748 research outputs found

    Knowledge-Informed Simulated Annealing for Spatial Allocation Problems

    Get PDF

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined

    Metaheuristic Algorithms for Spatial Multi-Objective Decision Making

    Get PDF
    Spatial decision making is an everyday activity, common to individuals and organizations. However, recently there is an increasing interest in the importance of spatial decision-making systems, as more decision-makers with concerns about sustainability, social, economic, environmental, land use planning, and transportation issues discover the benefits of geographical information. Many spatial decision problems are regarded as optimization problems, which involve a large set of feasible alternatives, multiple conflicting objectives that are difficult and complex to solve. Hence, Multi-Objective Optimization methods (MOO)—metaheuristic algorithms integrated with Geographical Information Systems (GIS) are appealing to be powerful tools in these regards, yet their implementation in spatial context is still challenging. In this thesis, various metaheuristic algorithms are adopted and improved to solve complex spatial problems. Disaster management and urban planning are used as case studies of this thesis.These case studies are explored in the four papers that are part of this thesis. In paper I, four metaheuristic algorithms have been implemented on the same spatial multi-objective problem—evacuation planning, to investigate their performance and potential. The findings show that all tested algorithms were effective in solving the problem, although in general, some had higher performance, while others showed the potential of being flexible to be modified to fit better to the problem. In the same context, paper II identified the effectiveness of the Multi-objective Artificial Bee Colony (MOABC) algorithm when improved to solve the evacuation problem. In paper III, we proposed a multi-objective optimization approach for urban evacuation planning that considered three spatial objectives which were optimized using an improved Multi-Objective Cuckoo Search algorithm (MOCS). Both improved algorithms (MOABC and MOCS) proved to be efficient in solving evacuation planning when compared to their standard version and other algorithms. Moreover, Paper IV proposed an urban land-use allocation model that involved three spatial objectives and proposed an improved Non-dominated Sorting Biogeography-based Optimization algorithm (NSBBO) to solve the problem efficiently and effectively.Overall, the work in this thesis demonstrates that different metaheuristic algorithms have the potential to change the way spatial decision problems are structured and can improve the transparency and facilitate decision-makers to map solutions and interactively modify decision preferences through trade-offs between multiple objectives. Moreover, the obtained results can be used in a systematic way to develop policy recommendations. From the perspective of GIS - Multi-Criteria Decision Making (MCDM) research, the thesis contributes to spatial optimization modelling and extended knowledge on the application of metaheuristic algorithms. The insights from this thesis could also benefit the development and practical implementation of other Artificial Intelligence (AI) techniques to enhance the capabilities of GIS for tackling complex spatial multi-objective decision problems in the future

    Spatially optimised sustainable urban development

    Get PDF
    PhD ThesisTackling urbanisation and climate change requires more sustainable and resilient cities, which in turn will require planners to develop a portfolio of measures to manage climate risks such as flooding, meet energy and greenhouse gas reduction targets, and prioritise development on brownfield sites to preserve greenspace. However, the policies, strategies and measures put in place to meet such objectives can frequently conflict with each other or deliver unintended consequences, hampering long-term sustainability. For example, the densification of cities in order to reduce transport energy use can increase urban heat island effects and surface water flooding from extreme rainfall events. In order to make coherent decisions in the presence of such complex multi-dimensional spatial conflicts, urban planners require sophisticated planning tools to identify and manage potential trade-offs between the spatial strategies necessary to deliver sustainability. To achieve this aim, this research has developed a multi-objective spatial optimisation framework for the spatial planning of new residential development within cities. The implemented framework develops spatial strategies of required new residential development that minimize conflicts between multiple sustainability objectives as a result of planning policy and climate change related hazards. Five key sustainability objectives have been investigated, namely; (i) minimizing risk from heat waves, (ii) minimizing the risk from flood events, (iii) minimizing travel costs in order to reduce transport emissions, (iv) minimizing urban sprawl and (v) preventing development on existing greenspace. A review identified two optimisation algorithms as suitable for this task. Simulated Annealing (SA) is a traditional optimisation algorithm that uses a probabilistic approach to seek out a global optima by iteratively assessing a wide range of spatial configurations against the objectives under consideration. Gradual ‘cooling’, or reducing the probability of jumping to a different region of the objective space, helps the SA to converge on globally optimal spatial patterns. Genetic Algorithms (GA) evolve successive generations of solutions, by both recombining attributes and randomly mutating previous generations of solutions, to search for and converge towards superior spatial strategies. The framework works towards, and outputs, a series of Pareto-optimal spatial plans that outperform all other plans in at least one objective. This approach allows for a range of best trade-off plans for planners to choose from. ii Both SA and GA were evaluated for an initial case study in Middlesbrough, in the North East of England, and were able to identify strategies which significantly improve upon the local authority’s development plan. For example, the GA approach is able to identify a spatial strategy that reduces the travel to work distance between new development and the central business district by 77.5% whilst nullifying the flood risk to the new development. A comparison of the two optimisation approaches for the Middlesbrough case study revealed that the GA is the more effective approach. The GA is more able to escape local optima and on average outperforms the SA by 56% in in the Pareto fronts discovered whilst discovering double the number of multi-objective Pareto-optimal spatial plans. On the basis of the initial Middlesbrough case study the GA approach was applied to the significantly larger, and more computationally complex, problem of optimising spatial development plans for London in the UK – a total area of 1,572km2. The framework identified optimal strategies in less than 400 generations. The analysis showed, for example, strategies that provide the lowest heat risk (compared to the feasible spatial plans found) can be achieved whilst also using 85% brownfield land to locate new development. The framework was further extended to investigate the impact of different development and density regulations. This enabled the identification of optimised strategies, albeit at lower building density, that completely prevent any increase in urban sprawl whilst also improving the heat risk objective by 60% against a business as usual development strategy. Conversely by restricting development to brownfield the ability of the spatial plan to optimise future heat risk is reduced by 55.6% against the business as usual development strategy. The results of both case studies demonstrate the potential of spatial optimisation to provide planners with optimal spatial plans in the presence of conflicting sustainability objectives. The resulting diagnostic information provides an analytical appreciation of the sensitivity between conflicts and therefore the overall robustness of a plan to uncertainty. With the inclusion of further objectives, and qualitative information unsuitable for this type of analysis, spatial optimization can constitute a powerful decision support tool to help planners to identify spatial development strategies that satisfy multiple sustainability objectives and provide an evidence base for better decision making

    Algorithm based on simulated annealing for land use allocation

    Get PDF
    This article describes the use of simulated annealing for allocation of land units to a set of possible uses on, the basis of their suitability for those uses, and the compactness of the total areas allotted to the same use or kind of use, which are fixed a priori. The results obtained for the Terra Chá district of Galicia (N.W. Spain) using different objective weighting schemes are compared with each other and with those obtained for this district under the same area constraints, using hierarchical optimization, ideal point analysis, and multi-objective land allocation (MOLA) to maximize average use suitability. Inclusion of compactness in the simulated annealing objective function avoids the highly disperse allocations typical of optimizations that ignore this sub-objectiveS

    Landscape generator : method to generate plausible landscape configurations for participatory spatial plan-making

    Get PDF
    Contemporary regional spatial plan-making in the Netherlands is characterized as a complex process wherein multiple actors, with different levels of interests and demands, try to commonly develop a coherent and comprehensive set of future plan scenarios. The construction of the set of spatial plan scenarios is the core activity of each regional spatial planning process and is often unique and tailored to the specific context and policy objectives formulated for a plan area. Modern collaborative scenario construction is complex due to a variety of participating actors, as public planners, domain experts and non-experts as interest groups and landowners. The level of participation of the non-expert group varies from process to process, but for effective spatial scenarios it is important to ergonomically construct, surprising and plausible scenarios with vivid, proximate and concrete content. The last decades, many attempts have been undertaken to support plan scenario development with digital systems, with strong emphasis on the analytical capabilities of computers. Little attention, however is given to the development of intuitive sketch and design tools and methods, that support the interactive process of large-scale collaborative multi-level plan design, by visualizing and modeling comprehensive landscape scenarios down to the level of cadastral lots. Therefore, the main objective of this research is to develop and evaluate a method, that generates plausible landscape configurations by using user-defined landscape typologies, as a digital support tool for participatory spatial plan-making. To enable the effective design and modeling of vivid and plausible future spatial scenarios, there is a need for a method which supports the two main steps of plan scenario construction in Simlandscape. Simlandscape introduces a rich set of instruments and procedures in order to construct a diverse and coherent scenario set that supports communication and social learning and that facilitate a better informed decision-making process. The central notion in Simlandscape is that actual transformation of the landscape takes place at the ownership lot level. Through construction of strategic spatial scenarios down to the level of individual or clustered lots, comprehensive qualitative and quantitative evaluation becomes possible. Design instruments are proposed, that are intuitive in supporting the funneling creative design process from abstract and general sketches to specific and detailed economic function allocation and landscape layout modeling. The latter activity is supported by the definition and allocation of landscape lot typologies with (non-spatial) attributes. The first step in plan scenario construction in Simlandscape consists of the distribution and allocation of landscape lot typologies to lot geometries. This step poses a complex problem, which can be manually as well as automatically be solved, but is not the core of this research. The second step, assumes that a landscape lot typology is allocated to a lot geometry, and contains generation of a plausible landscape configuration, based on the attributes of the landscape lot typology. This step can also be done manually, but is very time-consuming for a total plan area involved. Therefore, automatic generation of a plausible landscape configuration, based on the properties of the allocated landscape lot typology is important and central subject in this research. The automatic generation of landscape configuration is part of the research field called ‘generative modeling’. In chapter 2, the most of the established existing generative approaches in generative landscape modeling are reviewed for their applicability and relevance as the base for the method to generate plausible landscape configurations from landscape lot typologies. In spatial planning literature, four important more or less distinct fields of research are identified which offer directly or indirectly approaches for developing a generative method: 1) procedural modeling, 2) spatial multi-objective optimization modeling, 3) cellular automata and 4) multi-agent systems. The approaches to generate landscape configurations provide several points of departure. Unfortunately, none of the current approaches is directly applicable for the addressed objective in this research. Procedural modeling techniques as shape or landscape grammars are able to produce, or support the creation of detailed, appealing and realistic landscape visualizations. Due to this level of detail of modeling, the process of inference to identify relevant objects and mutual relations in reality, is complex due to the large number of objects and relations to be modeled. Moreover, the ambiguous character of the relations between objects provides large difficulties in identifying objective and generic rules. Spatial multi-objective optimization modeling in spatial planning problems, as linear integer programming, genetic algorithms and simulated annealing, have a strong theoretical base and are applied frequently in spatial planning literature to provide ‘the most favourable’ landscape and plan layout in terms of minimal development costs. More recently, also general spatial shape objectives are included in the multi-objective functions devised. The research objectives in these studies however, are often restricted to a level of layout planning which is less detailed than the objective stated in this research. A direct consequence is that shape objectives are in general terms of compactness and solely defined at the land-use class level. Furthermore, the number of land-uses to be allocated and the site to be modelled is kept relatively small. These features are enough to provide a proof of principle, but not to deal with realistic planning challenges. Cellular automata and multi-agent systems provide robust frameworks to realistically model subject and object interactions in space and time. However, the non-deterministic behavior and outcomes of the model runs make them less suitable to generate plausible landscape configurations as defined in this research. Chapter 3 describes the (development of the) landscape generator, that is compatible with the regional plan scenario development approach identified in Simlandscape. The landscape generator uses landscape types as building blocks of plan scenarios. A landscape typology describes a proposed future spatial development and contains spatial and (non)spatial (descriptive) attributes. A 2D reference image indirectly provides objective compositional and configurational characteristics of the proposed development. In essence, users allocate a landscape typology to a cadastral lot typology and based on this information, the landscape generator produces a comprehensive landscape configuration. The landscape generator is developed as a multi-objective heuristic optimization modeling approach. In this approach a sequentially updated multi-objective function is optimized for a two-dimensional allocation site. It is assumed that the site is homogeneous in physical characteristics (e.g. height, soil etc.). The multi-objective function is compiled from an available library of single spatial attributes. These spatial attributes and their target values are retrieved from the compositional and configurational characteristics present in the reference image of the landscape typology. Examples from the available spatial attributes are the number of landscape component instances, the relative size of each component or each component instance, compactness and shape of component instances and direct adjacency between two different landscape components. In a hypothetical case study, the capabilities and behavior of the landscape generator are demonstrated. In the case study, the landscape generator generates a variety of landscape configurations for a hypothetical allocation site (20x20 cells) and a rural forest estate as allocated landscape typology. The reference image of the rural forest estate provides detailed information for the compilation of the multi-objective function. The landscape generator contains probabilistic elements (e.g. random starting situation, near-random cell swap), which results in different output, each time it is run with identical input settings. The landscape generator is capable of producing a range of landscape configurations for a variety of situations. A unique situation is defined by the allocation of one landscape typology to one allocation site. Theoretically, since the method is based on the objective measurement of spatial characteristics present in a reference image, each user-defined typology can be used for a selected allocation site. The landscape typologies cannot be allocated to every imaginable dimensioned allocation site, but are bounded by the spatial extent which specifies a valid spatial extent. At the heart of the method lies the compilation of the multi-objective function. Ideally, this compilation can be executed completely objectively and without user-interaction, as the reference image of the landscape typology provides the required information. In the current prototype version of the landscape generator, however, the compilation process is partly (and in advance) controlled by the modeler. The modeler needs to specify which of the available spatial attributes to include, in which sequence to optimize them and what attribute target values to specify. Surely, the modeler is informed by statistics calculated for the reference image. An important task is to define consistent guidelines for the compilation of the multi-objective function from each landscape typology, irrespective of the properties of a valid allocation site. In this research, the modeler has been able to define specific guidelines for each landscape typology. In the current state of the method, a continuous assessment, through iterative testing, needs to be made by the modeler, about which compilation is sufficient in producing plausible configurations and which compilation process produces solutions within reasonable computation times. In chapter 4, a method is presented to obtain insight in the usability of the landscape generator. The produced landscape configurations are extensively evaluated in an extensive internet-based validation experiment. For a broad variety of different situations, landscape configurations are generated by the landscape generator for realistically dimensioned and enclosed sites. The configurations are compared with professional hand-drawn configurations, by a large group of planning professionals. The subjects are provided an interactive, user-friendly web-based inquiry, in which they are requested to (graphically) rank order a random selection out of a total set of landscape configurations (hand-made or computer-generated), from ‘most to least plausible’. The population is not informed about the difference in production process of each landscape configuration. In the experiment a distinction is made between subjective and objective plausibility, representing design quality aspects and representativeness of the landscape typology respectively. Eight different situations (three subjective and five objective) are assessed by the group of respondents and analyzed with a modified version of an approved statistical method, known as ‘the law of comparative judgement’. In addition, to indicate points of interest for further improvements of the methodology, implicit and explicit dimensions of evaluation used by the respondents for each of the objective assessments are identified. The implicit dimensions are identified using linear regression analysis, with single spatial metric properties of the configurations as explanatory variables. To identify explicit dimensions of evaluation the respondents are asked for two of the earlier presented situations, to select five pre-defined used dimensions of evaluation. The current experiment setup provides a robust method as well as reliable results about the capability of the landscape generator to produce plausible landscape configurations. With its modern interactive web interface, its well-balanced data scheme (randomness, several situations) and the use of approved statistical methods, the experiment finds a balance between maximum effective information retrieval and an acceptable level of user workload. In chapter 5, the results of the validation experiment are presented and in chapter 6 these results are analyzed. For each of the three assignments of the design quality test, it is concluded that the whole set of computer-generated configurations is not of comparable design quality as the whole set of professional configurations. Several individual computer-generated landscape configurations have comparable design quality as the professional configurations. The landscape generator is able to produce configurations with landscape components which are with respect to its individual area, shape and relative adjacency plausible. The overall structure is, however, often perceived as near-random. In some situations this is regarded plausible, while in other situations it is regarded implausible. The results of the four analyzed assignments of the representativeness test show a more favorable view on the capabilities of the landscape generator. In half of the cases, the whole set of computer-generated configurations are considered comparable in representativeness to professional onfigurations. In the other half, several individual computer-generated are considered of comparable representativeness. The representativeness test is most important in plausibility validation of the landscape generator, as the primary objective of the research implies that each actor (with different levels of design experience) should be able to provide her development idea (described in the landscape typology) as a comprehensive visualization in an integrated plan scenario. In the initial planning phases of application of the landscape generator, it is more important to obtain a first impression of the impacts (visual and analytical) of a plan scenario than a completely well-modeled and calculated landscape design. Possible non-professional design choices in a landscape typology can be reflected in the generated landscape configurations. Analysis to dimensions of evaluation gives insight into possible explanations for the plausibility ordering of the subjects.A distinction is made between explicit and implicit dimensions of evaluation. Explicit dimensions are directly assembled in the experiment and provide perceived dimensions of evaluations. The implicit dimensions, identified with linear regression analysis are however uncertain in its reliability and ideally should be assembled in relation to explicit dimensions. Results of the linear regression analysis can direct future research with different approaches. First, the attribute target values in the current compilation can be re-specified. Second, non-used but available spatial attributes can be added to the multi-objective function. Third, new spatial attributes may be developed to be included in the optimization process. In light of the main objective in this research, it is important to define consistent guidelines for generating landscape typologies for different situations. In this research, a start is made to identify important choices with respect to the minimal selection of spatial attributes, the influence of its sequence and feasible attribute target value specification. The experiment results further provide detailed directions for improvements of the landscape generator. Other recommendations put forward in this research are related to: 1) the modification of the current heuristic approach (for performance improvement and local trapping avoidance purposes) by hybridization with existing heuristic approaches as simulated annealing and evolutionary algorithms, 2) full-automatic translation from the main characteristics of a landscape typology into the compilation of the multi-objective optimization function; this translation should be as generic as possible and the resulting configurations should be thoroughly validated for plausibility for a variety of possible representative situations (i.e. combination of proposed landscape typology with typical influential allocation site characteristics), 3) extending, if possible, the current library of available spatial attributes with functions that describe more overall organizational properties of landscape typologies or investigation of (parallel or sequential) optimization at different scale levels, 4) the inclusion or extension with representative infrastructure generation and 5) the increase in the effectiveness of the validation experiment by standardizing the acquisition of professional configurations (e.g. designing materials, formats and conditions and automation of conversion to images used in the inquiry) and 6) increase in the reliability of the validation experiment by separating the different parts of the experiment according prioritisation of experiment objectives

    Energy and performance-optimized scheduling of tasks in distributed cloud and edge computing systems

    Get PDF
    Infrastructure resources in distributed cloud data centers (CDCs) are shared by heterogeneous applications in a high-performance and cost-effective way. Edge computing has emerged as a new paradigm to provide access to computing capacities in end devices. Yet it suffers from such problems as load imbalance, long scheduling time, and limited power of its edge nodes. Therefore, intelligent task scheduling in CDCs and edge nodes is critically important to construct energy-efficient cloud and edge computing systems. Current approaches cannot smartly minimize the total cost of CDCs, maximize their profit and improve quality of service (QoS) of tasks because of aperiodic arrival and heterogeneity of tasks. This dissertation proposes a class of energy and performance-optimized scheduling algorithms built on top of several intelligent optimization algorithms. This dissertation includes two parts, including background work, i.e., Chapters 3–6, and new contributions, i.e., Chapters 7–11. 1) Background work of this dissertation. Chapter 3 proposes a spatial task scheduling and resource optimization method to minimize the total cost of CDCs where bandwidth prices of Internet service providers, power grid prices, and renewable energy all vary with locations. Chapter 4 presents a geography-aware task scheduling approach by considering spatial variations in CDCs to maximize the profit of their providers by intelligently scheduling tasks. Chapter 5 presents a spatio-temporal task scheduling algorithm to minimize energy cost by scheduling heterogeneous tasks among CDCs while meeting their delay constraints. Chapter 6 gives a temporal scheduling algorithm considering temporal variations of revenue, electricity prices, green energy and prices of public clouds. 2) Contributions of this dissertation. Chapter 7 proposes a multi-objective optimization method for CDCs to maximize their profit, and minimize the average loss possibility of tasks by determining task allocation among Internet service providers, and task service rates of each CDC. A simulated annealing-based bi-objective differential evolution algorithm is proposed to obtain an approximate Pareto optimal set. A knee solution is selected to schedule tasks in a high-profit and high-quality-of-service way. Chapter 8 formulates a bi-objective constrained optimization problem, and designs a novel optimization method to cope with energy cost reduction and QoS improvement. It jointly minimizes both energy cost of CDCs, and average response time of all tasks by intelligently allocating tasks among CDCs and changing task service rate of each CDC. Chapter 9 formulates a constrained bi-objective optimization problem for joint optimization of revenue and energy cost of CDCs. It is solved with an improved multi-objective evolutionary algorithm based on decomposition. It determines a high-quality trade-off between revenue maximization and energy cost minimization by considering CDCs’ spatial differences in energy cost while meeting tasks’ delay constraints. Chapter 10 proposes a simulated annealing-based bees algorithm to find a close-to-optimal solution. Then, a fine-grained spatial task scheduling algorithm is designed to minimize energy cost of CDCs by allocating tasks among multiple green clouds, and specifies running speeds of their servers. Chapter 11 proposes a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are met in cloud-edge computing systems. A single-objective constrained optimization problem is solved by a proposed simulated annealing-based migrating birds optimization. This dissertation evaluates these algorithms, models and software with real-life data and proves that they improve scheduling precision and cost-effectiveness of distributed cloud and edge computing systems

    A simulated annealing algorithm for zoning in planning using parallel computing

    Get PDF
    [Abstract] There is an increasing demand for tools that support land use planning processes, particularly the design of zoning maps, which is one of the most complex tasks in the field. In this task, different land use categories need to be allocated according to multiple criteria. The problem can be formalized in terms of a multiobjective problem. This paper generalizes and complements a previous work on this topic. It presents an algorithm based on a simulated annealing heuristic that optimizes the delimitation of land use categories on a cadastral parcel map according to suitability and compactness criteria. The relative importance of both criteria can be adapted to any particular case. Despite its high computational cost, the use of plot polygons was decided because it is realistic in terms of technical application and land use laws. Due to the computational costs of our proposal, parallel implementations are required, and several approaches for shared memory systems such as multicores are analysed in this paper. Results on a real case study conducted in the Spanish municipality of Guitiriz show that the parallel algorithm based on simulated annealing is a feasible method to design alternative zoning maps. Comparisons with results from experts are reported, and they show a high similarity. Results from our strategy outperform those by experts in terms of suitability and compactness. The parallel version of the code produces good results in terms of speed-up, which is crucial for taking advantage of the architecture of current multicore processors.Ministerio de Educacion y Ciencia; 2013-41129PXunta de Galicia; GRC2014/008Xunta de Galicia; EM2013/04
    • …
    corecore