

CHAPTER 1

INTRODUCTION

1.1 Introduction to Software Maintenance

 All objects in the world need to be maintained throughout their life cycles in order

to survive and remain useful; and so does computer software. From time to time a

software system evolves to meet new requirements and changes. When the technology or

language of the software system is obsolete, it becomes a legacy system yet it is still in

use to serve users’ needs. Maintaining a software system particularly a legacy system

definitely needs a lot of software engineers’ time and effort especially when there is no

document available or the existing documents are not updated.

 According to Erlikh (2000), 85 to 90 percent of Information System budgets go to

legacy system operation and maintenance, which is extremely high. In addition,

Sommerville (1997) cites cost in maintenance could be double to that of development,

unless extra development costs are invested in making a system more maintainable that

can decrease maintenance costs including overall system costs. Hence software

maintenance should be seen as an important stage in a software life cycle and need a lot

of attention from researchers and practitioners.

 Whenever software maintainers plan to modify or enhance a software system,

they need to refer to system documentation (SD) in order to understand the software

better and determine which components are affected in a maintenance task. Nevertheless

the system documentation available is almost always out-of-date and unreliable due to

some reasons including time constraint and commercial pressures (Sulaiman et al.,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11780255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

2002b). As a result software maintainers need to read through all the source codes,

which are the most reliable and updated source of the running system. This is very

tedious task and often impractical. In this case, the use of CASE (Computer-Aided

Software Engineering) products such as reverse engineering tool will be able to

automatically extract components in existing source codes and provide graphical

representations of the components to assist software engineers’ program comprehension

or software understanding (von Mayrhauser and Vans, 1993).

 Program comprehension or software understanding involves cognition of software

that is the mental process of knowing, learning and understanding the software system

(Collins, 1988). A number of research and studies have been conducted in order to assist

the cognition aspect of a software system based on source codes. One way is through

reverse engineering technique in which source codes will be parsed and the information

extracted will be visualized. This requires a software visualization method to represent

the extracted information graphically (Kwon et al., 1998). There are several approaches

in software visualization with the target to improve cognition of software system. Most

approaches use graph as the main element to visualize extracted software artifacts in a

reverse engineering environment. According to the survey by Koschke (2003), 49

percent of the respondents used graph to visualize software artifacts besides text (14

percent) and Unified Modeling Language (UML) diagram (13 percent).

 However, based on the literature review (to be discussed in Chapter 2) and also

the comparative study conducted on the diverse software visualization methods employed

by the existing reverse engineering tools (to be discussed in Chapter 3), it was

discovered that the tools had some weaknesses such as the information provided is too

detail causing the graphs generated are quite complex and they do not grant an explicit

software re-documentation mechanism. Some of the weaknesses make the tools become

less effective to be employed by software maintainers. Thus the main problem includes

the issue of how to produce a more effective method in re-documenting and visualizing

software artifacts that can enhance cognition of existing software systems in software

maintenance. Hence, this thesis has attempted to eliminate the problem by proposing a

document-like software visualization method named as DocLike Modularized Graph

(DMG) employed in a prototype tool called DocLike Viewer (to be described in Chapter

6). The research also suggests the best stage to implement the tool in a reverse

 3

engineering environment to capture the most updated software artifacts from the existing

source codes.

This chapter will discuss more on the background of the problem followed by a

brief discussion on current solutions and the proposed solution, statement of the problem,

objectives of the research, theoretical framework, importance and scope of the research.

Definition of terms and organization of thesis will be provided in the last two sections of

the chapter.

1.2 Background of the Problem

 Problems in software maintenance process are always related to how much

system documentation of a software system can assist software engineers particularly

programmers in understanding the architecture of the software system and identifying

what are the components affected. As stated by van Vliet (2000), some of the major

causes of maintenance problems are as follows:

(i) Unstructured code.

(ii) Maintenance programmers having insufficient knowledge of the system or

application domain.

(iii) Documentation being absent, out-of-date or at best insufficient.

(iv) Software maintenance had a bad image.

 The findings depict that the problems do not involve technical issues only but also

managerial issues such as the bad image of software maintenance as seen by some

software engineers.

 In relation, the survey by Sousa and Moreira (1998) in Portugal shows that 3

biggest problems related to software maintenance process include:

(i) The lack of software maintenance process models.

(ii) The lack of documentation of applications.

(iii) The lack of time to satisfy the requests.

 4

 Both studies deduce that out-dated, incomplete or absence of documentation

contribute to software maintenance problems. It will be worse if the documentation

problem involves design level document, which is the most vital source to identify

components of a system and their interrelationships. Indirectly the documentation

problem leads to the problem in understanding or comprehending existing source codes.

These problems will be the major focus of this thesis.

1.2.1 Incomplete, Out-dated, Non Standardized or Absence of Documentation

It is understood that each phase in a software development life cycle should have

its generic document (Hoffer et al., 1999). Nevertheless, during the initial development

itself, documentation often comes off badly because of deadlines and other time

constraints (van Vliet, 2000). The preliminary study of this thesis (Sulaiman et al.,

2002b) also found that the two main reasons for not producing system documentation

were time constraint and commercial pressures. In addition most programmers tend to

forget about the documentation when they need to start with a new software development

project. In this case, unless the software managers or customers insist to have the

documentation, then only the documentation will be produced otherwise the

documentation will not exist at all. This factor was identified as the third reason why

software engineers did not produce system documentation (Sulaiman et al., 2002b).

In addition, software engineers face in average two maintenance projects without

system documentation and they do not produce system documentation at least for one

development project yearly. Furthermore, most programmers are product-oriented in

which their main target is to make the system available on time and documentation comes

later (Hoffer et al., 1999). Besides, programmers dislike documenting their systems

because it is perceived as a rather boring task compared to the excitements of creation in

design and implementation (Macro, 1990). This is also shown in the survey of this

research (Sulaiman et al., 2002b) in which less than 4.1 percent of software engineers

were interested in writing system documentation compared to developing (79.6 percent)

and maintaining software (16.3 percent). Consequently, the quality of documentation is

low because either it is done in a hurry or not with interest.

 5

Software evolves, thus it always needs to be maintained due to the existence of

new requirements, change in environment, transform to new language or many other

factors. Thus software maintainability is extremely important to be considered in order to

produce long lasting software. Some important factors in software maintainability are:

the development process used, documentation and program comprehensibility (Pigoski,

1997). Therefore documentation is also vital to ensure maintainability. Nevertheless,

only the documentation for the first maintenance could be reliable. The link between a

program and its associated documentation is sometimes vanished during the maintenance

process and this may be the consequence of poor configuration management or due to

adopting a quick fix approach to maintenance (Sommerville, 1997). Therefore the

existing documents are unreliable and out-of-date to be referred to for the following

maintenance processes. Maintainers can only rely on the documents to derive the overall

picture of the current system.

Thus software maintenance costs are increased due to the time required for a

maintainer to understand the software design prior to being able to modify the source

codes. Furthermore, most system documentation is produced in a hard copy to be kept as

future reference. The soft copy of documentation is hardly being archived properly with

the software version or revision. If a maintenance process does not involve major

changes, it will be tedious and not practical to redo the documentation (especially if the

soft copy has been poorly archived) and reprint the whole document together with the

changes made. Hence, the following software maintainers probably will not bother to

modify the documentation.

Documentation standard is important to be enforced in all software projects

because its purpose is to communicate only necessary and critical information, not to

communicate all information (Pigoski, 1997). However, most organizations do not

employ any documentation standard (Sulaiman et al., 2002b). Thus programmers who

produce the documentation do not follow any formal guidelines. Consequently,

documents produced in such organizations are of different format among software

projects and it may not produce sufficient information as required by future software

maintainers.

 6

1.2.2 Understanding an Existing Software System is Tedious and Costly

Program comprehension is the most expensive task of a software maintenance

process because it includes reading documents, scanning its source codes and

understanding the change to be made (Kwon et al., 1998). For instance, changing an

existing variable or introducing a new variable in a function or method will cause a ripple

effect towards other functions or methods, or even other programs or classes, or may be

other modules or packages, or other integrated system. Furthermore, a concerned change

involves the tracing of other de-localized components in the source codes. It could be in

the same or different program or class, module or package, or even system. It will be

more costly if the existing system does not have any design document or updated

document. In this case, source codes are the only available source of information and the

most reliable one. If the size of the software system is very large, the cognition of the

software system will be more complex. Thus there is a need to assist the process of

program comprehension in order to reduce the cost particularly when design document is

absence.

Cognition of a software system involves different program comprehension

strategies. According to Storey et al. (1999), these strategies can be influenced by the

characteristics of maintainers, programs or maintenance tasks. Maintainer characteristics

involve application and programming domain knowledge, maintainer expertise or

creativity, familiarity with program and support tools expertise. Program characteristics

involve application and programming domain, program size, complexity and quality,

documentation and support tool availability. Tasks characteristics include task type and

purpose, task size and complexity, time and cost constraints and environmental factors.

For instance, an expert programmer might need less time to solve a quite difficult task

compared to that of a novice programmer. Indirectly, the former incurs less cost than the

latter. Therefore, to reduce cost by supporting programmers’ cognitive strategies, the

characteristics mentioned above should be considered.

 7

1.2.3 CASE Tools or Environment are Not Used or Properly Used

Nowadays, there are a lot of CASE tools of different classes (see Section 2.8) that

can assist software developers either in project planning, modeling in analysis and design,

testing, producing documentation up to implementation that involves the whole System

Development Life Cycle (SDLC). As for the maintenance all CASE tools might be used

again while repeating the SDLC. Such fully integrated CASE tools or environment will

normally produce a self-generated system documentation that will be very useful to

maintainers. However most organizations do not use CASE tools to support all phases of

SDLC (Sulaiman et al., 2002b). Without a CASE environment or any CASE tools,

software engineers need to use a word processor application to document the textual part

and import all graphical representations drawn in other graphic application.

Theoretically, design document should be produced while designing a software

system either by using structural modeling such as data flow diagrams and entity-

relationship diagrams or object-oriented modeling such as UML and then the document is

updated based on the final written and tested source codes. Otherwise, programmers

need to read through the source codes again and transform them into graphical notation.

This can be a tedious job, which requires considerable concentration. It is all too

easy for concentration to lapse, for even a very short period, and miss some vital

piece of information.

(Lincoln, 1993)

There are a variety of reasons why organizations choose to adopt CASE partially

or not to use it at all:

These reasons range from a lack of vision for applying CASE to all aspects of the

SDLC to the belief that CASE technology will fail to meet an organization’s

unique system development needs.

 (Hoffer et al., 1999)

Software developers might just use the CASE tool for instance Rational Rose

(Rational, 2004) to draw the diagrams that capture the user requirements in analysis and

 8

design phase of SDLC. However, they do not use code generators or reverse engineering

utility provided and also the document generator called SoDA (Rational SoDA for Word)

that is integrated with Microsoft © Word, word processor and allows the importing of

diagrams done during analysis and design into a specified document template. Therefore,

there is a lack of integration between system documents and source codes causing the

documents produced by the document generator is not reliable anymore. As a result, the

developers still need to produce documentation manually in order to customize it to the

particular system. In addition, to employ a CASE environment in an organization

(particularly a software house) that produces software of different range of languages

could be expensive and unrealistic. Only certain projects can implement the CASE tools

since most CASE tools are dedicated for certain languages only. This is why most

organizations are not able to bear the costs and just use any facilities provided by

development tools they use.

1.3 Current Solutions and Proposed Solution

This section will briefly discuss on current solutions regarding the problems

related to documentation as conversed in previous sections. At the end of this section,

the proposed solution will be described.

Since the early 1990s, CASE vendors discovered that the “software maintenance

crisis” would be resolved by reengineering or redeveloping with CASE tools (Pigoski,

1997). The software maintenance crisis includes problems in documentation as one of

the factors. In order to reengineer software the technique of reverse engineering is

required. Hence, a lot of tools for software reverse engineering were introduced

especially when the computer world faced the Year 2000 (Y2K) bugs (Ragland, 1997).

Some commercial products are Ada Design and Documentation Language (ADADL)

for ADA language, Aide-De-Camp (ADC) for C language and Application Browser for

COBOL language. For a more complete list see Ragland (1997). Some instances of

research prototypes are Reverse Engineering tool of Rigi (Muller et al., 1994) (Wong et

al., 1995) and Portable Bookshelf, PBS (Finnigan et al., 1997).

 9

A number of studies evaluated the existing reverse engineering or software

visualization tools from different aspects. For instance Bellay and Gall (1997) compared

four reverse engineering tools in term of four functional categories: analysis,

representation, editing or browsing and general capabilities. Another study of Storey et

al. (1997) compared three tools in terms of cognitive strategies used by the subjects to

solve maintenance tasks. Gannod and Cheng (1999) described criteria that can be used to

evaluate tool by-products that is any artifacts that is generated by the process of using the

tool. The study of Sim and Storey (2000) observed that those tools without any or

advanced search utility, forced users to use other alternative such as “grep” utility in

UNIX tool in order to study source codes besides understanding the graph viewed. Thus

they conclude that visualization and search tool are complementary to each other. The

findings of the four comparative studies depict that no tool is “perfect” in reverse

engineering, visualizing and re-documenting existing software systems, which normally

involve different languages, platforms and types of information required.

In addition, CASE tools of environment class that serve the activity of the whole

SDLC phases such as Oracle Designer/2000, Developer/2000 (Billings et al. 1997) and

Rational Rose (OMG, 1999) are incorporated with a utility to reverse engineer the written

source codes. However this type of CASE tool focuses more on the forward engineering.

Reverse engineering utility can only be benefited if software engineers have designed and

developed a software system using the tool. Otherwise, reverse engineering an exiting

software system will only produce a high level of abstraction such as Class Diagram in

Rational Rose (OMG, 1999).

Besides the massive development of reverse engineering tools, a number of

research and studies have been carried out in order to discover and enhance methods and

approaches related to reverse engineering. Reverse engineering process applies many

methods in program comprehension. Weiser (1984) introduced the approach of program

slicing in program comprehension and defined a slice S as a reduced, executable program

obtained from a program P by removing statements such that S replicates parts of the

behavior of P. Since then, a number of research and studies have been based on his

work. Gallagher and Lyle (1991) improve that of program slicing by introducing

decomposition slice of programs in which the computation on a given variable is

 10

independent of line numbers. For example if a main program is decomposed, the

program is broken into manageable pieces and directly assist a software maintainer in

guaranteeing that there are no ripple effects induced by modifications in a sliced

component. This gives the maintainer a technique to determine those statements and

variables, which may be modified in a component and those, which may not. A research

proposes the dynamic slicing and its application in program comprehension by

developing novel dynamic slicing related concepts (Rilling, 1998). This approach

exploits dynamic slicing for the purpose of program comprehension and comprehension

of program executions on the source code level for instance executable dynamic slices,

partial dynamic slicing, influencing variables and contributing nodes. More recent work

(Villavicencio, 2001) promotes a technique based on the automatic comparison of slices

that allows analyst to focus his attention on a meaningful code for the design of program

plans.

Another important method in program comprehension besides program slicing is

software visualization. In this method, source codes parsed via reverse engineering will

be visualized graphically besides textual information (see Figure 1.1). Most software

visualization methods apply graph technique as the main element to visualize a software

system under study (Koschke, 2003). Rigi (Muller et al., 1994) applies two approaches

which are structural graph views in a multiple, individual window and nested graph view

called SHriMP (Simple Hierarchical Multi-Perspective) of Storey (1998). PBS employs

a web-based approach that generates “software landscape” view and SNiFF+ (Wind

River, 2004) generates column-by-column tree view. Another tool called C Information

Abstraction System (CIA) of Chen et al. (1990) utilizes entity-relationship diagram to

visualize software artifacts. CodeCrawler (Lanza, 2003) is also an instance of software

visualization tool that applies the method of integrating metrics into its graph view.

Rational Rose (Rational, 2004) has overlapped with this type of CASE workbench but it

focuses more on analysis and design. Although it is also incorporated with a reverse

engineering utility, without a proper forward engineering process the tool will only

produce the relationships of classes that might not be so meaningful to software

maintainers. In some studies it is regarded as software visualization tool but not in this

research.

 11

In addition, since most software systems involve databases, the study in database

reverse engineering (DRE) is vital too in order to reverse engineer the data structures of

a database including that of flat files. Some instances are as in the work of Ghannouchi

et al. (1998) and Henrard and Hainaut (2001). A lot of software systems written in

object-oriented programming have become legacy systems. Consequently, numerous

research works conducted on object-oriented software understanding for instance the

studies of Wilde and Huitt (1992), Lejter et al. (1992), Etzkorn and Davis (1994) and

Systa (1998). More work will be elaborated in Chapter 2 of Literature Review and the

related work will be criticized in Chapter 3.

Figure 1.1: An example of graph visualization via Rigi tool

Despite all solutions previously mentioned, software maintenance still seems to

face a lot of problems particularly those related to system documentation. Reverse

engineering or software visualization tools have become the alternative to automate

documenting and understanding of existing software systems with the hope to eliminate

the problems related to documentation. A lot of commercial and prototype reverse

engineering tools have been developed but none of the tools directly integrate its reverse

engineering environment and viewer with a standardized documentation environment.

Besides, current solutions mostly focus on legacy systems that normally consist of messy

source codes also known as spaghetti source codes that are lack of documentation.

 12

However it is believed that the best stage to use such tool is as soon as after

software development process has completed and before the following maintenance

processes. By applying the tool in early stage of software life cycle, the knowledge on

how to cluster or modularize the software artifacts can be captured from software

developers. Otherwise such tool should enforce modularization process prior to

visualizing the software artifacts to ensure the visualization for example using the graph

technique will not produce very crowded or confined graph representations. Thus this

motivates the proposal of a software visualization method in a document-like way in

which visualization is made in an explicit re-documentation environment consists of a

standardized documentation template tagging with modularized software components.

This approach will make software visualization can be fully optimized in re-documenting

existing software systems studied. Besides to reduce complexity of graphs generated the

proposed method enforce the modularization of software components prior to generating

graph views. The proposed document-like software visualization method is called

DocLike Modularized Graph, which will be described in Section 6.4. The method is

employed in a document-like viewer known as DocLike Viewer that integrates a

documentation environment in an existing reverse engineering environment of Rigi

(Muller et al., 1994).

1.4 Statement of the Problem

This research is intended to deal with the problems related to system

documentation as discussed in Section 1.2. The main question is “How to produce a

more effective method in re-documenting and visualizing software artifacts that can

enhance cognition of existing software systems for software maintenance?”

The sub questions of the main research question are as follows:

(i) Why some CASE environment, which incorporated with document

generator utility; and reverse engineering or software visualization

workbenches are still not able to produce system documentation as needed

by software maintainers?

 13

(ii) What are the important information and features in system documentation,

which must be captured by software visualization method and tool during

re-documentation of software systems?

(iii) When software visualization tools should be employed in software life cycle

in order to extract the most reliable and updated source codes?

(iv) How to validate that a particular method in a software visualization tool is

effective and useful for software maintenance?

Sub-questions (i) and (ii) will be answered via preliminary studies and literature

reviews which produce the input to design a more effective method in software

visualization. Sub-question (iii) will be countered by the proposed solution. Lastly, sub-

question (iv) will lead to the evaluation of the method employed in the prototype tool.

1.5 Objectives of the Research

The objectives of the research are:

(i) To enhance the method of software visualization using graph technique that

can grant significant improvement in program comprehension or cognition

of software systems.

(ii) To establish a more effective environment for structural re-documentation,

which will capture the most reliable artifacts of a software system.

(iii) To produce a prototype tool that employs the enhanced method of software

visualization and improves cognitive aspects of such tool.

1.6 Theoretical Framework

 This research lies in the framework of a software maintenance environment by

Kwon et al. (1998) as illustrated in the shaded area in Figure 1.2. Referring to the figure,

maintenance support environment has three major parts:

(i) Implementation part of maintenance (Program Comprehension, Impact

Analysis and Regression Testing)

 14

(ii) Reverse Engineering part that can be supported by Program Transformation

and Restructuring and enables Design Recovery

(iii) Maintenance Model and Standard part that support the process and

guidelines of software maintenance

Figure 1.2: A software maintenance support environment (Kwon et al., 1998)

Figure 1.2 shows a software maintenance support environment in which the

repository is the central element of the environment. Software configuration

management ensures the data in the repository is properly archived. Since software

maintenance always deals with legacy systems, these kinds of systems become the major

input in the environment. As described in the previous paragraph, the implementation

part involves program comprehension, impact analysis and regression testing. The three

Software Maintenance Support Environment

Operational Legacy System

Program
Comprehension
(Application
Understanding)

Software Configuration Management (SCM)

Software Maintenance Support
Repository

Impact
Analysis

Regression
Testing

Program
Transformation

Maintenance
Standards

Maintenance
Model

Software Quality
Assurance Plan
(SQAP)

Software
Reuse

Restructuring
(Reengineering)

Operational Legacy System

Reverse
Engineering

 15

elements are integrated with reverse engineering part that is supported by program

transformation and restructuring to enable design recovery of an existing legacy or

software system. The maintenance environment also includes maintenance model and

standard, quality assurance and software reuse. Without all these three major parts (see

previous paragraph) software maintenance will not be conducted properly particularly

when it involves legacy systems.

Thus this research will mainly cover program comprehension of implementation

part while reverse engineering will be the supporting part of the research (see highlighted

areas in Figure 1.2). For the program comprehension part the research will be

specifically based on the work of Storey (1998) and Storey et al. (1999) that provides the

cognitive framework to describe and evaluate software exploration tools or in this

research context is referred as software visualization tools. The framework embraces two

main elements that are improve program comprehension and reduce the maintainer’s

cognitive overhead (see Table 1.1). The two cognitive elements are divided into another

three sub-elements respectively. In order to improve program comprehension, it is

required to enhance bottom-up comprehension, top-down comprehension and integrate

both approaches. In addition, to reduce cognitive overhead, it is necessary to facilitate

navigation, provide orientation cues and reduce disorientation. Each cognitive element

involves a number of activities and assigned with a code for ease of reference. The

method proposed in this research will be partly evaluated based on this cognitive

framework.

Hence, a software visualization tool should improve program comprehension at

least to certain level (Price et al., 1993) otherwise such tool will be useless to

programmers or software maintainers. Software visualization tool should also reduce

cognitive overhead in order to preserve the mental map and cognition of a subject system

studied by software maintainers as described in the cognitive framework (Storey, 1998).

1.7 Importance of the Research

 Erlikh (2000) states that 85 to 90 percent of Information System budgets go to

legacy system operation and maintenance, which is extremely high. Hence this problem

 16

merits serious investigation. The cost might be higher if software system is maintained

without its system documentation because programmers consume more time to

understand the existing source codes (Pigoski, 1997). As discussed in Section 1.3,

software visualization is one of the vital methods to provide a solution related to program

comprehension by visualize graphically existing software artifacts and their

interrelationships. This was also proved in the preliminary study in which graphical

visualization was significantly preferred by software engineers compared to its textual

description (Sulaiman et al., 2002b). Thus to overcome the problem related to program

comprehension in the case of design documents are not up-dated or absence, there is a

need of a proper and more effective tool to automate and assist program comprehension

or cognition in order to eliminate the cost of the activities. It is expected that the

deliverable of this thesis will be beneficial to other researchers in software maintenance

field and also software maintainers who will use the prototype tool developed.

Table 1.1: Cognitive framework to describe and evaluate software visualization tools
(Storey, 1998)

Cognitive elements Activities Code
Indicate syntactic and semantic
relations between software objects

E1

Reduce the effect of de-localized plans E2

Enhance bottom-
up comprehension

Provide abstraction mechanisms E3
Support goal-directed, hypothesis-
driven comprehension

E4 Enhance top-down
comprehension

Provide an adequate overview of the
system architecture at various levels of
abstraction

E5

Support the construction of multiple
mental models (domain, situation,
program)

E6

Improve
program
comprehension

Integrate bottom-
up and top-down
approaches

Cross-reference mental models E7
Provide directional navigation E8 Facilitate

navigation Support arbitrary navigation E9
Indicate the maintainer’s current focus E10
Display the path that led to the current
focus

E11
Provide orientation
cues

Indicate options for further exploration E12
Reduce additional effort for user-
interface adjustment

E13

Reduce the
maintainer’s
cognitive
overhead

Reduce
disorientation

Provide effective presentation styles E14

 17

1.8 Scope of the Research

This research focuses on how to enhance existing methods of software

visualization in a selected existing reverse engineering environment by identifying their

weaknesses and strengths via comparative study of existing tools and existing literatures.

The scope of reverse engineering process is limited to source codes only but not include

DRE. The proposed method should be able to improve the cognitive aspects in software

visualization tool by providing a more effective ways to re-document, visualize and

understand software system.

In order to justify the research problem and to find the answers of how, what,

when and how software visualization tools should support the practice, a survey had been

conducted in order to identify the current practice in producing and maintaining system

documentation. The survey investigated the actual expectation towards reverse

engineering or software visualization tools that could assist software engineers to solve

their maintenance tasks.

Another scope of the research should include developing of a prototype tool that

applies the proposed method of software visualization in a better documentation

environment based on the findings from the preliminary studies and literature reviews.

The usability of the prototype tool should be evaluated based on the cognitive framework

(Storey, 1998). Besides, the controlled experiment to evaluate the significant of program

comprehension or software understanding should be based on the identified metrics

specified within Goal/Question/Metric (GQM) paradigm of Basili (1992).

1.9 Organization of Thesis

This thesis is organized into eight chapters: Chapter 1: Introduction, Chapter 2:

Literature Review, Chapter 3: Software Visualization Methods in Reverse Engineering

Tools, Chapter 4: Research Methodology, Chapter 5: Production and Maintenance of

System Documentation in Practice, Chapter 6: Document-like Software Visualization

Method Employed in DocLike Viewer Prototype Tool, Chapter 7: The Evaluation, and

 18

finally Chapter 8: Conclusion. The flow of the thesis is illustrated in Figure 1.3. In

addition, the definition of terms used in this thesis is listed in APPENDIX A.

 Chapter 1 provides a general introduction of software maintenance and what is

the background of problems to be tackled in this research, the current solutions and the

proposed solution. It also describes in detail the problem to be solved or eliminated in

this research, its objectives, the framework in which the research resides and lastly its

importance and scope.

 In Chapter 2 readers are informed with the studies or research related to this

thesis specifically on the topics of software engineering that indicates where software

maintenance resides in a software life cycle, followed by an explanation on software

maintenance issues such as the categories, techniques, methods and tools for software

maintenance. A section on program comprehension highlights some studies related to

comprehending source codes and how we apply the same technique to evaluate this

research. The reverse engineering section describes some criteria to evaluate reverse

engineering tools and some examples of existing comparative studies. The following

section describes software visualization and how it links with reverse engineering and

program comprehension areas. The chapter is ended with the studies related to system

documentation and a brief discussion on CASE tools to highlight readers in which the

deliverable of this research should be categorized.

 The following chapter (Chapter 3) generally aims on finding what types of

information required in different maintenance cases and how existing tools support the

information needs. Thus this chapter is initiated with the description of types of

information required by software maintainers. Based on the comparative study of the

tools and literature review, the taxonomy of level of information abstraction is described.

The section is followed by the explanation on the four reverse engineering tools studied

(Rigi, PBS, SNiFF+ and Logiscope) and discussion on the three types of maintenance

cases: corrective, adaptive and preventive. The final section discusses the findings of

type of information required by software maintainers versus the information provided by

the tools, which contributed the input to design the proposed method and prototype tool.

 19

 The fourth chapter (Chapter 4) describes how the research problem was

formulated based on the issues of importance of system documentation, software

visualization and the drawbacks and strengths of existing tools followed by a brief

discussion on the proposed solution. Other sections comprise descriptions on research

design, an explanation on subject or source of information and the means used to gather

data in this research. Then the following section provides a step-by-step explanation on

the research procedures conducted within the planned operational framework. The last

two sections discuss on how data is analyzed and possible limitations on the research and

the list of assumptions.

 The fifth chapter (Chapter 5) covers the details of a survey on the software

engineers’ practice in production and maintenance of system documentation. The

sections consist of the description on the analysis based on four elements: characteristic,

behavior, beliefs and attitude. Then the findings are thoroughly described and the chapter

is concluded. The chapter verifies and justifies the research problems addressed in this

thesis.

 In Chapter 6 the analysis and design of the prototype tool that employs the

proposed DMG method are described. Then the DMG method is defined thoroughly

including the graph layout algorithm optimized. The tradeoff issues of the enhanced

method are also discussed. The last part of this chapter describes about DocLike Viewer

prototype tool that is developed to realize the method in the aspect of visualizing,

understanding and re-documenting software systems.

 The chapter on validation of the research is explained in Chapter 7. The details

of the controlled experiment and usability study conducted, analysis and findings of the

evaluation are discussed. In addition the qualitative evaluation of the prototype tool

developed compared to other existing software visualization tools are also presented.

 Finally, the thesis is concluded in Chapter 8 that provides the summary of the

thesis, highlights the contribution and limitation of the research and the possible future

work.

 20

1.10 Summary

This chapter has provided an introduction to software maintenance in general. It

has also discussed on the background of the problems related to documentation,

understanding source codes and the use of CASE tools. The current solutions of the

problem and proposed solution have been explained briefly. It is followed by the

description of statement of problem, objectives of the research and the theoretical

framework. The importance and scope of the research has also been explained. The last

section has described how this thesis is organized.

Figure 1.3: Flow of the thesis diagram

Chapter 8: Conclusion

Chapter 1:
Introduction

Chapter 2: Literature
Review

Chapter 3: Software
Visualization Methods in

Reverse Engineering Tools

Chapter 4: Research
Methodology

Chapter 5: Production and
Maintenance of System

Documentation in Practice

Chapter 6: Document-Like
Software Visualization Method
Employed in DocLike Viewer

Chapter 7: The Evaluation

