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Abstract

There is an increasing demand for tools that support land use planning pro-

cesses, particularly the design of zoning maps, which is one of the most complex

tasks in the field. In this task, different land use categories need to be allocated

according to multiple criteria. The problem can be formalized in terms of a mul-

tiobjective problem. This paper generalizes and complements a previous work

on this topic. It presents an algorithm based on a simulated annealing heuristic

that optimizes the delimitation of land use categories on a cadastral parcel map

according to suitability and compactness criteria. The relative importance of

both criteria can be adapted to any particular case. Despite its high computa-

tional cost, the use of plot polygons was decided because it is realistic in terms

of technical application and land use laws. Due to the computational costs of

our proposal, parallel implementations are required, and several approaches for

shared memory systems such as multicores are analysed in this paper. Results

on a real case study conducted in the Spanish municipality of Guitiriz show

that the parallel algorithm based on simulated annealing is a feasible method
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to design alternative zoning maps. Comparisons with results from experts are

reported, and they show a high similarity. Results from our strategy outperform

those by experts in terms of suitability and compactness. The parallel version of

the code produces good results in terms of speed-up, which is crucial for taking

advantage of the architecture of current multicore processors.

Keywords: Land use optimization, Land use planning, Parallel algorithms for

multicores, Decision support, Simulated annealing

1. Introduction

The design of a land use map is a laborious task that requires deep knowledge

and expertise. The development of new automatic processes and tools to help

public administrations and technicians in this task is of strategic importance. In

this work a novel mechanism to achieve near-optimal solutions to this problem is5

introduced. It is formulated in terms of a multiobjective optimization problem

in which plots are allocated to the most appropriate land category for it. Plots

are land basic elements that can be assigned one category, in our case they

are cadastral plots. Figure 1 shows a group of 15 plots that are used as an

example in this paper. Objectives to be considered often include land suitability10

for the land category [1] [2] [3]. Also, some authors consider spatial criteria,

especially the compactness of the regions allocated to one single category [4] [5]

[6] [7] [8] because an irregular allocation of land categories in small, scattered,

unconnected areas is usually undesirable in terms of economic and technical

impact.15

The problem of allocating different categories to specific land units can be

established formally as a combinatorial optimization problem. A large number

of alternative solutions can be usually found, and their quantitative comparison

is usually important to validate the quality of the solutions and to justify them.

Moreover, the number of plots involved in a municipal land use plan is usually20

large. Because these two factors lead to a high computational load, the search

for the optimal solution usually calls for the use of heuristic algorithms capable
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Figure 1: Example of a set of plots

of achieving near-best solutions in a reasonable time [9]. As a consequence,

heuristics are used to obtain near optimal solutions. In particular, a number

of authors have used algorithms based on the simulated annealing technique to25

optimize the allocation of land uses to spatial entities [10] [11] [12] [5] [13] [14] [15]

[16]. All these iterative algorithms operate on a regular raster grid. However,

land use allocation based on a regular grid is usually unrealistic as it may lead

to a single-land use plot allocated to several categories or, more frequently, to

a group of very different plots allocated to a single category. Therefore, the use30

of a coarse raster grid can create areas of assumed homogeneous land that may

contain variability [17]. In addition, the planning laws in the study area often

require land use zoning to be based on cadastral plots. We argue that the use of

plot polygons instead of grid cells is more convenient but involves using complex

compactness metrics based on geometric characteristics of these regions such as35

their area and perimeter.

The proposed objective function that guides the simulated annealing com-

bines two subobjectives: maximization of land suitability and maximization of

compactness. This approach complements a previous work [18] in which a first

approach to the proposed objective function is established with preliminary re-40

sults. In [19] genetic algorithms are used to deal with this problem based on

the former objective function. In this paper we present an objective function

that is a generalization of the ones presented in the mentioned couple of papers.
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The data structure was also modified to improve the performance of memory

accesses and computations. In this paper the problem is generalized, and a45

different heuristic is used that requires fewer control parameters. We show that

the results are close to the solutions produced by experts. Two spatial metrics

are proposed to evaluate compactness: a function based on patches, which are

groups of adjacent plots with the same category, and another function based

on categories,in which the plots are grouped into categories. Both metrics were50

introduced in [18]. The zoning solutions provided by the algorithm are better

than or, at least, similar to the solutions provided by experts in terms of the

objective function. These solutions also increase the rationality in the develop-

ment of the zoning map. The algorithm was applied to land use zoning in the

municipality of Guitiriz, Galicia, NW Spain, as a case study. This case study55

was also used in [18] and [19].

The large number of plots involved in municipal land use implies that the

whole search space is usually huge. Therefore, the number of possible feasible

solutions can be large. For this reason, the use of parallel computing has been

considered as the only reliable alternative. In [18], message passing was used60

to parallelize the proposal in distributed memory systems. In contrast, this pa-

per focuses on shared memory paradigm that take advantage of the fine grain

parallelism, and complements message passing. Nowadays, parallel solutions are

needed because of the presence of multicore processors in the market, and there-

fore shared memory implementations are more demanded. Celmatis et al. [20]65

and Mineter and Dowers [21] pointed out that the impact of parallel computing

in Geographical Information Science is slight and that there is a need to develop

parallel geoprocessing algorithms. Li [22] proposed parallel computation as one

of the priority research lines in land use simulation and optimization models

that can solve real-world application problems. Many proposals for paralleliza-70

tion can be found in the literature [23] [24] [25]. In this paper, a geometric

parallelism, according to the classification of Ding and Densham [26], has been

used to reduce execution time. This kind of parallelism is based on the parti-

tion of the spatial domain into sub-regions [27] that can be currently handled
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by different processes.75

A parallel simulated annealing algorithm for land use spatial allocation that

uses an irregular spatial structure based on a cadastral parcel map is presented

in this paper. The shared memory paradigm was used to implement the parallel

code because it suits perfectly multicore systems. This strategy complements the

message passing approach introduced in [19]. Typically, this kind of problems80

can not be solved analytically, and no unique solutions can be found. The use of

plot polygons implies that the geometric characteristics of these regions must be

recalculated at each iteration of the algorithm, which is a high time-consuming

task. Our approach deals with this problem by decreasing the cost of this task

by reducing the computations to those plots that change this category in each85

iteration. In addition, we propose a spatial parallelization to reduce execution

time, by balancing the partition of the area under study into a number of so-

called clusters that can be processed in parallel.

The paper is organized into three more sections. The first one defines the

features of the optimization problem, the design of the simulated annealing90

algorithm, the implementation of the parallel version of the algorithm and the

experimental results. The next section is devoted to the application of the

proposed algorithm to a particular case study. Finally some conclusions and

ideas for future work are presented.

2. Problem statement and methodology95

Land use planning laws define a set of land use categories and the restrictions

enforced in each category. For some categories, spatial allocation is completely

and uniquely determined by legal restrictions. We will refer to this group of

categories as fixed categories. For example, in the study area the law establishes

that water protection land corresponds to buffer zones around the waterways.100

Accordingly, land use allocation comprises two stages: the application of law

restrictions for the delimitation of fixed categories, and the making of decisions

by planners for the allocation of non-fixed categories.
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For the first stage, a preprocessing module was used to allocate the fixed

categories which are allocated by applying the planning laws using geometric105

operations (buffers, intersections, differences, etc.). This stage is the same as

the one used in [18]. This stage is presented in Section 2.1.

For the second stage, a heuristic algorithm based on simulated annealing

is proposed to delimit the non-fixed categories. A number of parameters are

introduced to guide the process. In this way, by tuning these parameters, the110

user has the possibility of focusing the final result according to his/her prefer-

ences. At this point, it is important to note that laws and experts advise that

spatial allocation should take the current boundaries of the existing plots in the

municipality into account, i.e., a plot should not be split into several parts with

different categories. Therefore, the problem can be defined as the distribution115

of N plots among M different non-fixed categories according to two objectives:

maximization of the overall suitability S of the plots for the categories allocated

to them, and maximization of the compactness C of the resultant land use

patches. Land use patches are defined as the areas delimited by the polygons

that result from the union of neighbouring plots allocated to the same category.120

Then, for a given distribution of plots to categories, a number of patches G is

defined. Each of them is determined by the plots in a given category that are

connected by neighbourhood.

Figure 2(a) shows an example of assignment for the 15 plots of figure 1 into

4 categories, shown in different colours. This example shows six patches defined125

by the sets of plots {P1, P2, P3}, {P4, P5, P11}, {P6, P8, P9, P10}, {P7},

{P12, P15} and {P13, P14}. Note that, patches {P4, P5, P11} and {P13, P14}

correspond to the same category, and patches {P7} and {P12, P15} belong to

the same category.

The optimization is subjected to the following constraint: the total area130

allocated to each non-fixed category cannot exceed the minimum and maximum

values set by planners. Therefore, if Sij is the suitability of plot i to the j-th

category, and Ckj is the compactness of patch k that includes plots assigned

to the j-th category, the optimization problem consists of obtaining the best
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(a) (b)

Figure 2: Examples of a set of plots assigned to 4 categories that define 6 patches

distribution of plots among categories such that:135

max{f(Sij)} (1)

max{g(Ckj)} (2)

Where f and g are functions that aggregate all the values of Sij and Ckj

respectively in a single value.

The optimization is subjected to:

Li ≤
N∑
j=1

Ajδij ≤ Ui ∀i = 1, ...,M (3)

Where; Aj is the area of the j-th plot, and δij = 1 if plot j is assigned to the

i-th category, and δij = 0 otherwise. Li and Ui are the lower and upper bounds140

for the total area assigned to i-th category.

This optimization stage is presented in detail in Section 2.2.

2.1. Initial conditions and preprocessing

The optimization problem requires three types of input data to be read

initially: the characteristics of each plot, the parameters established for the145
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allocation of each category, and the geometric elements used to define fixed

categories.

The characteristics of each plot include its geometry, area, list of neighbours,

length of the borders with each current use, and a suitability score for each non-

fixed category.150

The parameters for the allocation include the maximum and minimum area

for each category, Li and Ui and the weights for the suitability and compactness

criteria for each non-fixed category that are fixed by experts. These weights are

used to tune the final results.

Finally, the elements that define the fixed categories correspond to layers of155

geometric elements like rivers, roads or archaeological sites, heritage and natural

protection lands among others, that can delimit the fixed categories in three

ways. First, by directly allocating these elements to a specific fixed category.

Such a procedure also allows users to allocate a specific land category to areas

that must be delimited. Second, by delimiting a buffer over the geometric160

elements defined by regulations at a certain distance established by law. This

is the case for the legal protection areas for roads, for example. Third, by

delimiting buffers at various distances according to an attribute of the geometric

elements established by law. This is the case for water protection land in Spain,

which is obtained by means of buffers of rivers at a maximum distance of 100165

meters depending on the river category. Also, legal protection areas for roads

define buffers at a distance of 7, 9, 12, 25, 30, 50 or 100 meters according to the

type of road. The result of these procedures is a map of plots in which the fixed

categories are delimited, so that the plots allocated to them are not considered

in the optimization algorithm. Note that if a land plot is partially within the170

buffered area, the plot is divided into two new parcels in the preprocessing stage,

in such a way that the new plot located inside the buffer is allocated to the fixed

category. Figure 3 shows an example in which the buffers associated to a road

and a river redefine the plots to be considered in the algorithm. For example,

plot P51 is affected by the buffer defined by the road, plot P53 is affected by175

the buffer defined by the river, and P52 by both.
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Figure 3: Example of buffers defined by a river and a road

A preprocessing stage performs all these calculations [18], most of which

involve computationally expensive geometric operations (e.g. intersections) and

the active interaction with the user. Such operations are executed just once.

These operations were implemented using the JTS Topology Suite [28] library180

for spatial analysis operations and the Sextante framework [29].

Choosing the right data structure to store the neighbours and the length of

the borderline is important insofar as this information is often accessed by the

whole process, and it is important to minimize access time. As the number of

neighbours in each plot may differ, two one-dimensional arrays are used to store185

the list of neighbours: an array of neighbours and an index array. The j-th entry

of the index array stores the position in which the first neighbour of the j-th

plot is stored in the array of neighbours. The neighbours of each plot are stored

consecutively in the array of neighbours. Figure 4 shows an example of the two

arrays. In this example, the neighbours of plot P2 are P1, P3, P11, P12 and190

P15, which are stored from position 4 to position 8 in the array of neighbours,

respectively. Note that 4 is the value of the second entry in the index array.

Additionally, information about the area and perimeter of each plot as well as

the length of the border line between each pair of plots are stored using this
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Figure 4: Example of the arrays used to store the information about the neighbourhood

data structure. Note that the size of the index and the area arrays is N , and195

the size of the neighbours and border lengths arrays are double than necessary

because if Pi is stored as neighbour of Pj , then Pj is also stored as neighbour

of Pi This storage scheme presents high locality and low latency in access when

our code is used.

2.2. The optimization algorithm200

The simulated annealing algorithm [30] is a heuristic for iteratively optimiz-

ing an objective or fitness function E ruled by a parameter termed temperature

T that is used to control the thoroughness of the search for the optimum. The

basic procedure consists of the following stages:

1. According to the stochastic nature of the simulated annealing algorithms,205

given the current configuration of the system, a trial configuration is gen-

erated by a method that includes some element of randomness.

2. The value of the objective function for the trial configuration, Et, is com-

pared with the value of the objective function for the current configura-

tion, Ec. If Et is better than Ec, the trial configuration is accepted as210

the current configuration, if Et is worse than Ec, the trial configuration
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is adopted as the next current configuration according to the Boltzmann

probability distribution: e(Ec−Et)/T .

3. For each value of temperature, starting at a given initial value T0, the

system is allowed to explore the configuration space for a given number215

of iterations I. The value of T is then reduced, so that better E values

are favored, and the loop starts again from step 1. Each reduction in T is

determined by multiplying it by a constant factor.

4. The algorithm terminates upon satisfaction of some appropriate stop con-

dition usually related with the values of I, T , and the number of updates220

of Ec.

In our case, an initial random solution that satisfies the constraints of max-

imum and minimum area for each category is generated at the beginning of the

process. The trial solutions are generated by allocating a randomly selected plot

to a new randomly selected category that satisfies the constraints. Large values225

of I minimize the effect of this random selection. Figure 5 shows the number of

accepted new configurations as the temperature decreases in the algorithm for

the case study introduced in section 3.

2.2.1. The objective function

As established above, the objective function combines two subobjectives:230

maximization of land suitability and maximization of compactness. These sub-

objectives are combined linearly:

E = w · g(Ckj) + (1− w) · f(Sij) (4)

where w weighs compactness and (1−w) weighs suitability. 0 ≤ w ≤ 1. The

subobjective functions are normalized to the range [0, 1].

The relative importance of both suitability and compactness criteria can vary235

according to the target land category. For example, compactness is essential to

urban land, whereas for natural spaces the importance of compactness is low.

For this reason, planners must be able to quantify the relative importance of
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Figure 5: Number of accepted new configurations for different updates in temperature for the

case study introduced in section 3

each objective in each land category. Actually, the possibility of defining such

relative importance or weights is crucial for final users, insofar as the definition240

of weights will allow them to obtain a set of solutions for different scenarios and

to compare them.

Suitability is calculated as the weighted average of the global suitability

for each category. The global suitability for a category is obtained from the

average of the suitability of the plots allocated to that category, weighted by245

the area of each plot and normalized by the total area assigned to the category,

more formally:

Suitability = f =

M∑
i=1

αi

(∑N
j=1 SijAjδij∑N
j=1Ajδij

)
(5)

where Sij is established by experts, being 0 ≤ Sij ≤ 1, and αi is the

user-defined weight for the global suitability of the i-th category. Note that∑N
j=1Ajδij is the area of the whole i-th category, and 0 ≤ Suitability ≤ 1.250
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Compactness can be defined in different ways. Most of them are based

on the metrics for each land category, including the number of patches for each

land category, the largest patch for each land category [31] [6], or the number

of neighbouring cells with the same category [4] [32]. More complex metrics are

based on the relationship between area and perimeter for each land category255

patch for example, the average across all patches of the ratio of the number

of perimeter cells to the total number of cells in the patch [6], or the average

ratio of the perimeter divided by the square root of the patch area [31]. In our

proposal, two different functions are considered: a function based on patches,

and another function based on categories. The proposed compactness function260

based on patches is defined as:

Compactnesspatches = gp = 4π

M∑
i=1

βi

∑G
k=1 δ

∗
ik

A∗k
(P∗
k
)2∑G

k=1 δ
∗
ik

 (6)

Where βi is the weight of the global compactness of the i-th category, A∗
k is

the area of the k-th patch, and P ∗
k is the length of its perimeter. δ∗ik = 1 if patch

k is assigned to the i-th category, and δ∗ik = 0 otherwise. Note that
∑G

k=1 δ
∗
ik is

the number of patches of category i.265

This proposal is based on the premise that, for any area, the so-called cir-

cularity is maximized by a circle (the maximum is 1) [33]. In the example of

figures 2(a) and 4, circularity of plots P1, P2 and P3 are 0.717, 0.177 and 0.494

respectively, and circularity of patch {P1, P2, P3} is 0.251.

As an alternative, the compactness based on categories is also based on270

circularity:

Compactnesscategories = gc = 4π

M∑
i=1

βi

 ∑N
j=1Ajδij(∑G
k=1 P

∗
k δ

∗
ik

)2
 (7)

Note that
∑G

k=1 P
∗
k δ

∗
ik is the sum of perimeters of all the patches assigned to

the i-th category. It can be computed as the sum of perimeters of plots assigned

to the i-th category minus double the length of the part of its boundary shared

with other plots allocated to the same category. In the example of figures 2(a)275
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Patch Compactness Category Compactness

{P1, P2, P3} 0.251 {P1, P2, P3} 0.251

{P4, P5, P11} 0.442 {P4, P5, P11} {P13, P14} 0.219

{P7} 0.417 {P7} {P12, P15} 0.122

{P6, P8, P9, P10} 0.393 {P6, P8, P9, P10} 0.393

{P12, P15} 0.171

{P13, P14} 0.282

Global Compactness 1.956 Global Compactness 0.985

Table 1: Compactness based on patches and categories for the example of figure 2(a)

Patch Compactness Category Compactness

{P1, P2, P3} 0.251 {P1, P2, P3} 0.251

{P4, P5} 0.725 {P4, P5} {P13, P14} 0.274

{P7} 0.417 {P7} {P12, P15} 0.122

{P6, P8, P9, P10, P11} 0.415 {P6, P8, P9, P10, P11} 0.415

{P12, P15} 0.171

{P13, P14} 0.282

Global Compactness 2.261 Global Compactness 1.062

Table 2: Compactness based on patches and categories for the example of figure 2(b)

and 4, its value for category {P1, P2, P3} is
∑G

k=1 P
∗
k δ

∗
ik = 29 + 112 + 63 −

2(9 + 24) = 138. In this way, patches are not required to be identified, and the

boundaries between the plots allocated to the same category do not decrease

the value of the compactness function and the compactness of the patches is

favored. Note that this function presents a lower computational cost than the280

one associated with equation (6) because it avoids the computation of patches.

For categories composed by just one patch, both metrics are the same. Table

2.2.1 shows the compactness based on patches and categories for the example

of figure 2(a).

2.2.2. The heuristic285

The objective function for a trial solution Et is computed by calculating

the variation of E due to a change in the category of the randomly selected

plot. This fact saves computing complexity because there is not a need for

calculating the overall suitability and compactness for the whole plot map in

each iteration. Figure 2(b) shows an example in which plot P11 changes the290

patch in one iteration of the algorithm. The new compactness is shown in table

2.

To apply the algorithm, a number of decisions have to be made. For ex-
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ample, one must determine the cooling schedule, the initial temperature, the

stopping condition, etc [34]. In particular, in order to minimize the influence of295

the random generation of the initial solution some experimentation should be

performed by the user to select appropriate parameters. Note that our proposal

is intended to be used in an interactive way. In any case, default calibration

values for the parameters of the annealing schedule are given to the planner. In

general, it is recommended that the initial value of T ensures that about 80%300

of trials are successful at this stage. This value was used for the case study in

Section 3. As an example of the behaviour of our proposal, figure 6 shows the

evolution of the objective function (figure 6(c)) as the temperature decreases for

different values of T0 for the case study in section 3. This example corresponds

to a case in which ω = 0.50, the multiplicative factor of temperature is 0.95,305

there are 50000 iterations for each temperature, and the algorithm finished after

100 iterations of temperature. Both components, suitability and compactness

are also shown in figures 6(a) and 6(b) respectively. Note that the resulting

values of the objective function do not differ much, and there is not a direct

relationship between them and T0. This is a typical behaviour we found for310

all the parameters. Note that the compactness changes in steps when a solu-

tion is found that differs much from the previous one. Figure 6(d) shows also

the corresponding execution times of each iteration of temperature. Note the

strong dependency of these times with the number of accepted trials, which in

turn decrease as the temperature does. Low values of compactness are due to315

the typical shape of the plots in Galicia, which presents large length and small

width. This is also the reason for the variation in compactness obtained for

different initial temperatures. Note that there are large steps when some trial

finds a more compact solution. This effect happens at temperatures between 5

and 20 when only trials that improve the compactness are likely accepted even320

though the suitability does not improve.

Based on exhaustive experiments, an initial temperature of 80 was selected

when using the compactness function based on categories. Results for the com-

pactness function based on patches allowed for the selection of T0 = 200. Sim-
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(a) (b)

(c) (d)

Figure 6: Suitability, compactness, objective function and sequential execution time for each

temperature for the case study introduced in section 3

ilarly, the number of iterations executed at each temperature, that is, the heat325

balance condition, was set to 200000 after exhaustive trial and error studies.

Each reduction in T was determined by multiplying it by a constant factor,

which is 0.95 in our case of study. Note that the objective function improves

fast in the initial iterations when the temperature is high, and then it achieves

values that correspond to a local minimum. The stop condition of the algorithm330

was the number of temperatures visited, which was set to 200 in our case. Note

that achieving the optimal case in not guaranteed by the heuristic. Therefore,

in order to validate the quality of the achieved planning, it was compared with

the solution provided by expert planners.
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2.3. Parallel implementation335

Nowadays, multicore systems bring about the need for new parallel algo-

rithms and for the parallelization of existing solutions to compute intensive

applications. Shared memory programming is the model that suits with this ar-

chitecture. Therefore, OpenMp [35] was used to implement the parallel C codes.

In our case, the computational cost of the algorithm is high because of the large340

number of plots and the implicit nature of the problem. Note that a practical

use of our approach requires the interactive execution with different values of

parameters tunned by the user. So, to get a more practical algorithm execution

time has to be reduced, and the solution lies in parallelization. Execution times

decrease with temperature, mainly because few changes are acknowledged by345

the algorithm.

Two strategies were initially considered to parallelize simulated annealing:

the spatial parallelization and the parallelization of the computation of the

objective function. The last one was found not efficient, mainly because of

the low computational cost of the objective function since, according to our350

proposal, the computational cost of the determination of the change in E caused

by category change in a single plot was dramatically reduced. However, spatial

parallelization was found more productive. It is based on the idea that each

thread run the algorithm in a particular geographic zone of the study area.

Therefore, the plot map is partitioned into groups of plots that are completely355

surrounded by plots allocated to the fixed categories, i.e., by plots excluded from

the simulation, so that there are no borderline interactions among these zones.

Without losing generality, this definition can be relaxed if necessary, and large

clusters can be split in smaller ones to optimize load balance. Each isolated

group of plots is called a cluster. As an example, in figure 3, four clusters can360

be identified, P51 and P52 are in one of them, P53, P54 and P55 are in another,

P56 and P57 in the third, and P58, P59, P60 and P61 in the last one. The

algorithm identifies the clusters from the plot map in the preprocessing stage

by using a flooding algorithm by a recursive search of neighbours [36]. In this

way, the information used by each parallel thread is not shared by the others,365
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increasing the locality and affinity of the code.

One of the problems that most affects the performance of our OpenMP par-

allel code is computational load balance. In order to balance the computational

load, the clusters were distributed among the different threads so that the num-

ber of plots in each thread was as balanced as possible. Based on the definitions370

of load metrics in parallel computers [37], for a given distribution of clusters,

the balance can be defined as,

Balance =
mP

MP
(8)

Where MP is the maximum number of plots assigned to any thread, and mP

is the mean number of plots assigned to the threads. Note that 0 < Balance ≤ 1.

Balance is the inverse of the imbalance load [37] and it is the average efficiency375

across all processes over their maximum [38]. Note that it reflects the busyness

degree. To balance the computational load, the clusters are distributed among

the threads so that the number of plots is as similar as possible in every thread.

A round robin load balancer was used to deal with this issue. If the resulting

load balance is poor, that is if Balance is lower than a certain threshold, new380

clusters can be defined by splitting large clusters.

The execution of each thread is practically independent from the rest of

them. The only common information accessed by all the threads is the total

area allocated to each category. Yet, this total area is constrained between a

minimum and a maximum value. Therefore, changes in the category of a plot385

that result in a total area for a category exceeding the minimum and maximum

values cannot be allowed. Accordingly, this constraint must be continuously

checked by using parallel mutual exclusion operations. Some of them also need

reduction operations that imply synchronization.

3. Case study390

The municipality of Guitiriz, located in Galicia, an autonomous region of

NW Spain, was considered as a case study. After the preprocessing stage, the
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Category Minimum Maximum Weight for Weight for

area (ha) area (ha) suitability (αi) compactness (βi)

Natural space 1900 2300 0.25 0.2

Urban 160 180 0.25 0.4

Agricultural 14000 17000 0.25 0.2

Forestry 5500 7500 0.25 0.2

Table 3: Parameters assigned to non-fixed categories

plot map of Guitiriz consisted of 139391 plots, 84216 of which did not have a

fixed category, which must be considered in the simulated annealing stage. In

the case of Galicia, the fixed categories include water, coast, infrastructure and395

heritage protection land, whereas the non-fixed categories correspond to agricul-

tural, forestry, natural space and urban land. The suitability for each category

was obtained from previous studies [39] and the weights of compactness and suit-

ability for each category were established based on the experience and judgment

of planners (see table 3). The range of total area for agriculture and forestry400

was obtained from the current area of agricultural (15220 ha) and forestry (6319

ha) land, allowing a variation of ±10% and rounding the resulting values, with

the exception of the allowable increase for the forestry category, which was set

at 20% due to the interest of owners in the afforestation of agricultural land.

The area that had to be allocated compulsorily to the natural space category405

was 1563 ha. However, given the general concern among politicians and society,

a minimum increase of 20% and a maximum increase of 50% were established.

The current urban area is 76 ha, but planners have estimated a requirement of

172 ha based on the increase in population and the permitted urban density. A

variation of only 5% from 172 ha was established for the urban category due to410

legal requirements.

All performance tests were executed in a system with 2 Intel Xeon E5440

2.83GHz processors with 4 cores each and 16 GBs of shared memory running a

Ubuntu 12 distribution.

3.1. Results415

Various solutions were generated by using compactness functions based on

categories and patches for different combinations of the subobjective weights w
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(a) (b)

Figure 7: Fitness in % for compactness, suitability, and their product using the compactness

function based on categories (a) and on patches (b)

and (1 − w). Figure 7(a) shows the fitness achieved for some of these combi-

nations when the compactness function based on categories was used. In the

figure, fitness values are expressed as the percentage over the maximum value420

for that subobjective, obtained when the subobjective was assigned a weight of

w = 1 for suitability, and w = 0 for compactness.

Figure 7(a) shows a strong dependence of fitness values on weights. However,

such a dependence was not linear or equal for both subobjectives. The value of

the compactness subobjective increased noticeably as its weight increased. Ac-425

tually, when the compactness subobjective was assigned the maximum weight,

the compactness score was 70% higher than when a null weight was assigned to

this subobjective. The amount of increase was smaller when w is low, i. e., there

was a difference of 15% in the fitness value between not considering compactness

and assigning compactness half the weight (0.50), but the difference was much430

higher for weights above 0.9. The effect of the weight assigned to the suitability

subobjective was lower, with a difference between the case of w = 1 and the case

of w = 0 below 30%. Besides, the maximum fitness value was obtained from a

weight of w = 0.9. Weight of w = 0.99 was chosen because a significant increase

in compactness was achieved with a barely noticeable decrease in suitability.435

This case presents the maximum product in figure 7(a).

Figure 7(b) shows the results when the compactness function is based on
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patches. Note that a somewhat different behaviour of the objective function

for different combinations of weights w and (1−w) is obtained as compared to

the behaviour described above for the compactness function based on patches.440

The general influence of these weights was still stronger for the compactness

subobjective than for the suitability subobjective. The fitness value obtained

when the compactness subobjective was assigned the maximum weight was more

than 70% higher than the value obtained when compactness was assigned a null

weight, whereas the difference in the fitness values obtained for the suitability445

subobjective amounted to less than 30%. The same behaviour was observed

for the compactness function based on categories. However, the variation in

the fitness values of both subobjectives for intermediate weights differed. In

this case, the compactness value increased especially at the beginning. Thus,

the achievement levels obtained for the compactness subobjective were 95%450

for w = 0.25 and 100% for w = 0.5. The increase in suitability with weight

was more linear. The amount of increase was greater at the beginning, until a

weight of 0.50 was reached. The case w = 0.50 was chosen for parallelization

tests because it provided the maximum value for the compactness subobjective

and an achievement level of 90% for the suitability subobjective. In fact, this is455

the situation in which the product of compactness and suitability is maximum.

The maps included in Figure 8, especially the zoomed window, show the

increase in compactness with the increase in the weight assigned to compactness.

The zoomed window corresponds to an area in which the difference between the

cases of w = 1 and w = 0.99 is clear, particularly for the urban land category.460

This area has low suitability for urban use because of its location far from

the two big settlements of the municipality and, consequently, from any urban

infrastructures. The map for w = 1 (Figure 8(c)) shows more compact patches

than the maps obtained with weight w = 0 and w = 0.5 (Figures 8(a) and

8(b), respectively). The urban land category was allocated to this area because465

suitability was not considered. In contrast, in the map obtained using the

weight w = 0.99 (Figure 8(d)), compactness remained high but urban land was

not allocated to this area because of its low suitability for urban use.
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Figure 8: Maps obtained with the optimization algorithm using the compactness function

based on categories for weights a) w = 0, b) w = 0.5, c) w = 1, and d) w = 0.99

The visual comparison of the results from the compactness function based on

categories (Figure 8) and those obtained from the compactness function based470
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on patches (Figure 9) reveals that the compactness function based on patches

generates a higher number of smaller patches. It avoids the allocation of isolated

plots to a land category, but forms compact small patches that approximate the

circular shape. In fact, when w = 1, the average area of the 9370 patches

obtained when the compactness function is based on categories is 3.13 ha, and475

1.23 ha for the 23803 patches obtained when the compactness function is based

on patches.

3.2. Efficiency of the parallel implementation

The strategy described in section 2.3 to balance the workload was used to

distribute clusters among threads. In particular, our case study presents 84216480

plots, and the algorithm achieved a difference of no more than two plots in the

number of plots allocated to each thread, except when the number of them was

seven, in which case Balance = 0.903. Such an exception was caused by the

presence of an exceptionally large cluster composed of 13321 plots. Given the

size of this cluster, using more than seven threads to balance the load did not485

make sense when using this approach in this particular situation. As mentioned

in section 2.3, when the number of cores causes low performance because of the

load imbalance, the user can divide large clusters into smaller ones accordingly.

The speed-up of a parallel code is defined as the ratio to measure how much

a parallel algorithm is faster than the sequential counterpart, i.e. sequential490

execution time divided by parallel execution time. As expected, the speed-up,

defined as the ratio to measure how much a parallel algorithm is faster than

a corresponding sequential algorithm, obtained with the compactness function

based on categories and weight w = 0.99 (Figure 10(a)) showed a fairly lin-

ear behaviour. The sequential execution times per iteration in the temperature495

loop are between 24.5 seconds for the highest temperature and 5 seconds for

the lowest one. The specific times depend primarily on the number of accepted

solutions. The whole program needs about 1910 seconds to run. These execu-

tion times are too high for an interactive use of the algorithm. The speed-up

obtained with the compactness function based on patches and weight w = 0.5500
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Figure 9: Maps obtained with the optimization algorithm using the compactness function

based on patches for weights a) w = 0, b) w = 0.5, and c) w = 1

(Figure 10(c)) was exceptionally high. The reason for this behaviour lies in the

structure and management of the storage of data when patches are used. Such a
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(a) (b)

(c) (d)

Figure 10: Speed-up and efficiency by using the compactness function based on categories and

w = 0.99 (a) and (b) and w = 0.5 (c) and (d) respectively

superlinear speed-up can be attributed to cache effects. In parallel computing,

not only does the number of processors change, but also the size of accumulated

caches from different processors [40]. With increased accumulated cache size,505

more, or even all of the core data sets can fit into caches and memory access

time decreases dramatically, which causes an extra speed-up in addition to that

from the actual computation. In our particular case, the use of the hash ta-

ble with more than 80000 entries, each 56 bytes long, is much larger than the

L1 cache, and almost over-fits the L2 cache of the multicore system. These510

results outperform the Java-based message passing implementation of genetic

algorithms presented in [19]. Figures 10(b) and 10(d) show the same results in

terms of efficiency, that is the number of threads divided by the speedup.
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Solution by planners

A F NS U RS

Algorithm

A 13504.2 2340.4 244.4 20.2 228.4

F 1083.2 4232.7 23.0 29.9 131.1

NS 296.4 33.8 1562.3 3.9 3.6

U 90.2 15.9 0.0 64.7 9.3

Table 4: Coincidence matrix (in ha) between the land zoning map designed by technicians

and the ones produced by the algorithm with compactness based on categories

3.3. Comparison with expert’s scenario

In order to evaluate the solutions provided by the algorithm, these solutions515

have been compared to the land use zoning map designed by planners (Figure

11). Planners delineated the land categories of this map without any support

from algorithms or scientific methods and using the same suitability maps. Table

4 shows the overlapping area for each land category between the map designed

by planners and the map obtained with the optimization algorithm using the520

compactness function based on categories and w = 0.99. In this table, A means

agricultural category, F refers to forestry category, NS to natural space category

and U to urban category. Finally, RS means rural settlement category. This

category is not included in the algorithm because it is specific to the study area

and is delimited by legal restrictions. These results show good matches for the525

agricultural, forestry and natural space categories, insofar as over 82% of the

area allocated by the algorithm to these categories was allocated to the same

category by planners. The causes of the worst match for the urban category

(36%) were the aesthetic and architectural criteria used by technicians in urban

planning, which were not considered in the algorithm. When using the com-530

pactness function based on patches and wc = 0.5, the overlapping area between

the map designed by planners and the map obtained with the algorithm (Table

5) for forestry, natural space and urban was more than 76%. The decrease in

the quality of matches was substantial for the forestry and natural space cat-

egories, decreasing to 60% in the forestry category and to 69% in the natural535

space category.

Table 6 shows the comparison of the values of the subobjective functions
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Figure 11: Land use zoning map designed by planners
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Solution by planners

A F NS U RS

Algorithm

A 11682.8 1892.8 184.7 41.4 198.3

F 2538.0 4665.4 67.2 11.5 155.5

NS 653.2 56.2 1577.0 5.0 8.6

U 99.9 8.4 0.8 60.8 10.1

Table 5: Coincidence matrix (in ha) between the land zoning map designed by technicians

and the ones produced by the algorithm with compactness based on patches

for the maps obtained with the algorithm and the map designed by planners.

In this table, for the algorithm based on categories and w = 0.99, whereas

for the algorithm based on patches and w = 0.5. According to the table, the540

value of the suitability subobjective is always higher in the algorithmic solutions.

Considering that the percentage of suitability was calculated over the maximum

value of suitability obtained with the algorithm, the solution of planners was

very good for this subobjective. However, this suitability was overcome by the

algorithm for weights w lower than 0.25. The comparison of the values of the545

compactness subobjective reveals that compactness based on patches provides

a kind of compactness that is not sought by technicians. In contrast, the map

generated by the algorithm when compactness was measured using the function

based on categories was similar to the map designed by planners in terms of

compactness. Note that the quantification of fitness can be very useful for550

planners.

In addition, as the compactness metrics used in the objective function are ex-

pected to perform better in the algorithm solution, another two spatial metrics

were used for the evaluation: contagion index and area-weighted shape index

[41]. The contagion index approaches 0 when the patches of the land categories555

are maximally disaggregated and interspersed and 100 when they are maximally

aggregated. The shape index approaches 1 for a square patch and higher scores

correspond to more irregular patches. The values of both metrics (shown in Ta-

ble 6) confirm, firstly that the solution of planners is the most compact one, with

values of compactness metrics very similar to those of the algorithm solution560

using the compactness based on categories and secondly that the compactness
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Algorithm with Algorithm with

compactness based compactness based

on categories on patches Map of planners

Suitability 0.630643 0.582093 0.569660

Suitability (%) 97% 90% 88%

Compactness based

on categories 0.002580 0.002536

Compactness based

on categories (%) 93% 91%

Compactness based

on patches 0.643846 0.028670

Compactness based

on patches (%) 100% 4%

Shape index 4.62 4.94 4.49

Contagion index 61.9 58.9 62.5

Table 6: Values of the subobjective functions for the maps obtained with the algorithm and

the map designed by planners

based on patches generates more disperse patterns.

Results show that the solutions provided by the algorithm improve the over-

all suitability achieved in the allocation of plots to land categories in compar-

ison with the planners solution. In terms of compactness, the best solution565

corresponds to the planners map but the output provided by the compactness

function based on categories achieves very similar compactness values.

The optimization results also confirm a notable influence of weights on the

final configuration of the land use map. As demonstrated, the values of com-

pactness and suitability weights can be easily tuned by trial and error, and the570

weights for land categories can be clearly established by the planners, while

this allocation can be facilitated by means of techniques such as the Analytical

Hierarchy Process [42]. A more complex task for planners is the identification

of the optimal values for the annealing schedule. These parameters were tuned

for the case study and the resulting values are the default settings shown to the575

user. However, an adaptive method for tuning parameters automatically would

improve the outcomes. Finally, the cadastral map configuration also affects the

parallelization performance, since the largest cluster determines the maximum

number of threads, and thus sets a limit to the speed-up through parallelization.
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4. Conclusions580

In this paper, we have dealt with the problem of land use spatial allocation.

Our proposal is to solve the problem of land category delimitation, which fre-

quently becomes a bottleneck for the land use planning process. A preprocessing

algorithm delineates the fixed land categories according to legal and expert cri-

teria. After a preprocessing stage, a new simulated annealing based heuristic585

is used to efficiently allocate the non-fixed categories. This work generalizes a

previous one, and it is also complementary in many aspects.

In the spatial parallel implementation proposed, the geographical area of

study is partitioned into a number of so-called clusters that can be processed

in parallel. Appropriate mechanisms for sharing the information among the590

threads have been taken into account. Nowadays, the use of parallel solutions

to most applications is justified by the presence of multicore processors in the

market. The efficiency of parallel implementation was validated in the case

study.

The quality of the results for real situations is comparable to the quality of595

the results obtained by experts. However, the main advantage of the algorithm

does not lie in the increase in the values of the objective function but in the

possibility of generating a land use map based on a justified, scientific and

transparent procedure in a short time. This possibility, in turn, allows for the

generation of a number of alternative solutions by modifying the parameters600

involved in the algorithm, such as the subobjective weights, the suitability and

compactness weights for each land category, the areas of each land category, or

even the suitability of maps. Accordingly, the final objective of the algorithm is

not to provide the optimal solution but to facilitate and justify the design of the

final solution by planners or other stakeholders. The plethora of solutions that605

can be obtained from different executions of the proposed algorithm provide

an important source of invaluable information for users. Such information is

particularly important because the quality of these solutions is quantified in

terms of fitness.
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As future work, one of the most immediate improvements is to study other610

types of functions for the evaluation of compactness criteria. New definitions

of compactness that match the desired spatial distribution of patches of each

land category would improve the quality of the results. In addition, considering

other spatial criteria such as connectivity can be useful, especially in the case

of the natural space category, in which connectivity could be used to design615

ecological networks. Finally, we plan to adapt the previous genetic algorithm

to the conditions of this work to combine both approaches. In addition we will

consider the implementation of a hybrid parallel solution that combines message

passing and shared memory paradigms.
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