6,038 research outputs found

    A Workstation for microassembly

    Get PDF
    In this paper, an open-architecture, reconfigurable microassembly workstation for efficient and reliable assembly of micromachined parts is presented. The workstation is designed to be used as a research tool for investigation of the problems in microassembly. The development of such a workstation includes the design of: (i) a manipulation system consisting of motion stages providing necessary travel range and precision for the realization of assembly tasks, (ii) a vision system to visualize the microworld and the determination of the position and orientation of micro components to be assembled, (iii) a robust control system and necessary mounts for the end effectors in such a way that according to the task to be realized, the manipulation tools can be easily changed and the system will be ready for the predefined task. In addition tele-operated and semi-automated assembly concepts are implemented. The design is verified by implementing the range of the tasks in micro-parts manipulation. The versatility of the workstation is demonstrated and high accuracy of positioning is sho

    Reconfiguration model using knowledge based engineering systems

    Full text link
    Globalization has forced enterprises to adapt their products and services to remain competitive in the free market. Manufacture plays an important role in the competitive aspect; it is where an innovation in the production system could lead to business advantage. These innovations usually involve the key elements in manufacturing systems: machines, tools and resources administration. A reconfigurable manufacturing system (RMS) is one designed for rapid change in its structure and components, to quickly adjust its production capacity and functionality in response to sudden market or intrinsic system changes. However, reconfiguration alone is not enough since it will provide information to produce a certain item but it won t provide the components that will automate the machine tool for mass production. The process of automation of machine tools is known as retrofit, process being developed and researched in emergent economies. The current retrofit kits are expensive and are not tailor made, thus, they are not attractive for small and medium enterprises. This article describes a solution for fast reconfiguration of machine tools using the Knowledge Based-Engineering System methodology (KBES) that allows to obtain, structure and manage the knowledge generated in a determined engineering process, in this case, the reconfiguration processHincapiĂ© Montoya, M.; GĂŒemes-Castorena, D.; Contero, M.; RamĂ­rez-Cadena, M.; Diaz, C. (2015). Reconfiguration model using knowledge based engineering systems. Journal of Manufacturing Technology Research. 6(1):63-81. http://hdl.handle.net/10251/77893S63816

    Development of a software application for machine tool reconfiguration using a knowledge-based engineering system approach

    Full text link
    The automation processes industry has become increasingly expensive, which is why some small and medium sized enterprises are incapable of buying machine tools with automatic systems. This means that their processes are manual in many cases, and as a result they often have to rework their developed products due to the lack of precision and efficiency in their production processes. Considering that current manufacturing systems with variable machining and turning centers are gradually replacing dedicated systems for medium lot size production, the production systems' basic element, the machine tool, must be capable of working at high speeds with precision, and it must be reconfigurable. These systems must also be compatible and convertible in order to create economic benefits for customers. This article describes a specific software architecture designed to record all the data, information and knowledge concerning manufacturing systems. The software allows for the creation of a new knowledge database and works with it in the reconfiguration of machine tools depending on the rules, requirements and parameters needed to effectively modify production processes or products.Hincapie, M.; Guemes, D.; Contero GonzĂĄlez, MR.; Ramirez, M.; Diaz, C. (2016). Development of a software application for machine tool reconfiguration using a knowledge-based engineering system approach. International Journal of Knowledge-Based and Intelligent Engineering Systems. 20(1):49-63. doi:10.3233/KES-160334S496320

    MISAT: Designing a Series of Powerful Small Satellites Based upon Micro Systems Technology

    Get PDF
    MISAT is a research and development cluster which will create a small satellite platform based on Micro Systems Technology (MST) aiming at innovative space as well as terrestrial applications. MISAT is part of the Dutch MicroNed program which has established a microsystems infrastructure to fully exploit the MST knowledge chain involving public and industrial partners alike. The cluster covers MST-related developments for the spacecraft bus and payload, as well as the satellite architecture. Particular emphasis is given to distributed systems in space to fully exploit the potential of miniaturization for future mission concepts. Examples of current developments are wireless sensor and actuator networks with plug and play characteristics, autonomous digital Sun sensors, re-configurable radio front ends with minimum power consumption, or micro-machined electrostatic accelerometer and gradiometer system for scientific research in fundamental physics as well as geophysics. As a result of MISAT, a first nano-satellite will be launched in 2007 to demonstrate the next generation of Sun sensors, power subsystems and satellite architecture technology. Rapid access to in-orbit technology demonstration and verification will be provided by a series of small satellites. This will include a formation flying mission, which will increasingly rely on MISAT technology to improve functionality and reduce size, mass and power for advanced technology demonstration and novel scientific applications.

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Integrated Assessment of Assembly fixtures Re-configurability

    Get PDF
    The needs of consumers are changing over time. As a result, the manufacturers are looking for new methods to adapt effectively and efficiently to market changes. These involve supplying customers with a variety of products in a reasonable time with decreasing the cost. Reconfigurable fixtures are an important means for dealing with increased product variety and shorter life cycles, as they help change between the product variants effectively and decrease the time and resources required to introduce new product variants. In this thesis, an integrated method to assess the reconfigurability of assembly fixtures is developed. This assessment is based on four core reconfigurability characteristics: scalability, modularity, convertibility, and customized flexibility. A clear definition of the scalability of the reconfigurable assembly fixtures was developed. A mathematical model for each characteristic of reconfigurable assembly fixtures was developed. Their indices were determined then combined using a radar plot to assess the reconfigurability of the reconfigurable assembly fixture. Welding tack fixture is chosen as a case study in this thesis. Two redesign recommendations were proposed. The results showed the most appropriate design with highest reconfigurability index because it was designed to produce the same number of product variants with less reconfiguration time, cost, effort, and complexity. The significance of research in this thesis is to help in the design stage of the assembly fixture by comparing different configurations for the assembly fixture to choose the best one and suggesting some changes for the assembly fixture design and configuration. This is essential to minimize the number of fixtures to be produced when the new part component/ variant is introduced

    Virtual manufacturing: prediction of work piece geometric quality by considering machine and set-up

    Get PDF
    Lien vers la version Ă©diteur: http://www.tandfonline.com/doi/full/10.1080/0951192X.2011.569952#.U4yZIHeqP3UIn the context of concurrent engineering, the design of the parts, the production planning and the manufacturing facility must be considered simultaneously. The design and development cycle can thus be reduced as manufacturing constraints are taken into account as early as possible. Thus, the design phase takes into account the manufacturing constraints as the customer requirements; more these constraints must not restrict the creativity of design. Also to facilitate the choice of the most suitable system for a specific process, Virtual Manufacturing is supplemented with developments of numerical computations (Altintas et al. 2005, Bianchi et al. 1996) in order to compare at low cost several solutions developed with several hypothesis without manufacturing of prototypes. In this context, the authors want to predict the work piece geometric more accurately by considering machine defects and work piece set-up, through the use of process simulation. A particular case study based on a 3 axis milling machine will be used here to illustrate the authors’ point of view. This study focuses on the following geometric defects: machine geometric errors, work piece positioning errors due to fixture system and part accuracy

    Design and construction of a novel reconfigurable micro manufacturing cell

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Demands for producing small components are increasing. Such components are usually produced using large-size conventional machining tools. This results in the inadequate usage of resources, including energy, space and time. In the 1990s, the concept of a microfactory was introduced in order to achieve better usage of these resources by scaling down the size of the machine tool itself. Several industries can benefit from implementing such a concept, such as the medical, automotive and electronics industries. A novel architecture for a reconfigurable micro-manufacturing cell (RMC) is presented in this research, aiming at delivering certain manufacturing strategies such as point of use (POU) and cellular manufacturing (CM) as well as several capabilities, including modularity, reconfigurability, mobility and upgradability. Unlike conventional machine tools, the proposed design is capable of providing several machining processes within a small footprint (500 mm2), yet processing parts within a volume up to 100 mm3. In addition, it delivers a rapid structure and process reconfiguration while achieving a micromachining level of accuracy. The approach followed in developing the system is highly iterative with several feedback loops. It was deemed necessary to adopt such an approach to ensure that not only was the design relevant, but also that it progresses the state-of-the-art and takes into account the many considerations in machine design. Following this approach, several design iterations have been developed before reaching a final design that is capable of delivering the required manufacturing qualities and operational performance. A prototype has been built based on the specifications of the selected design iteration, followed by providing a detailed material and components selection process and assembly method before running a performance assessment analysis of the prototype. At this stage, a correlation between the Finite Element Analysis (FEA) model and prototype has been considered, aiming at studying the level of performance of the RMC when optimising the design in the future. Then, based on the data collected during each stage of the design process, an optimisation process was suggested to improve the overall performance of the system, using computer aided design and modelling (CAD/CAM) tools to generate, analyse and optimise the design
    • 

    corecore