7 research outputs found

    Robust dexterous telemanipulation following object-orientation commands

    Get PDF
    This paper aims to present a procedure to change the orientation of a grasped object using dexterous manipulation. The manipulation is controlled by teleoperation in a very simple way, with the commands introduced by an operator using a keyboard. Design/methodology/approach - The paper shows a teleoperation scheme, hand kinematics and a manipulation strategy to manipulate different objects using the Schunk Dexterous Hand (SDH2). A state machine is used to model the teleoperation actions and the system states. A virtual link is used to include the contact point on the hand kinematics of the SDH2. Findings - Experiments were conducted to evaluate the proposed approach with different objects, varying the initial grasp configuration and the sequence of actions commanded by the operator. Originality/value - The proposed approach uses a shared telemanipulation schema to perform dexterous manipulation; in this schema, the operator sends high-level commands and a local system uses this information, jointly with tactile measurements and the current status of the system, to generate proper setpoints for the low-level control of the fingers, which may be a commercial close one. The main contribution of this work is the mentioned local system, simple enough for practical applications and robust enough to avoid object falls.Postprint (author's final draft

    Robust dexterous telemanipulation following object-orientation commands

    Get PDF
    This paper aims to present a procedure to change the orientation of a grasped object using dexterous manipulation. The manipulation is controlled by teleoperation in a very simple way, with the commands introduced by an operator using a keyboard. Design/methodology/approach - The paper shows a teleoperation scheme, hand kinematics and a manipulation strategy to manipulate different objects using the Schunk Dexterous Hand (SDH2). A state machine is used to model the teleoperation actions and the system states. A virtual link is used to include the contact point on the hand kinematics of the SDH2. Findings - Experiments were conducted to evaluate the proposed approach with different objects, varying the initial grasp configuration and the sequence of actions commanded by the operator. Originality/value - The proposed approach uses a shared telemanipulation schema to perform dexterous manipulation; in this schema, the operator sends high-level commands and a local system uses this information, jointly with tactile measurements and the current status of the system, to generate proper setpoints for the low-level control of the fingers, which may be a commercial close one. The main contribution of this work is the mentioned local system, simple enough for practical applications and robust enough to avoid object falls.Postprint (author's final draft

    Development of Tendon Based Dexterous Robot Hand

    Get PDF

    Active compliance control strategies for multifingered robot hand

    Get PDF
    Safety issues have to be enhanced when the robot hand is grasping objects of different shapes, sizes and stiffness. The inability to control the grasping force and finger stiffness can lead to unsafe grasping environment. Although many researches have been conducted to resolve the grasping issues, particularly for the object with different shape, size and stiffness, the grasping control still requires further improvement. Hence, the primary aim of this work is to assess and improve the safety of the robot hand. One of the methods that allows a safe grasping is by employing an active compliance control via the force and impedance control. The implementation of force control considers the proportional–integral–derivative (PID) controller. Meanwhile, the implementation of impedance control employs the integral slidingmode controller (ISMC) and adaptive controller. A series of experiments and simulations is used to demonstrate the fundamental principles of robot grasping. Objects with different shape, size and stiffness are tested using a 3-Finger Adaptive Robot Gripper. The work introduces the Modbus remote terminal unit [RTU] protocol, a low-cost force sensor and the Arduino IO Package for a real-time hardware setup. It is found that, the results of the force control via PID controller are feasible to maintain the grasped object at certain positions, depending on the desired grasping force (i.e., 1N and 8N). Meanwhile, the implementation of impedance control via ISMC and adaptive controller yields multiple stiffness levels for the robot fingers and able to reduce collision between the fingers and the object. However, it was found that the adaptive controller produces better impedance control results as compared to the ISMC, with a 33% efficiency improvement. This work lays important foundations for long-term related research, particularly in the field of active compliance control that can be beneficial to human–robot interaction (HRI)

    Parametric mechanical design and optimisation of the Canterbury Hand.

    Get PDF
    As part of worldwide research humanoid robots have been developed for household, industrial and exploratory applications. If such robots are to interact with people and human created environments they will require human-like hands. The objective of this thesis was the parametric design and optimisation of a dexterous, and anthropomorphic robotic end effector. Known as the ‘Canterbury Hand’ it has 11 degree of freedoms with four fingers and a thumb. The hand has applications for dexterous teleoperation and object manipulation in industrial, hazardous or uncertain environments such as orbital robotics. The human hand was analysed so that the Canterbury Hand could copy its motions, appearance and grasp types. An analysis of the current literature on experimental prosthetic and robotic hands was also carried out. A disadvantage of many of these hand designs was that they were remotely powered using large, heavy actuator packs. The advantage of the Canterbury Hand is that it has been designed to hold the motors, wires, and circuit boards entirely within itself; although a belt carried battery pack is required. The hand was modelled using a parametric 3D computer aided design (CAD) program. Two different configurations of the hand were created in the model. One configuration, as a dexterous robot hand, used Ø13mm 3 Watt DC motors, while the other used Ø10mm, 0.5 Watt DC motors (although this hand is still slightly too large for a general prosthesis). The parts within the hand were modelled to permit changes to the geometry. This was necessary for the optimisation process. The bearing geometry of the finger and thumb linkages, as well as the thumb rotation axis was optimised for anthropomorphic motion, appearance and increased force output. A design table within a spreadsheet was created to interact with the CAD models of the hand to quickly implement the optimised geometry. The work reported in this thesis has shown the possibilities for parametric design and optimisation of an anthropomorphic, dexterous robotic hand

    Parametric mechanical design and optimisation of the Canterbury Hand.

    Get PDF
    As part of worldwide research humanoid robots have been developed for household, industrial and exploratory applications. If such robots are to interact with people and human created environments they will require human-like hands. The objective of this thesis was the parametric design and optimisation of a dexterous, and anthropomorphic robotic end effector. Known as the ‘Canterbury Hand’ it has 11 degree of freedoms with four fingers and a thumb. The hand has applications for dexterous teleoperation and object manipulation in industrial, hazardous or uncertain environments such as orbital robotics. The human hand was analysed so that the Canterbury Hand could copy its motions, appearance and grasp types. An analysis of the current literature on experimental prosthetic and robotic hands was also carried out. A disadvantage of many of these hand designs was that they were remotely powered using large, heavy actuator packs. The advantage of the Canterbury Hand is that it has been designed to hold the motors, wires, and circuit boards entirely within itself; although a belt carried battery pack is required. The hand was modelled using a parametric 3D computer aided design (CAD) program. Two different configurations of the hand were created in the model. One configuration, as a dexterous robot hand, used Ø13mm 3 Watt DC motors, while the other used Ø10mm, 0.5 Watt DC motors (although this hand is still slightly too large for a general prosthesis). The parts within the hand were modelled to permit changes to the geometry. This was necessary for the optimisation process. The bearing geometry of the finger and thumb linkages, as well as the thumb rotation axis was optimised for anthropomorphic motion, appearance and increased force output. A design table within a spreadsheet was created to interact with the CAD models of the hand to quickly implement the optimised geometry. The work reported in this thesis has shown the possibilities for parametric design and optimisation of an anthropomorphic, dexterous robotic hand
    corecore