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Abstract
The emergence of open information extraction as a tool for constructing and expanding knowledge
graphs has aided the growth of temporal data, for instance, YAGO, NELL and Wikidata. While
YAGO and Wikidata maintain the valid time of facts, NELL records the time point at which a
fact is retrieved from some Web corpora. Collectively, these knowledge graphs (KG) store facts
extracted from Wikipedia and other sources. Due to the imprecise nature of the extraction tools that
are used to build and expand KG, such as NELL, the facts in the KG are weighted (a confidence
value representing the correctness of a fact). Additionally, NELL can be considered as a transaction
time KG because every fact is associated with extraction date. On the other hand, YAGO and
Wikidata use the valid time model because they maintain facts together with their validity time
(temporal scope). In this paper, we propose a bitemporal model (that combines transaction and
valid time models) for maintaining and querying bitemporal probabilistic knowledge graphs. We
study coalescing and scalability of marginal and MAP inference. Moreover, we show that complexity
of reasoning tasks in atemporal probabilistic KG carry over to the bitemporal setting. Finally, we
report our evaluation results of the proposed model.
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1 Introduction

Temporal databases have been studied extensively [44, 15, 31]. Recently, support for temporal
data from database vendors, such as Teradata, Oracle DB, IBM DB2, PostgreSQL, and so on,
has been growing. On the other hand, probabilistic temporal databases have been given little
attention [32, 12, 11, 8] and even less for probabilistic temporal knowledge graphs [6, 13].
Several Web knowledge graphs, such as YAGO [23], Wikidata [43], NELL [3], and DBpedia [1],
already contain temporal data (each fact is associated with a valid time). In particular, NELL
contains temporal probabilistic data where each fact is associated with a transaction time
(the time when a fact is extracted and stored in a knowledge graph). Besides, the emergence
of open information extraction as a tool for constructing and expanding knowledge graphs
(KG) has aided the growth of temporal data [36, 35, 41]. In addition to valid time support,
maintaining the transaction time of facts is relevant because never-ending open information
extraction systems such MinIE [17], NELL, Google’s Knowledge Vault [10], Microsoft’s Satori
continuously learn new facts from the Web and it is important to record the date on which
a fact is learned. This is evident from the NELL knowledge graph as they keep track of
learned dates in terms of iterations. Hence, transaction times represent the date on which a
fact is extracted or recorded. The valid time indicates the time period on which a fact is
considered valid or true. Furthermore, when such facts are learned/extracted from open text,
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8:2 Time-Aware Probabilistic Knowledge Graphs

they are associated with some confidence score. We need a model that supports these three
desirable aspects (transaction time, validity time, and confidence scores). Thus, in this work,
we propose a framework for representing and querying bitemporal probabilistic KG.

Most existing KG contain schema that can be represented by lightweight ontology
languages such as the OWL profiles (for instance, NELL’s schema can be captured by the
web ontology rule language called OWL RL [26]). In this paper, we study a bitemporal
probabilistic extension of OWL RL as modeling language for KG.

Probabilistic graphical models have been widely used to reason about facts extracted
at Web scale using a combination of hand-crafted and extracted inference rules [37]. In
particular, Markov logic networks (MLN) can be used to deal with temporal relations in
open information extraction [28] or checking the consistency of knowledge bases [6, 7]. MLN
extends first order logic with uncertainty by attaching weights to formulas. In MLN, there
are two important reasoning tasks, marginal and maximum a-posteriori (MAP) inference,
in MLN. The former computes the probability of a set of random variables (temporal
facts in our setting) whereas the later computes the most probable and consistent world
(temporal knowledge graph). Since marginal inference does not scale well, in this work, we
present a novel approximate algorithm to compute the marginal distributions of temporal
queries efficiently.

In bitemporal probabilistic KG, it is necessary to remove redundant facts, known as
deduplication, so as to avoid errors in query answers and reduce the size of the graph. Hence,
we embark upon a challenging problem in coalescing under uncertainty. It amounts to merging
facts with identical non-temporal arguments and adjacent or overlapping time-intervals. For
instance, consider the deterministic facts 〈r(a, b, 2, 5), 0.8〉 and 〈s(a, b, 4, 7), 0.7〉 as well as
the axiom r v s, clearly the two facts cannot be coalesced with the well known sort-merge
approach [2]. Hence, we need to first perform inference using the axiom so that we utilize
sort-merge to get the coalesced fact s(a, b, 2, 7). However, we still need to determine the
weight of the coalesced fact. For this task, we propose a number of approaches including a
rule-based algorithm for coalescing that uses marginal inference to determine the weight of
the coalesced fact.

Overall, the contributions of this paper are: (i) we propose a bitemporal model for Web
knowledge graphs by considering OWL RL as an atemporal ontology language, (ii) we extend
it (bitemporal KG) using MLN for modeling uncertainty, (iii) we address temporal coalescing
(both in data and queries) in a probabilistic setting, (iv) we present a novel N-hop based
approximate algorithm for marginal inference, (v) we show that the bitemporal scoping
of probabilistic facts does not introduce any complexity overhead, and (vi) we provide an
empirical evaluation of the proposed approach over the Wikidata KG.

1.1 Motivating Example
To motivate the purpose of this study we rely on two prominent knowledge graphs: NELL and
Wikidata. NELL records the extraction dates of facts as shown in Table 1. For instance, it is
extracted or recorded on 09/02/2017 that Fernando Torres plays for the Chelsea football club
with a confidence of 96.9%. This shows that NELL’s representation model resembles that of
transaction time from relational databases. On the other hand, Wikidata scopes temporally
some of the facts, for instance, with 100% confidence Fernando Torres played for Atletico
Madrid from 2001 to 2007 before rejoining them on 2016 and he is still playing for them.
This shows that Wikidata uses the valid time model for modeling temporal information.
However, Wikidata does not record the extraction date of facts, conversely, NELL does not
maintain the valid time of facts. Thus, what is missing is a model which combines both
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Table 1 NELL and Wikidata representations of the career of Fernando Torres.

NELL: learned fact Date learned Confidence
(torres, type, athlete) 12/01/2010 100.0
(torres, stadium, anfield) 10/11/2015 100.0
(torres, playsfor, chelsea) 09/02/2017 96.9
(torres, playsfor, spain) 08/08/2011 87.5
Wikidata: extracted fact Valid time Confidence
(torres, playsfor, atleticoMadrid) [2001, 2007) 100.0
(torres, playsfor, liverpool) [2007, 2011) 100.0
(torres, playsfor, chelsea) [2011, 2015) 100.0
(torres, playsfor, atleticoMadrid) [2016, now) 100.0

transaction time and valid time (i.e., bitemporal). For instance, the fact that “Fernando
Torres played for Chelsea football club from 2011 to 2015” is extracted on 09/02/2017, can
be modeled as a bitemporal fact as shown below:
(torres, playsfor, chelsea, [2011,2015), [09/02/2017,UC ), 96.9), where UC is short for until
changed – when the end date of the transaction or recording date is unknown.

In addition to temporal probabilistic facts, a KG can contain (temporal) inference rules,
for instance, some of the deduction rules learned from the NELL KG using ProbFOIL+ [33]
are shown below: (i) if an athlete led a sports team, then she probably plays for that team;
(ii) if an athlete led a sports team and her team plays against another team, then she probably
plays for that team; and (iii) if an athlete plays some sport and a team plays that sport,
then that athlete probably plays for that team. These rules can be converted into temporal
inference rules by adding temporal variables to the predicates and using a numerical predicate
that tests interval overlap.

Inference rule Weight
i. athleteledsportsteam(a, b)→ playsfor(a, b) 0.93
ii. athleteledsportsteam(a, y), teamplaysagainstteam(b, y)→ playsfor(a, b) 0.96
iii. athleteplayssport(a, y), teamplayssport(b, y)→ playsfor(a, b) 0.93

In order to perform reasoning tasks over probabilistic temporal facts and temporalized
inference rules (see Section 4), in this study, we propose a bitemporal model for probabilistic
knowledge graphs.

2 Background

2.1 OWL RL
A knowledge graph (KG) is a set of triples that can be be encoded in the W3C standard
RDF data model [22]. Let I and L be two disjoint sets denoting the set of IRIs (identifying
resources) and literals (character strings or some other type of data), respectively. We
abbreviate the union of these sets (I ∪ L) as IL. A triple has the form (s, r, o) ∈ I × I × IL
where s is the subject, r is the predicate or relation, and o is the object of the triple. A
KG can be extended with temporal information by labeling each triple in the graph with
a temporal element. For instance, the temporal element can represent the time period in
which the triple is valid, i.e., the valid time of the triple [29, 18, 20]. KG often contain an
ontology or schema that is encoded in some lightweight language such as OWL RL.

OWL RL is a tractable rule-based ontology language. It prohibits the use of disjunctions
of classes and existential quantification for superclass expression to enable polynomial time
reasoning [26]. We use description logic for concisely expressing the syntax of OWL RL

TIME 2019



8:4 Time-Aware Probabilistic Knowledge Graphs

axioms. We denote a set of concept names by NC ⊆ I; roles names by NR ⊆ I; individual
names by NI ⊆ IL; and their union by N i.e., N ⊆ NC ∪NR ∪NI. We do not consider datatypes
for the sake of space, however, our work can be easily extended (for instance by following
the work in [5]). Additionally, we use the following notations through out the paper: a and b
denote instance or individual names in NI; A and B denote class or concept names in NC;
C (resp. D) is a complex class expression denoting subclass expression (resp. superclass
expression); p, p−, r, r1, r2 are role names in NR; s and si denote axioms or assertions. An
OWL RL knowledge graph contains a set of axioms. The syntax of which is given by the
following grammar:

Axiom, s ::= C v D | r1 v r2 | r1 ◦ r2 v r | A(a) | r(a, b)
C ::= A | ⊥ | {a} | C u C | C t C | ∃r.C
D ::= A | ⊥ | ¬D | D uD | ∀r.D | ∃r.{a} | 61 r.C | 60 r.C

r, r1, r2 ::= p | p−

We refer to axioms of the form A(a) and r(a, b) instance assertions (facts) and those that
appear under the subsumption (v) relation (for instance r1 v r2) are called inclusion axioms.
The assertion A(a) (resp. r(a, b)) can be written in RDF syntax as (a, type, A) (resp. (a, r, b)).
In this paper, we consider a temporal extension of OWL RL where the instance assertions are
temporal and the inclusion axioms are atemporal. We refer to temporal instance assertions
as temporal facts. In order to facilitate the transformation of OWL RL axioms into first-order
formulas, we consider the following normal forms [26]:

C(a) r(a, b) A v C A uB v C r1 v r2

A v {a} A v61 r.C A v ∀r.C {a} v C r1 ◦ r2 v r r−1 v r2 dis(r1, r2)

The axiom dis(r1, r2) denotes that r1 and r2 are disjoint. Note that the axiom r−1 v r2
is subsumed by the axiom r1 v r2. An OWL RL KG is in normal form if its axioms are
normalized. Throughout this paper, we assume that the axioms of KG are normalized. The
normal forms are obtained by leveraging structural transformation. Although, the OWL
specification provides a partial axiomatization of the OWL RDF-based semantics using a
fixed set of OWL RL/RDF rules1. In this study, we focus on the OWL direct semantics and
translate the OWL RL inference rules into first-order formulas. However, our approach is
also applicable to OWL RDF-based semantics. A probabilistic extension of an OWL RL
KG can be efficiently modeled using Markov logic network. Although, in this paper, we
use Markov logic network, our approach allows to easily adapt other probabilistic modeling
frameworks such as ProbLog and probabilistic soft logic.

2.2 Markov Logic Network
A Markov logic network (MLN) combines Markov networks and first-order logic (FOL) by
attaching weights to first-order formulas. An MLN program L is a set of pairs L = (fi, wi)
where fi is a FOL formula and wi is a real number representing its weight [34]. In this paper,
we use the Horn fragment of FOL which efficiently represents OWL RL inference rules. For
brevity, we will drop ∀ quantifier from all the formulas. The probabilistic facts and rules
given in the motivating example can be seen as an MLN program.

1 https://www.w3.org/TR/owl2-profiles/

https://www.w3.org/TR/owl2-profiles/
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Together with a set of constants C, an MLN defines a Markov network ML,C , where ML,C
contains one node for each possible grounding of each predicate appearing in L. The value
of the node is 1 if the ground predicate is true, and 0 otherwise. The probability distribution
over a possible world x, specified by a ground Markov network ML,C , is:

P (X = x) = Z−1exp
(∑

i
win(fi, x)

)
,

where n(fi, x) is the number of true groundings of fi in x. The groundings of a formula
are formed simply by replacing its variables with constants in all possible ways. A ground
MLN can be turned into a factor graph. A factor graph is a set of factors Φ = {φ1, . . . , φn}
where each factor φ is a function φ(X) over a set of random variables X. A factorization of a
function g over the variables X is given by: g(X) =

∏n
i=1 φi(Xi). We convert a ground MLN

into a factor graph by using the following: each ground atom pi(a) in an MLN becomes a
random variable Xi, and each ground formula (fi, wi) becomes a factor φ(Xi) which has a
value ewi if the formula is true and 1 otherwise. Such a factor graph determines a probability
distribution over X,

P (X = x) = Z−1
∏

i
φ(Xi) = Z−1exp

(∑
i
wini(fi, x)

)
.

There are two important reasoning tasks in MLN. The first one is called marginal inference
which is the the task of computing the probability of a set of variables given evidence. The
complexity of this problem is known to be #P-hard. The second one is maximum a-posteriori
(MAP) inference which is the task of finding the most probable state of the world, i.e., finding
a complete assignment to all ground atoms which maximizes the probability. This problem
is known to be NP-hard. We will study these inference tasks for bitemporal probabilistic KG
but first we present bitemporal KG.

3 Bitemporal Knowledge Graphs

A bitemporal KG is an extension of a conventional KG by adding temporal elements to each
instance assertion in the graph (similar to bitemporal databases [27]). A fact in a bitemporal
KG is timestamped with time intervals that represent the fact’s valid time and transaction
time. A valid time is the time period in which a fact is considered true or valid. Transaction
time is the time when a fact is added to a KG. Thus, a bitemporal KG needs domains for two
temporal universes, the valid time universe and the transaction time universe, and it may be
desirable or convenient to restrict them to some subset of T. Therefore, let Tv ⊆ T denote the
valid time universe of a bitemporal KG, and Tt ⊆ T denote its transaction time universe. We
consider T = Tv ∪ Tt to be a discrete time domain which is a linearly ordered finite sequence
of time points; for instance, days, minutes, or milliseconds. The finite domain assumption
ensures that there are finitely many possible worlds in the probabilistic extension. A time
interval is an ordered pair [tb, te) of time points, with tb ≤ te and tb, te ∈ T, which denotes
the closed-open interval of time points from tb to te2. We will work with the interval-based
temporal domain to define our data model.

2 It is possible to extend to other interval based representations such as [tb, te], left and right closed
interval.

TIME 2019
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I Definition 1 (Bitemporal KG). A bitemporal KG is a tuple G = 〈S,A〉 where S is the
atemporal component representing the schema part (in OWL RL) and A is a set of OWL RL
instance assertions in which each assertion A(a) (resp. r(a, b)) in the graph is associated
with a valid time [vb, ve) ∈ Tv and transaction time [tb, te) ∈ Tt, i.e., g = A(a, [vb, ve), [tb, te))
(resp. g = r(a, b, [vb, ve), [tb, te))). We refer to g as a bitemporal fact and write it as a first
order predicate ca(a,A, vb, ve, tb, te) or ra(a, r, b, vb, ve, tb, te) with ca for concept assertion
and ra for role assertion.
Right-unlimited time intervals are expressed as [tb,UC ) for transaction time and [vb,now) for
valid time, where UC is short for Until Changed and now denotes the current time instance.
Note that both UC and now are replaced by the current time during reasoning. For the sake
of presentation, we remove the day and month of a given date and write just the years for
both valid and transaction time intervals.
I Example 1. We convert some of the facts of the KG in Table 1 into bitemporal facts as
shown below. This is the same as aligning (or loosely merging) the NELL and Wikidata KG
for the task of KG completion or bitemporal KG construction.

ra(torres, playsfor, chelsea, 2011, 2015, 2017,UC )
ra(torres, stadium, anfield, 2007, 2011, 2015,UC )
ra(torres, playsfor, atleticoMadrid, 2001, 2007, 2016,UC )

Bitemporal KG expansion. Relying on the above example, we can use a rule-based approach
for KG expansion. For instance, using the NELL KG, we can extend Wikidata with the help
of rules (a rule per relation) of the following form:

playsfor(x, y, tb, te), playsfor(x, y, vb, ve)→ playsfor(x, y, vb, ve, tb, te).

It is possible to use more complex rules that include predicates which test the semantic
similarity of relation names. However, this is beyond the scope of this work.

For a bitemporal KG G, its snapshot at a valid time v and a transaction time t is the
graph G(v, t) (the non-temporal KG): G(v, t) = {A(a) | A(a, [v, v), [t, t)) ∈ G} ∪ {r(a, b) |
r(a, b, [v, v), [t, t)) ∈ G}. The atemporal or non-temporal KG associated with a bitemporal
KG is u(G) =

⋃
v,t G(v, t), the union of the graphs G(v, t). Relying on this characterization,

we define temporal entailment.
I Definition 2 (Bitemporal entailment). We define temporal entailment as follows: for two
bitemporal knowledge graphs G1 and G2, G1 |=v,t G2 if and only if G1(v, t) |= G2(v, t) for each
v and t; |=v,t denotes bitemporal entailment and |= is the standard OWL RL entailment [26].
Alternatively, bitemporal entailment can be reduced into temporal entailment defined in [20].
For two bitemporal graphsG1 andG2, let the valid graphs beG1(v)={A(a, [tb, te))|A(a, [v, v),
[tb, te)) ∈ G} and similarly G2(v); and transaction graphs be G1(t) = {A(a, [vb, ve))|
A(a, [vb, ve), [t, t)) ∈ G} and similarlyG2(t). G1 |= G2 iff G1(v) |=t G2(v) and G1(t) |=v G2(t)
where |=t and |=v denote temporal entailment.
I Definition 3. For a bitemporal KG G, a translation of the normal forms of OWL RL
axioms into FOL predicates is given by a bijective function ϕ as shown.

A v C 7→ sc(A,C)
A uB v C 7→ int(A,B,C)
A v {a} 7→ sc(A, a)
A v ∀r.C 7→ all(A, r, C)
A v 61r.C 7→ atmost(A, r, C)
r1 v r2 7→ sp(r1, r2)
r1 ◦ r2 v r 7→ rcomp(r1, r2, r)

r−1 v r2 7→ inv(r1, r2)
dis(r1, r2) 7→ dis(r1, r2)
A(a) 7→ ca(a,A)
{a} v C 7→ ca(a,C)
r(a, b) 7→ ra(a, r, b)
a ∈ NI 7→ nom(a)
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We propose a rule-based instance retrieval in which we compute all entailments of the form
ca(a,A, vb, ve, tb, te) and ra(a, r, b, vb, ve, tb, te) for a given KG. For this task, we use the
temporal OWL RL inference rules shown in Figure 1. These rules are applied repeatedly, to
a given KG, until no new conclusion can be made. It is worth noting that the inference rules
do not materialize assertions that can be deduced if the KG is inconsistent. Nevertheless,
inconsistencies lead to entailments of the form ca(a,⊥, vb, ve, tb, te) for some constant a.

I Lemma 1. Let G be a bitemporal KG with an OWL RL schema, its closure can be computed,
by applying the rules in Figure 1 until closure, in polynomial time.

The above lemma follows from the results in OWL RL [26]. Note that in this work, we
use FOL syntax of KG axioms, assertions and inference rules for brevity. However, it is
also possible to use reification in order to represent bitemporal KG using the RDF syntax.
Alternatively, more compact representations based on RDR (reification done right) can be
utilized [21]. In addition, a more detailed discussion, on the syntax of temporal KG, can
be found in [4]. As an example, the first temporal fact in Example 1, can be represented in
RDR syntax as follows:

<<torres playsfor chelsea >> beginValid 2011 ;
endValid 2015 ;
beginTrans 2017 ;
endTrans UC .

In the above syntax, beginValid, endValid, beginTrans, and endTrans are vocabularies
denoting the start and end points of valid and transaction time intervals. A query language
for bitemporal KG can be defined by extending query languages for valid time KG such as
SPARQ-LTL [4]. For the sake of space, we do not present a query language for bitemporal KG.

4 Bitemporal Probabilistic Knowledge Graphs

In this section, we propose a data model for bitemporal probabilistic KG.

4.1 Data Model
A bitemporal probabilistic KG contains a set of temporally annotated facts each with a
confidence weight. A formal definition is provided below.

I Definition 4. A bitemporal probabilistic KG is a tuple K = (S,A,X ∪R) where S is a set
of OWL RL axioms, A = {(g, w1), . . . , (gn, wn)} is a set of bitemporal facts in which gi ∈ A
has a confidence wi; R is temporal OWL RL inference rules given in Figure 1, each rule ri

is deterministic and has weight wi =∞; and X = {(f1, w1), . . . , (fm, wm)} is a set of OWL
RL axioms representing background knowledge where each wj denotes the weight of formula
fi; and F = X ∪R.

Given a bitemporal probabilistic KG K = (S,A,X ∪R), the probability of a possible world
K ′ = (S ′,A′,X ∪R) ⊆ K is given by the following log-linear distribution:

P (K ′) = Z−1 exp
( ∑

(fi,wi)∈X ′:K|=v,tfi

win(fi,K
′)
)
, Z =

∑
Kj⊆K

exp
(∑

i

win(fi,Kj)
)
;

where n(fi,K
′) is the number of groundings of the formula fi that evaluate to true in the

world K ′, Z is the normalization constant, and |=v,t denotes bitemporal entailment.

TIME 2019
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(r1 ) sc(a, b), ca(x, a, v, t) → ca(x, b, v, t).

(r2 ) int(a, b, c), ca(x, a, v1, t1), ca(x, b, v2, t2), ov(v1, v2, t1, t2) → ca(x, c, v, t).

(r3 ) all(a, r, c), ca(x, a, v1, t1), ra(x, r, y, v2, t2), ov(v1, v2, t1, t2) → ca(y, c, v, t).

(r4 ) atmost(a, r, c), ca(x, a, v1, t1), ra(x, r, y, v2, t2),

ca(y, c, v3, t3), ra(y, r, z, v4, t4), ca(z, c, v5, t5), ov(v1, t1, . . . , t5, t5) → equal(y, z, v, t).
(r5 ) sp(r, s), ra(x, r, y, v, t) → ra(x, s, y, v, t).

(r6 ) rcomp(r, s, t), ra(x, r, y, v1, t1), ra(y, s, z, v2, t2), ov(v1, t1, v2, t2) → ra(x, t, z, v, t).
(r7 ) inv(r, s), ra(y, r, x, v, t) → ra(x, s, y, v, t).

(r8) dis(r, s), ra(a, r, b, v1, t1), ra(a, s, b, v2, t2), ov(v1, t1, v2, t2) → ca(a, ⊥, v1, t1).
(r9) ca(x, a, v, t) → ca(x, >, v, t).

(r10) ca(x, a, v, t), nom(a) → ca(a, x, v, t).
(r11) ca(x, a, v, t), nom(a) → nom(x).
(r12) ra(x, r, y), ca(z, y, v, t), nom(y) → ra(x, r, z, v, t).
(r13) ¬ca(x, ⊥, v, t).

Figure 1 Notation: vi = [vi
b, vi

e), v = [vb, ve), ti = [ti
b, ti

e), and t = [tb, te). A temporalized
variant of OWL RL inference rules that we denote by R. They are partially drived from the
materialization calculus in [26]. All of the formulas are universally quantified over all the variables.
ov is short for overlaps, it checks if a given set of intervals are overlapping. > and ⊥ are constant
symbols representing top and bottom concepts. Note that rule r13 does not belong to the inference
rules for OWL RL. This rule takes the notion of inconsistency into account.

a 〈livesIn(John, Paris, [2007 , 2016 ), [2010 , now)), 0.9〉
b 〈livesIn(John, Paris, [2015 , now), [2015 , now)), 0.5〉
c 〈livesIn(John, Paris, [2007 , now), [2010 , now)), ?〉

Figure 2 A graphical representation of coalescing bitemporal probabilistic facts. The X-axis
represents transaction time (TT) and the Y-axis is valid time (VT). The goal is to determine the
weight “?” of the coalesced fact c.

An important problem in temporal databases is coalescing, we investigate this problem
in a probabilistic setting for bitemporal KG.

4.2 Coalescing and Deduplication
Coalescing is a technique used in temporal databases for duplicate elimination [9]. Coalescing
is the process of merging bitemporal facts with identical non-temporal arguments and adjacent
or overlapping time-intervals. Hence, it is important for deduplication. In other words,
coalescing is useful for: reducing the size of probabilistic temporal KG, and preventing
incorrect answers in query evaluation. For instance, consider the query “does John live in
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Paris from 2014 to 2017?” on the temporal facts of Figure 2 before coalescing, i.e., (a)
and (b). The result is no, however, the same query on the coalesced fact (c) (brown part of the
figure), returns yes. Uncoalesced facts can arise in various cases: during query evaluation via
projection or union operations, by not enforcing coalescing in update or insertion operations,
and through information extraction from diverse sources or accuracy of the extractor.

A bitemporal KG K is called duplicate-free, if for all pairs of facts ra(a, r, b, vb, ve, tb, te),
ra(a, r, b, v′b, v′e, t′b, t′e) ∈ K, it holds that: [vb, ve) ∩ [v′b, v′e) = ∅ and [tb, te) ∩ [t′b, t′e) = ∅. In
other words, if the non-temporal terms of two temporal facts are the same, then their temporal
terms must be disjoint (non-overlapping). Coalescing is challenging in a probabilistic setting,
because it is not clear what should be the weight of the new (coalesced) fact. In order
to coalesce bitemporal facts, either the valid time or transaction time intervals must be
overlapping. The weight of the coalesced fact can be computed using a number of approaches
that are shown below. For the sake of space, we will not present a comparison of the
approaches. Instead, for our purpose, we use a rule-based approach that uses probabilistic
inference in order to compute the exact weight of a coalesced fact.

1. Max: w3 = max(w1, w2), if two facts can be coalesced, assign the higher weight of the
two to the coalesced fact,

2. Average: w3 = (w1 + w2)/2,

3. Weighted-Average: w3 = (`1w1 + `2w2)/(`1 + `2), where `1 and `2 are the lengths of the
intervals of fact 1 and fact 2,

4. Min: w3 = min(w1, w2) this is similar to Godel’s fuzzy conjunction operator,

5. Lukasiewicz’s relaxation: this approach works if the weights are between 0 and 1,
w3 = max(0, w1 + w2 − 1), and

6. Rule-based coalescing with marginal inference: in order to coalesce the facts of a bitemporal
probabilistic KG K, we can construct Horn rules for each relation in the KG, i.e., for
each concept or relation mi in K, we create a rule of the following form:

(r14) ca/ra(x,mi, y, vb, ve, tb, te),ca/ra(x,mi, y, v
′
b, v
′
e, t
′
b, t
′
e),

v = min(vb, v
′
b), v′ = max(ve, v

′
e), vb ≤ v′e, v′b ≤ ve,

t = min(tb, t′b), t′ = max(te, t′e), tb ≤ t′e, t′b ≤ te → ca/ra(x,mi, y, v, v
′, t, t′).

The expression vb ≤ v′e, v
′
b ≤ ve (resp. tb ≤ t′e, t

′
b ≤ te) tests temporal overlap of

the intervals [vb, ve) and [v′b, v′e) (resp. [tb, te] and [t′b, t′e]). Besides, min, and max are
predicates representing minimum, and maximum functions respectively. The weights of
the coalesced facts are determined by performing marginal inference on the given KG.
Once these weights are determined, the uncoalesced facts are removed from the KG. The
approach uses one rule for each relation. If a KG has several thousands of relations, we
need the same number of coalescing rules to remove duplicates from the KG. Hence, this
operation can be very expensive, however, it is done only once. Our rule-based coalescing
procedure is given in Algorithm 1.

I Example 2. Consider coalescing the bitemporal probabilistic facts, (a) and (b), shown in
Figure 2. This operation merges the two facts into one with the weight of the new fact (c)
computed by marginal inference.
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Algorithm 1 Coalescing bitemporal probabilistic KG.

1: procedure coalesce(K )
2: Input: uncoalecsed bitemporal KG K = (S,A,F)
3: Output: coalesced KG Kc

4: N← all the concepts and relations in K
5: for each concept and relation m ∈ N do
6: rm ← create a rule using (r14)
7: add rm toM
8: end for
9: F ← F ∪M

10: repeat
11: ground the rules in F using the assertions in A (see Algorithm 2)
12: A′ ← gather coalesced/inferred assertions
13: until closure
14: compute the marginal probabilities of the coalesced facts A′ (Algorithm 2)
15: use sort-merge to coalesce assertions in A and A′ (Bohlen et al. [2])
16: delete the uncoalesced ones in A and A’
17: return Kc = (S,A ∪A′,F \M)
18: end procedure

5 Inference

In this section, we present two important reasoning tasks in bitemporal probabilistic KG,
namely, marginal and maximum a-posteriori (MAP) inference. We denote the set of constants
in a bitemporal probabilistic KG K = (S,A,F) by C, C ⊆ IL∪T as the union of sets of IRIs,
literals and time points. The Herbrand base HB(F) of F can be constructed by instantiating
all the variables in F using the constants in C (aka. grounding or expansion). The function θ,
given a finite set C, maps each fact in some bitemporal KG into a subset of the Herbrand base
HB(F) of F with respect to C. Each subset of the Herbrand base is a Herbrand interpretation
specifying which ground atoms are true. A Herbrand interpretation H is a Herbrand model
of F , denoted by |=H F , iff it satisfies all groundings of the formulas in F .

I Definition 5. Given K = (S,A,F) over a set of constants C and HB(F) the Herbrand
base of F with respect to C, θ : S ∪A → HB(F) maps S ∪A into subsets of HB(F) as follows:

θ(S ∪ A) =
⋃

y∈S∪A
ϕ(y),

ϕ() maps axioms and assertions into FOL predicates using Definition 5. Besides, we extend
θ as follows θ(K) = θ(S ∪ A) ∪ F where θ is a bijective function, it induces a one-to-one
correspondence between the Herbrand models of F and expanded KG. As already discussed,
ϕ maps inclusion axioms and instance assertions into first-order predicates. Grounding F
with the constants of a bitemporal probabilistic KG may generate a set of new facts; this
results in an expanded KG.

I Lemma 2. Let K = (S,A,F) be a bitemporal probabilistic KG; let C be a set of constants;
and let HB(F) be the Herbrand base of F with respect to C. We have two cases:

for any K ′ ⊆ K, K |=v,t K
′ ⇒ θ(K ′) |=H F and

for any H ⊆ HB, H |=H F ⇒ θ−1(H) |=v,t K
′′ and K ′′ ⊆ K.
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5.1 Marginal Inference
Marginal inference is the task of computing the marginal distributions of a set of random
variables (queries). In our setting, given a query q and a bitemporal probabilistic KG K,
marginal inference involves in computing the probability of the answers of q over K. In this
paper, we are interested in Boolean temporal conjunctive queries.

I Definition 6. A Boolean temporal conjunctive query q is a formula of the form

q ← r1(x1,v1, t1), . . . , ri(xi,vi, ti), . . . , rn(xn,vn, tn)

where xi are atemporal variables or constants that are in ri,
vi are valid time variables or time points that are in ri,
ti are transaction time variables or time points that are in ri, and
ri denotes a temporal relation ca(xi, yi, vb, ve, tb, te) or ra(xi, yi, vb, ve, tb, te) with xi, yi ∈
xi, vb, ve ∈ vi and tb, te ∈ ti.

In probabilistic databases and statistical relational learning, often the probabilities of queries
are computed by grounding, i.e., by replacing all the variables in the queries using constants in
the database. The grounding is used to generate a propositional sentence (lineage of a query)
for exact inference or a graphical model for approximate computation. Similarly, Boolean
temporal conjunctive queries can be grounded by evaluating queries using the techniques
from temporal databases [16] and instantiating or replacing all the variables in the queries
using their answers. This results in a set of ground queries, the probability of which can
be computed using MLN systems or any other approximate inference engine. For Boolean
temporal conjunctive queries, it is necessary to take care of the overlap of time intervals
during grounding. One solution to this problem is to rewrite queries to take into account
overlaps. In other terms, Boolean temporal conjunctive queries require checking interval
intersection to determine the overlap of intervals in the query predicates. In order to do this,
we rewrite queries as discussed below.

The marginal probability of a query q is obtained by a two-step process: (i) firstly, rewrite
the query q, and (ii) secondly, perform marginal computation. To rewrite q we add a function
called ov (overlaps) which tests if both valid time and transaction times of relations are
overlapping. Formally, the rewriting of a Boolean temporal query q:

q ← r1(x1,v1, t1), . . . , ri(xi,vi, ti), . . . , rn(xn,vn, tn),

is the following:

qr ← r1(x1,v1, t1), . . . , ri(xi,vi, ti), . . . , rn(xn,vn, tn),ov(v1, . . . ,vn),ov(t1, . . . , tn),

where ov(v1, . . . ,vn) (resp. ov(t1, . . . , tn)) is a Boolean function that tests if the valid (resp.
transaction) time intervals v1, . . . ,vn (resp. t1, . . . , tn) are overlapping.

I Definition 7. Given a Boolean temporal conjunctive query q and a bitemporal probabilistic
KG K = (S,A,F), the probability of q over K is computed using the following:

P (q|S,A,F) = Z−1exp
( ∑

(fj ,wj)∈F :qr|=v,tfj

wjn(fj , qr,S,A)
)
,

where qr is the rewriting of q and |=v,t is bitemporal entailment. Note that computing Z
takes exponential time in the worst case.
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Algorithm 2 Approximate query probability.

1: procedure approxProbability(K ,q,N)
2: Input: K = (S,A,F), query q and hop N
3: Output: Pa(q)
4: qr ← rewrite(q)
5: Schema and assertion tables TS , TA ← load(S,A),
6: Rules table TF ← load(F),
7: for fi ∈ TF do TK ← TS on TA on fi end for
8: Answers table Tq ← evaluate query(qr, TK)
9: Factor graph, GF ← ∅
10: for each inference rule fi ∈ TF do
11: GF ← GF∪B (Tq on fi)
12: end for
13: GN

F ← extract n-hop subgraph(GF , Tq, N)
14: Pa(q)← compute(GN

F ,Tq)
15: end procedure

The complexity of computing the probability of a query is known to be #P-hard in general.
The above definition shows that temporal scoping of instance assertions does not increase the
complexity (since the ov function can be computed during ground which is before probability
computation). This is consistent with the results in temporal databases, as already shown a
temporal query has the same properties as that of a first-order query langauge [42].

5.1.1 Approximate Marginal Inference
Since exact marginal probability computation is an expensive operation (see the experimental
results in Figure 3), often approximate sampling techniques are used to speed up inference. In
general, a large portion of a KG is not relevant, for computing the probability of a given query,
because in a Markov network a node/variable is independent of all the other nodes/variables
given its neighboring nodes/variables (known as the Markov blanket). More formally, given
a query variable xi, P (xi|x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|MB(xi)) where MB(xi) is the
Markov blanket of xi. Thus for a given a query, a part of a KG up to a certain depth N ,
containing the query node, can be extracted to estimate the probability of that query. This
approach is described in Algorithm 2. The algorithm takes as input a KG K, a query q and
hop distance N . The atemporal schema and temporal assertions are loaded into relational
database tables3 TS and TA respectively. Likewise, the inference rules are loaded into the
table TF . After loading the KG, we perform KG expansion by applying the inference rules
until closure (line 7). Then after, we evaluate the rewriting qr of the query q on the expanded
KG TK and keep its answers in a relational table Tq (line 8). In lines 9–12, we create a
factor graph GF by iteratively joining the answers table Tq with that of inference rules; ∪B

denotes a bag unions operation. An N-hop subgraph – all nodes that are N distance away
from the query node – GN

F is extracted from GF with a depth of N hops from the query
nodes Tq (line 13). Finally, in line 14, we compute the approximate probability Pa(q) of q
using either exact or approximate (by using a Gibbs sampler) inference. Lifted inference
is a focus of recent research which leverages the structure (e.g. using symmetries) of MLN

3 Note that we exclude the discussion of the schema of the tables and SQL join queries for brevity.
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knowledge bases for efficient inference. It is worthwhile comparing lifted inference with that
of approximate marginal inference as well as investigating the possibility for a combined
approach. We leave out this task as a future work.

5.2 MAP Inference
In bitemporal probabilistic KG, MAP inference is the problem of computing the most
probable, consistent, and non-probabilistic bitemporal KG (also known as MAP state). More
formally, given a KG K = (S,A,F) and a mapping function θ, we denote the MAP problem
by map(θ(K)). In order to compute map(θ(K)), we need to translate K with the function
θ into an equivalent MLN formalization. Then, the inference rules F are added to this
translation. The MAP state is obtained by using θ(K) and the grounding of F as input.
Applying the inverse translation function θ−1 to the MAP state, yields the most probable
bitemporal KG.

I Lemma 3. Let K = (S,A,F) be a bitemporal probabilistic KG, C a set of constants, and
the Herbrand base HB(F) of F with respect to C. The MAP state of K is obtained as:

θ−1(H) = arg max
H⊆HB:H|=HF

( ∑
(f,wj)∈F :H|=v,tfj

wjn(fi, H)
)

Using the above lemma, it can be proved that computing the most probable and consistent
bitemporal KG is NP-hard in general. This is shown by exploiting the correspondence between
a bitemporal probabilistic KG and an MLN program, and using the bijective function θ.
Membership is shown by mapping MAP inference in a bitemporal probabilistic KG into
MAP inference in MLN. Hardness is shown by translating MLN programs into KG. From
Lemma 3 and the results in [5] it follows that the problem of computing a MAP state is
NP-hard.

6 Empirical Evaluation

We conducted two different kinds of experiments: (i) marginal and (ii) MAP inference.
For both experiments, we carried out performance tests in terms of running times and the
accuracy of marginal distributions. We run the experiments on a Debian 8 virtual machine
with 2.6GHz 3-core Intel Haswell processor, 24 GB of main memory and 1TB disk space.

Tools. We used the following probabilistic reasoners: ProbLog [25], Tuffy [30], and TuffyL-
ite [24]. ProbLog is a probabilistic extension of Prolog. Unlike MLN, ProbLog assigns
probabilities to clauses (first order Horn formulas) and poses the restriction that these
probabilities are mutually independent. It defines a probability distribution over logic pro-
grams [25]. Its semantics is defined by the success probability of a query in a randomly
sampled program. On the other hand, TuffyLite and Tuffy are probabilistic reasoners for
MLN programs. TuffyLite is an improved version of Tuffy. Hence, we use it for comparison
with ProbLog. Note that we intentionally leave out DeepDive [38] from out experiments,
because DeepDive uses the same technique as Tuffy and TuffyLite.

Data. For our experiments, we use the Wikidata KG. In particular, we consider a part of
the KG that contains structured temporal information. Hence, we extracted temporal facts
for various fluents (time-varying relations) including: member of sports team, educated at,
occupation, spouse, and so on. Overall, we extracted over 3.7 million temporal facts. All of
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these temporal facts are only interval timestampped (valid time). As Wikidata is a valid
time KG, we extended it by adding transaction time intervals and probabilities to each fact
in order to have a bitemporal probabilistic KG. We randomly generated transaction times
and probabilities (> 0.5). Besides, as Wikidata is not complete, it does not contain valid
times for all the facts. If the end time point of a fact is missing, we replace it with now.

Temporal rules. We designed 36 different bitemporal probabilistic inference rules (ProbLog
definite clauses) based on the fluents of Wikidata. For ProbLog, the probabilities pi of the
rules are generated randomly and are set between 0.5 and 0.99. However, for the MLN solver,
TuffyLite, we use the log odds of the probabilities as weights, i.e., wi = ln pi

1−pi
.

6.1 Marginal Inference
In this experiment, we test the scalability of marginal inference. The results of the experiment
are reported in Figure 3(a). As shown, ProbLog performs very well, it outperforms TuffyLite.
The run time of marginal inference is almost constant when the number of facts is less than
20,000. This is because ProbLog uses knowledge compilation to speed up inference. The
reported runtimes are averaged over 5 runs. For TuffyLite, we test the quality of approximate
marginal probabilities, we plot the prior and marginal probabilities of 8 randomly selected
queries in Figure 3(b). As it can be seen, the approximate marginals are very close to the
prior probabilities with the highest absolute error close to 2% for query q6.

6.2 MAP Inference
In this experiment, we report the running times of ProbLog on different data sizes. We
exclude Tuffy and TuffyLite from this experiment due to scalability issues (after running
for more than 24hs both systems did not terminate). ProbLog performs most probable
explanation (MPE) inference which is slightly different from MAP inference. The runtimes,
averaged over 5 runs, are reported in Figure 3(c). As it can be seen, the runtime of ProbLog
does not increase linearly with respect to the size of the input data. This is due to each
added incorrect bitemporal fact might be involved in a conflict resulting in a non trivial
optimization problem. In order to test the scalability of MPE inference, we increased the
data size upto 500,000. As expected, the running times were exceedingly high, i.e., upto
several hours. When the datasize is 500,000, we interrupted the evaluation of MPE inference
after a runtime of 3.63 hours. In both MAP and marginal inference, scalability is a big
problem. We will tackle this problem in the future.

7 Related work

In relational databases, bitemporal databases have been throughly invesitgated [27]. Besides,
temporal databases have been extensively studied (see surveys [31, 39]). However, relatively
fewer works exist on temporal probabilistic databases [11, 8]. In [11], a relational database
is used to model and query temporal data, integrity constraints and deduction rules can also
be specified. However, these rules must be deterministic (unweighted) unlike what we do
here. On the other hand, contrary to this study where we use a bitemporal model, uncertain
spatio-temporal databases focus on stochastically modelling trajectories through space and
time (see [14] for instance).

Query evaluation in probabilistic databases is an active area of research [19, 7, 40, 12].
With respect to temporal query evaluation over a valid time probabilistic KG, to the best of
our knowledge, there are two important studies [6] and [11]. While the former focuses on
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MAP inference, we study here both marginal and MAP inference in a bitemporal setting,
besides, we deal with the problem of temporal coalescing and use a rich schema based
on OWL RL. The later deals with marginal inference, the difference with this work are
the following: (i) we consider weighted temporal OWL RL inference rules, (ii) we propose
coalescing for bitemporal KG, and (iii) we introduce rewriting for coalescing of query answers.
In another study [13], the authors proposed an approach for resolving temporal conflicts in
RDF knowledge graphs. The idea is to use first-order logic Horn formulas with temporal
predicates to express temporal and non-temporal constraints. However, these approaches are
limited to a small set of temporal patterns and only allow for uncertainty in facts. Moreover,
extending KG using open domain information extraction, will often also lead to uncertainty
about the correctness of schema information; a large variety of inference rules and constraints,
some of which will be domain specific, can also be the subject of uncertainty.

Multi-temporal RDF database models are first introduced by Grandi [18]. These models
allow to capture several aspects of time in data such as validity, efficacy, transaction and so
on in a non-probabilistic setting. By contrast, we consider validity and transaction times
with a rich probabilistic schema.

8 Conclusion and Outlook

We have proposed a bitemporal model to assert the times in which facts are considered valid
and the times when facts are added to a KG. Besides, we studied bitemporal probabilistic
KG and proved that standard reasoning tasks such as marginal and MAP inference do not
introduce any additional complexity. We have also introduced an efficient algorithm, for
marginal inference, based on N-hop graph neighborhoods of query nodes. Furthermore, we
have addressed coalescing in a probabilistic setting both in data and during query answering.
Our experimental results show that scalability is challenging and approximate techniques
with acceptable error margins can be adopted. As a future work, we plan to do further
experiments, testing scalability as well as the accuracy of state-of-the-art reasoners and
implementation of our approximate marginal inference algorithm.
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