227 research outputs found

    Biometric Identification Systems: Feature Level Clustering of Large Biometric Data and DWT Based Hash Coded Bar Biometric System

    Get PDF
    Biometric authentication systems are fast replacing conventional identification schemes such as passwords and PIN numbers. This paper introduces a novel matching scheme that uses a image hash scheme. It uses Discrete Wavelet Transformation (DWT) of biometric images and randomized processing strategies for hashing. In this scheme the input image is decomposed into approximation, vertical, horizontal and diagonal coefficients using the discrete wavelet transform. The algorithm converts images into binary strings and is robust against compression, distortion and other transformations. As a case study the system is tested on ear database and is outperforming with an accuracy of 96.37% with considerably low FAR of 0.17%. The performance shows that the system can be deployed for high level security applications

    Currency security and forensics: a survey

    Get PDF
    By its definition, the word currency refers to an agreed medium for exchange, a nation’s currency is the formal medium enforced by the elected governing entity. Throughout history, issuers have faced one common threat: counterfeiting. Despite technological advancements, overcoming counterfeit production remains a distant future. Scientific determination of authenticity requires a deep understanding of the raw materials and manufacturing processes involved. This survey serves as a synthesis of the current literature to understand the technology and the mechanics involved in currency manufacture and security, whilst identifying gaps in the current literature. Ultimately, a robust currency is desire

    Practical implementation and performance analysis on security of sensor networks

    Get PDF
    A wireless sensor network (WSN) is a network made of thousands of sensing elements called as nodes with wireless capabilities. Their application is varied and diverse ranging from military to domestic and household. As the world of self-organizing sensor networks tip to the edge of maximum utilization, their wider deployment is adding pressure on the security front. Powerful laptops and workstations make it more challenging for small sensors. In addition, there are many security challenges in WSN, e.g- confidentiality, authentication, freshness, integrity etc. Contributions of this work are as follows: “Symmetric” security implementation: This thesis work designs a symmetric-key based security in sensor hardware in the Link layer of sensor network protocols. Link Layer security can protect a wireless network by denying access to the network itself before a user is successfully authenticated. This prevents attacks against the network infrastructure and protects the network from devastating attacks. “Public key” implementation in sensor hardware: Asymmetric key techniques are attractive for authentication data or session keys. Traditional schemes like RSA require considerable amounts of resources which in the past has limited their use. This thesis has implemented Elliptic Curve Cryptography (ECC) in Mica2 hardware, which is an approach to public-key cryptography based on the mathematics of elliptic curves. Quantitative overhead analysis: This thesis work analyzes the wireless communication overhead (No. of packets transmitted) vs the (transmit and receive) energy consumed in mJoules and memory storage overhead (bytes) for ECC as compared to the symmetric counterpart for the implemented WSN security protocols

    The InfoSec Handbook

    Get PDF
    Computer scienc

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Feature Encoding of Spectral Descriptors for 3D Shape Recognition

    Get PDF
    Feature descriptors have become a ubiquitous tool in shape analysis. Features can be extracted and subsequently used to design discriminative signatures for solving a variety of 3D shape analysis problems. In particular, shape classification and retrieval are intriguing and challenging problems that lie at the crossroads of computer vision, geometry processing, machine learning and medical imaging. In this thesis, we propose spectral graph wavelet approaches for the classification and retrieval of deformable 3D shapes. First, we review the recent shape descriptors based on the spectral decomposition of the Laplace-Beltrami operator, which provides a rich set of eigenbases that are invariant to intrinsic isometries. We then provide a detailed overview of spectral graph wavelets. In an effort to capture both local and global characteristics of a 3D shape, we propose a three-step feature description framework. Local descriptors are first extracted via the spectral graph wavelet transform having the Mexican hat wavelet as a generating kernel. Then, mid-level features are obtained by embedding local descriptors into the visual vocabulary space using the soft-assignment coding step of the bag-of-features model. A global descriptor is subsequently constructed by aggregating mid-level features weighted by a geodesic exponential kernel, resulting in a matrix representation that describes the frequency of appearance of nearby codewords in the vocabulary. In order to analyze the performance of the proposed algorithms on 3D shape classification, support vector machines and deep belief networks are applied to mid-level features. To assess the performance of the proposed approach for nonrigid 3D shape retrieval, we compare the global descriptor of a query to the global descriptors of the rest of shapes in the dataset using a dissimilarity measure and find the closest shape. Experimental results on three standard 3D shape benchmarks demonstrate the effectiveness of the proposed classification and retrieval approaches in comparison with state-of-the-art methods

    Information security and assurance : Proceedings international conference, ISA 2012, Shanghai China, April 2012

    Full text link

    Statistical evaluation of PUF implementation techniques as applied to quantum confinement semiconductors

    Get PDF
    Physically unclonable functions, or PUFs, present a means to securely identify objects, both implicit and attached, alongside several uses in conventional secure communication techniques. Many types of PUF based on varying sources of fingerprint entropy have been suggested, and the higher-level theoretical properties and implications of this primitive have been extensively discussed. However, each different prospective implementation of PUF typically approaches the practical considerations for the conversion from a unique entropy source to ultimate PUF implementation anew. These studies typically treat the intermediate processing schema, such as response binning, solely as a means to an end rather than a subject of explicit discussion and evaluation. As such, there exist few studies into developing a general framework for the optimisation and simulation of the important elements that lie between the measurement of the particular entropy source and the evaluation of the final device as a whole. This thesis seeks to outline and validate a generalised schema for the conversion of entropy source to final results, presenting the fundamental design elements and figures of merit for the process at every stage where applicable. Further to this, each stage of the process is expressed analytically, allowing the direct derivation of the ultimate figures of merit based on the measurement outcomes of the initial source of entropy. To validate, this process is applied towards the resonant tunnelling diode (RTD) as the prospective entropic unit cell. This type of semiconductor device has several properties that make it an interesting candidate upon which to base a PUF, and this work additionally seeks to outline these benefits and enumerate the general comparative figures of merit for a PUF derived therefrom
    corecore