98,539 research outputs found

    Knowledge maps as support tool for managing scientific competences: a case study at a portuguese research institute

    Get PDF
    In a research organization, finding someone who is an expert in a field and that can take up a given role, defining areas of excellence, or employing a new member all require understanding the competences that are available in-house. This work explores the idea of using knowledge or competence maps as support tools for managing scientific competences. We implemented a use case at the Institute of Electronics and Informatics Engineering of Aveiro, a research institute at the University of Aveiro, but the methodology we proposed can be adapted to virtually any research organization. Knowledge maps are visual representations of information that can be designed with variable granularities with respect to the knowledge assets of an organization. From a research management perspective, knowledge maps support the discovery of research competences and provide an instant overview of a topic by showing the main areas at a glance. This solution explored in this work employed data mining approaches for gathering information from public databases and presenting it using knowledge maps. Other visualization tools, such as bar graphs, tables, filters and search functionalities, were created and integrated into a web platform. When put together, these components could turn the platform into a key component for the administration of a research organization.publishe

    Measuring Ecosystem Complexity - Decision-Making Based on Complementarity Graphs

    Get PDF
    Platforms feature increasingly complex architectures with regard to interconnecting with other digital platforms as well as with a variety of devices and services. This development also impacts the structure of digital platform ecosystems and forces providers of these services, devices, and services to incorporate this complexity in their decision-making. To contribute to the existing body of knowledge on measuring ecosystem complexity, the present research proposes two key artefacts based on ecosystem intelligence: On the one hand, complementarity graphs represent ecosystems with an ecosystem's functional modules as vertices and complementarities as edges. The nodes carry information about the category membership of the module. On the other hand, a process is suggested that can collect important information for ecosystem intelligence using proxies and web scraping. Our approach allows replacing data, which today is largely unavailable due to competitive reasons. We demonstrated the use of the artefacts in category-oriented complementarity maps that aggregate the information from complementarity graphs and support decision-making. They show which combination of module categories creates strong and weak complementarities. The paper evaluates complementarity maps and the data collection process by creating category-oriented complementarity graphs on the Alexa skill ecosystem and concludes with a call to pursue more research based on functional ecosystem intelligence

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    Time-Aware Probabilistic Knowledge Graphs

    Get PDF
    The emergence of open information extraction as a tool for constructing and expanding knowledge graphs has aided the growth of temporal data, for instance, YAGO, NELL and Wikidata. While YAGO and Wikidata maintain the valid time of facts, NELL records the time point at which a fact is retrieved from some Web corpora. Collectively, these knowledge graphs (KG) store facts extracted from Wikipedia and other sources. Due to the imprecise nature of the extraction tools that are used to build and expand KG, such as NELL, the facts in the KG are weighted (a confidence value representing the correctness of a fact). Additionally, NELL can be considered as a transaction time KG because every fact is associated with extraction date. On the other hand, YAGO and Wikidata use the valid time model because they maintain facts together with their validity time (temporal scope). In this paper, we propose a bitemporal model (that combines transaction and valid time models) for maintaining and querying bitemporal probabilistic knowledge graphs. We study coalescing and scalability of marginal and MAP inference. Moreover, we show that complexity of reasoning tasks in atemporal probabilistic KG carry over to the bitemporal setting. Finally, we report our evaluation results of the proposed model
    corecore