of bits, which are concatenated to form the binary string of fixed size (66) bits as

following:

α1︷ ︸︸ ︷
b1..bL ....

α4︷ ︸︸ ︷
b1..bL︸ ︷︷ ︸

Workload(16)

θ1︷ ︸︸ ︷
b1..bL ....

θ8︷ ︸︸ ︷
b1..bL︸ ︷︷ ︸

Controlerror(32)

σ1︷ ︸︸ ︷
b1..bL ....

σ6︷ ︸︸ ︷
b1..bL︸ ︷︷ ︸

Controller(18)
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The Workload, Control error and Controller are the fuzzy variables. The length of

each parameter in the binary string is relative to the fuzzy variable. Thus, during

the decoding process, the binary string is decomposed into three parts, whereas

each parameter is decoded to get its corresponding value using the following

equation adopted from [224],

Ci = Cmini +
b

2L − 1
(Cmaxi −Cmini) (7.1)

Ci in the above equation represents a specific parameter i, e.g. α1. Cmini and

Cmaxi represent the minimum and maximum range for parameter i, b is the

corresponding decimal value of the binary bits and L represents the number of

bits length for parameter i.

After chromosome representation, the next step is to define the fitness func-

tion that quantifies the quality of each solution in the evolution process. Each

solution represents different parameter settings of the underlying membership

functions. We are interested to find out how a particular parameter settings

contribute to the overall performance of an elastic policy. Thus, for the assessment

of an elastic policy to quantify the quality of a solution, we consider the two-

dimensional criteria described in Section 5.4. The two objectives of this evaluation

criterion include the Number of SLO violations and Cost. Thus, whilst considering

these objectives, the lower the values of SLO violations and Cost, the better the

quality of a solution will be.

7.3.2 Employing Multi-Objective GA with Adaptive Attributes

The standard nondominated sorting algorithm-II (NSGA-II) [226] is utilised to

tackle the underlying problem. The NSGA-II is a generic and commonly used

standard algorithm to solve multi-objective optimisation problems. The NSGA-

II starts as any other evolutionary approach with a population of competing

solutions. It sorts and ranks every solution of the population regarding nondom-

ination level followed by applying the genetic operators (selection, crossover and
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mutation) to create the offspring populations. The NSGA-II takes the union of

parent and offspring populations followed by partitioning of the union in fronts.

After this step, the NSGA-II applies a mechanism called crowding distance to

enhance the spread and diversity of individuals followed by the step of elitism,

where the population for the next generation is selected from the nondominated

individuals thus improving the convergence [227]. In addition to the traditional

NSGA-II, we have also utilised the following additional methods:

1. Adaptive population size: The benefits of employing adaptive population

size approach are evident in the optimisation literature, e.g. increase in

speed [228], escape in stagnation and diversity [229], etc. Algorithm 1

presents the pseudocode of the employed genetic algorithm in addition

to the adaptive population size method. The lines from 6 to 12 in this

Algorithm 1 The pseudocode of adopted genetic algorithm with adaptive popu-

lation size method [228]
1: Generate and initialise population

2: Evaluate every individual of the population

3: while not stopping criteria do

4: Selection, Recombine and Mutate

5: Evaluate every individual of the offspring

6: if best fitness improved then

7: Grow population size by rate 41
8: else if no improvement for long period then

9: Grow population size by rate 42
10: else

11: Shrink population size by rate 5

12: end if

13: Evaluate new individuals

14: end while

algorithm represent the method of adaptive population size proposed by

Eiben et al. [228]. This method suggests that the population size increases
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in the following two scenarios: (1) When fitness of the offspring population

improves. This will make the algorithm biased towards further exploration

of the population; (2) When fitness of the offspring population does not

improve for a longer period of time. This helps the algorithm to get out of

stagnation. Alternatively, the population size reduces, if both of the above

conditions are not fulfilled. The growth (41 and 42) and shrink rate (5)

can be adjusted as per the needs. We use constant proportional rates of 10%

for 41, 15% for 42 and 5 % for 5. Regarding the bi-objective nature of the

problem, the condition of best fitness improved holds true, if the offspring

individual improves in either of the objectives.

2. Adaptive crossover probability: We have also employed the approach in

[230] that computes the probabilities of genetic operations (crossover and

mutation) on runtime per the fitness values of the current population. This

technique helps maintain population diversity and strengthens convergence

as well. According to such an approach, the probabilities increase when the

GA ceases in local optimum and decrease when the individuals are well

dispersed in the solution space. The actual values are derived using the

following equation at runtime [230]:

pc =


k1(fmax − f

′
)/(fmax − f̄), f

′
> f̄

k2, f
′
< f̄

(7.2)

fmax in the above equation represents the best fitness of the population,

f̄ the average fitness, and f
′

the best fitness among the parents that have

to be recombined during crossover operation. The values of k1 and k2

are between 0 and 1. We use the value 1 for both k1 and k2 as per the

recommendations in [230]. These values ensure that all those solutions must

go through crossover operation, if their fitness is below or equal to the

average fitness. The probability of crossover decreases for solutions where

their fitness values are better than the mean fitness, and tends to zero as the

fitness value reaches to the value of best fitness solution.
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7.4 the design of membership functions using taguchi method

The Taguchi method provides a systematic and economical method to obtain

parameter settings with relatively fewer trials by exploiting the use of orthogonal

array [222]. Taguchi method was initially introduced for the quality improvement

of manufacturing goods [231] and is more commonly used for the optimisation

problems in research fields like machine design and electrical power systems

[232, 233, 234]. Although Taguchi method has not received much attention as

a generic approach for optimisation problems, there exist some proposals that

demonstrate the use of Taguchi approach for optimising problems. Some ex-

amples of its use in various research disciplines include control theory [235, 236],

Parameter tuning of optimisation algorithms [237, 238, 239], Task scheduling in

cloud environment [240] and Fuzzy systems [241, 242], etc. Taguchi method has

the inherent advantage of exploring the search space with significantly fewer

trials. Therefore we employ its use to find parameter settings of the fuzzy mem-

bership functions considering scenarios where larger exploration (as commonly

required by evolutionary approaches) are not possible or computationally expens-

ive. This following subsections provides the basics and the various details of how

we employed the Taguchi approach for the underlying problem.

7.4.1 Preliminaries of Orthogonal Array

The Orthogonal Array (OA) is a special set of Latin squares [243] used for experi-

mental design in Taguchi method. The OA can be expressed as OA(N,k,s,t), where

N represents the number of rows, k the number of columns, s the number of

possible values of set S for columns and t the strength of OA. The columns of an

OA are referred to as factors, whereas the values of columns are called as levels.

Each factor represents an independent variable of an experiment, where levels

are referred to all possible discrete values of a factor. Any matrix that consists of

N rows and k columns with values obtained from a set S is referred to as an OA,

152



if it satisfies the property of mutually balance. This means that, every sub-array

of N rows and t columns must contains all possible combinations of values from

set S [244].

In order to understand the mutual balance property with respect to strength t,

consider an example of OA(9,4,3,2) array provided in Table 7.2. In this example,

any column pair, e.g. A and B contains all combinations of levels for factors A and

B, which can be seen from the table as (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2)

and (3,3). Similarly, the property persist for other pairs of columns as well, such

as (A and C), (A and D), (B and C), (B and D) and (C and D). Thus, the nine trials

covers all possible combinations of levels for each pair of columns equally. The

assignment of factors to columns are independent and can be assigned arbitrary

to any column. The traditional factorial design approach in comparison will

Exp # A B C D

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

Table 7.2: An example of Orthogonal array represented as L9(34)

require 81 (34) trials for the same example. Thus OA has the advantage to find the

near optimal settings with smaller number of experiments because of it’s mutual

balance property that guarantee the full exploration of all possible combinations.

153



7.4.2 Definition of Factors, Levels and Orthogonal Array

A factor represents an independent variable (or parameter) of an experiment,

whereas levels are referred to all possible discrete values of a factor. In the context

of the underlying problem, each parameter of the membership functions earlier

explained in Section 7.2 is considered as a separate factor. Thus all 18 parameters

become factors here. Regarding the number of levels per factor, to the best of

our knowledge, there is no standard principle available. The general guidelines

are, the higher numbers of levels increases the chances of obtaining better para-

meter settings [244]. However, increasing the number of levels increase the size

of number of trials as well that indicates a trade-off between the number of levels

and the size of orthogonal array. Thus, a suitable orthogonal array is required to

maintains the best balance by using the largest possible levels with fewer trails

[242].

The formal construction of an orthogonal array for a particular problem de-

pends on the total Degree of Freedom (DOF) that informs the minimum number

of trials needed to analyse the selected factors [245]. The DOF of a factor is the

number of levels for that particular factor minus one and the total DOF is the sum

of all factors’ DOF plus one. The 1 DOF is associated with the mean irrespective of

the number of factors to be considered for the underlying problem [245]. Thus

the minimum number of trials in an orthogonal array must be at-least equal to

the total DOF. The following equation depicts this constraint,

N > 1+
k∑
i=1

(Ai − 1) (7.3)

The k in above equation represents the number of factors, where Ai indicates the

number of levels for ith factor. The total factors are 18 and the number of levels

for each factor can be obtain by solving Equation 7.4 that is itself derived from

Equation 7.3 [242].

A 6
N− 1

18
+ 1 (7.4)
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where N is usually the square of a number as following

N = m2,m ∈ {2, 3, 4, 5.....n} (7.5)

Solving equation 7.4 produce 17 that represents the smallest integer value for

m that satisfies the constraint 17 6
N− 1

18
+ 1. Thus selecting 17 as the number

of levels, we divide the design range (as shown in Table 7.1) of each respective

parameter into 17 equally spaced levels. The snapshot of corresponding factors

and levels relationship is shown in Table 7.3.

L1 L2 L3 L4 — L14 L15 L16 L17

α1 15 16.25 17.50 —— 32.50 33.75 35

: :: :: :: —— :: :: ::

α4 60 61.25 62.50 —— 77.50 78.75 80

θ1 -45.0 -44.06 -43.12 —— -31.88 -30.94 -30.00

: :: :: :: —— :: :: ::

θ8 30.0 30.94 31.88 —— 43.12 44.06 45.00

σ1 10.0 10.31 10.62 —— 14.38 14.69 15.00

: :: :: :: —— :: :: ::

σ6 25.0 25.31 25.62 —— 29.38 29.69 30.00

Table 7.3: Design factors and levels relationship

Solving equation 7.3 results in 289 as the total DOF by considering 18 factors

in total. Thus, any valid orthogonal array with N > 289 is appropriate for the

underlying problem. The next step is to identify the suitable orthogonal array

and we fortunately found the OA L289(17
18) from the freely available repository

[246]. Thus forming (R = 289) as the total number of experiments (or trials or

individuals), where each trial represents a different parameter settings and it

shall obey the constraints mentioned in Section 7.2. If any trial does not satisfy

the constraints then that particular parameter setting is not valid and will be

discarded. Thus, we first checked all the trials of L289(1718) OA and found that
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only 115 of them are valid as per the constraints. Hence we only left with a search

space of 115 trails. A snapshot is provided in Table 7.4.

7.5 computational results

One of the advantages of using the employed Taguchi method is that it does

not require the implementation of any additional algorithm or the usage of any

sophisticated software. On the other hand, for GA experiments, we have utilised

NSGA-II algorithm by integrating a well-known Java based optimisation library

called jMetal [247] into our existing experimental framework (explained in Section

5.1).

To demonstrate the effectiveness of both employed methods, we perform the

following two kind of experiments: (1) We carried out an exploratory experiment

using both methods considering a small scale training workload scenario. In

the case of GA, we used the extended experimental framework (i.e. proposed

elasticity framework and the employed GA algorithm) to find out the Pareto

front of solutions that are best in either of the two considered objectives, i.e. SLO

violations and Cost. Whereas, in the case of Taguchi approach we have evaluated

all the trials, i.e. 115 using the proposed framework and records the output of

both objectives, i.e. SLO violations and Cost for each trial. (2) We select the best

individuals regarding each objective, for both methods (i.e. from the Pareto front

in the case of GA and from the results of all trials in the case of Taguchi method).

We perform real experiments, using our proposed framework considering the

four selected individuals and some large scale test workload scenarios, to analyse

the effectiveness of both employed techniques.

To conduct both experiments, we have used the same experimental settings,

i.e. gains for controllers and fuzzy rules, which we have used for the experiments

performed in Chapter 5. It is important to mention that we are only interested to

find out parameter settings for the utilised membership functions and not for the
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gains of the employed controllers or fuzzy rules. We have used the four hours

trace of Wikipedia workload as the training workload scenario for the experiments.

In the case of Taguchi approach we have evaluated all the trials, i.e. 115 us-

ing the proposed framework and records the output of both objectives, i.e. SLO

violations and Cost for each trial. Whereas, in the case of GA, the experiment

consists of a full evaluation, i.e. the execution of GA for the given test scenario.

In each iteration, the individuals represent the different parameter settings of the

membership functions (shown in Figure 7.2) that have to be evaluated regarding

the number of SLO violations and cost by the proposed elasticity framework.

Figure 7.3 display the summary of best solution value regarding each objective

across all generations. This demonstrate that each passing generation explore

better solution regarding SLO violation objective until Generation no:32, whereas,

in the case of Cost objective, the improvement can be seen until Generation no:50.
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Figure 7.3: GA performance summary per generation

The Pareto front obtained is shown in Figure 7.4, which displays all those indi-

viduals that are best regarding either of the two objective amongst the solutions

evaluated during the GA evolution process. The selection of an individual to

be used for actual execution is a design decision and is based on the preference

regarding the objectives. However, for the sake of analysis, we select the following

two individuals: (1) SLO wise best - the solution with the lowest number of SLO
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Figure 7.4: The Pareto front of Wikipedia workload scenario

violations. (2) Cost wise best - the solution with the lowest operational cost. Similarly,

from the Taguchi results of 115 trials, we select two trials where each trial is best

regarding each objective.

Using the four selected solutions, we have carried out experiments for Cyclic and

Slowly varying workload scenarios (shown in Figures 5.2e and 5.2f respectively)

that both utilise the Wikipedia trace of 24 hours duration. The key aim of these

experiments is to evaluate the performance of the parameter settings of the four

selected individuals to that of the parameter settings used in Chapter 5 experi-

ments. The results obtained from Chapter 5 experiments are shown in Table 7.5,

whereas the results obtained from the selected four experiments are summarised

in Tables 7.6 and 7.7. Following the approach used in [225, 248], we calculate the

Relative Percentage Deviation (RPD) using Equations 7.6 and 7.7, to comparatively

assess the quality of results obtained using existing and new parameter settings.

RPDslo = (
Newslo − Existingslo

Existingslo
) ∗ 100 (7.6)

RPDcost = (
Newcost − Existingcost

Existingcost
) ∗ 100 (7.7)

The RPD value of each objective specifies the percentile change in comparison with

the existing results. A positive RPD value shows the percentage degradation of the
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quality in comparison with the existing results, whereas a negative RPD value rep-

resents the percentage improvement in the quality. This implies that the lower the

value of RPD, the better the quality of results in comparison to the existing results.

Workload Scenario Cost ($) SLO Violations (%)

Cyclic 766.70 1.075

Slowly varying 863.40 0.89

Table 7.5: Results obtained using existing membership functions (Figure 4.7)

Scenario GA Taguchi

SLO RPDslo Cost RPDcost SLO RPDslo Cost RPDcost

Cyclic 0.98 -9.26 799.17 4.24 1.1 1.85 784 2.26

Slowly varying 0.76 -14.61 897.61 3.96 0.81 -8.99 881.32 2.08

Table 7.6: Results obtained using the parameter settings of GA and Taguchi approaches

considering SLO wise best individuals

Scenario GA Taguchi

Cost RPDcost SLO RPDslo Cost RPDcost SLO RPDslo

Cyclic 753 -1.79 1.33 23.15 755.84 -1.42 1.42 31.48

Slowly varying 842.37 -2.44 1.24 39.33 840.85 -2.61 1.35 51.69

Table 7.7: Results obtained using the parameter settings of GA and Taguchi approaches

considering Cost wise best individuals

Table 7.6 presents the results of both workload scenarios obtained using the

parameter settings of SLO wise best individuals. Focusing on the highlighted

columns in the GA part, it is evident that the results in both workload scenarios

are improved, i.e. the number of SLO violations are dropped by 9.26% and 14.61%
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for Cyclic and Slowly varying scenarios respectively. However, the results obtained

using Taguchi approach indicate an improvement of 9% in the case of Slowly vary-

ing scenario, whereas no improvements are observed in the case of Cyclic scenario.

Table 7.7 presents the results of both workload scenarios obtained using the

parameter settings of Cost wise best individuals. Focusing on the highlighted

columns in this table demonstrate minor improvement regarding Cost objective

using both approaches, i.e. GA and Taguchi. However, this minor improvement is

achieved at the expense of performance degradation. Therefore, careful attention

is required to prioritise the objective when selecting the individual (parameter

settings) from the results of Taguchi trials or Pareto front.

Comparing the results of both employed approaches considering SLO wise best

scenario indicate that the GA method has higher potential to search better para-

meter settings than Taguchi. However, the results of Cost wise best scenario do not

demonstrate a clear difference. An intuitive explanation for this is the consider-

ation of small scale training set that only consist of 4 hours of data. Increasing

the size of the training data set could provide more insights about the employed

techniques. However, considering larger training data set also increase the compu-

tation required for the GA evolution process. This is the key reason of employment

two different techniques to address the same problem. We recommend the use of

GA, when possible. Otherwise, the employed Taguchi approach is an economical

method to set-up (or explore better parameter settings) in the absence of experts

knowledge.
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8
C O N C L U S I O N S

This chapter concludes the thesis and discusses the potential future work. It

provides a summary of the research undertaken, reviews the contributions made,

and discusses how they were addressed. Finally, limitations of the research

presented here and possible future research directions are discussed.

8.1 discussion

The proposed elasticity methods are developed using control-theoretical based

multiple controllers and a fuzzy control system. This synergy, on the one hand,

enables us to address the inherent uncertainty related issues of a cloud environ-

ment using the fuzzy control system. On the other hand, the systematic design

of model-based feedback controllers helps in strengthening the reliability of

the system. In this thesis, we chose to address the cloud elasticity from a SPs

perspective. The key motivations behind this choice are that the cloud based

applications are subject to varying workload conditions, and the CPs lack control

and visibility regarding application performance aspects that make it difficult to

perform efficient scaling decisions [249]. In contrast, the SPs have full control and

visibility of cloud resources using monitoring and management APIs provided

by CPs, as well as an up-to-date knowledge of an application status using custom

or 3rd party tools. The proposed methods are hybrid in nature, and consider

an application level metric (Response time) as well as a system level metric

(CPU utilisation). Additionally, we consider the Arrival rate, which represents

the incoming workload intensity level into the decision making process. The

consideration of these three parameters empower the proposed methodology to

make an informed scaling decision, as opposed to the majority of the existing

related approaches that either rely on application level [171, 16] or system level
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metrics [167, 33, 110].

The existing Rule-based solutions in general are prevalent due to their intuit-

ive, simplistic and, more importantly, commercial availability factors [4]. Such

approaches [26, 27, 28, 29, 30] are easy to design and well understood by the

system designers and administrators alike. However, such methods lack a formal

systematic design process as they are designed based on previous experiences

or apply a trial and error approach [4, 95]. Moreover, they are criticised for the

difficulty in setting-up various thresholds of the rules and their inability to cope

with the changing environment behaviour [16, 45]. This is evident from the con-

figurations and results of the RightScale approach discussed in Chapter 5.

The feedback control solutions [31, 114, 32, 33, 110, 34, 113] follow the fixed

gain design principle of control theory. Such fixed gain methodologies in general

work well for systems that are subject to stable or slowly varying workload

conditions [95]. However, due to the lack of adaptive behaviour at runtime, the

performance suffers in scenarios where the operating conditions change quickly

or when the environmental conditions and configuration spaces are too wide to

be explored effectively [44]. The lack of adaptivity issue has been addressed by

incorporating a kind of runtime adaptation mechanism using online learning

algorithms such as the use of linear regression [122], optimisation [131], Kalman

filter [135] and reinforcement learning [134]. In general, such adaptive control

methodologies have the ability to modify themselves to the changing behaviour

in the system environment that make them suitable for systems with changing

workload conditions. However, they are also criticised for the additional com-

putational cost caused due to the online learning [45], their associated risk of

reducing the quality assurance of the resulted system, and the impossibility of

deriving a convergence or stability proof [44]. Moreover, they are unable to cope

with sudden changes in the workloads.

Al-Shishtawy and Vlassov [159] addressed the elasticity problem using a two-level
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approach, where they utilised a combination of an MPC based feedforward control

solution and a PI based feedback control method. Using such an approach, the

feed-forward method follows a predictive approach that takes scaling decisions

for a longer time in advance; whereas the feedback method is responsible for mak-

ing gradual changes in a reactive style. Such two-step hybrid control solutions

are effective; however, currently our focus is on the efficiency of elastic solution

implemented at the 2nd level that follows a reactive strategy. Al-Shishtawy and

Vlassov [159] utilised a fixed gain PI feedback controller that suffers from various

issues discussed earlier in this section, whereas the approach adopted in this

thesis uses multiple fixed gain controllers. Wang et al., Kjaer et al. [160, 161, 162]

followed a similar approach, i.e. the combination of feed-forward and feedback.

However, they focused on vertical elasticity (see Section 3.3.3.1 for more details).

The following proposals have also adopted a similar approach as employed

in this thesis. For example, Grimaldi et al. [167] used a PID gain scheduling.

Their gain scheduler is an optimal controller that derives the gains using an

optimisation based tuning procedure. The key issues of such an approach are

similar to that of an adaptive methods discussed earlier in this section. Saikrishna

et al., Qin and Wang, and Taneli et al. [168, 169, 170] followed a Linear Parameter

Varying (LPV) approach. CPU utilisation is considered as the single scheduling

parameter by Saikrishna et al. [168], whereas Qin and Wang, and Taneli et al

[169, 170] rely on arrival rate and service rate. Patikirikorala et al. [171] followed

a MMST based control solution. Their method use two different operating regions

and consist of two different fixed gain controllers with an if-else switching that is

based on Response time only. Saikrishna et al. [172], in contrast, used ten distinct

operating regions and Arrival rate as a switching signal.

Jamshidi et al. [16, 35] highlighted the uncertainty related issues and the idea

of qualitative elasticity rules using a fuzzy control system to address the issues

of Rule-based approach. The inputs to their method consist of Arrival rate and

Response time, whereas the output is the number of VMs to be added or removed.
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Their approach facilitates a dynamic response based on the aforementioned

two parameters by making a scaling decision with different intensity level, and

consequently it helps avoid the static scaling issue of the Rule-based approaches.

However, the output (number of VMs) are a pre-defined range of constant integers,

and it is not clear how these numbers are set-up. Therefore, it creates similar

problems to that of the Rule-based approach, i.e. difficulty in setting-up threshold

values of rules and lack of a well-founded design approach. On the other hand,

machine learning based control solutions that utilise either reinforcement learn-

ing [21, 39] or neural networks [180, 250] provide high levels of flexibility and

adaptivity. However, such flexibility and adaptivity come at the cost of long

training delays, poor scalability, slower convergence rate, and the impossibility of

deriving stability proof [44, 45, 79, 251].

It is concluded from the above discussion that different elastic controllers due

to their underlying implementation techniques have different pros and cons,

hence there is no best solution and the choice of selecting suitable approaches

depends on the requirements [44]. The research work carried out in this thesis

advocates the idea of a fixed-adaptive approach (also referred to as hybrid by

Gambi et al. [44]) in contrast to either completely fixed or fully adaptive methods.

The proposed elastic methodologies are implemented using the combination of

the model-based control-theoretical approach and the knowledge based fuzzy

control system. This combination, in comparison with the existing fixed-adaptive

methods [167, 168, 169, 170, 171, 172], addresses the uncertainty related issues

and enables us to provide qualitative elasticity rules as well.

8.2 thesis summary

This thesis investigates the horizontal elasticity problem from the CPs perspective

and proposes biologically-inspired auto-scaling solutions. The proposed elastic

methods follow a Reactive triggering approach, target Web applications, and aim

to maintain the desired performance level whilst reducing operational cost. The
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proposed methods are implemented using a Control theoretical feedback technique

and a Fuzzy control system. The motivation behind this research work, thesis

statement and the research contributions is presented in the first chapter. The

basic concepts and terminologies related to the research work undertaken are

introduced in Chapter 2 to provide the foundations for the research domain. This

includes a high-level overview of cloud computing explaining its historical and

technical perspective. This is followed by a detailed technical introduction of

cloud elasticity including a broad overview, its working mechanism, its various

characteristics and the commonly known issues associated to it.

Chapter 3 presents a state-of-the-art review including methods that are developed

using control-theoretical techniques, as the proposed elastic methods follow the

same techniques. whilst conducting the state-of-the-art review, it is observed

that there is no specific review paper that has particularly focused on control-

theoretical approaches. Such a review paper could help the interested researchers

to understand the control-theoretical point of view and facilitate comparison of

the closely related approaches. Thus, for the sake of completeness, Chapter 3

also provides a brief overview of all review papers that are related to this thesis.

Furthermore, a novel taxonomy is introduced which consists of characteristics

from the control-theoretical point of view (i.e. as an implementation technique)

as well as from a cloud elasticity perspective (i.e. as an application domain). The

state-of-the-art review is conducted in light of the proposed taxonomy where

existing elastic solutions are clustered, based on the following types of controllers:

Basic, Optimal, Advanced and Intelligent. Furthermore, various open issues and

challenges are also highlighted and discussed.

Chapter 4 starts with a discussion based on some of the identified issues and

challenges in Chapter 3 to formulate the requirements for the new elastic control

solution. The proposed control solution (referred to it as Hard switching) con-

sists of the simultaneous use of multiple controllers, where each controller is

particularly designed to achieve better performance in a different situation. The
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selection of a suitable controller is realised at runtime using an additional fuzzy

control solution. This thesis adopts three different controllers termed as Lazy,

Moderate and Aggressive to demonstrate the effectiveness of the proposed control

solution. Each controller is responsible for computing the scaling decision at a

different levels of intensity as their name specifies. Chapter 4 discusses the design

of individual components, including the feedback control and the fuzzy system

based switching mechanism. The feedback control part consists of the identific-

ation of various control elements such as system input, output and reference

input. The fuzzy system based switching mechanism considers three different

inputs including Arrival rate, Response time and Control error. The output of the

fuzzy control system is one of the multiple employed controllers mentioned above.

In Chapter 5, we discuss the evaluation of the proposed Hard switching meth-

odology in comparison with related benchmark methods. The experimental

environment is developed using Java programming language and it further in-

tegrates a well-known cloud simulation framework called CloudSim [55], a fuzzy

logic library called JFuzzylogic [196], and an optimisation library called jMetal

[247]. The benchmark methods employed for comparison purposes include the

commercially available Rule-based methodology called RightScale [27] and the

three employed fixed gain controllers. Furthermore, we adopt a bi-objective

criterion consisting of the number of SLO violations and Cost. Moreover, a set

of different types of commonly used workload patterns including Dual-phase,

Tri-phase, Cyclic, Slowly varying, Quickly varying, Large variation and On-off are

identified and adopted.

The analysis of the obtained computational results demonstrates that the Hard

switching method produces better results for each employed workload scenario

in comparison to other benchmark methods. However, in general such methods

are also criticised for an associated unwanted behaviour, termed as bumpy trans-

itions, that could lead the system to an oscillatory state. The results obtained

using the Hard switching method demonstrate the presence of oscillation only
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in the case of an On-off scenario, and few occurrences of bumpy transitions in

the case of Dual-phase and Tri-phase. To avoid such occurrences, a Soft switching

approach is introduced in Chapter 6. Such an approach allows the possibility of

selecting more than one controller for the decision making. The development of

the proposed Soft switching approach is inspired by the central switching mechan-

ism of action selection in animal brains implemented by a group of subcortical

nuclei collectively referred to as BG [207, 208].

The proposed Soft switching approach depicts each controller as a separate action

and extends the existing Hard switching framework by incorporating a computa-

tional model [57, 58] of action selection that is based on the functional anatomy of

BG. This model accepts three salience input signals and produces output signals.

Each input signal represents the selection strength of each employed controller.

These signals are generated using the modified form of the fuzzy control system

that is used as a switching mechanism in the case of the Hard switching approach.

The final output of the Soft switching method is computed using the individual

output of the controllers and the output signals returned by the BG computa-

tional model. Similar to the Hard switching method, the Soft switching approach is

evaluated by conducting experiments using all the adopted workload patterns.

The obtained computational results are compared with the results of the Hard

switching approach. It is observed that the Soft switching approach produces a

lower number of SLO violations in each workload scenario compared to Hard

switching. Moreover, in the case of Soft switching, there are no oscillations observed

for the On-off scenario and the intensity of bumpy transitions in Dual-phase and

Tri-phase scenarios are also reduced.

In chapter 7, we formulate the construction of the fuzzy membership functions

as a multi-objective optimisation problem to explore the near optimal parameter

settings of their design. This problem is addressed using two different techniques

including the commonly used GA and an alternative, less known approach called

the Taguchi method. The employment of a GA approach is motivated due to its
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ability to identify near optimal parameter settings from a large search space even

in the absence of a precise description of the problem. In contrast, the Taguchi

method provides a systematic and economical method. The Taguchi approach can

be used in scenarios where larger exploration (as required by GA) is not feasible.

The obtained computational results demonstrate that GA is comparatively more

effective and is a preferable choice to be adopted, when possible.

8.3 summary of contributions

This thesis explores the cloud resource management issue with a focus on the

dynamic resource provisioning (elasticity) feature of cloud computing. The thesis

investigates the current state-of-the-art elastic methodologies, highlights the open

issues and proposes new elastic methods to contribute towards resolving the

identified issues. The summary of the key contributions of this thesis is as follows:

1. A control-theoretical review of cloud elasticity: Chapter 3 proposes a

novel taxonomy to carry out the state-of-the-art review of existing control-

theoretical based auto-scaling solutions. This taxonomy integrates attributes

from control-theoretical (i.e. as an implementation technique) as well as

from cloud elasticity (i.e. as an application domain) perspectives. The exist-

ing auto-scaling solutions are reviewed and grouped, based on the various

types of control methodologies. Such a classification helps to understand,

analyse and compare the closely related approaches. Moreover, various

open issues and challenges are highlighted and discussed. The content of

Chapter 3 has been submitted to the peer review journal Cluster Computing

- Springer and currently is in the review stage. This review paper aims to fill

the gap in the existing cloud elasticity literature where the existing reviews

focused mostly on elasticity based classification.

2. Biologically-inspired hard switching approach: Chapter 4 discusses the

proposal of a novel biologically-inspired elastic method focusing on the

problem of horizontal cloud elasticity from the SPs perspective. The pro-

170



posed control solution (referred to it as Hard switching) consists of the

simultaneous use of an array of controllers, whereas the selection of a

suitable controller is realised at runtime using an additional fuzzy control

solution. The simultaneous use of multiple controllers helps to achieve the

adaptive behaviour using switching among controllers, whereas the use of

a fuzzy control system helps to address the inherent uncertainty related is-

sues of the cloud environment. The preliminary results obtained using Hard

switching are accepted for publication in the peer review journal named In-

ternational Journal of High Performance Computing and Networking and

is currently in printing stage.

3. Biologically-inspired soft switching approach: Chapter 6 discusses the

proposal of a biologically-inspired soft switching mechanism that extends

our initially proposed Hard switching approach. Such an approach allows

the possibility of selecting more than one suitable controller for the final

decision making. The soft switching approach improves the possibility of

bumpless transition and to avoid oscillatory behaviour. The preliminary

results obtained using this approach are published in the peer review

journal Cognitive Computation - Springer [252].

4. Design of fuzzy membership functions using GA: Chapter 7 discusses

the design of the employed membership functions used for the switching

mechanism of our proposed Hard switching framework, as a parameter

settings optimisation problem. This chapter further proposes the use of

a multi-objective GA algorithm to obtain near optimal parameter settings.

This helps to design the employed membership functions in the absence of

experts knowledge and without considering any assumptions. The prelimin-

ary results obtained using this research work is published in the conference

proceedings of 31st Annual ACM Symposium on Applied Computing (SAC

2016) [253].

5. Design of fuzzy membership functions using Taguchi approach: Chapter

7 also discusses the design of the employed membership functions using an
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alternative, less known approach called the Taguchi method. Using such an

approach, the design problem of membership functions is addressed with

the use of an orthogonal array. The computational results obtained using

this research work has been submitted to a peer review journal named

Computing - Springer and is currently in the review process.

6. Performance evaluation: Chapter 5 and 6 present the computational results

obtained using the proposed Hard switching and Soft switching methodolo-

gies in comparison with the state-of-the-art approaches. The experiments for

evaluation purposes are conducted utilizing real HTTP traces that followed

certain workload patterns. The results are compared following an evalu-

ation criteria consisting of attributes like performance, cost, and oscillatory

behaviour.

8.4 limitations and future work

The computational results presented in this research work demonstrated the

effectiveness of the proposed methodologies. However, it has some limitations

that are important to be highlighted, as they are out of the scope of our existing

research. These limitations signify the directions for potential future research that

will pave the way to extend the proposed methodologies. These are highlighted

as following:

1. The cloud computing model provides a pool of unlimited computational

resources in the form of VM offerings with the VMs themselves of different

computational specifications. In the research work presented in this thesis,

we only consider VMs with the same computational specifications (com-

monly referred to as homogeneous servers). Renting homogeneous servers

is not always pragmatic. However, considering heterogeneous servers for

horizontal elasticity creates challenges for building efficient and accurate

performance models because of their different computational capabilities.

172



Thus a further investigation is required to find the efficiency of our proposed

methodology whilst considering heterogeneous servers.

2. The elastic controller is responsible for taking a scaling decision. However, its

execution is not spontaneous. The elastic controller interacts with the service

of a CP to initiate its execution. This process may take several minutes

before the new VMs are set-up and ready to accept the load of the running

application. Thus, the delay between the decision and the actual execution

could cause some problems for the underlying application. Such delays and

possible problems are not considered in this thesis. Moreover, situations

like failure of a VM at runtime are also not considered. However, the cloud

environment is subject to such uncertainties, and the considerations of these

aspects are considered as a potential future work.

3. The proposed control methodologies are evaluated on a small scale, i.e.

using various workloads spanning several hours or even days in some cases

and a cluster size of up to 80 VMs. However, the suitability of the control

methodologies at a larger scale whilst considering realistic enterprise level

web applications, e.g. Animoto which saw cluster size swing from 50 to

4000 VMs [19], should be further evaluated.

4. The proposed auto-scaling solution is evaluated in a controlled setting

using a simulation environment. However, to demonstrate its effectiveness

and to be able to use it in a practical setting, the implementation and

evaluation of the proposed methods need further investigation in a real

cloud environment.

5. The proposed control system is evaluated against the benchmark meth-

ods using evaluation criteria consisting of performance and operational

costs. However, a detailed theoretical convergence and stability analysis

to formally evaluate the proposed approach against other state-of-the-art

approaches are not performed. Therefore, the proposed methods require
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further investigation from a formal evaluation perspective that focuses on

theoretical convergence and stability analysis.

6. The proposed control system in this thesis follows a reactive triggering

approach. However, such an approach is criticised for the delay caused

between the time of reaction to a change, and the time taken to complete the

reconfiguration process. The hybrid approach, in contrast, combines both

the predictive and reactive approaches to one elastic method. A few such

elastic methods are discussed earlier in Section 3.3.3.1, where a feedforward

and feedback approach are working together as a hybrid approach. We

argue that such an approach is more effective in comparison to either

reactive or proactive approaches. Therefore, extending the proposed control

solution to make it a hybrid methodology of the aforementioned type is

one way to advance forward.
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