7,020 research outputs found

    Footprints of information foragers: Behaviour semantics of visual exploration

    Get PDF
    Social navigation exploits the knowledge and experience of peer users of information resources. A wide variety of visual–spatial approaches become increasingly popular as a means to optimize information access as well as to foster and sustain a virtual community among geographically distributed users. An information landscape is among the most appealing design options of representing and communicating the essence of distributed information resources to users. A fundamental and challenging issue is how an information landscape can be designed such that it will not only preserve the essence of the underlying information structure, but also accommodate the diversity of individual users. The majority of research in social navigation has been focusing on how to extract useful information from what is in common between users' profiles, their interests and preferences. In this article, we explore the role of modelling sequential behaviour patterns of users in augmenting social navigation in thematic landscapes. In particular, we compare and analyse the trails of individual users in thematic spaces along with their cognitive ability measures. We are interested in whether such trails can provide useful guidance for social navigation if they are embedded in a visual–spatial environment. Furthermore, we are interested in whether such information can help users to learn from each other, for example, from the ones who have been successful in retrieving documents. In this article, we first describe how users' trails in sessions of an experimental study of visual information retrieval can be characterized by Hidden Markov Models. Trails of users with the most successful retrieval performance are used to estimate parameters of such models. Optimal virtual trails generated from the models are visualized and animated as if they were actual trails of individual users in order to highlight behavioural patterns that may foster social navigation. The findings of the research will provide direct input to the design of social navigation systems as well as to enrich theories of social navigation in a wider context. These findings will lead to the further development and consolidation of a tightly coupled paradigm of spatial, semantic and social navigation

    A document-like software visualization method for effective cognition of c-based software systems

    Get PDF
    It is clear that maintenance is a crucial and very costly process in a software life cycle. Nowadays there are a lot of software systems particularly legacy systems that are always maintained from time to time as new requirements arise. One important source to understand a software system before it is being maintained is through the documentation, particularly system documentation. Unfortunately, not all software systems developed or maintained are accompanied with their reliable and updated documents. In this case, source codes will be the only reliable source for programmers. A number of studies have been carried out in order to assist cognition based on source codes. One way is through tool automation via reverse engineering technique in which source codes will be parsed and the information extracted will be visualized using certain visualization methods. Most software visualization methods use graph as the main element to represent extracted software artifacts. Nevertheless, current methods tend to produce more complicated graphs and do not grant an explicit, document-like re-documentation environment. Hence, this thesis proposes a document-like software visualization method called DocLike Modularized Graph (DMG). The method is realized in a prototype tool named DocLike Viewer that targets on C-based software systems. The main contribution of the DMG method is to provide an explicit structural re-document mechanism in the software visualization tool. Besides, the DMG method provides more level of information abstractions via less complex graph that include inter-module dependencies, inter-program dependencies, procedural abstraction and also parameter passing. The DMG method was empirically evaluated based on the Goal/Question/Metric (GQM) paradigm and the findings depict that the method can improve productivity and quality in the aspect of cognition or program comprehension. A usability study was also conducted and DocLike Viewer had the most positive responses from the software practitioners

    Visualizing and Interacting with Concept Hierarchies

    Full text link
    Concept Hierarchies and Formal Concept Analysis are theoretically well grounded and largely experimented methods. They rely on line diagrams called Galois lattices for visualizing and analysing object-attribute sets. Galois lattices are visually seducing and conceptually rich for experts. However they present important drawbacks due to their concept oriented overall structure: analysing what they show is difficult for non experts, navigation is cumbersome, interaction is poor, and scalability is a deep bottleneck for visual interpretation even for experts. In this paper we introduce semantic probes as a means to overcome many of these problems and extend usability and application possibilities of traditional FCA visualization methods. Semantic probes are visual user centred objects which extract and organize reduced Galois sub-hierarchies. They are simpler, clearer, and they provide a better navigation support through a rich set of interaction possibilities. Since probe driven sub-hierarchies are limited to users focus, scalability is under control and interpretation is facilitated. After some successful experiments, several applications are being developed with the remaining problem of finding a compromise between simplicity and conceptual expressivity

    Magpie: towards a semantic web browser

    Get PDF
    Web browsing involves two tasks: finding the right web page and then making sense of its content. So far, research has focused on supporting the task of finding web resources through ‘standard’ information retrieval mechanisms, or semantics-enhanced search. Much less attention has been paid to the second problem. In this paper we describe Magpie, a tool which supports the interpretation of web pages. Magpie offers complementary knowledge sources, which a reader can call upon to quickly gain access to any background knowledge relevant to a web resource. Magpie automatically associates an ontologybased semantic layer to web resources, allowing relevant services to be invoked within a standard web browser. Hence, Magpie may be seen as a step towards a semantic web browser. The functionality of Magpie is illustrated using examples of how it has been integrated with our lab’s web resources

    DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning

    Full text link
    We present DRLViz, a visual analytics interface to interpret the internal memory of an agent (e.g. a robot) trained using deep reinforcement learning. This memory is composed of large temporal vectors updated when the agent moves in an environment and is not trivial to understand due to the number of dimensions, dependencies to past vectors, spatial/temporal correlations, and co-correlation between dimensions. It is often referred to as a black box as only inputs (images) and outputs (actions) are intelligible for humans. Using DRLViz, experts are assisted to interpret decisions using memory reduction interactions, and to investigate the role of parts of the memory when errors have been made (e.g. wrong direction). We report on DRLViz applied in the context of video games simulators (ViZDoom) for a navigation scenario with item gathering tasks. We also report on experts evaluation using DRLViz, and applicability of DRLViz to other scenarios and navigation problems beyond simulation games, as well as its contribution to black box models interpretability and explainability in the field of visual analytics

    Semantic learning webs

    Get PDF
    By 2020, microprocessors will likely be as cheap and plentiful as scrap paper,scattered by the millions into the environment, allowing us to place intelligent systems everywhere. This will change everything around us, including the nature of commerce, the wealth of nations, and the way we communicate, work, play, and live. This will give us smart homes, cars, TVs , jewellery, and money. We will speak to our appliances, and they will speak back. Scientists also expect the Internet will wire up the entire planet and evolve into a membrane consisting of millions of computer networks, creating an “intelligent planet.” The Internet will eventually become a “Magic Mirror” that appears in fairy tales, able to speak with the wisdom of the human race. Michio Kaku, Visions: How Science Will Revolutionize the Twenty - First Century, 1998 If the semantic web needed a symbol, a good one to use would be a Navaho dream-catcher: a small web, lovingly hand-crafted, [easy] to look at, and rumored to catch dreams; but really more of a symbol than a reality. Pat Hayes, Catching the Dreams, 2002 Though it is almost impossible to envisage what the Web will be like by the end of the next decade, we can say with some certainty that it will have continued its seemingly unstoppable growth. Given the investment of time and money in the Semantic Web (Berners-Lee et al., 2001), we can also be sure that some form of semanticization will have taken place. This might be superficial - accomplished simply through the addition of loose forms of meta-data mark-up, or more principled – grounded in ontologies and formalised by means of emerging semantic web standards, such as RDF (Lassila and Swick, 1999) or OWL (Mc Guinness and van Harmelen, 2003). Whatever the case, the addition of semantic mark-up will make at least part of the Web more readily accessible to humans and their software agents and will facilitate agent interoperability. If current research is successful there will also be a plethora of e-learning platforms making use of a varied menu of reusable educational material or learning objects. For the learner, the semanticized Web will, in addition, offer rich seams of diverse learning resources over and above the course materials (or learning objects) specified by course designers. For instance, the annotation registries, which provide access to marked up resources, will enable more focussed, ontologically-guided (or semantic) search. This much is already in development. But we can go much further. Semantic technologies make it possible not only to reason about the Web as if it is one extended knowledge base but also to provide a range of additional educational semantic web services such as summarization, interpretation or sense-making, structure-visualization, and support for argumentation

    Enhancing Web-Based Configuration with Recommendations and Cluster-Based Help

    Get PDF
    In a collaborative project with Tacton AB, we have investigated new ways of assisting the user in the process of on-line product configuration. A web-based prototype, RIND, was built for ephemeral users in the domain of PC configuration

    Knowledge Cartography for Controversies: The Iraq Debate

    Get PDF
    In analysing controversies and debates—which would include reviewing a literature in order to plan research, or assessing intelligence to formulate policy—there is no one worldview which can be mapped, for instance as a single, coherent concept map. The cartographic challenge is to show which facts are agreed and contested, and the different kinds of narrative links that use facts as evidence to define the nature of the problem, what to do about it, and why. We will use the debate around the invasion of Iraq to demonstrate the methodology of using a knowledge mapping tool to extract key ideas from source materials, in order to classify and connect them within and across a set of perspectives of interest to the analyst. We reflect on the value that this approach adds, and how it relates to other argument mapping approaches
    corecore