1,358 research outputs found

    Forgetting complex propositions

    Full text link
    This paper uses possible-world semantics to model the changes that may occur in an agent's knowledge as she loses information. This builds on previous work in which the agent may forget the truth-value of an atomic proposition, to a more general case where she may forget the truth-value of a propositional formula. The generalization poses some challenges, since in order to forget whether a complex proposition π\pi is the case, the agent must also lose information about the propositional atoms that appear in it, and there is no unambiguous way to go about this. We resolve this situation by considering expressions of the form [â€ĄÏ€]φ[\boldsymbol{\ddagger} \pi]\varphi, which quantify over all possible (but minimal) ways of forgetting whether π\pi. Propositional atoms are modified non-deterministically, although uniformly, in all possible worlds. We then represent this within action model logic in order to give a sound and complete axiomatization for a logic with knowledge and forgetting. Finally, some variants are discussed, such as when an agent forgets π\pi (rather than forgets whether π\pi) and when the modification of atomic facts is done non-uniformly throughout the model

    A Gentle Introduction to Epistemic Planning: The DEL Approach

    Get PDF
    Epistemic planning can be used for decision making in multi-agent situations with distributed knowledge and capabilities. Dynamic Epistemic Logic (DEL) has been shown to provide a very natural and expressive framework for epistemic planning. In this paper, we aim to give an accessible introduction to DEL-based epistemic planning. The paper starts with the most classical framework for planning, STRIPS, and then moves towards epistemic planning in a number of smaller steps, where each step is motivated by the need to be able to model more complex planning scenarios.Comment: In Proceedings M4M9 2017, arXiv:1703.0173

    A simple logic for reasoning about incomplete knowledge

    Get PDF
    International audienceThe semantics of modal logics for reasoning about belief or knowledge is often described in terms of accessibility relations, which is too expressive to account for mere epistemic states of an agent. This paper proposes a simple logic whose atoms express epistemic attitudes about formulae expressed in another basic propositional language, and that allows for conjunctions, disjunctions and negations of belief or knowledge statements. It allows an agent to reason about what is known about the beliefs held by another agent. This simple epistemic logic borrows its syntax and axioms from the modal logic KD. It uses only a fragment of the S5 language, which makes it a two-tiered propositional logic rather than as an extension thereof. Its semantics is given in terms of epistemic states understood as subsets of mutually exclusive propositional interpretations. Our approach offers a logical grounding to uncertainty theories like possibility theory and belief functions. In fact, we define the most basic logic for possibility theory as shown by a completeness proof that does not rely on accessibility relations

    Metatheory of actions: beyond consistency

    Get PDF
    Consistency check has been the only criterion for theory evaluation in logic-based approaches to reasoning about actions. This work goes beyond that and contributes to the metatheory of actions by investigating what other properties a good domain description in reasoning about actions should have. We state some metatheoretical postulates concerning this sore spot. When all postulates are satisfied together we have a modular action theory. Besides being easier to understand and more elaboration tolerant in McCarthy's sense, modular theories have interesting properties. We point out the problems that arise when the postulates about modularity are violated and propose algorithmic checks that can help the designer of an action theory to overcome them
    • 

    corecore