15 research outputs found

    The benefits of haptic feedback in robot assisted surgery and their moderators: a metaanalysis

    Get PDF
    Robot assisted surgery (RAS) provides medical practitioners with valuable tools, decreasing strain during surgery and leading to better patient outcomes. While the loss of haptic sensation is a commonly cited disadvantage of RAS, new systems aim to address this problem by providing artificial haptic feedback. N = 56 papers that compared robotic surgery systems with and without haptic feedback were analyzed to quantify the performance benefits of restoring the haptic modality. Additionally, this study identifies factors moderating the effect of restoring haptic sensation. Overall results showed haptic feedback was effective in reducing average forces (Hedges' g = 0.83) and peak forces (Hedges' g = 0.69) applied during surgery, as well as reducing the completion time (Hedges' g = 0.83). Haptic feedback has also been found to lead to higher accuracy (Hedges' g = 1.50) and success rates (Hedges' g = 0.80) during surgical tasks. Effect sizes on several measures varied between tasks, the type of provided feedback, and the subjects' levels of surgical expertise, with higher levels of expertise generally associated with smaller effect sizes. No significant differences were found between virtual fixtures and rendering contact forces. Implications for future research are discussed

    The Hand-Held Force Magnifier: Surgical Tools to Augment the Sense of Touch

    Get PDF
    Modern surgeons routinely perform procedures with noisy, sub-threshold, or obscured visual and haptic feedback,either due to the necessary approach, or because the systems on which they are operating are exceeding delicate. For example, in cataract extraction, ophthalmic surgeons must peel away thin membranes in order to access and replace the lens of the eye. Elsewhere, dissection is now commonly performed with energy-delivering tools – rather than sharp blades – and damage to deep structures is possible if tissue contact is not well controlled. Surgeons compensate for their lack of tactile sensibility by relying solely on visual feedback, observing tissue deformation and other visual cues through surgical microscopes or cameras. Using visual information alone can make a procedure more difficult, because cognitive mediation is required to convert visual feedback into motor action. We call this the “haptic problem” in surgery because the human sensorimotor loop is deprived of critical tactile afferent information, increasing the chance for intraoperative injury and requiring extensive training before clinicians reach independent proficiency. Tools that enhance the surgeon’s direct perception of tool-tissue forces can therefore potentially reduce the risk of iatrogenic complications and improve patient outcomes. Towards this end, we have developed and characterized a new robotic surgical tool, the Hand-Held Force Magnifier (HHFM), which amplifies forces at the tool tip so they may be readily perceived by the user, a paradigm we call “in-situ” force feedback. In this dissertation, we describe the development of successive generations of HHFM prototypes, and the evaluation of a proposed human-in-the-loop control framework using the methods of psychophysics. Using these techniques, we have verified that our tool can reduce sensory perception thresholds, augmenting the user’s abilities beyond what is normally possible. Further, we have created models of human motor control in surgically relevant tasks such as membrane puncture, which have shown to be sensitive to push-pull direction and handedness effects. Force augmentation has also demonstrated improvements to force control in isometric force generation tasks. Finally, in support of future psychophysics work, we have developed an inexpensive, high-bandwidth, single axis haptic renderer using a commercial audio speaker

    Design of a wearable fingertip haptic device for remote palpation: Characterisation and interface with a virtual environment

    Get PDF
    © 2018 Tzemanaki, Al, Melhuish and Dogramadzi. This paper presents the development of a wearable Fingertip Haptic Device (FHD) that can provide cutaneous feedback via a Variable Compliance Platform (VCP). The FHD includes an inertial measurement unit, which tracks the motion of the user's finger while its haptic functionality relies on two parameters: pressure in the VCP and its linear displacement towards the fingertip. The combination of these two features results in various conditions of the FHD, which emulate the remote object or surface stiffness properties. Such a device can be used in tele-operation, including virtual reality applications, where rendering the level of stiffness of different physical or virtual materials could provide a more realistic haptic perception to the user. The FHD stiffness representation is characterised in terms of resulting pressure and force applied to the fingertip created through the relationship of the two functional parameters - pressure and displacement of the VCP. The FHD was tested in a series of user studies to assess its potential to create a user perception of the object's variable stiffness. The viability of the FHD as a haptic device has been further confirmed by interfacing the users with a virtual environment. The developed virtual environment task required the users to follow a virtual path, identify objects of different hardness on the path and navigate away from "no-go" zones. The task was performed with and without the use of the variable compliance on the FHD. The results showed improved performance with the presence of the variable compliance provided by the FHD in all assessed categories and particularly in the ability to identify correctly between objects of different hardness

    Enhancing tele-operation - Investigating the effect of sensory feedback on performance

    Get PDF
    The decline in the number of healthcare service providers in comparison to the growing numbers of service users prompts the development of technologies to improve the efficiency of healthcare services. One such technology which could offer support are assistive robots, remotely tele-operated to provide assistive care and support for older adults with assistive care needs and people living with disabilities. Tele-operation makes it possible to provide human-in-the-loop robotic assistance while also addressing safety concerns in the use of autonomous robots around humans. Unlike many other applications of robot tele-operation, safety is particularly significant as the tele-operated assistive robots will be used in close proximity to vulnerable human users. It is therefore important to provide as much information about the robot (and the robot workspace) as possible to the tele-operators to ensure safety, as well as efficiency. Since robot tele-operation is relatively unexplored in the context of assisted living, this thesis explores different feedback modalities that may be employed to communicate sensor information to tele-operators. The thesis presents research as it transitioned from identifying and evaluating additional feedback modalities that may be used to supplement video feedback, to exploring different strategies for communicating the different feedback modalities. Due to the fact that some of the sensors and feedback needed are not readily available, different design iterations were carried out to develop the necessary hardware and software for the studies carried out. The first human study was carried out to investigate the effect of feedback on tele-operator performance. Performance was measured in terms of task completion time, ease of use of the system, number of robot joint movements, and success or failure of the task. The effect of verbal feedback between the tele-operator and service users was also investigated. Feedback modalities have differing effects on performance metrics and as a result, the choice of optimal feedback may vary from task to task. Results show that participants preferred scenarios with verbal feedback relative to scenarios without verbal feedback, which also reflects in their performance. Gaze metrics from the study also showed that it may be possible to understand how tele-operators interact with the system based on their areas of interest as they carry out tasks. This findings suggest that such studies can be used to improve the design of tele-operation systems.The need for social interaction between the tele-operator and service user suggests that visual and auditory feedback modalities will be engaged as tasks are carried out. This further reduces the number of available sensory modalities through which information can be communicated to tele-operators. A wrist-worn Wi-Fi enabled haptic feedback device was therefore developed and a study was carried out to investigate haptic sensitivities across the wrist. Results suggest that different locations on the wrist have varying sensitivities to haptic stimulation with and without video distraction, duration of haptic stimulation, and varying amplitudes of stimulation. This suggests that dynamic control of haptic feedback can be used to improve haptic perception across the wrist, and it may also be possible to display more than one type of sensor data to tele-operators during a task. The final study carried out was designed to investigate if participants can differentiate between different types of sensor data conveyed through different locations on the wrist via haptic feedback. The effect of increased number of attempts on performance was also investigated. Total task completion time decreased with task repetition. Participants with prior gaming and robot experience had a more significant reduction in total task completion time when compared to participants without prior gaming and robot experience. Reduction in task completion time was noticed for all stages of the task but participants with additional feedback had higher task completion time than participants without supplementary feedback. Reduction in task completion time varied for different stages of the task. Even though gripper trajectory reduced with task repetition, participants with supplementary feedback had longer gripper trajectories than participants without supplementary feedback, while participants with prior gaming experience had shorter gripper trajectories than participants without prior gaming experience. Perceived workload was also found to reduce with task repetition but perceived workload was higher for participants with feedback reported higher perceived workload than participants without feedback. However participants without feedback reported higher frustration than participants without feedback.Results show that the effect of feedback may not be significant where participants can get necessary information from video feedback. However, participants were fully dependent on feedback when video feedback could not provide requisite information needed.The findings presented in this thesis have potential applications in healthcare, and other applications of robot tele-operation and feedback. Findings can be used to improve feedback designs for tele-operation systems to ensure safe and efficient tele-operation. The thesis also provides ways visual feedback can be used with other feedback modalities. The haptic feedback designed in this research may also be used to provide situational awareness for the visually impaired

    Robotically assisted eye surgery : a haptic master console

    Get PDF
    Vitreo-retinal surgery encompasses the surgical procedures performed on the vitreous humor and the retina. A procedure typically consists of the removal of the vitreous humor, the peeling of a membrane and/or the repair of a retinal detachment. Operations are performed with needle shaped instruments which enter the eye through surgeon made scleral openings. An instrument is moved by hand in four degrees of freedom (three rotations and one translation) through this opening. Two rotations (? and ? ) are for a lateral instrument tip movement. The other two DoFs (z and ?) are the translation and rotation along the instrument axis. Actuation of for example a forceps can be considered as a fifth DoF. Characteristically, the manipulation of delicate, micrometer range thick intraocular tissue is required. Today, eye surgery is performed with a maximum of two instruments simultaneously. The surgeon relies on visual feedback only, since instrument forces are below the human detection limit. A microscope provides the visual feedback. It forces the surgeon to work in a static and non ergonomic body posture. Although the surgeon’s proficiency improves throughout his career, hand tremor may become a problem around his mid-fifties. Robotically assisted surgery with a master-slave system enhances dexterity. The slave with instrument manipulators is placed over the eye. The surgeon controls the instrument manipulators via haptic interfaces at the master. The master and slave are connected by electronic hardware and control software. Implementation of tremor filtering in the control software and downscaling of the hand motion allow prolongation of the surgeon’s career. Furthermore, it becomes possible to do tasks like intraocular cannulation which can not be done by manually performed surgery. This thesis focusses on the master console. Eye surgery procedures are observed in the operating room of different hospitals to gain insight in the requirements for the master. The master console as designed has an adjustable frame, a 3D display and two haptic interfaces with a coarse adjustment arm each. The console is mounted at the head of the operating table and is combined with the slave. It is compact, easy to place and allows the surgeon to have a direct view on and a physical contact with the patient. Furthermore, it fits in today’s manual surgery arrangement. Each haptic interface has the same five degrees of freedom as the instrument inside the eye. Through these interfaces, the surgeon can feel the augmented instrument forces. Downscaling of the hand motion results in a more accurate instrument movement compared to manually performed surgery. Together with the visual feedback, it is like the surgeon grasps the instrument near the tip inside the eye. The similarity between hand motion and motion of the instrument tip as seen on the display results in an intuitive manipulation. Pre-adjustment of the interface is done via the coarse adjustment arm. Mode switching enables to control three or more instruments manipulators with only two interfaces. Two one degree of freedom master-slave systems with force feedback are built to derive the requirements for the haptic interface. Hardware in the loop testing provides valuable insights and shows the possibility of force feedback without the use of force sensors. Two five DoF haptic interfaces are realized for bimanual operation. Each DoF has a position encoder and a force feedback motor. A correct representation of the upscaled instrument forces is only possible if the disturbance forces are low. Actuators are therefore mounted to the fixed world or in the neighborhood of the pivoting point for a low contribution to the inertia. The use of direct drive for ' and and low geared, backdriveable transmissions for the other three DoFs gives a minimum of friction. Disturbance forces are further minimized by a proper cable layout and actuator-amplifier combinations without torque ripple. The similarity in DoFs between vitreo-retinal eye surgery and minimally invasive surgery (MIS) enables the system to be used for MIS as well. Experiments in combination with a slave robot for laparoscopic and thoracoscopic surgery show that an instrument can be manipulated in a comfortable and intuitive way. User experience of surgeons and others is utilized to improve the haptic interface further. A parallel instead of a serial actuation concept for the ' and DoFs reduces the inertia, eliminates the flexible cable connection between frame and motor and allows that the heat of the motor is transferred directly to the frame. A newly designed z-?? module combines the actuation and suspension of the hand held part of the interface and has a three times larger z range than in the first design of the haptic interface

    A continuum robotic platform for endoscopic non-contact laser surgery: design, control, and preclinical evaluation

    Get PDF
    The application of laser technologies in surgical interventions has been accepted in the clinical domain due to their atraumatic properties. In addition to manual application of fibre-guided lasers with tissue contact, non-contact transoral laser microsurgery (TLM) of laryngeal tumours has been prevailed in ENT surgery. However, TLM requires many years of surgical training for tumour resection in order to preserve the function of adjacent organs and thus preserve the patient’s quality of life. The positioning of the microscopic laser applicator outside the patient can also impede a direct line-of-sight to the target area due to anatomical variability and limit the working space. Further clinical challenges include positioning the laser focus on the tissue surface, imaging, planning and performing laser ablation, and motion of the target area during surgery. This dissertation aims to address the limitations of TLM through robotic approaches and intraoperative assistance. Although a trend towards minimally invasive surgery is apparent, no highly integrated platform for endoscopic delivery of focused laser radiation is available to date. Likewise, there are no known devices that incorporate scene information from endoscopic imaging into ablation planning and execution. For focusing of the laser beam close to the target tissue, this work first presents miniaturised focusing optics that can be integrated into endoscopic systems. Experimental trials characterise the optical properties and the ablation performance. A robotic platform is realised for manipulation of the focusing optics. This is based on a variable-length continuum manipulator. The latter enables movements of the endoscopic end effector in five degrees of freedom with a mechatronic actuation unit. The kinematic modelling and control of the robot are integrated into a modular framework that is evaluated experimentally. The manipulation of focused laser radiation also requires precise adjustment of the focal position on the tissue. For this purpose, visual, haptic and visual-haptic assistance functions are presented. These support the operator during teleoperation to set an optimal working distance. Advantages of visual-haptic assistance are demonstrated in a user study. The system performance and usability of the overall robotic system are assessed in an additional user study. Analogous to a clinical scenario, the subjects follow predefined target patterns with a laser spot. The mean positioning accuracy of the spot is 0.5 mm. Finally, methods of image-guided robot control are introduced to automate laser ablation. Experiments confirm a positive effect of proposed automation concepts on non-contact laser surgery.Die Anwendung von Lasertechnologien in chirurgischen Interventionen hat sich aufgrund der atraumatischen Eigenschaften in der Klinik etabliert. Neben manueller Applikation von fasergeführten Lasern mit Gewebekontakt hat sich die kontaktfreie transorale Lasermikrochirurgie (TLM) von Tumoren des Larynx in der HNO-Chirurgie durchgesetzt. Die TLM erfordert zur Tumorresektion jedoch ein langjähriges chirurgisches Training, um die Funktion der angrenzenden Organe zu sichern und damit die Lebensqualität der Patienten zu erhalten. Die Positionierung des mikroskopis chen Laserapplikators außerhalb des Patienten kann zudem die direkte Sicht auf das Zielgebiet durch anatomische Variabilität erschweren und den Arbeitsraum einschränken. Weitere klinische Herausforderungen betreffen die Positionierung des Laserfokus auf der Gewebeoberfläche, die Bildgebung, die Planung und Ausführung der Laserablation sowie intraoperative Bewegungen des Zielgebietes. Die vorliegende Dissertation zielt darauf ab, die Limitierungen der TLM durch robotische Ansätze und intraoperative Assistenz zu adressieren. Obwohl ein Trend zur minimal invasiven Chirurgie besteht, sind bislang keine hochintegrierten Plattformen für die endoskopische Applikation fokussierter Laserstrahlung verfügbar. Ebenfalls sind keine Systeme bekannt, die Szeneninformationen aus der endoskopischen Bildgebung in die Ablationsplanung und -ausführung einbeziehen. Für eine situsnahe Fokussierung des Laserstrahls wird in dieser Arbeit zunächst eine miniaturisierte Fokussieroptik zur Integration in endoskopische Systeme vorgestellt. Experimentelle Versuche charakterisieren die optischen Eigenschaften und das Ablationsverhalten. Zur Manipulation der Fokussieroptik wird eine robotische Plattform realisiert. Diese basiert auf einem längenveränderlichen Kontinuumsmanipulator. Letzterer ermöglicht in Kombination mit einer mechatronischen Aktuierungseinheit Bewegungen des Endoskopkopfes in fünf Freiheitsgraden. Die kinematische Modellierung und Regelung des Systems werden in ein modulares Framework eingebunden und evaluiert. Die Manipulation fokussierter Laserstrahlung erfordert zudem eine präzise Anpassung der Fokuslage auf das Gewebe. Dafür werden visuelle, haptische und visuell haptische Assistenzfunktionen eingeführt. Diese unterstützen den Anwender bei Teleoperation zur Einstellung eines optimalen Arbeitsabstandes. In einer Anwenderstudie werden Vorteile der visuell-haptischen Assistenz nachgewiesen. Die Systemperformanz und Gebrauchstauglichkeit des robotischen Gesamtsystems werden in einer weiteren Anwenderstudie untersucht. Analog zu einem klinischen Einsatz verfolgen die Probanden mit einem Laserspot vorgegebene Sollpfade. Die mittlere Positioniergenauigkeit des Spots beträgt dabei 0,5 mm. Zur Automatisierung der Ablation werden abschließend Methoden der bildgestützten Regelung vorgestellt. Experimente bestätigen einen positiven Effekt der Automationskonzepte für die kontaktfreie Laserchirurgie

    A Magnetic Laser Scanner for Endoscopic Microsurgery

    Get PDF
    Laser scanners increase the quality of the laser microsurgery enabling fast tissue ablation with less thermal damage. Such technology is part of state-of-the-art freebeam surgical laser systems. However, laser scanning has not been incorporated to fiber-based lasers yet. This is a combination that has potential to greatly improve the quality of laser microsurgeries on difficult-to-reach surgical sites. Current fiberbased tissue ablations are performed in contact with the tissue, resulting in excessive thermal damage to healthy tissue in the vicinity of the ablated tissue. This is far from ideal for delicate microsurgeries, which require high-quality tissue incisions without any thermal damage or char formation. However, the possibility to perform scanning laser microsurgery in confined workspaces is restricted by the large size of currently available actuators, which are typically located outside the patient and require direct line-of-sight to the microsurgical area. Thus, it is desired to have the laser scanning feature in an endoscopic system to provide high incision quality in hard-to-reach surgical sites. This thesis aims to introduce a new endoscopic laser scanner to perform 2D position control and high-speed scanning of a fiber-based laser for operation in narrow workspaces. It also presents a technology concept aimed at assisting in incision depth control during soft-tissue microsurgery. The main objective of the work presented in this thesis is to bring the benefits of free-beam lasers to laser-based endoscopic surgery by designing an end-effector module to be placed at the distal tip of a flexible robot arm. To this end, the design and control of a magnetic laser scanner for endoscopic microsurgeries is presented. The system involves an optical fiber, electromagnetic coils, a permanent magnet and optical lenses in a compact system for laser beam deflection. The actuation mechanism is based on the interaction between the electromagnetic field and the permanent magnets. A cantilevered optical fiber is bended with the magnetic field induced by the electromagnetic coils by creating magnetic torque on the permanent magnet. The magnetic laser scanner provides 2D position control and high-speed scanning of the laser beam. The device includes laser focusing optics to allow non-contact incisions. A proof-of-concept device was manufactured and evaluated. It includes four electromagnetic coils and two plano-convex lenses, and has an external diameter of 13 mm. A 4 74 mm2 scanning range was achieved at a 30 mm distance from the scanner tip. Computer-controlled trajectory executions demonstrated repeatable results with 75 m precision for challenging trajectories. Frequency analysis demonstrated stable response up to 33 Hz for 3 dB limit. The system is able to ablate tissue substitutes with a 1940 nm wavelength surgical diode laser. Tablet-based control interface has been developed for intuitive teleoperation. The performance of the proof-of-concept device is analysed through control accuracy and usability studies. Teleoperation user trials consisting in trajectory-following tasks involved 12 subjects. Results demonstrated users could achieve an accuracy of 39 m with the magnetic laser scanner system. For minimally invasive surgeries, it is essential to perform accurate laser position control. Therefore, a model based feed-forward position control of magnetic laser scanner was developed for automated trajectory executions. First, the dynamical model of the system was identified using the electromagnets current (input) and the laser position (output). Then, the identified model was used to perform feedforward control. Validation experiments were performed with different trajectory types, frequencies and amplitudes. Results showed that desired trajectories can be executed in high-speed scanning mode with less than 90 m (1.4 mrad bending angle) accuracy for frequencies up to 15 Hz. State-of-the-art systems do not provide incision depth control, thus the quality of such control relies entirely on the experience and visual perception of the surgeons. In order to provide intuitive incision depth control in endoscopic microsurgeries, the concept of a technology was presented for the automated laser incisions given a desired depth based on a commercial laser scanner. The technology aims at automatically controlling laser incisions based on high-level commands from the surgeon, i.e. desired incision shape, length and depth. A feed-forward controller provides (i) commands to the robotic laser system and (ii) regulates the parameters of the laser source to achieve the desired results. The controller for the incision depth is extracted from experimental data. The required energy density and the number of passes are calculated to reach the targeted depth. Experimental results demonstrate that targeted depths can be achieved with \ub1100 m accuracy, which proves the feasibility of this approach. The proposed technology has the potential to facilitate the surgeon\u2019s control over laser incisions. The magnetic laser scanner enables high-speed laser positioning in narrow and difficult-to-reach workspaces, promising to bring the benefits of scanning laser microsurgery to flexible endoscopic procedures. In addition, the same technology can be potentially used for optical fiber based imaging, enabling for example the creation of new family of scanning endoscopic OCT or hyperspectral probes

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not
    corecore