We introduce new combinatorial objects, the interval- posets, that encode
intervals of the Tamari lattice. We then find a combinatorial interpretation of
the bilinear operator that appears in the functional equation of Tamari
intervals described by Chapoton. Thus, we retrieve this functional equation and
prove that the polynomial recursively computed from the bilinear operator on
each tree T counts the number of trees smaller than T in the Tamari order. Then
we show that a similar m + 1-linear operator is also used in the functionnal
equation of m-Tamari intervals. We explain how the m-Tamari lattices can be
interpreted in terms of m+1-ary trees or a certain class of binary trees. We
then use the interval-posets to recover the functional equation of m-Tamari
intervals and to prove a generalized formula that counts the number of elements
smaller than or equal to a given tree in the m-Tamari lattice.Comment: 46 pages + 3 pages of code appendix, 27 figures. Long version of
arXiv:1212.0751. To appear in Journal of Combinatorial Theory, Series