
Self-Learning Cloud Controllers:
Fuzzy Q-Learning for Knowledge Evolution

Pooyan Jamshidi∗, Amir M. Sharifloo†, Claus Pahl∗, Andreas Metzger†, Giovani Estrada ‡
∗Department of Computing, Imperial College London, UK

†University of Duisburg-Essen, Germany
‡Intel, Ireland

Abstract—Auto-scaling features enable cloud applications to
maintain enough resources to satisfy demand spikes, reduce costs
and keep performance in check. Most auto-scaling strategies
rely on a predefined set of rules to scale up/down the required
resources depending on the application usage. Those rules are
however difficult to devise and generalize, and users are often
left alone tuning auto-scale parameters of essentially black-
box applications. In this paper, we propose a novel fuzzy
reinforcement learning controller, FQL4KE, which automatically
scales up or down resources to meet performance requirements.
The Q-Learning technique, a model-free reinforcement learning
strategy, frees users of most tuning parameters. FQL4KE has
been successfully applied and we therefore think that a fuzzy
controller with Q-Learning is indeed a promising combination
for auto-scaling resources.

I. INTRODUCTION

Elasticity is a key characteristic of cloud platforms enabling

both cloud providers and end-users to set policies to satisfy

demand spikes, minimize costs, and increase platform uti-

lization and application performance [14], [19]. Despite the

advantages, however, the dynamic acquisition and release of

resources remains a challenge due to the inherent uncertainty

introduced by workloads, costs and user constraints (e.g.,

response time).

A large number of approaches have been proposed with

varying degree of success [19], [20], [8]. Scaling rules based

on predefined thresholds are often simple and intuitive to set

up, see for instance Amazon EC2 [1], Microsoft Azure [2]

and OpenStack [3]. This thresholding mechanism, one size

fits all approach, however, makes it difficult to generalize

and quickly adapt to different scenarios. As the applications

grow in complexity, the interference among components and

the frequency by which hardware and software failures arise

impose new challenges [19], [21], [11]. In the remaining

sections we introduce a novel fuzzy controller which together

with Q-Learning automatically updates fuzzy rules to learn

optimal elasticity policies at runtime.

We have previously shown that a fuzzy auto-scaling con-

troller can successfully enhance the user experience by al-

lowing intuitive auto-scaling decisions [15]. The key strength

of fuzzy logic is their ability to translate human knowledge

into a set of basic and understandable rules. During the

design process of a fuzzy controller, a set of IF-THEN rules

must be defined. These rules represent the mapping of the

input received from monitoring to the output scaling decisions

entangled with the actuator in linguistic terms. Although users

are more comfortable with defining fuzzy auto-scaling rules

using linguistic variables [15], the rules have to be defined

at design-time based on limited knowledge available. Here is

where learning strategies could be employed to ease the burden

at design time.

In this paper we propose a fuzzy online learning mechanism,

FQL4KE that adjusts auto-scaling policies at runtime. More

specifically, we combine fuzzy control and Fuzzy Q-Learning

(FQL) [13] in order to connect human expertise to continuous

evolution machinery. The main implication of this work is

that users need not rely on unreliable guesswork, but rather

FQL4KE automatically adjusts application resources, with no

apriori knowledge on the auto-scaling actions. It mean the

auto-scaling controller can indeed start working with an empty
knowledge base and adjusting it on the fly.

The rest of the paper is organized as follows. Section

II presents our approach. Section III gives the experimental

results. Section IV discusses the related work, and finally

Section V concludes the paper.

II. THE PROPOSED APPROACH

This section presents our approach FQL4KE to cloud auto-

scaling with machine learning 1. By combining fuzzy logic and

Q-Learning, our approach deals with uncertainty caused by

the incomplete knowledge of cloud users. Expert knowledge,

if available, is encoded in terms of fuzzy rules. The fuzzy

rules are continually tuned through learning from the data

collected by monitoring runtime executions. In case there is

no knowledge available at design time to provide the initial

fuzzy rules, FQL4KE is still able to learn the rules at runtime.

A. FQL4KE Architecture

Figure 1 illustrates the main building blocks of FQL4KE.

While the application runs on a cloud platform that provides

the demanded resource, FQL4KE monitors the application

and guides resource provisioning. More precisely, FQL4KE
follows the autonomic MAPE-K loop [17], where different

characteristics of the application (e.g. workload and response

time) are continuously monitored, the satisfaction of system

goals are checked and accordingly the resource allocation is

adapted in case of deviation from goals. The goals (i.e., SLA,

cost, response time) are reflected in a reward function.

1An ellaboated description of FQL4KE is available in [16].

2015 International Conference on Cloud and Autonomic Computing

/15

2015 International Conference on Cloud and Autonomic Computing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/30934746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fuzzifier

Inference
Engine

Defuzzifier
Rule
base

Fuzzy
Q-learning

Cloud ApplicationMonitoring Actuator

Cloud Platform

Fuzzy Logic
Controller

Knowledge Learning

Inference
Engine

Defuzzifier
Rule
base

eren

Fuzzy
Q-learni

Fuzzifier

Fuzzy Logic
Controller

Knowledge LearningKn

Au
to

no
m

ic
 C

on
tr

ol
le

r

��

�

�
,�
�,
�ℎ

,�
�

�	

system state system goal
ng

on
tr

ol
le

r

�	

y g

Fig. 1: FQL4KE architecture.

The monitoring component collects low-level performance

metrics and feed both cloud controller as well as the knowl-

edge learning component. The actuator issues adaptation com-

mands that it receives from the controller at each control

interval to the underlying cloud platform. Two components

of knowledge learning and cloud controller are incorporated

for this purpose. The cloud controller is a fuzzy controller

that takes the observed data, and generates scaling actions.

The learning component continuously updates the knowledge

base of the controller by learning appropriate rules. These

two components are described in Sections II-B and II-C

respectively. Finally, the integration of these two components

is discussed in Section II-D.

B. Fuzzy Logic Controller

Fuzzy inference is the process of mapping a set of control

inputs to a set of control outputs through fuzzy logic rules and

operations. This mapping provides a basis from which control

output can be derived. The key benefit of fuzzy controllers is

for types of problems that cannot be represented by explicit

mathematical models due to high non-linearity of the system.

Instead, the potential of fuzzy logic lies in its capability to

approximate that non-linearity by expressing the knowledge

in a similar way to the human perception and reasoning.

The explicit knowledge base component is one of the unique

aspects of such type of controllers. Instead of sharp switching

between modes based on thresholds, control output changes

smoothly from different region of behavior depending on the

dominant rule [15]. Since our goal is to build a cloud controller

to adjust the number of computing machines with regard to the

response time and workload, our fuzzy controller is designed

based on a model that a set of input signals are mapped

on an output control action. More precisely, the input to the

controller is the current workload (w) and response time (rt)
and the output is the scaling action (sa) in terms of increment

(or decrement) in the number of virtual machines (VMs).

C. Fuzzy Q-Learning

Fuzzy Q-Learning component is to learn/adjust/adapt the

auto scaling policies used by the controller. The implication is

that we do not anymore rely on user-defined policies, instead

we let the controller learn the policies. As the controller has

to take an action in each control loop, it should try to select

those actions taken in the past which produced good rewards.

Fuzzy logic version of Q-learning algorithm has been pro-

posed first in [13] with the aim to optimize the consequents

of the rules in fuzzy controllers. Fuzzy Q-learning (FQL) has

some critical benefits over its traditional algorithm. First and

most importantly, for some application areas in which the

number of states and the potential action that the agent can take

in those states are high then the q-values 2 need to be stored

in large look up tables. As a result, the Q-learning becomes

unpractical and even impossible to solve in continuous state

spaces [13]. By employing fuzzy variables, continuous state

spaces can be discretized into states represented by all the

combinations of inputs. In addition, FQL can be speed up by

embedding prior knowledge via fuzzy rules.

D. FQL4KE for Dynamic Resource Allocation

FQL4KE starts with controlling the allocation of resources

with no priori knowledge. After enough explorations, the

consequents of the fuzzy rules can be determined by selecting

those actions that corresponds to the highest q-value in each

row of the Q table. Although FQL4KE do not rely on design-

time knowledge, if even partial knowledge is available (i.e.,

operator of the system is confident with providing some of the

elasticity policies) or there exists data regarding performance

of the application, FQL4KE can exploit such knowledge by

initialing q-values with more meaningful data instead of

initializing them with zero. This implies a faster learning

convergence.

III. EXPERIMENT

FQL4KE has been implemented on top of Microsoft Azure,

as a promising commercial Cloud platform. The cloud con-

troller deployed in a delayed-feedback environment came

to know the reward after a non-negative integer indicating

the number of time-steps between taking an scaling action

and actually receiving its feedback (the state observation

and reward). In each monitoring cycle, which happens ev-

ery 10 seconds, the controller knows about its state but

in order to receive the reinforcement signal, it has to wait

for example for 8-9 minutes for ”scaling out” actions and

2-3 minutes for ”scaling in” actions to be enacted. These

numbers vary depending on the Cloud platform. Such kind of

delayed feedback environments introduce some challenges for

learning convergence. Therefore, finding an optimal balance

between exploration and explotation is vital. Following an

intuitive strategy, FQL starts with exploration phase and after

a first learning convergence happened, it enters the balanced

exploration-exploitation phase. In other words, after initial

2Q-values estimate the award of taking an action in the long run.

Fig. 2: Temporal evolution of q-values.

learning by high exploration, we increase the exploitation rate

to fully exploit the learned knowledge.

In practice, a finite rounds of learning steps (in machine

learning terminology called epochs) should be passed to ensure

the learning has been converged. In our experiment, the

exploration lasts 80 epochs, ensuring that all state-action pairs

are sufficiently visited. The temporary evolution of the q-

values associated to each state-action pairs for the learning

strategy is shown (for partial set of pairs) in Figure 2. Note

that the change in the q-values occurs when the corresponding

rule is activated, i.e., when the system is in state S(t) and take

specific action ai. As the figure shows, some q-values changed

to a negative value during exploration phase. It means that

these actions are basically punished and as a result are not

appropriate to be taken in the future. The optimal consequent

for each rule in the rule base is determined by the most highest

q-value at the end of the learning phase. For instance, action a5
is the best consequent for rule number 9 in learning strategy.

In accordance to the change in the q-values, the control

surface of the fuzzy controller is also evolving. Figure 3

shows the temporal evolution in control surface of the fuzzy

controller. The initial design-time surface is not shown as it

is a constant plane at point zero. The surface is evolved until

the learning has been converged. Note that the first surface

is the one in the lower left, then lower right, upper right and

the final surface is located at the upper left corner when the

learning has been converged.

IV. RELATED WORK

Auto scaling problem has been extensively studied in the

recent years [19][7][10][12][4]. However, prior to this work

Fig. 3: Temporal evolution of control surface.

there has been no technique to tune and improve auto scaling

policies. In this section, we overview the works, which apply

kind of learning techniques in the area of resource allocation,

and distinguish our approach from them.

Xu et al. [24], [6] present an approach to learning ap-

propriate auto-configuration in virtualized resources. It uses

multiple agents, each of which apply reinforcement learning

to optimize auto-configuration of its dedicated environment.

Barrett et al. [5] investigate the impact of varying performance

of cloud resources on application performance. They show

that a resource allocation approach, considering this aspect,

achieves benefits in terms of performance and cost. To reduce

the learning time, a parallelized reinforcement learning algo-

rithm is proposed through which multiple agents are employed

to deal with the same tasks to speed up the procedure to

explore the state space. The reward values are calculated by

combining the accumulated experience of different agents. In

a similar approach [9] appropriate initialization of the q-values

are proposed to speedup the learning convergence. Tesauro et

al. [23] demonstrate how to combine the strengths of both RL

(model-free) and queuing models (model-based) in a hybrid

approach, in which their RL needs to be trained at design time

while at runtime a queuing model policy controls the system.

In [22], a multi-layer approach is presented to handle

multi-objective requirements such as performance and power

in dynamic resource allocation. The lower layer focuses

on each objective, and exploits a fuzzy controller proposed

earlier in [25]. The higher layer is to maintain a trade-off

by coordinating the controllers. Lama et al. [18] integrate

Neural Networks (NNs) with fuzzy logic to build adaptive

controllers for autonomic server provisioning. Similar to our

approach, NNs define a set of fuzzy rules, and the self-adaptive

controller adapts the structure of the NN at runtime, therefore

automatically updating rules. Unlike the above approaches,

FQL4KE offers a seamless knowledge evolution through fuzzy

control and RL, putting aside the burden that was on the

shoulder of users.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a novel knowledge evolution strategy

for the dynamic resource provisioning of cloud-based applica-

tions. The scenario under study assumes no a priori knowledge

regarding elasticity policies. More precisely, instead of spec-

ifying elasticity policies as a typical case-by-case scenario in

auto-scaling solutions, system operators and users are only

required to provide the importance weights in the reward

functions. A fuzzy rule-based controller together with a Q-

Learning algorithm will then iterate to learn optimal elasticity

policies at run-time. The main contributions of the proposed

approach are as follows:

1) FQL4KE is robust to highly dynamic workload intensity

due to its self-adaptive and self-learning capabilities.

2) FQL4KE is model-independent. The variations in the

performance of the deployed applications and the un-

predictability of dynamic workloads do not affect the

effectiveness of the proposed approach.

3) FQL4KE is capable of automatically constructing the con-

trol rules and keeping control parameters updated through

fast online learning. It executes resource allocation and

learns to improve its performance simultaneously.

4) Unlike supervised techniques that learn from the training

data, FQL4KE does not require off-line training that saves

significant amount of time and efforts.

We are currently extending our prototype in a number of

ways, for instance: (i) extending FQL4KE to perform in the

environments where only partially observable (for this we

will exploit partially observable Markov decision processes)

data exist; (ii) exploiting clustering approaches to learn the

membership functions of the antecedents in fuzzy rules; and

(iii) integrating FQL4KE with advanced data sensors to profit

from the underlying hardware platform and ensure it runs

exceptionally well on Intel architecture. The association of

low-level features and resource allocation, eg seen through

the scheduler, can drive the knowledge evolution towards

optimal policies that factor in hardware features and co-

processors. Elastic policies could then be reused by the service

orchestrator on similar workloads (eg via scheduler hints) to

speed up the overall learning convergence.

Overall, initial experiments show that our approach can be

successfully applied to cloud auto-scaling. We therefore expect

our work can bring attention to this concept in which adaptive,

self-tuning applications automatically optimize the resource

allocation in cloud environments.

ACKNOWLEDGMENT

The project has been funded by the Irish Centre for Cloud

Computing and Commerce, as well as the European Com-

mission’s 7th Framework Programme projects CloudWave

(agreement 610802) and LeanBigData (agreement 619606).

REFERENCES

[1] Amazon EC2, Accessed December 29, 2014.
[2] Microsoft Azure, Accessed December 29, 2014.
[3] OpenStack, Accessed December 29, 2014.

[4] Danilo Ardagna, Giuliano Casale, Michele Ciavotta, Juan F Pérez,
and Weikun Wang. Quality-of-service in cloud computing: modeling
techniques and their applications. Journal of Internet Services and
Applications, 5(1):11, 2014.

[5] Enda Barrett, Enda Howley, and Jim Duggan. Applying reinforce-
ment learning towards automating resource allocation and application
scalability in the cloud. Concurrency and Computation: Practice and
Experience, 25(12):1656–1674, 2013.

[6] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. Coordinated self-
configuration of virtual machines and appliances using a model-free
learning approach. IEEE Trans. Parallel Distrib. Syst., 24(4):681–690,
2013.

[7] E Caron, L Rodero-Merino, F Desprez, and A Muresan. Auto-scaling,
load balancing and monitoring in commercial and open-source clouds.
2012.

[8] Eddy Caron, Luis Rodero-Merino, Frédéric Desprez, Adrian Muresan,
et al. Auto-scaling, load balancing and monitoring in commercial and
open-source clouds. In Cloud Computing Methodology, Systems, and
Applications, 2012.

[9] X Dutreilh and S Kirgizov. Using reinforcement learning for autonomic
resource allocation in clouds: towards a fully automated workflow.
The Seventh International Conference on Autonomic and Autonomous
Systems, 2011.

[10] Guilherme Galante and Luis Carlos E. de Bona. A Survey on Cloud
Computing Elasticity. In 2012 IEEE Fifth International Conference on
Utility and Cloud Computing, pages 263–270. IEEE, November 2012.

[11] A Gambi, M Pezze, and G Toffetti. Kriging-based Self-adaptive Cloud
Controllers. IEEE Transactions on Services Computing.

[12] Alessio Gambi, Giovanni Toffetti, and Mauro Pezzè. Assurance of
self-adaptive controllers for the cloud. In Assurances for Self-Adaptive
Systems, pages 311–339. Springer, 2013.

[13] PY Glorennec and L Jouffe. Fuzzy Q-learning. In Proceedings of
6th International Fuzzy Systems Conference, volume 2, pages 659–662.
IEEE, 1997.

[14] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Cloud Migration Re-
search: A Systematic Review. IEEE Transactions on Cloud Computing,
1(2):142–157, 2013.

[15] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Autonomic resource
provisioning for cloud-based software. In SEAMS, pages 95–104, 2014.

[16] Pooyan Jamshidi, Amir Sharifloo, Claus Pahl, Andreas Metzger, and
Giovani Estrada. Self-learning cloud controllers: Fuzzy q-learning for
knowledge evolution. arXiv preprint arXiv:1507.00567, 2015.

[17] JO Kephart and DM Chess. The vision of autonomic computing.
Computer, 36(1):41–50, January 2003.

[18] P Lama and X Zhou. Autonomic provisioning with self-adaptive neural
fuzzy control for percentile-based delay guarantee. ACM Transactions
on Autonomous and Adaptive Systems, 2013.

[19] T Lorido-Botran, J Miguel-Alonso, and JA Lozano. A Review of Auto-
scaling Techniques for Elastic Applications in Cloud Environments.
Journal of Grid Computing, 2014.

[20] Marco AS Netto, Carlos Cardonha, Renato LF Cunha, and Marcos D
Assunçao. Evaluating auto-scaling strategies for cloud computing
environments. Target, 80:60.

[21] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh,
Calton Pu, and Yuanda Cao. Who Is Your Neighbor: Net I/O Per-
formance Interference in Virtualized Clouds. IEEE Transactions on
Services Computing, 6(3):314–329, July 2013.

[22] Jia Rao, Yudi Wei, Jiayu Gong, and Cheng-Zhong Xu. Dynaqos: Model-
free self-tuning fuzzy control of virtualized resources for qos provi-
sioning. In Quality of Service (IWQoS), 2011 IEEE 19th International
Workshop on, pages 1–9, June 2011.

[23] G Tesauro, NK Jong, R. Das, and M.N. Bennani. A Hybrid Reinforce-
ment Learning Approach to Autonomic Resource Allocation. 2006 IEEE
International Conference on Autonomic Computing, 2006.

[24] Cheng-Zhong Xu, Jia Rao, and Xiangping Bu. URL: A unified
reinforcement learning approach for autonomic cloud management. J.
Parallel Distrib. Comput., 72(2):95–105, 2012.

[25] Jing Xu, Ming Zhao, J. Fortes, R. Carpenter, and M. Yousif. On the use
of fuzzy modeling in virtualized data center management. In Autonomic
Computing, 2007. ICAC ’07. Fourth International Conference on, pages
25–25, June 2007.

