3,572 research outputs found

    Knowledge Extraction from Audio Content Service Providers' API Descriptions

    Get PDF

    Ontologies for context-aware applications

    Get PDF
    Tese de mestrado integrado. Engenharia ElectrotƩcnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Semantic Federation of Musical and Music-Related Information for Establishing a Personal Music Knowledge Base

    Get PDF
    Music is perceived and described very subjectively by every individual. Nowadays, people often get lost in their steadily growing, multi-placed, digital music collection. Existing music player and management applications get in trouble when dealing with poor metadata that is predominant in personal music collections. There are several music information services available that assist users by providing tools for precisely organising their music collection, or for presenting them new insights into their own music library and listening habits. However, it is still not the case that music consumers can seamlessly interact with all these auxiliary services directly from the place where they access their music individually. To profit from the manifold music and music-related knowledge that is or can be available via various information services, this information has to be gathered up, semantically federated, and integrated into a uniform knowledge base that can personalised represent this data in an appropriate visualisation to the users. This personalised semantic aggregation of music metadata from several sources is the gist of this thesis. The outlined solution particularly concentrates on usersā€™ needs regarding music collection management which can strongly alternate between single human beings. The authorā€™s proposal, the personal music knowledge base (PMKB), consists of a client-server architecture with uniform communication endpoints and an ontological knowledge representation model format that is able to represent the versatile information of its use cases. The PMKB concept is appropriate to cover the complete information flow life cycle, including the processes of user account initialisation, information service choice, individual information extraction, and proactive update notification. The PMKB implementation makes use of SemanticWeb technologies. Particularly the knowledge representation part of the PMKB vision is explained in this work. Several new Semantic Web ontologies are defined or existing ones are massively modified to meet the requirements of a personalised semantic federation of music and music-related data for managing personal music collections. The outcome is, amongst others, ā€¢ a new vocabulary for describing the play back domain, ā€¢ another one for representing information service categorisations and quality ratings, and ā€¢ one that unites the beneficial parts of the existing advanced user modelling ontologies. The introduced vocabularies can be perfectly utilised in conjunction with the existing Music Ontology framework. Some RDFizers that also make use of the outlined ontologies in their mapping definitions, illustrate the fitness in practise of these specifications. A social evaluation method is applied to carry out an examination dealing with the reutilisation, application and feedback of the vocabularies that are explained in this work. This analysis shows that it is a good practise to properly publish Semantic Web ontologies with the help of some Linked Data principles and further basic SEO techniques to easily reach the searching audience, to avoid duplicates of such KR specifications, and, last but not least, to directly establish a \"shared understanding\". Due to their project-independence, the proposed vocabularies can be deployed in every knowledge representation model that needs their knowledge representation capacities. This thesis added its value to make the vision of a personal music knowledge base come true.:1 Introduction and Background 11 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Personal Music Collection Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Music Information Management 17 2.1 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1.1 Knowledge Representation Models . . . . . . . . . . . . . . . . . 18 2.1.1.2 Semantic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1.3 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Knowledge Management Systems . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2.1 Information Services . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2.2 Ontology-based Distributed Knowledge Management Systems . . 20 2.1.2.3 Knowledge Management System Design Guideline . . . . . . . . 21 2.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Semantic Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 The Evolution of the World Wide Web . . . . . . . . . . . . . . . . . . . . . 22 Personal Music Knowledge Base Contents 2.2.1.1 The Hypertext Web . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1.2 The Normative Principles of Web Architecture . . . . . . . . . . . 23 2.2.1.3 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Common Semantic Web Knowledge Representation Languages . . . . . . 25 2.2.3 Resource Description Levels and their Relations . . . . . . . . . . . . . . . 26 2.2.4 Semantic Web Knowledge Representation Models . . . . . . . . . . . . . . 29 2.2.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4.3 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4.4 Storing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.4.5 Providing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.4.6 Consuming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3 Music Content and Context Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1 Categories of Musical Characteristics . . . . . . . . . . . . . . . . . . . . . 37 2.3.2 Music Metadata Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.3 Music Metadata Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.3.1 Audio Signal Carrier Indexing Services . . . . . . . . . . . . . . . . 41 2.3.3.2 Music Recommendation and Discovery Services . . . . . . . . . . 42 2.3.3.3 Music Content and Context Analysis Services . . . . . . . . . . . 43 2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Personalisation and Environmental Context . . . . . . . . . . . . . . . . . . . . . . 44 2.4.1 User Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4.2 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.3 Stereotype Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 The Personal Music Knowledge Base 48 3.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.1 User Account Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.2 Individual Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Information Service Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Proactive Update Notification . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.5 Information Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.6 Personal Associations and Context . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 A Personal Music Knowledge Base 57 4.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 The Info Service Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.2 The Play Back Ontology and related Ontologies . . . . . . . . . . . . . . . . 61 4.1.2.1 The Ordered List Ontology . . . . . . . . . . . . . . . . . . . . . . 61 4.1.2.2 The Counter Ontology . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.2.3 The Association Ontology . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.2.4 The Play Back Ontology . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1.3 The Recommendation Ontology . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.4 The Cognitive Characteristics Ontology and related Vocabularies . . . . . . 72 4.1.4.1 The Weighting Ontology . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.4.2 The Cognitive Characteristics Ontology . . . . . . . . . . . . . . . 73 4.1.4.3 The Property Reification Vocabulary . . . . . . . . . . . . . . . . . 78 4.1.5 The Media Types Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Knowledge Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Personal Music Knowledge Base in Practice 87 5.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.1 AudioScrobbler RDF Service . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.2 PMKB ID3 Tag Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.1 Reutilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.3 Reviews and Mentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.4 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6 Conclusion and Future Work 93 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    European Language Grid

    Get PDF
    This open access book provides an in-depth description of the EU project European Language Grid (ELG). Its motivation lies in the fact that Europe is a multilingual society with 24 official European Union Member State languages and dozens of additional languages including regional and minority languages. The only meaningful way to enable multilingualism and to benefit from this rich linguistic heritage is through Language Technologies (LT) including Natural Language Processing (NLP), Natural Language Understanding (NLU), Speech Technologies and language-centric Artificial Intelligence (AI) applications. The European Language Grid provides a single umbrella platform for the European LT community, including research and industry, effectively functioning as a virtual home, marketplace, showroom, and deployment centre for all services, tools, resources, products and organisations active in the field. Today the ELG cloud platform already offers access to more than 13,000 language processing tools and language resources. It enables all stakeholders to deposit, upload and deploy their technologies and datasets. The platform also supports the long-term objective of establishing digital language equality in Europe by 2030 ā€“ to create a situation in which all European languages enjoy equal technological support. This is the very first book dedicated to Language Technology and NLP platforms. Cloud technology has only recently matured enough to make the development of a platform like ELG feasible on a larger scale. The book comprehensively describes the results of the ELG project. Following an introduction, the content is divided into four main parts: (I) ELG Cloud Platform; (II) ELG Inventory of Technologies and Resources; (III) ELG Community and Initiative; and (IV) ELG Open Calls and Pilot Projects

    Knowledge extraction from unstructured data and classification through distributed ontologies

    Get PDF
    The World Wide Web has changed the way humans use and share any kind of information. The Web removed several access barriers to the information published and has became an enormous space where users can easily navigate through heterogeneous resources (such as linked documents) and can easily edit, modify, or produce them. Documents implicitly enclose information and relationships among them which become only accessible to human beings. Indeed, the Web of documents evolved towards a space of data silos, linked each other only through untyped references (such as hypertext references) where only humans were able to understand. A growing desire to programmatically access to pieces of data implicitly enclosed in documents has characterized the last efforts of the Web research community. Direct access means structured data, thus enabling computing machinery to easily exploit the linking of different data sources. It has became crucial for the Web community to provide a technology stack for easing data integration at large scale, first structuring the data using standard ontologies and afterwards linking them to external data. Ontologies became the best practices to define axioms and relationships among classes and the Resource Description Framework (RDF) became the basic data model chosen to represent the ontology instances (i.e. an instance is a value of an axiom, class or attribute). Data becomes the new oil, in particular, extracting information from semi-structured textual documents on the Web is key to realize the Linked Data vision. In the literature these problems have been addressed with several proposals and standards, that mainly focus on technologies to access the data and on formats to represent the semantics of the data and their relationships. With the increasing of the volume of interconnected and serialized RDF data, RDF repositories may suffer from data overloading and may become a single point of failure for the overall Linked Data vision. One of the goals of this dissertation is to propose a thorough approach to manage the large scale RDF repositories, and to distribute them in a redundant and reliable peer-to-peer RDF architecture. The architecture consists of a logic to distribute and mine the knowledge and of a set of physical peer nodes organized in a ring topology based on a Distributed Hash Table (DHT). Each node shares the same logic and provides an entry point that enables clients to query the knowledge base using atomic, disjunctive and conjunctive SPARQL queries. The consistency of the results is increased using data redundancy algorithm that replicates each RDF triple in multiple nodes so that, in the case of peer failure, other peers can retrieve the data needed to resolve the queries. Additionally, a distributed load balancing algorithm is used to maintain a uniform distribution of the data among the participating peers by dynamically changing the key space assigned to each node in the DHT. Recently, the process of data structuring has gained more and more attention when applied to the large volume of text information spread on the Web, such as legacy data, news papers, scientific papers or (micro-)blog posts. This process mainly consists in three steps: \emph{i)} the extraction from the text of atomic pieces of information, called named entities; \emph{ii)} the classification of these pieces of information through ontologies; \emph{iii)} the disambigation of them through Uniform Resource Identifiers (URIs) identifying real world objects. As a step towards interconnecting the web to real world objects via named entities, different techniques have been proposed. The second objective of this work is to propose a comparison of these approaches in order to highlight strengths and weaknesses in different scenarios such as scientific and news papers, or user generated contents. We created the Named Entity Recognition and Disambiguation (NERD) web framework, publicly accessible on the Web (through REST API and web User Interface), which unifies several named entity extraction technologies. Moreover, we proposed the NERD ontology, a reference ontology for comparing the results of these technologies. Recently, the NERD ontology has been included in the NIF (Natural language processing Interchange Format) specification, part of the Creating Knowledge out of Interlinked Data (LOD2) project. Summarizing, this dissertation defines a framework for the extraction of knowledge from unstructured data and its classification via distributed ontologies. A detailed study of the Semantic Web and knowledge extraction fields is proposed to define the issues taken under investigation in this work. Then, it proposes an architecture to tackle the single point of failure issue introduced by the RDF repositories spread within the Web. Although the use of ontologies enables a Web where data is structured and comprehensible by computing machinery, human users may take advantage of it especially for the annotation task. Hence, this work describes an annotation tool for web editing, audio and video annotation in a web front end User Interface powered on the top of a distributed ontology. Furthermore, this dissertation details a thorough comparison of the state of the art of named entity technologies. The NERD framework is presented as technology to encompass existing solutions in the named entity extraction field and the NERD ontology is presented as reference ontology in the field. Finally, this work highlights three use cases with the purpose to reduce the amount of data silos spread within the Web: a Linked Data approach to augment the automatic classification task in a Systematic Literature Review, an application to lift educational data stored in Sharable Content Object Reference Model (SCORM) data silos to the Web of data and a scientific conference venue enhancer plug on the top of several data live collectors. Significant research efforts have been devoted to combine the efficiency of a reliable data structure and the importance of data extraction techniques. This dissertation opens different research doors which mainly join two different research communities: the Semantic Web and the Natural Language Processing community. The Web provides a considerable amount of data where NLP techniques may shed the light within it. The use of the URI as a unique identifier may provide one milestone for the materialization of entities lifted from a raw text to real world object

    The CENDARI White Book of Archives

    Get PDF
    Over the course of its four year project timeline, the CENDARI project has collected archival descriptions and metadata in various formats from a broad range of cultural heritage institutions. These data were drawn together in a single repository and are being stored there. The repository contains curated data which has been manually established by the CENDARI team as well as data acquired from small, ā€˜hiddenā€™ archives in spreadsheet format or from big aggregators with advanced data exchange tools in place. While the acquisition and curation of heterogeneous data in a single repository presents a technical challenge in itself, the ingestion of data into the CENDARI repository also opens up the possibility to process and index them through data extraction, entity recognition, semantic enhancement and other transformations. In this way the CENDARI project was able to act as a bridge between cultural heritage institutions and historical researchers, insofar as it drew together holdings from a broad range of institutions and enabled the browsing of this heterogeneous content within a single search space. This paper describes a broad range of ways in which the CENDARI project acquired data from cultural heritage institutions as well as the necessary technical background. In exemplifying diverse data creation or acquisition strategies, multiple formats and technical solutions, assets and drawbacks of a repository, this ā€œWhite Bookā€ aims at providing guidance and advice as well as best practices for archivists and cultural heritage institutions collaborating or planning to collaborate with infrastructure projects. http://www.cendari.eu/thematic- research-guides/white-book-archives The CENDARI White Book of Archives. Available from: http://hdl.handle.net/2262/7568

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and ā€œenablersā€, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges
    • ā€¦
    corecore