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Abstract

Running applications in the cloud efficiently requires much more than
deploying software in virtual machines. Cloud applications have to be con-

tinuously managed : 1) to adjust their resources to the incoming load and 2)
to face transient failures replicating and restarting components to provide
resiliency on unreliable infrastructure. Continuous management monitors

application and infrastructural metrics to provide automated and respon-
sive reactions to failures (health management) and changing environmental
conditions (auto-scaling) minimizing human intervention.

In the current practice, management functionalities are provided as in-
frastructural or third party services. In both cases they are external to
the application deployment. We claim that this approach has intrinsic lim-
its, namely that separating management functionalities from the application
prevents them from naturally scaling with the application and requires ad-
ditional management code and human intervention. Moreover, using infras-
tructure provider services for management functionalities results in vendor
lock-in effectively preventing cloud applications to adapt and run on the most
effective cloud for the job.

In this paper we discuss the main characteristics of cloud native appli-
cations, propose a novel architecture that enables scalable and resilient self-
managing applications in the cloud, and relate on our experience in porting
a legacy application to the cloud applying cloud-native principles.
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1. Introduction

After a phase driven mainly by early adopters, cloud computing is now
being embraced by most companies. Not only new applications are devel-
oped to be run in the cloud, but legacy workloads are increasingly being
adapted and transformed to leverage the dominant cloud computing models.
A suitable cloud application design was published previously by the authors
[Toffetti et al. (2015)] in the proceedings of the First International Work-
shop on Automated Incident Management in the Cloud (AIMC’15). With
respect to that initial position paper, this article relates on our experience
implementing the design we propose with a specific set of technologies and
the evaluation of the non-functional behavior of the implementation with
respect to scalability and resilience.

There are several advantages in embracing the cloud, but in essence they
typically fall into two categories: either operational (flexibility/speed) or
economical (costs) reasons. From the former perspective, cloud computing
offers fast self-service provisioning and task automation through application
programming interfaces (APIs) which allow to deploy and remove resources
instantly, reduce wait time for provisioning development/test/production en-
vironments, enabling improved agility and time-to-market facing business
changes. The bottom line is increased productivity. From the economical per-
spective, the pay-per-use model means that no upfront investment is needed
for acquiring IT resources or for maintaining them, as companies pay only
for allocated resources and subscribed services. Moreover, by handing off
the responsibility of maintaining physical IT infrastructure, companies can
avoid capital expenses (capex ) in favor of usage-aligned operational expenses
(opex ) and can focus on development rather than operations support.

An extensive set of architectural patterns and best practices for cloud
application development have been distilled, see for instance Wilder (2012);
Fehling et al. (2014); Homer et al. (2014).

However, day-to-day cloud application development is still far from fully
embracing these patterns. Most companies have just reached the point of
adopting hardware virtualization (i.e., VMs). Innovation leaders have already
moved on to successfully deploying newer, more productive patterns, like
microservices, based on light-weight virtualization (i.e., containers).

On one hand, a pay-per-use model only brings cost savings with respect to
a dedicated (statically sized) system solution if 1) an application has vary-
ing load over time and 2) the application provider is able to allocate the
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“right” amount of resources to it, avoiding both over-provisioning (paying
for unneeded resources) and under-provisioning resulting in QoS degrada-
tion. On the other hand, years of cloud development experience have taught
practitioners that commodity server hardware and network switches break
often. Failure domains help isolate problems, but one should “plan for fail-
ure”, striving to produce resilient applications on unreliable infrastructure,
without compromising their elastic scalability.

In this article we relate on our experience in porting a legacy Web appli-
cation to the cloud, adopting a novel design pattern for self-managing cloud
native applications. This enables vendor independence and reduced costs
with respect to relying on IaaS/PaaS and third party vendor services.

The main contributions of this article are: 1) a definition of cloud-native
applications and their desired characteristics, 2) a distributed architecture for
self-managing (micro) services, and 3) a report on our experiences and lessons
learnt applying the proposed architecture to a legacy application brought to
the cloud.

2. Cloud-native applications

Any application that runs on a cloud infrastructure is a “cloud applica-
tion”, but a “cloud-native application” (CNA from here on) is an application
that has been specifically designed to run in a cloud environment.

2.1. CNA: definitions and requirements

We can derive the salient characteristics of CNA from the main aspects of
the cloud computing paradigm. As defined in Mell and Grance (2011), there
are five essential characteristics of cloud computing: on-demand self service,
broad network access, resource pooling, rapid elasticity and measured service.
In actual practice the cloud infrastructure is the enabler of these essential
characteristics. Due to the economy of scale, infrastructure installations are
large and typically built of commodity hardware so that failures are the norm
rather than the exception [Verma et al. (2015)]. Finally, cloud applications
often rely on third-party services, as part of the application functionality,
support (e.g., monitoring) or both. Third-party services might also fail or
offer insufficient quality of service.

Given the considerations above, we can define the main requirements of
CNA as:
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• Resilience: CNA have to anticipate failures and fluctuation in quality
of both cloud resources and third-party services needed to implement
an application to remain available during outages. Resource pooling
in the cloud implies that unexpected fluctuations of the infrastructure
performance (e.g., noisy neighbor problem in multi-tenant systems)
need to be expected and managed accordingly.

• Elasticity: CNA need to support adjusting their capacity by adding or
removing resources to provide the required QoS in face of load variation
avoiding over- and under-provisioning. In other terms, cloud-native
applications should take full advantage of the cloud being a measured
service offering on-demand self-service and rapid elasticity.

It should be clear that resilience is the first goal to be attained to achieve
a functioning and available application in the cloud, while scalability deals
with load variation and operational cost reduction. Resilience in the cloud
is typically addressed using redundant resources. Formulating the trade-off
between redundancy and operational cost reduction is a business decision.

The principles identified in the “12 factor app” methodology [Adam
(2012)] focus not only on several aspects that impact on resiliency and scal-
ability (e.g., dependencies, configuration in environment, backing services as
attached resources, stateless processes, port-binding, concurrency via process
model, disposability) of Web applications, but also the more general develop-
ment and operations process (e.g., one codebase, build-release-run, dev/prod
parity, administrative processes). Many of the best practices in current cloud
development stem from these principles.

2.2. Current state of cloud development practice

Cloud computing is novel and economically more viable with respect to
traditional enterprise-grade systems also because it relies on self-managed
software automation (restarting components) rather than more expensive
hardware redundancy to provide resilience and availability on top of com-
modity hardware [Wardley (2011)]. However, many applications deployed in
the cloud today are simply legacy applications that have been placed in VMs
without changes of architecture or assumptions on the underlying infrastruc-
ture. Failing to adjust cost, performance and complexity expectations, and
assuming the same reliability of resources and services in a traditional data
center as in a public cloud can cost dearly, both in terms of technical failure
and economical loss.
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In order to achieve resilience and scalability, cloud applications have to
be continuously monitored, analyzing their application-specific and infras-
tructural metrics to provide automated and responsive reactions to failures
(health management functionality) and changing environmental conditions
(auto-scaling functionality), minimizing human intervention.

The current state of the art in monitoring, health management, and scal-
ing consists of one of the following options: a) using services from the infras-
tructure provider (e.g., Amazon CloudWatch1 and Auto Scaling2 or Google
Instance Group Manager3) with a default or a custom provided policy, b)
leveraging a third-party service (e.g., Rightscale4, New Relic5), c) building an
ad-hoc solution using available components (e.g., Netflix Scryer6, logstash7).
Both infrastructure providers and third-party services are footsteps on a path
leading to vendor lock-in, are paid services, and moreover they may them-
selves suffer from outages. Ad-hoc solutions can be hard to engineer, espe-
cially because they have to scale seamlessly with the application they monitor
and manage, in other terms they have to be themselves resilient and scalable.

All the management approaches proposed above have one common char-
acteristic: their logic is run in isolation from the managed application, as an
external service/process. In this article we claim that this approach has in-
trinsic limits and we argue that one possible solution is to build management
functionalities within the managed application itself, resulting in monitor-
ing, health management, and scaling functionalities that naturally adapt to
the managed application and its dynamic nature. Moreover, self-managing
applications are fundamental enablers of vendor-independent multi-cloud ap-
plications. We propose a decomposition of the application into stateful and
stateless containers, following the microservices paradigm.

3. Self-managing (micro) services

The main contributions of this article is a high-level distributed architec-
ture that can be used to implement self-managing cloud native applications.

1https://aws.amazon.com/cloudwatch
2https://aws.amazon.com/autoscaling
3https://cloud.google.com/compute/docs/autoscaler
4http://www.rightscale.com
5https://newrelic.com
6http://techblog.netflix.com/2013/11/scryer-netflixs-predictive-auto-scaling.html
7https://www.elastic.co/products/logstash
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The idea is that just as there are best practices to build reliable services
on the cloud by leveraging distributed algorithms and components, so can
management functionalities (e.g., health-management, auto-scaling, adap-
tive service placement) be implemented as resilient distributed applications.

More in detail, the idea is to leverage modern distributed in-memory
key-value store solutions (KV-store; e.g. Consul8, Zookeeper9, Etcd10, Ama-
zon Dynamo [DeCandia et al. (2007)], Pahoehoe [Anderson et al. (2010)])
with strong or eventual consistency guarantees. They are used both to store
the “state” of each management functionality and to facilitate the internal
consensus algorithm for leader election and assignment of management func-
tionalities to cluster nodes. In this way, management functionalities become
stateless and, if any of the management nodes were to fail, the corresponding
logic can be restarted on another one with the same state. More concretely,
any management functionality (e.g., the autoscaling logic) can be deployed
within an atomic service as a stateless application component to make the
service self-managing in that aspect. If the autoscaling logic or the machine
hosting it were to fail, the health management functionality would restart it,
and the distributed key-value store would still hold its latest state.

With the same approach, hierarchies of configuration clusters can be used
to delegate atomic service scaling to the components, and atomic service
composition and lifecycle to service elected leaders. What we propose inte-
grates naturally with the common best practices of cloud orchestration and
distributed configuration that we will discuss in the following sections.

Self-managing microservice compositions. By generalization, and building on
the concept of service composability, the same architecture can be employed
to deploy self-managing service compositions or applications using the mi-
croservice architectural pattern [Lewis and Fowler (2014)].

A microservice-oriented application can be represented with a type graph
of microservices that invoke each other, and an instance graph representing
the multiple instances of microservices that are running to provide resilience
and performance guarantees (e.g., as in Figure 1).

In microservice architectures, several patterns are used to guarantee re-
silient, fail-fast behavior. For instance, the circuit-breaker pattern [Nygard

8https://www.consul.io
9https://zookeeper.apache.org/

10https://github.com/coreos/etcd
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Figure 1: Type graph and instance graph of an example microservices based application

(2007)] or client-side load balancing such as in the Netflix Ribbon library11.
The typical deployment has multiple instances of the same microservice run-
ning at the same time, possibly with underlying data synchronization mech-
anisms for stateful services. The rationale behind this choice is to be able to
deploy microservice instances across data centers and infrastructure service
providers and letting each microservice quickly adjust to failures by providing
alternative endpoints for each service type.
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Figure 2: Hierarchical KV-store clusters for microservices management

In Figure 2, we provide an intuitive representation of how multiple KV-
store clusters can be used to implement self-managing microservice appli-
cations across cloud providers. Each microservice is deployed with its own

11http://techblog.netflix.com/2013/01/announcing-ribbon-tying-netflix-mid.html
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KV-store cluster for internal configuration management and discovery among
components. Local management functionalities (e.g., component health man-
agement, scaling components) are delegated to nodes in the local cluster.

Another KV-store cluster is used at “global” (application) level. This
“composition cluster” is used both for endpoint discovery across microser-
vices and leader election to start monitoring, auto-scaling, and health man-
agement functionalities at service composition level. Other application-level
decisions like for instance micro-service placement across clouds depending
on latencies and costs, or traffic routing across microservices can be imple-
mented as management logic in the composition cluster.

Combined with placement across failure domains, the proposed architec-
ture enables distributed hierarchical self management, akin to an organism
(i.e., the composed service) that is able to recreate its cells to maintain its
morphology while each cell (i.e., each microservice) is a living self-managing
element.

3.1. Atomic service example

In this subsection we provide an example of how to apply the concept
of self-managing services to a monolithic Web application acting as a single
atomic service which is gradually converted to a CNA.

The functionalities needed in our example are going to be component dis-
covery and configuration, health-management, monitoring and auto-scaling.
In order to introduce them, we are also going to introduce the concepts of
orchestration, distributed configuration, and service endpoint discovery in
the following paragraphs.

3.1.1. Cloud service orchestration

Infrastructure as a service offers APIs to deploy and dimiss compute,
network, and storage resources. However, the advantages of on-demand
resource deployment would be limited if it could not be automated. Ser-
vices and applications typically use a set of interconnected compute, storage,
and network resources to achieve their specific functionality. In order to
automate their deployment and configuration in a consistent and reusable
manner, deployment automation tools and languages (e.g., Amazon Cloud

8



Formation12, OpenStack Heat13, TOSCA14) have been introduced. Gener-
alizing, they typically consist of a language for the declarative description
of the needed resources and their interdependencies (service template) com-
bined with an engine that from the template builds a dependency graph and
manages the ordered deployment of resources.

Cloud orchestration [Karagiannis et al. (2014)] is an abstraction of de-
ployment automation. Services are defined by a type graph representing the
needed resources and connection topology. Each time a service of a given
type needs to be instantiated, an orchestrator is started with the aim of
deploying and configuring the needed resources (possibly using deployment
automation tools as actuators). The abstraction w.r.t. deployment automa-
tion comes from the fact that cloud orchestration is arbitrarily composable:
the orchestration logic of a composed service triggers the orchestration of
its (atomic or composed) service components creating and running as many
orchestrator instances as needed.
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Figure 3: Type graph of a simple Web application with caching (left), example of instance
graph of the same application (right)

Each orchestrator has its own representation of the deployed service topol-
ogy and its components in the instance graph. In Figure 3 we provide an ex-
ample of a type graph (TG) for a simple Web application with caching (left).
The application topology allows a load balancer (LB) forwarding requests to

12https://aws.amazon.com/cloudformation/
13https://wiki.openstack.org/wiki/Heat
14http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
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up to 20 application servers (AS) that are connected to respectively maxi-
mum 5 and 4 database (DB) and caching (CA) instances. Cardinalities on
edges represent the minimum and maximum number of allowed connections
among instances. For example, a CA node can serve up to 5 AS nodes. These
cardinalities are typically derived from engineering experience [Gandhi et al.
(2012)]. The right graph in Figure 3 is the instance graph (IG) for the same
application. In algebraic graph terminology we can say that the instance
graph “is typed” over the type graph, with the semantics that the topology
respects the type graphs’ topology and cardinalities [Ehrig et al. (2006)].

3.1.2. Distributed configuration and service endpoint discovery

A common problem in cloud computing development is the configuration
of service components and their dependencies. The main reason it is chal-
lenging is due to the dynamic nature of cloud applications. Virtual machines
(or containers) are dynamically provisioned and their endpoints (the IP ad-
dresses and ports at which services can be reached) are only known after
resources have been provisioned and components started. This is what is
commonly known as service endpoint discovery. Different solutions for dis-
tributed cloud configurations have been proposed both in academic literature
and open source communities, most of them sharing common characteristics
such as a consensus mechanism and a distributed KV-store API, as presented
in the self-managing microservices concept. In this work we will consider Etcd
which is our preferred choice due to its simplicity to deploy and its extensive
documentation.

According to its self-description, Etcd is a “distributed, consistent key
value store for shared configuration and service discovery”. The high-level
function is simple: multiple nodes run an Etcd server, are connected with
each other forming a cluster, and a consensus algorithm (Raft15 in this case)
is used for fault tolerance and consistency of the KV-store.

Nodes that form part of the same cluster share a common token and can
discover each other by using a global public node registry service. Alterna-
tively, a dedicated private node registry service can be run anywhere16.

In Etcd the key space is hierarchical and organized in directories. Both
keys and directories are generally referred as “nodes”. Node values can be

15http://raftconsensus.github.io/
16For example see http://blog.zhaw.ch/icclab/setup-a-kubernetes-cluster-on-openstack-

with-heat “dedicated Etcd host”
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set and retrieved by Etcd clients over a REST interface. Node values can
also be “watched” by clients which receive a notification whenever the value
of a node changes.

The typical usage of Etcd for service configuration is to automatically
update component configurations whenever there is a relevant change in the
system. For instance, referring to our example application in Figure 3, the
load balancer component can use Etcd to watch a directory listing all the
application servers and reconfigure its forwarding policy as soon as a new
application server is started. The “contract” for this reconfiguration simply
requires application servers to know where to register when they are started.

The consensus algorithm underneath Etcd also provides leader election
functionality, so that one node of the cluster is recognized as the sole “coor-
dinator” by all other nodes. We will extensively use this functionality in the
self-managing architecture we propose in the next section.

3.2. Component deployment and discovery

The initial deployment of a self-managing atomic service is achieved
through cloud orchestration as described in Karagiannis et al. (2014). All
deployed software components (be it VMs or containers) know their role in
the type graph (e.g., if they are an LB, AS, DB, or CA in our example).
Each component is assigned a universally unique identifier (UUID). All com-
ponents can access the Etcd cluster and discover each other.

The Etcd directory structure can be used both to represent the service
type graph as well as the instance graph of the deployed components and
their interconnections as in Figure 4. When a new component is deployed
and started, it 1) joins the Etcd cluster and 2) advertises its availability by
registering a new directory under its component type and saving relevant
connection information there. For instance, in our example in Figure 4, a
new CA instance adds a new directory with its UUID (uuid1) and saves
a key with its endpoint to be used by the application server components.
Edges in the instance graph are used to keep track of component connections
in order to enforce the cardinalities on connections as specified in the type
graph. The auto-scaling manager (described in the following subsections) is
responsible for deciding how many components per type are needed, while the
health manager will make sure that exactly as many instances as indicated
by the auto-scaling logic are running and that their interconnections match
the type graph. Component information (e.g., endpoints) is published by
each component in Etcd periodically with a period of 5 seconds and a time
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Figure 4: An example snippet of the representation of a type graph (left) and instance
graph (right) using Etcd directory structure

to live (TTL) of 10 seconds. Whenever a component fails or is removed,
its access information is automatically removed from Etcd, and the health
manager and all dependent components can be notified of the change.

Once the orchestrator has deployed the initial set of required components
for the service, it sets the status of the service on Etcd to “active”. Once
this happens, the component which was elected leader of the Etcd cluster
will start the self-managing functionality with the auto-scaling and health
management logic.

3.2.1. Monitoring

Before discussing the auto-scaling functionality, we will describe how Etcd
can also be used to store a partial and aggregated subset of monitoring
information in order to allow auto-scaling decisions to be taken. The rationale
behind storing monitoring information in Etcd is to allow resilience of the
auto-scaling logic by making it stateless. Even if the VM or container where
the auto-scaling logic has been running fails, a new component can be started
to take over the auto-scaling logic and knowledge base from where it was left.

The common practice in cloud monitoring is to gather both low-level met-
rics from the virtual systems such as CPU, I/O, RAM usage as well as higher-
level and application-specific metrics such as response times and throughputs
[Aceto et al. (2013)]. Considering the latter metrics, full response time dis-
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tributions are typically relevant in system performance evaluation, but for
the sake of QoS management high percentiles (e.g, 95th, 99th) over time win-
dows of few seconds are in general adequate to assess the system behavior.
We assume that each relevant component runs internal monitoring logic that
performs metrics aggregation and publishes aggregated metrics to Etcd. The
actual directory structure and format in which to save key performance indi-
cators (KPIs) is dependent on the auto-scaling logic to be used and is beyond
the scope of this work. For instance, in our example the load balancer can
use its own internal metrics in combination with the logstash aggregator17 to
provide the average request rate, response time, and queue length in the last
5, 10, 30 seconds and 1, 5, 10 minutes. These metrics are typically enough for
an auto-scaling logic to take decisions on the number of needed application
servers.

3.2.2. Auto-scaling

The auto-scaling component uses a performance model to control horizon-
tal scalability of the components. The main function is to decide how many
instances of each component need to be running to grant the desired QoS.
Auto-scaling is started by the leader node. Its logic collects the monitoring
information from Etcd, the current system configuration, and outputs the
number of required components for each component type. This information
is stored in the type graph for each node under the cardinality folder with
the key “req” (required) as in Figure 4.

3.2.3. Health management

The node that is assigned health management functionalities compares
the instance graph with the desired state of the system (as specified by the
auto-scaling logic) and takes care of 1) terminating and restarting unrespon-
sive components, 2) instantiating new components, 3) destroying no longer
needed components, 4) configuring the connections among components in the
instance graph so that cardinalities are enforced.

3.2.4. Full Life-cycle

Figure 5 depicts a simplified sequence diagram putting all the pieces to-
gether. The orchestrator sets up the initial deployment of the service compo-
nents. They register to Etcd and watch relevant Etcd directories to perform

17http://logstash.net/
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Figure 5: Sequence diagram depicting a simplified service instantiation and deinstantia-
tion. For simplicity we represent Etcd as a single process.

configuration updates (reconfiguration parts for AS and CA components are
omitted). Once all initial components are deployed, the orchestrator sets
the service state to ’active’. Components generating monitoring information
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save it periodically in Etcd.
Each component runs a periodic check on the service state. If the service

is active and a node detects to be the Etcd cluster leader, it starts the auto-
scale and health management processes. Alternatively, auto-scale and health
management components can be started on other nodes depending on their
utilization. A watch mechanism can be implemented from the cluster leader
to indicate to a component that it should start a management functionality.

3.2.5. Self-healing properties

By placing components across different failure domains (e.g., availabil-
ity zones in the same data center, or different data centers), the architecture
described above is resilient to failure and is able to guarantee that failed com-
ponents will be restarted within seconds. The fact that any remaining node
can be elected leader, and that the desired application state and monitoring
data is shared across an Etcd cluster, makes the health management and
auto-scaling components stateless, and allows the atomic service to be cor-
rectly managed as long as the cluster is composed of the minimum required
number of nodes for consensus which is three.

4. Experience

In the context of the Cloud-Native Applications (CNA) research initia-
tive at the Service Prototyping Lab at Zurich University of Applied Sci-
ences18, we designed and evaluated various different forms of CNA appli-
cations. Amongst the practical results are CNA guidelines with the most
common problems and pitfalls of application development specifically for the
cloud. Here, we report on our experiences with a specific focus on applying
the self-managing principles exposed in the previous sections to an existing
application with one specific CNA support stack.

4.1. Implementation

Step 1: Use case identification. The goal of our experiments was on one
hand to gather hands-on experience with the latest technologies supporting
the design patterns for cloud-based applications, and on the other hand to
successfully apply these patterns to a traditional business application which
was not designed to run in the cloud. Rather than starting from scratch

18Service Prototyping Lab: http://blog.zhaw.ch/icclab/
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with an application designed from inception for the cloud, we wanted to
show that decomposition in smaller components (even by component func-
tionality rather than application feature) often allows to achieve resilience
and elasticity even in legacy applications.

For the evaluation of a suitable application, we decided to uphold the
following criteria. The application should be:

• available as open source, to guarantee the reproducibility of our exper-
iments

• a “business” application, to promote adoption of the CNA methods
also for legacy applications

• a commonly used type of application, to achieve representative results

We took some time evaluating several well known and positively reviewed
open source business applications and came up a list of about ten applications
such as Customer Relationship Management (CRM), Enterprise Resource
Planning (ERP), Document Management Systems (DMS). At the very end
of our evaluation we were left with two choices: SuiteCRM19 and Zurmo20.

In the end we decided to go with Zurmo. The reasons behind this choice
were that Zurmo:

• Is developed by a team with extensive experience with CRMs (formerly
offering a modified version of SugarCRM @ Intelestream)

• Follows test-driven development (TDD) practices in its development

• Has all core functionality of a CRM without offering an overwhelming
amount of features

• Has a modern look and feel to it

The first two reasons have given us confidence that the code is of high
quality and that our changes will not just break the system in an unfore-
seen or hidden way. While evaluating CRMs, we repeatedly encountered
statements saying one of the main problems of CRMs is that people are not

19https://suitecrm.com/
20http://zurmo.org/
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using them. The last two reasons for choosing Zurmo address exactly this is-
sue. After evaluating alternative products, we think Zurmo could be a CRM
solution which would actually be used by its end-users.

Figure 6: Zurmo initial architecture

Zurmo CRM (see Figure 6) is a PHP application employing the MVC
pattern (plus a front-controller which is responsible for handling/processing
the incoming HTTP requests) based on the Yii web framework. Apache is
the recommended web server, MySQL is used as the backend datastore and
Memcached for caching. It is pretty much a typical monolithic 3-tier appli-
cation with an additional caching layer. The recommended way of running
Zurmo is via Apache’s PHP module. Thus, the logic to handle the HTTP
requests and the actual application logic are somewhat tightly coupled.

Step 2: Platform. The subsequent step consisted of choosing a platform upon
which to run the application. We wanted to address both private and public
cloud scenarios. Given the availability of an OpenStack deployment at our
lab, we chose to use both our internal private cloud and AmazonWeb Services
(AWS).

We used CoreOS21 as basic VM image and Fleet22 as a basic container /
health-management component. Fleet is a distributed systemd (boot man-
ager) cluster combined with a distributed Etcd (key-value store). After using

21https://coreos.com/
22https://coreos.com/fleet
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it for some time, we can definitely confirm what CoreOS states about Fleet in
their documentation: it is very low-level and other tools (e.g., Kubernetes23)
are more appropriate for managing application-level containers. Our expe-
riences with the CoreOS + Fleet stack were not always positive and we
encountered some known bugs that made the system more unstable than we
expected (e.g., failing to correctly pull containers concurrently from Docker
hub24). Also, it is sometimes pretty hard to find out why a container is not
scheduled for execution in Fleet. A more verbose output of commands and
logging would be much more helpful to developers approaching Fleet for the
first time.

Step 3: Architectural changes. We need to make every part of the application
scalable and resilient. The first thing we did was to split the application using
different Docker25 containers to run the basic components (e.g., Apache Web
server, Memcached, Mysql RDBMS).

We decided to first scale out the web server. Since the application core is
in its original configuration tightly coupled to the web server, every Apache
process comes with an embedded PHP interpreter. When we scale the web-
server, we automatically also scale the application core. To achieve this,
all we need is a load balancer which forwards incoming HTTP requests to
the web servers. In the original implementation, Zurmo saved session-based
information locally in the web server.

We modified the session handling so that it saves the session state in the
cache as well as in the database. We can now access it in a quick manner
from the cache, or should we encounter a cache miss we could still recover it
from the database. After this change the architecture looks exactly the same
but the overall application is scalable and resilient. After this modification
there is no more need to use sticky sessions in Web servers. In other terms
we made the web server tier stateless so that users can be evenly distributed
among the existing web servers and, if one of the web servers or the caching
system should crash, users won’t be impacted by it.

Memcached already allows horizontally scaling its service by adding ad-
ditional servers to a cluster. We then replaced the single server MySQL
setup with a MySQL Galera Percona cluster to CNA-ify more parts of the

23http://kubernetes.io
24https://hub.docker.com
25https://www.docker.com
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Figure 7: Zurmo CNA Architecture

application.

Step 4: Monitoring. We implemented a generic monitoring system that can
be easily reused for any CNA application. It consists of the so-called ELK
stack26, log-courier and collectd. The ELK stack in turn consists of Elastic-
search, Logstash and Kibana. Logstash collects log lines, transforms them
into a unified format and sends them to a pre-defined output. Collectd col-
lects system metrics and stores them in a file. We use Log-Courier to send
the application and system metric log-files from the container in which a
service runs to Logstash. The output lines of Logstash are transmitted to
Elasticsearch which is a full-text search server. Kibana is a dashboard and

26https://www.elastic.co/webinars/introduction-elk-stack
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visualization web application which gets its input data from Elasticsearch.
It is able to display the gathered metrics in a meaningful way for human
administrators. To provide the generated metrics for the scaling engine, we
developed a new output adapter for Logstash which enables to send the pro-
cessed data directly to Etcd. The overall implementation is depicted in Fig.
8. The monitoring component is essential to our experimental evaluation.
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Figure 8: Monitoring and Logging

Step 5: Autoscaling. We also implemented our own scaling engine for container-
based applications: Dynamite. Dynamite is an open-source Python applica-
tion leveraging Etcd and Fleet. It takes care of automatic horizontal scaling,
but also of the initial deployment of an application orchestrating the instanti-
ation of a set of components (Fleet units) specified in a YAML configuration
file. This configuration strategy allows to use Dynamite to recursively in-
stantiate service compositions by having a top level YAML configuration
specifying a list of Dynamite instances each with its own configuration file.
Deploying the top Dynamite instance enables the “orchestration of a set of
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orchestrators” each responsible for the independent scaling and management
of a microservice. Dynamite uses system metrics and application-related in-
formation to decide whether a group of containers should be scaled out or
in. If a service should be scaled out, Dynamite creates a new component
instance (i.e., a “unit” in Fleet parlance) and submits it to Fleet. Otherwise,
if a scale-in is requested, it instructs Fleet to destroy a specific unit.

Dynamite is itself designed according to CNA principles. If it crashes, it
is restarted and re-initialized using the information stored in Etcd. This way,
Dynamite can be run in a CoreOS cluster resiliently. Even if the entire node
Dynamite is running on were to crash, Fleet would re-schedule the service
to another machine and start Dynamite there where it could still restore the
state from Etcd. For more details, we refer the reader to the documentation
of the Dynamite implementation27 as well as our work previously published
in [Brunner et al. (2015)].

5. Experimental results

In this section we report on our resilience and scalability experiments with
our cloud-native Zurmo implementation. We provide the complete source
code of the application on our github repository28.

All the experiment we discuss here have been executed on Amazon AWS
(eu-central) using 12 t2.medium-sized virtual machines. We also ran the same
experiments on our local OpenStack installation. The OpenStack results are
in line with AWS and we avoid reporting them here because they don’t
provide any additional insight. Instead, in the spirit of enabling verification
and repeatability, we decided to focus on the AWS experiments. They can be
easily repeated and independently verified by deploying the CloudFormation
template we provide in the “aws” directory of the implementation.

The experiments are aimed at demonstrating that the proposed self-
managing architecture and our prototypical implementation correctly address
the requirements we identified for cloud-native applications: elasticity and
resilience. In other terms we pose ourselves the following questions:

• Does the application scale (out and in) according to load variations?

• Is the application resilient to failures?

27Dynamite scaling engine: https://github.com/icclab/dynamite/blob/master/readme.md
28https://github.com/icclab/cna-seed-project
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In order to demonstrate resilience we emulate IaaS failures by respectively
killing containers and VMs. Scaling of the application is induced by a load
generator whose intensity varies over time.

The load generation tool we used is called Tsung29. We created a Zurmo
navigation scenario by capturing it through a browser extension, then gen-
eralized and randomized it. You can also find this in our repository, in the
“zurmo tsung” component. In our experiments the load was generated from
our laptops running Tsung locally. We simulated a gradually increasing num-
ber of users (from 10 up to 100) with a random think time between requests
of 5 seconds in average. This yields a request rate of 0.2 requests per second
per user, and a theoretical maximum expected rate of 20 requests per second
with 100 concurrent users. The load is mainly composed of read (HTTP
GET) operations, around 200, and roughly 30 write (HTTP POST) requests
involving database writes. It is important to notice that, due to our choice
of avoiding to use sticky HTTP sessions, also any request saving data in the
HTTP session object results in database writes.

5.1. Scaling

In order to address the first question we configured Dynamite to scale
out the service creating a new Apache container instance every time the
95th percentile of the application response time (RT) continuously exceeds
1000 milliseconds in a 15 seconds window.

The scale in logic instead will shut down any Apache container whose
CPU utilization has been lower than 10% for a period of at least 30 seconds.
Given that we are managing containers, scaling in and out is a very quick
operation, and we can afford to react upon short term signals (e.g., RT over
few seconds).

Since we used Fleet and CoreOS for the experiments, and not directly an
IaaS solution billing per container usage, we also needed to manage our own
virtual machines. We used 10 VMs that are pre-started before initiating the
load and that are not part of the scaling exercise. The assumption is that
future container-native applications will be only billed per container usage in
seconds, and developers will only scale applications through containers. The
actual distribution of containers upon virtual machines is decided by the
Fleet scheduler, and in general results in uniform distribution across VMs.

29Tsung tool: http://tsung.erlang-projects.org
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Figure 9: Response time, request rate, number of users and apache servers running the
system without externally induced failures

Using our own internal monitoring system allows the application to scale
on high level performance metrics (e.g. 95th percentiles) that are computed
at timely intervals by the logstash component and saved to Etcd to be ac-
cessed by Dynamite.

Figure 9 shows one example run using the scaling engine to withstand
a load of 10 concurrent users growing to 100. In the upper graph we plot
the application response time in milliseconds (red continuous line, left axis)
and the request rate in requests per second (green dashed line, right axis).
The request rate grows from roughly 2 requests per second up to 20, while
the response time is kept at bay by adaptively increasing the number of
running Apache containers. The bottom part of the graph shows the number
of running Apache containers at any point in time (red continuous line) as
well as the number of simulated users. As soon as the generated traffic ends,
the number of Apache containers is reduced.

This simple experiment shows the feasibility of an auto-scaling mechanism
according to our self-managing cloud-native applications principles. For this
example we only implemented a simple rule-based solution and we make
no claims concerning its optimality with respect to minimizing operational
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costs. More advanced adaptive model-based solutions (for instance the one
in Gambi et al. (2015)) could be easily integrated using the same framework.

5.2. Resilience to container failures

In order to emulate container failures, we extended the Multi-Cloud Sim-
ulation and Emulation Tool (MC-EMU)30. MC-EMU is an extensible open-
source tool for the dynamic selection of multiple resource services according
to their availability, price and capacity. We have extended MC-EMU with
an additional unavailability model and hooks for enforcing container service
unavailability.

The container service hook connects to a Docker interface per VM to
retrieve available container images and running instances. Following the
model’s determination of unavailability, the respective containers are forcibly
stopped remotely. It is the task of the CNA framework to ensure that in such
cases, the desired number of instances per image is only shortly underbid and
that replacement instances are launched quickly. Therefore, the overall ap-
plication’s availability should be close to 100% even if the container instances
are emulated with 90% estimated availability.

Figure 10 depicts the results of an example run in which we forced con-
tainers to fail with a 10% probability every minute. With respect to the
previous example one can clearly notice the oscillating number of Apache
Web servers in the bottom of the figure, and the effect this has on the appli-
cation response time. Figures 11 and 12 show a glimpse of the monitoring
metrics we were able to track and visualize through Kibana while running
the experiment. We plot the average and percentile response times, response
time per Apache container, request rate, HTTP response codes, number of
running Apache containers and the CPU, memory, and disk utilization for
each.

5.3. Resilience to VM failures

We also emulated VM failures, although without the automation models
of MC-EMU or similar tools like ChaosMonkey31. Instead, we simply used
the AWS console to manually kill one or more VMs at a given point in time
to pinpoint critical moments.

30MC-EMU tool: https://github.com/serviceprototypinglab/mcemu
31https://github.com/Netflix/SimianArmy
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Figure 10: Response time, request rate, number of users and apache servers running the
system inducing probabilistic container failures

The effects of killing entire VMs in our prototype implementation vary a
lot depending on the role of the VM in the Etcd cluster as well as the type
of containers it is running. As one could expect, killing VMs only hosting
“stateless” (or almost stateless) containers (e.g., Apache, Memcached) only
has small and transitory effects on the application quality of service. How-
ever, terminating a VM running stateful components (e.g., the database) has
much more noticeable effects.

There are 2 types of VMs which we explicitly did not target for termina-
tion:

• the VM running logstash;

• the VMs acting as “members” of the Etcd cluster

The reason for the former exclusion is trivial and easily amendable: we
simply did not have time to implement logstash as a load-balanced service
with multiple containers. Killing the logstash container results in a period of
few seconds without visible metrics in Kibana which would have defeated the
goals of our experiment. The solution to this shortcoming is straightforward
engineering.
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Figure 11: The real-time monitoring metrics while running the experiment depicted in
Figure 10

Concerning the Etcd cluster member VMs, the issue is that the discovery
token mechanism used for Etcd cluster initialization works only for cluster
bootstrap. In order to keep the consensus quorum small, the default cluster
is only composed of three members while other nodes join as “proxies” (they
just read cluster state). Any VM termination of one of the 3 member nodes
in AWS would restart the VM that would try to use Etcd discovery again to
rejoin the cluster, but this would fail. In other failure scenarios, the machine
might even change its IP address, requiring manual deletion and addition
of the new endpoint. This problem is fairly common for Etcd in AWS, so
much that we found an implementation of a containerized solution for it32.
However, we did not yet integrate it into our stack and will leave a comparison

32http://engineering.monsanto.com/2015/06/12/etcd-clustering/
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Figure 12: The real-time monitoring metrics while running the experiment depicted in
Figure 10

to future work.
In order to show in practice how different the effects of killing VMs can

be, we report here a run in which we target VMs running different types
of components. Figure 13 depicts a run in which we killed 2 of the VMs
running half of the 4 MySQL Galera cluster nodes roughly 3 minutes into
the run (manually induced failures of two VMs each time are marked with
blue vertical dashed lines). Together with the database containers, one can
see that also some Apache containers were terminated. Moreover, having
only two Galera nodes left, one of which was acting as a replication source
for the Galera nodes newly (re)spawned by Fleet, means that the database
response time became really high for a period, with a clearly visible effect
on the Web application response time. Other two VMs at a time were killed
respectively 6 and 9 minutes into the run, but since no database components
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were hit, apart from the graph of the number of Apache instances, no major
effects are perceived in the application response time.
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Figure 13: Response time, request rate, number of users and apache servers running the
system inducing VM failures for stateful components

5.4. Lessons learnt

Implementing our self-manging cloud-native application design and ap-
plying it to an existing legacy Web application have proven to be valuable
exercises in assessing the feasibility of our approach through a proof of con-
cept implementation and identifying its weaknesses.

As it is mostly the case when realizing a theoretical design in practice,
we were faced with several issues that hindered our progress. Some of them
were a consequence of adopting fairly new technologies lacking mature and
battle-tested implementations. Here we report in a bottom-up fashion the
main problems we encountered with the technological stack we used for our
implementation.

CoreOS. During about one year of research on CNA we used different releases
of CoreOS stable. The peskiest issue we had with it took us quite some time
to figure out. The symptoms were that the same containers deployed on the
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same OS would randomly refuse to start. This caused Fleet/systemd to give
up trying to bring up units after too many failed restarts. Fleet was failing
in bringing up replicas of components we needed to be redundant, which
made it extremely hard for to hope in achieving a reliable system in those
conditions. These failures in starting containers happened sporadically and
we could not reproduce them at will. This is not the behavior one is expecting
with containers: one of the key points of them is to offer consistency between
development and production environments.

It took us a while to understand that the random failures were due to a
bug33 in the Docker version included in CoreOS 766.3.0. In very few cases
concurrently pulling multiple containers resulted in some container layers to
be only partially downloaded, but docker would consider them complete and
would refuse to pull again. The problem was aggravated by the fact we used
unit dependencies in Fleet, requiring some units to start together on the
same machine. In this case a failing container would cause multiple units to
be disabled by Fleet.

It is hence always worth repeating: tight coupling is bad, especially if it
implies cascading failures while building a resilient system.

Etcd. The biggest issue we had with Etcd was already mentioned in the
previous section. We use Etcd as the foundation of the whole distributed
solution both as a distributed key value store and for leader election. We
expected that after a machine failure (when the machine gets rebooted or
another machine takes its place) rejoining a cluster would be automatic,
however this is not the case in AWS. Artificially causing machine failures like
we did to test the reliability of our implementation often caused the Etcd
cluster to become unhealthy and unresponsive.

Another issue we experienced is that Etcd stops responding to requests
(also read requests!) if the machine disk is full. In this case the cluster might
again fail, and Fleet would stop behaving correctly across all VM instances.

Fleet. Fleet is admittedly not a tool to be used directly for container man-
agement. Our lesson learnt here is that using managed approaches like Ku-
bernetes should be preferred. Apart from this, we had often issues with failed
units not being correctly removed in systemd on some nodes and in general
misalignment between the systemd state of some hosts and the units Fleet

33https://github.com/coreos/bugs/issues/471
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was aware of. Some command line interface mistakes which can easily hap-
pen (e.g., trying to run a unit template without giving it an identifier) result
in units failing to be removed in systemd and Fleet hanging on the loop re-
questing their removal preventing any other command from being executed.

Another unexpected behavior we managed to trigger while developing
is due to the interplay of Fleet and Docker. Fleet is expected to restart
automatically failed containers, however Docker volumes are not removed
by default (the rationale is that they might be remounted by some other
containers). The net effect is that after a while machines with problematic
containers run out of disk space, Etcd would stop working, the cluster would
become unhealthy, and the whole application would be on its own running
without Fleet. The CoreOS bug we mentioned above also caused this on long
running applications effectively bringing down the service.

These are all minor issues due to the fact that most of the tools we use are
in development themselves. However, any of these problems might become
a blocker for developers using these tools for the first time.

Self-managing Zurmo. Finally some considerations concerning our own de-
sign. The first thing to discuss is that we did not go all the way and imple-
ment Zurmo as a set of self-managing microservices each with its own specific
application-level functionality.

The main reason is that we did not want to get into Zurmo’s code base to
split its functionality into different services. This would have meant investing
a large amount of time to understand the code and the database (which
has more than 150 tables). Instead, we preserved the monolithic structure
of the application core written in PHP. What we did was replicating the
components and put a load balancer in front of them (e.g., for Apache or
MySQL Galera cluster). So, in a way, we created a microservice for each
type of component, with a layer of load balancers in front. This is not
the “functional” microservice decomposition advocated by Lewis and Fowler
[Lewis and Fowler (2014)], however we showed experimentally that for all the
purposes of resilience and elasticity it still works. Where it would not work
is in fostering and simplifying development by multiple development teams
(each catering for one or more microservices as a product) in parallel. This
for us means that the microservices idea is actually more a way to scale the
development process itself rather than the running application.

We used Etcd for component discovery, for instance for the Galera nodes
to find each other, the loadbalancers to find backends, and Apache to find the
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Galera cluster endpoint and Memcached instances. Breaking the application
at least in microservices based on component types would in hindsight have
been a cleaner option.

One of the negative effects of having automatic component reconfigura-
tions upon changes of the component endpoints registered in Etcd is that
circular dependencies would cause ripple effects propagating through most
components. This for instance happened when we initially replaced a single
MySQL instance with a set of MySQL Galera nodes that needed to self-
discover. A much more elegant solution is to put one or more load balancers
in front of every microservice and register them as the endpoint for a service.
An even better solution is using the concept of services and an internal DNS
to sort out service dependencies as done in Kubernetes. This solution does
not even require reconfigurations upon failures.

A very positive aspects of our implementation is that we have a self-
managing solution that now works seamlessly in OpenStack, AWS, and Va-
grant. The internal monitoring stack can be easily reused for other applica-
tions, and the decomposition in docker containers allowed us to hit the ground
running when starting our porting of the solution to Kubernetes which is our
ongoing work.

Another aspect to notice is that when we started our implementation
work, container managers were in their infancy and we had to build a solution
based on IaaS (managing VMs and their clustering) rather than directly using
APIs to manage sets of containers. Already now, the availability of container
managers has improved, and we expect the commercial market to grow fast
in this segment. If one is being charged per VM in a IaaS model, then only
auto-scaling containers does not mean reducing costs. In practice what can
be done is using, for example in AWS, AWS AutoscalingGroups for VMs
and custom metrics generated from within the application to trigger the
instantiation and removal of a VM. The work is conceptually simple, but we
did not implement it yet and are not aware of existing re-usable solutions.

Although our own experience using Fleet to implement the proposed so-
lution was somehow difficult, we can already relate on the excellent results
we are having by porting the entire architecture to Kubernetes. It is still
work in progress, but the whole work basically amounts to converting Fleet
unit files into replicaiton controller and service descriptors for Kubernetes,
no need for component discovery since “services” are framework primitives.
All in all, the availability of more mature container management solutions
will only simplify the adoption of microservices architectures.
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6. Related work

To the best of our knowledge, the work in [Toffetti et al. (2015)] we
extended here was the first attempt to bring management functionalities
within cloud-based applications leveraging on orchestration and the consen-
sus algorithm offered by distributed service configuration and discovery tools
to achieve stateless and resilient behavior of management functionalities ac-
cording to cloud-native design patterns. The idea builds on the results and
can benefit from a number of research areas, namely cloud orchestration, dis-
tributed configuration management, health management, auto-scaling, and
cloud development patterns.

We already discussed the main orchestration approaches in literature, as
this work reuses much of the ideas from [Karagiannis et al. (2014)]. With
respect to the practical orchestration aspects of microservices management, a
very recent implementation34 adopts a similar solution to what we proposed
in our original position paper. We had some exchanges of views with the
authors, but are not aware whether our work had zero or even minimal
influence on the Autopilot35 cloud-native design pattern recently promoted by
Joyent. Either way, we consider the fact that other independent researchers
came up with a very similar idea an encouraging sign for our work.

Several tools provide distributed configuration management and discov-
ery (e.g., Etcd, ZooKeeper, Consul). From the research perspective, what
is more relevant to this work is the possibility of counting on a reliable im-
plementation of the consensus algorithm. Much of the health management
functionality described in the paper is inspired from Kubernetes [Bernstein
(2014)], although to the best of our knowledge Kubernetes was originally
“not intended to span multiple availability zones”36. Ubernetes37, is a project
aiming to overcome this limit by federation.

A set of common principles concerning automated management of ap-
plications are making their way in container management and orchestration

34https://www.joyent.com/blog/app-centric-micro-orchestration [retrieved on
2016.06.10]

35http://autopilotpattern.io/
36https://github.com/GoogleCloudPlatform/kubernetes/blob/master/DESIGN.md re-

trieved 03/03/2015
37https://github.com/kubernetes/kubernetes/blob/master/docs/proposals/federation.md
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approaches (e.g., Kubernetes, Mesos38, Fleet, Docker-compose39) with the
identification, conceptualization, and instantiation of management control
loops as primitives of the underlying management API. To give a concrete
example, “replication controllers” in Kubernetes are a good representative of
this: “A replication controller ensures the existence of the desired number of
pods for a given role (e.g., ”front end”). The autoscaler, in turn, relies on this
capability and simply adjusts the desired number of pods, without worrying
about how those pods are created or deleted. The autoscaler implementa-
tion can focus on demand and usage predictions, and ignore the details of
how to implement its decisions”[Burns et al. (2016)]. Our proposed approach
leverages on basic management functionalities where present, but proposes
a way to achieve them as a part of the application itself when deployed on
a framework or infrastructure that does not support it. Moreover, we tar-
get not only the atomic service level managing components (akin to what
Kubernetes does for containers) but also service composition level managing
multiple microservice instances. In [Burns et al. (2016)], the authors also
advocate control of multiple microservices through choreography rather than
“centralized orchestration” to achieve emergent behavior. In our minds, once
applications are deployed across different cloud vendors, orchestration (al-
beit with distributed state as we propose) is still the only way to achieve a
coherent coordinated behavior of the distributed system.

Horizontal scaling and the more general problem of quality of service
(QoS) of applications in the cloud have been addressed by a multitude of
works. We reported extensively on the self-adaptive approaches in [Gambi
et al. (2013)] and here give only a brief intuition of the most relevant ones.
We can cite the contributions from Nguyen et al. [Nguyen et al. (2013)]
and Gandhi et al. [Gandhi et al. (2012)] which use respectively a resource
pressure model and a model of the non-linear relationship between server
load and number of requests in the system together with the maximum load
sustainable by a single server to allocate new VMs. A survey dealing in
particular with the modelling techniques used to control QoS in cloud com-
puting is available in [Ardagna et al. (2014)]. With respect to the whole
area of auto-scaling and elasticity in cloud computing, including the works
referenced from the surveys cited above, this work does not directly address

38http://mesos.apache.org
39https://docs.docker.com/compose
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the problem of how to scale a cloud application to achieve a specific qual-
ity of service. Works in current and past elasticity / auto-scaling literature
focus either on the models used or on the actual control logic applied to
achieve some performance guarantees. In [Toffetti et al. (2015)] we propose
an approach that deploys the management (e.g., auto-scaling) functionalities
within the managed application. This not only falls in the category of self-* /
autonomic systems applied to auto-scaling surveyed in [Gambi et al. (2013)]
(the application becomes self-managing), but with respect to the state of
the art, brings the additional (and cloud-specific) contribution of making
the managing functionalities stateless and resilient according to cloud-native
design principles. In this respect, the works listed above are related just in
desired functionality, but not relevant to the actual contribution we claim as
any of the scaling mechanisms proposed in literature can be used to perform
the actual scaling decision.

Finally, considering cloud patterns and work on porting legacy applica-
tions to the cloud, the work of Ellison et al. (2014) is worth considering when
addressing the thorny problem of re-engineering the database layer of exist-
ing applications to achieve scalable cloud deployment. With this respect,
in our implementation work we just migrated a single MySQL node into a
multi-master cluster whose scalability is still limited in the end.

7. Conclusion

In this experience report article, we have introduced an architecture that
leverages on the concepts of cloud orchestration and distributed configura-
tion management with consensus algorithms to enable self-management of
cloud-based applications. More in detail, we build on the distributed stor-
age and leader election functionalities that are commonly available tools in
current cloud application development practice to devise a resilient and scal-
able managing mechanism that provides health management and auto-scaling
functionality for atomic and composed services alike. The key design choice
enabling resilience is for both functionalities to be stateless so that in case of
failure they can be restarted on any node collecting shared state information
through the configuration management system.

Concerning future work, we plan to extend the idea to incorporate the
choice of geolocation and multiple cloud providers in the management func-
tionality. Another aspect we look forward to tackle is that of continuous
deployment management, including adaptive load routing.
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