
Enhancing web-based configuration with
recommendations and cluster-based help

Rickard Cöster, Andreas Gustavsson, Tomas Olsson, and Åsa Rudström

Swedish Institute of Computer Science, SICS, Box 1263
SE-164 29 Kista, Sweden

{rick, angus, tol, asa}@sics.se
http://www.sics.se/

Abstract. In a collaborative project with Tacton AB, we have investi-
gated new ways of assisting the user in the process of on-line product
configuration. A web-based prototype, RIND, was built for ephemeral
users in the domain of PC configuration.
Two mechanisms were added to a commercial configurator produced by
Tacton: i) automated recommendations that display social trails associ-
ated with the configuration; and ii) a help system based on term cluster-
ing. Recommendations based on previous customer selections are made
on separate attributes as well as full configurations, i.e. complete PCs.
The early rater problem is solved using a probabilistic bootstrapping
approach. The help system supports novice users browsing for help in-
formation, as well as experienced users able to pose exact queries.

1 Introduction

Configurators assist users in selecting attributes and features such as customer
requirements and product attributes of a complex product. In a collaborative
project with Tacton AB, a commercial company selling and marketing a constraint-
based configurator, we have investigated new and complementary ways of assist-
ing the user in the task of configuring complex products. The result of the project
is a prototype, RIND, in which we have added i) automated, collaborative rec-
ommendations for displaying social trails associated with the configuration, and
ii) a help interface. The prototype is built on top of the Tacton configurator in
the domain of PC configuration.

By tagging the configuration process with social information we aim to give
the user a better idea of which attributes or complete configurations that are
common or not. The recommendations guide the user by displaying two types
of social trails. First, the user can get recommendations on selected product
attributes. Attributes that are recommended are those that other people have
selected in similar situations. Second, the user can ask: Given my current selec-
tions, what is the most popular final product configuration?

The help system is designed to adapt to the current user selections in the
configuration. For experienced users, detailed help can easily be found with key-
word search. For users who are new to the product domain, the structure of the
help system functions as a guide to the domain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11433551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using a rule-based knowledge system, the configurator calculates and displays
which attributes are compatible with the user’s previous selections. Whenever
a choice is incompatible, the configurator will inform the user what needs to be
changed in order to keep her most recent selection. The configurator can also
select attributes that optimize some product variable, e.g. price. In this way, a
user may select the most important product attributes and let the configurator
select all the other.

The configurator is good at handling product attributes. Adding recommen-
dations and cluster-based help takes us yet another step closer to the underlying
customer needs.

2 The RIND Prototype

Several different user categories can be identified in the domain of on-line PC
configuration: ephemeral/frequent user; novice/expert; buying for oneself or for
others; customer or sales person (sales support, help desk) etc. In addition, the
system could be designed to be stand-alone or a web client; to be accessed over
the Internet/extranet/intranet; using a login procedure or not. The design of
the system is fundamentally dependent on the choices made for these factors.
The RIND prototype is a web client designed for users that only use the system

Fig. 1. Interface detail

once or twice. Part of the interface is depicted in Figure 1. Ephemeral users
should not be required to log in to use the system until the time of purchase.
In light of this, it is hard to anticipate the background of the user - novice
or expert? Our hypothesis is that ephemeral users may be unfamiliar to the
use of a configurator, but not necessarily unfamiliar with the domain. We also
assume that users purchasing products over the Internet can be assumed to be
reasonably familiar with computer applications as such.

We believe that it is in this context that recommendations and help interfaces
increase the benefit to the user.

Our approach differs from other approaches combining knowledge based rea-
soning and collaborative filtering in two respects. Firstly, there is no explicit
model of user preferences, ratings, or the like, such as discussed in e.g. [1]. Only
complete configurations are stored and used as a basis for recommendation.
Secondly, our system is not a hybrid system combining the two techniques, as
suggested by [10] or [6]. Instead, the results from the recommender engine are
presented alongside the results from the constraint-based configurator.

The PC configuration domain is expressed in 35 attributes, listed in Table 1.
Each attribute has 2 to 18 values. 12 of the 35 attributes are not settable by the
user (e.g. price excl. VAT), and are therefore not used in the recommendation
process. 8 attributes represent user requirements (e.g. whether the user will
play/create music), and the remaining 15 are computer components. For better
overview, the 23 settable attributes are grouped into Requirements, Components,
and Minor Components. This grouping is reflected in the interface, where each
group is displayed on a separate tab. The demands on the interface are high.

Requirements Components Minor components Non-settable attributes

Type of computer Service Mouse Performance value
Play/Create music Monitor CD/DVD Max days to delivery
Performance Hard Drive Keyboard Price
Graphic applications OS Speaker Price incl.VAT
Minimum component quality Video Card Network Card Total RAM
Minimum RAM size Extra Video Card Mother Board memory cards (5 attrs.)
Minimum hard drive size Cpu Computer Case Free Dimm slots
Delivery Sound Card Floppy Drive

Table 1. PC domain attributes

For each attribute, a large number of different possibilities need to be displayed.
Each attribute can take on a number of values, displayed as a color coded pull-
down menu (a in Fig. 1). The configurator’s choice is presented first in the list
(blue), followed by valid (green) choices and choices that are incompatible with
the user’s previous selections (orange). Once a value is selected (yellow), the lock
icon to the right of the value list closes.

Next, recommendations can be made on single attributes as well as on full
configurations. To maintain a reasonable complexity in the interface, recom-
mendations are separated from the selection of values. Recommendations on
single attributes are given on demand (clicking on the icon b in Fig. 1), and
are displayed to the right (c in Fig. 1). The most popular full configurations are
recommended in a separate window (clicking on icon d). This sub-window has
a similar but simplified interface, with the possibility to select all attributes of
one of the displayed configurations with a single click.

RIND is an HTML/JavaScript client, communicating with three logical servers:
the configurator, the recommender engine, and the help system. Data is commu-

nicated in XML format, and the client makes extensive use of the XML DOM
provided by MS Internet Explorer 5.5 and higher.

3 Recommendations

For recommendations, we use a recommender engine developed at SICS. This
engine supports both collaborative and content-based filtering, and has previ-
ously been used in the EFOL project [9] recommending food recipes, and in
GeoNotes, a position-based system for annotation of physical places [2].

At a conceptual level, the architecture of the recommender engine is very
simple. Each user’s interests are represented in a profile. In the case of collab-
orative filtering, the profile is usually a feature vector of the user’s explicit or
implicit votes. In other cases, e.g. content-based filtering, a classifier or regression
machine may be trained to learn the user’s interest model.

In RIND, each completed and purchased product configuration is represented
and stored as a feature vector. The component choices are represented as the
feature values. Each choice is interpreted as an implicit vote for the corresponding
component value. The current user’s configuration is used as a query to the
recommender, but is not stored until the final purchase.

For this specific project we have developed three basic algorithms for filter-
ing, which are all based on neighborhood formation and prediction from the
neighborhood. The distance between two profiles is the number of features with
equal values. We write va to denote the profile of user a, and va,j for the value
of feature j in that profile. Predictions are denoted p and use the same subscript
notation as profiles. Furthermore, we define X(a, k) as the k nearest neighbors
to user a.

3.1 Weighted Majority Voter

The simplest algorithm is the Weighted Majority Voter, which predicts the value
of a component on the basis of a weighted majority vote of the k nearest neigh-
bors. The weight is set equal to the distance between two user profiles, i.e. the
number of equal component values in the two configurations. The prediction p
for user a on item j is then

pa,j = argmax
s∈Sj

∑

i

w(a, i)[vi,j = s]

where i ∈ X(a, k), Sj = {vi,j} and w(a, i) =
∑

j [va,j = vi,j].

3.2 Most Popular Choice

The second algorithm, Most Popular Choice predicts the most popular entire
configuration of the k nearest neighbors. The algorithm is an extended Näıve
Bayes classifier using m-estimate for estimating the probabilities [5]. Because the

prediction regards entire configurations, the Näıve Bayes classifier is extended to
handle multiple components. The sought components (components not already
chosen by the user) are assumed to be independent.

The m-estimate gives weight to the probability according to the user’s current
choices even when there is no configuration with all of the user’s choices. The
extension to many components gives weight to the probability according to the
popularity (= number of occurrences) of the sought component values. These two
properties lead to the following (good) characteristic; if the user has not chosen
any component-value pairs or if no stored configuration has the component-
value pairs of the user’s choice, then the configuration with the most popular
component-value pairs will be recommended. Otherwise, the probability of a
configuration is weighted according to whether it has any of the component-
value pairs of the user. The prediction is

pa = argmax
i

Pr({vi,u|u ∈ J̄}) ×
∏

j∈J

Pr(va,j |{vi,u|u ∈ J̄})

where J = {j | va,j �= {}}, the set of features for which user a have selected
values, and J̄ is the set of features for which a has not yet selected any values.
We let Pr({vi,u|u ∈ J̄}) =

∏
u∈J̄ Pr(vi,u) by assuming independency.

For the probabilities, we count the frequencies over the neighbors as follows.
We let Pr(vi,u) = fu/k where fu is the number of neighbors with component u set
to the value vi,u. We define Pr(va,j |{vi,u|u ∈ J̄}) as (fi−a+j +mp)/(fi−a +m) =
(fi−a+j + 1)/(fi−a + k) when as m-estimate we use m = k and p = 1/k (the
latter is the smallest probability any component value can have except for the
zero probability). fi−a is the number of neighbors with the same component-
value pairs as vi except for all components set in va. Finally, fi−a+j is the
number of neighbors with the same component-value pairs as vi except for all
components in va but component j that has value va,j (that is vi,j = va,j). This
means that fi−a+j > 0 only if vi,j = va,j .

3.3 Näıve Bayes Voter

The third and last algorithm is the Näıve Bayes Voter, which is similar to the
Weighted Majority Voter but uses Näıve Bayes with m-estimate as a basis for
the predictions. Instead of using the sum of the distances between the user
profiles as a vote, it uses the probability of a component value given the k nearest
neighbors. Thus the most probable value for any component is recommended. As
m-estimate we use again m = k and p = 1/k. The m-estimate makes it possible
to recommend values for all components regardless of whether any other user
profile contains all the component-value pairs of the active user.

pa,j = argmax
s∈Sj

Pr(vi,j = s)
∏

s′∈va

Pr(va,t = s′|vi,j = s)

where again Sj = {vi,j}. For the frequencies, we define Pr(vi,j = s) = fj=s/k
where fj=s is the number of neighbors with value s for feature j. Furthermore,

we let Pr(va,t = s′|vi,j = s) = (fj=s∧t=s′ + 1)/(fj=s + k) where fj=s∧t=s′ is the
number of neighbors with both value s for feature j and value s′ for feature t.

4 Bootstrapping

When starting up any recommender system every developer will be faced with
the early-rater problem. Without any users it is hard to make good recommen-
dations. Even though there are many users, making good recommendations can
be hard when each item has only a few user opinions and the overlap between
the opinions is sparse.

The ordinary approach to tackle this problem is to combine entirely opinion
based collaborative filtering with content-based methods, expecting the two ap-
proaches to level out each other’s weaknesses [8]. In this project, the content is
already used as the base for recommendations and hence another approach is
required. We propose an approach that makes use of prior knowledge acquired
from asking experts, analyzing the recommended items, and using prejudices and
good guesses. The acquired knowledge is often uncertain and thus represented
with a probabilistic model. Simulated user profiles can then be sampled from the
probabilistic model and bootstrap any used learning algorithm including the k
nearest neighbor.

4.1 The probabilistic model

The current RIND implementation cannot track individual users and thus only
dependencies between attributes and not between users are modeled. The prior
knowledge is encoded as a Bayesian belief net, which can be constructed with
any schoolbook procedure for knowledge acquisition [4]. The prior knowledge
modeled in the belief net is based on:

– Normally, users prefer cheap products.
– People who want to play games usually need graphics and music.
– An interest in graphics indicates a need for a good monitor and graphics

card.
– An interest in music indicates a need for a good sound card and speakers.
– An interest in both graphics and music indicates a need for a larger RAM

memory, a larger hard disk and good performance.
– For variables without good value distribution guesses, uniform probabili-

ties are used. For example, each type of computer (standard/build your
own/games/business) gets a uniform probability of 0.25.

User profiles used for bootstrapping the system are then sampled from the belief
net by probabilistically selecting feature values in random order. Only values
validated by the configurator are considered. If there is no selectable valid value
for a feature, the user profile is discarded and instead a new profile is formed.
Every time a value is selected for a feature the posterior probability of the belief

net is recomputed given the currently selected feature values. The procedure is
then repeated until there are no more selections left for each user profile.

The proposed approach of course makes it harder to discern the meaning of
a recommendation, at least when the recommendations are based on very few
real users. A recommendation is no more only about whether other people liked
or disliked an item but also what the system designer recommends. This makes
the problem of visualizing a recommendation more complicated. We could partly
get around this problem by distinguishing between recommendations based on
real user profiles and sampled profiles in the user interface.

5 RIND Help System

The key requirement for the help system is to guide ephemeral users to those
help documents that meet their information request, independent of previous
knowledge of the PC domain. Requirements such as maintaining consistent help
for newly released product information and integration with the configuration
interface are also considered as central.

To support ephemeral users with varying domain knowledge, the help system
needs a navigation tool that is suitable for novices as well as for experts. Our
approach presents a hierarchic view of the domain with terms that are more
general or more specific in relevance to each other based on the user query. A
novice can browse the domain and refine the query by selecting a more specific or
more general term in the hierarchic view. By entering a precise query an expert
can search for help documents that fit the information request, but also refine
the query using the hierarchic view.

5.1 The Help Web Interface

The help interface (fig. 2) is separated into three parts. The user query is dis-
played at the top as an editable input box. In addition to input from the user,
the input box is also used to display the current hierarchic location in the help
domain. In the bottom part, the hierarchic view can be found to the left, while
the help text itself is displayed to the right. Some selectable terms are embedded
in the text and have the same functionality as a selectable spread topic.

In the hierarchical view, more general terms are displayed under the Spread
Topics header. If the user selects the spread topic ”PC” in figure 2 the help
interface is updated and ”PC” becomes the new user query. In this case the user
will see how the previous query term ”motherboard” is related to other topics
also related to PC.

Terms displayed under the Narrow Topics header are terms that are subtopics
to the current user query. When the user selects the narrow topic ”perfomance”
the term is added to the user query and the interface is updated accordingly.

Fig. 2. Help interface

5.2 Clustering Method

Van Rijsbergen [11] defines two types of automated methods for associating
documents with each other. In the polythetic clustering method the membership
between a document and the cluster is based on how many of the document
terms that are in cluster defined terms. The problem with polythetic methods is
that not all the terms defining the clusters are guaranteed to be present in the
documents.

In the monothetic clustering method, all terms defined by the cluster are
guaranteed to exist in all documents. A common form of monothetic cluster hi-
erarchy is taxonomic web directories such as Yahoo!. These directories manually
place web pages into a hierarchical structure. One problem with this approach is
that most texts are not taxonomically related, but discuss different topics simul-
taneously. A second problem is that the web pages have to be manually placed
into the structure. Finally, users have to learn and remember the structure of
the hierarchy.

Sanderson and Croft [7] attempt to overcome these problems by automati-
cally constructing a concept hierarchy derived from a set of documents. They
extracted terms for the hierarchy from the documents such that a parent term
would refer to a more general concept than its child.

The RIND help system uses a similar approach but with predefined terms
describing each help text, and a monothetic clustering method with additional
polythetic clustered terms describing the monothetic term cluster. The prede-
fined terms are based on a controlled dictionary without any synonyms, since
the attempt is to solve the polysemy part of the vocabulary problem [3].

6 Concluding Remarks

We have identified a domain in which recommendations and cluster-based help
systems seem well suited to assist ephemeral users in the task of selecting product

configurations. To this end, we have built a prototype on top of a configurator
to demonstrate our approach.

We found several ways of performing recommendations by using the database
of purchased products, and we have also developed a principled way of bootstrap-
ping recommender systems with prior knowledge and good guesses.

A key requirement for the prototype was that the help system should be able
to support both novice and expert users. We have therefore developed a cluster-
based help system in which experts can find exact information and novice users
can see a hierarchical structure of how components or parts of the configuration
are related.

7 Acknowledgements

This work was performed in a collaborative project between Tacton AB (www.tacton.se)
and the Swedish Institute of Computer Science, SICS (www.sics.se), supported
by funding from VINNOVA, the Swedish Agency for Innovation Systems.

References

1. L. Ardissono, A. Felfernig, D. Jannach, G. Friedrich, R. Schäfer, and M. Zanker.
Customer-adaptive and distributed online product configuration in the CAW-
ICOMS project. In Proceedings of the Configuration Workshop at IJCAI 01, Seat-
tle, USA, 2001.

2. F. Espinoza, P. Persson, A. Sandin, H. Nyström, E. Cacciatore, and M. Bylund.
Geonotes: Social and navigational aspects of location-based information systems.
In Abowd, Brumitt, and Shafer, editors, Ubicomp 2001: Ubiquitous Computing,
International Conference, pages 2–17, Atlanta, Georgia, 2001. Berlin: Springer.

3. G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocab-
ulary problem in human-system communication. Communications of the ACM,
30(11):964–971, 1987.

4. A. Gonzalez and D. Dankel. The engineering of knowledge-based systems: Theory
and practice, 1993.

5. T. Mitchell. Machine Learning. New York: McGraw Hill, 1997.

6. Martin Molina. An intelligent sales assistant for configurable products. In Ning
Zhong, Yi Yu Yao, Jiming Liu, and Setsuo Ohsuga, editors, Proceedings of the 1st
Asia-Pacific conference on Web Intelligence: Research and Development, volume
2198 of Lecture Notes in Computer Science. Springer, 2001.

7. M. Sanderson and W. B. Croft. Deriving concept hierarchies from text. In Research
and Development in Information Retrieval, pages 206–213, 1999.

8. Badrul M. Sarwar, Joseph A. Konstan, Al Borchers, Jonathan L. Herlocker,
Bradley N. Miller, and John Riedl. Using filtering agents to improve prediction
quality in the grouplens research collaborative filtering system. In Computer Sup-
ported Cooperative Work, pages 345–354, 1998.

9. M. Svensson, K. Höök, J. Laaksolahti, and A. Waern. Social navigation of food
recipes. In Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 341 – 348, Seattle, Washington, 2001.

10. Thomas Tran and Robin Cohen. Hybrid recommender systems for electronic com-
merce. In Papers from the Seventeenth National Conference on Artificial Intel-
ligence (AAAI-2000) Workshop on Knowledge-Based Electronic Markets, pages
78–84. AAAI Press, 2000.

11. C. J. Van Rijsbergen. Information Retrieval. Dept. of Computer Science, University
of Glasgow, 1979.

