7,143 research outputs found

    Counting smaller elements in the Tamari and m-Tamari lattices

    Full text link
    We introduce new combinatorial objects, the interval- posets, that encode intervals of the Tamari lattice. We then find a combinatorial interpretation of the bilinear operator that appears in the functional equation of Tamari intervals described by Chapoton. Thus, we retrieve this functional equation and prove that the polynomial recursively computed from the bilinear operator on each tree T counts the number of trees smaller than T in the Tamari order. Then we show that a similar m + 1-linear operator is also used in the functionnal equation of m-Tamari intervals. We explain how the m-Tamari lattices can be interpreted in terms of m+1-ary trees or a certain class of binary trees. We then use the interval-posets to recover the functional equation of m-Tamari intervals and to prove a generalized formula that counts the number of elements smaller than or equal to a given tree in the m-Tamari lattice.Comment: 46 pages + 3 pages of code appendix, 27 figures. Long version of arXiv:1212.0751. To appear in Journal of Combinatorial Theory, Series

    Geometry of quiver Grassmannians of Dynkin type with applications to cluster algebras

    Get PDF
    The paper includes a new proof of the fact that quiver Grassmannians associated with rigid representations of Dynkin quivers do not have cohomology in odd degrees. Moreover, it is shown that they do not have torsion in homology. A new proof of the Caldero-Chapoton formula is provided. As a consequence a new proof of the positivity of cluster monomials in the acyclic clusters associated with Dynkin quivers is obtained. The methods used here are based on joint works with Markus Reineke and Evgeny Feigin
    • …
    corecore