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Geometry of Quiver Grassmannians of Dynkin type

with applications to cluster algebras

Giovanni Cerulli Irelli
∗

Abstract. The paper includes a new proof of the fact that quiver Grassmannians associ-
ated with rigid representations of Dynkin quivers do not have cohomology in odd degrees.
Moreover, it is shown that they do not have torsion in homology. A new proof of the
Caldero–Chapoton formula is provided. As a consequence a new proof of the positivity of
cluster monomials in the acyclic clusters associated with Dynkin quivers is obtained. The
methods used here are based on joint works with Markus Reineke and Evgeny Feigin.
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Introduction

Quiver Grassmannians are the natural generalization in the world of quivers of the
usual Grassmannians of linear subspaces: given a representation M of a quiver Q
and a dimension vector e, the quiver GrassmanniansGre(M) parametrizes the sub-
representations of M of dimension vector e. The name was suggested by Zelevin-
sky, and it is nowadays commonly used. We say that a quiver Grassmannian is of
Dynkin type, if it is associated with a complex representation of a Dynkin quiver.

My first aim in writing this paper was to survey recents results obtained in
collaboration with Evgeny Feigin and Markus Reineke, concerning the geometry
of quiver Grassmannians of Dynkin type. While writing it, I was looking for a
more conceptual proof of the Caldero–Chapoton formula and I found a surprising
result which then changed my original plan.

The Caldero–Chapoton formula is a formula which expresses the cluster vari-
ables of a cluster algebra associated with a Dynkin quiver in terms of Euler charac-
teristic of some quiver Grassmannians of Dynkin type. After this formula appeared,
it was hoped that a better knowledge of the geometry of quiver Grassmannians
would improve our knowledge on the corresponding cluster algebra. This paper
provides a new evidence of this general philosophy which was the heart of my
project “categorification of positivity in cluster algebras” financed by the DFG
priority program SPP-1388.

Let me briefly explain the main results of the paper. Given a dimension vector
d ∈ Z

Q0

≥0, we denote by Rd the affine space parametrizing Q–representations of di-
mension vector d (see section 1 for details). The group Gd =

∏

i∈Q0
GLdi(K) acts

∗This work was partially financed by the italian FIRB project “Perspectives in Lie Theory”
RBFR12RA9W and partially by DFG SPP-1388.
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on Rd by base change (K denotes the field of complex numbers) and Gd–orbits cor-
respond to isoclasses of Q–representations. GivenM ∈ Rd and a dimension vector
e, we denote by Gre(M) the projective variety consisting of sub–representations
of M of dimension vector e (see section 2 for details). It can easily be proved that

dim Gre(M) ≥ 〈e,d− e〉

where 〈−,−〉 denotes the Euler form of Q. If equality holds, then we say that
Gre(M) has minimal dimension. Since Q is Dynkin, for every dimension vector
d there exists a representation, that we denote by M̃d, whose orbit is dense in
Rd. This module is uniquely (up to isomorphisms) determined in Rd by the
condition Ext1(M̃d, M̃d) = 0 which means that it is rigid. It can be proved that if
Gre(M̃d) is non–empty then it is smooth and irreducible of minimal dimension (see
Theorem 3.6). Non–emptiness of Gre(M̃d) is equivalent to Ext1Q(M̃e, M̃d−e) = 0
(see Corollary 3.3). The surprising result mentioned above is the following:

Theorem 0.1. Let e,d be dimension vectors for Q, such that d− e is again a
dimension vector. Then all non–empty quiver Grassmannians of the form Gre(M)
(where M ∈ Rd) which are smooth and of minimal dimension are diffeomorphic to
each other. In this case, they are all diffeomorphic to Gre(M̃d) and hence they are
irreducible and they share the same Poincaré polynomial and Euler characteristic.

From this result, the formula of Caldero–Chapoton follows immediately. Let
me explain this point. Let

0 // τM // E // M // 0

be an almost split sequence for Q. As recalled in Section 5.3, the CC–formula is a
direct consequence of the following equality

χ(Gre(E)) = χ(Gre(M ⊕ τM)) ∀e 6= dimM (1)

where χ denotes the Euler–Poincaré characteristic. It can be proved (see Propo-
sition 3.8) that Gre(M ⊕ τM) is smooth of minimal dimension, and hence by
theorem 0.1, it is diffeomorphic to Gre(E), since E is rigid. In particular, (1)
holds. Moreover the Poincaré polynomial PGre(M⊕τM)(q) of Gre(M ⊕ τM) equals
the Poincaré polynomial PGre(E)(q) of Gre(E) for e 6= dimM . This fact, implies
the new formula:

PGre(E)(q) =
∑

f+g=e

q2〈f ,dimτM−g〉PGrf (M)(q)PGrg(τM)(q) (2)

=
∑

f+g=e

q2〈g,dimM−f〉PGrf (M)(q)PGrg(τM)(q)

(the second equality follows by Poincaré duality). In [36] it is shown that the
Poincaré polynomials of certain quiver Grassmannians are the coefficients of the
quantum F–polynomials of quantum cluster variables. The proof is obtained by
reduction to the non–quantum case. I wonder if formula (2) can provide a direct
proof of this.

Another interesting consequence of Theorem 0.1 is the following result
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Theorem 0.2. Let E be a rigid representation of a Dynkin quiver. Then every
quiver Grassmannian Gre(E) associated with E has no odd cohomology. In par-
ticular χ(Gre(E)) ≥ 0.

The fact that quiver Grassmannians of Dynkin type have positive Euler charac-
teristic was first proved by Caldero and Keller [17, Theorem 3]. The fact that quiver
Grassmannians associated with rigid representations of acyclic quivers have no odd
cohomology was proved by Qin [36] and by Nakajima [35] using the Decomposition
Theorem and Fourier–Sato–Deligne transform. After the work of Nakajima, other
proofs of the positivity conjecture appeared in the literature [23], [20] as conse-
quence of results on quantum cluster algebras. The proof given here for Dynkin
quivers, which I believe can be extended to a more general setting, is based on ideas
developed in joint papers with E. Feigin and M. Reineke [14, 15, 16] and uses only
well–known results of algebraic/differential geometry (namely the Ehresmann’s lo-
calization theorem [24] and the Bialynicky–Birula theorem [7, Theorem 4.1]).

The following result concerns (singular) homology groups of quiver Grassman-
nians which are smooth of minimal dimension.

Theorem 0.3. Let X be a smooth quiver Grassmannian of minimal dimension
(of Dynkin type). Then Hi(X) is zero if i is odd and it has no torsion if i is even.

The paper is fairly self–contained and does not assume any particular knowl-
edge from the reader. Precise references are provided, and most of the results are
fully proved. It is organized as follows: in Section 1 we recall the basics on repre-
sentation theory of quivers and (classical) Auslander–Reiten theory. In Section 2
some properties of quiver Grassmannians are recalled. In Section 3 we discuss a
theorem of Bongartz, concerning degenerations of quiver representations and its
consequences for quiver Grassmannians. Section 4 contains the main results of the
paper. Finally, Section 5 contains applications to cluster algebras and the complete
proof of the Caldero–Chapoton formula.

1. Basics on representation theory of Dynkin quivers

In this section we recall some basic facts on representations of quivers. Standard
references for this are [39], [5], [6]. A (finite) quiver Q = (Q0, Q1, s, t) is an ordered
quadruple in which Q0 denotes a finite set of vertices (whose cardinality is always
denoted with the letter n), Q1 is a finite set of edges, and s and t are two functions
s, t : Q1 → Q0 which provide an orientation of the edges. For an oriented edge α
we write α : s(α) → t(α). A quiver Q is called Dynkin if the underlying graph
∆ = (Q0, Q1) is a (possibly union of) simply–laced Dynkin diagram of type A, D
or E shown in figure 1.

Let Q be a Dynkin quiver. A representation of Q is a pair of tuples V =
((Vi)i∈Q0 , (Vα)α∈Q1) where Vi is a vector space over a field K and Vα : Vs(α) → Vt(α)
is a linear map. In this paper we only deal with complex representations, and hence
K denotes always the field of complex numbers. A Q–morphism ψ : V → W from
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Figure 1. Simply–laced Dynkin diagrams

two Q–representations is a collections (ψi : Vi →Wi)i∈Q0 of linear maps such that
the following square

Vs(α)
Vα //

ψs(α)

��

Vt(α)

ψt(α)

��
Ws(α)

Wα // Wt(α)

commutes for every arrow α of Q. The set of Q–morphisms between two Q–
representations V and W is a vector space that we denote by HomQ(V,W ). The
category RepK(Q) of Q–representations is hence an abelian category (with the
obvious notions of kernel and cokernel).

To a quiver Q is associated its (complex) path-algebra A = KQ, which is the
algebra formed by concatenation of arrows. The category RepK(Q) is equivalent
to the category A–mod of KQ–modules.

The set {ei}i∈Q0 of paths of length zero form a complete set of pairwise or-
thogonal idempotents of A. As a consequence, the projective indecomposable (left)
A–modules are {Pi := Aei}i∈Q0 . The path algebra A = KQ, viewed as a left A–
module, decomposes as A =

⊕

i∈Q0
Pi. As Q–representation, Pi is described as

follows: the vector space at vertex k has a basis given by paths from vertex i to
vertex k, and the arrows act by “concatenation”. Since Q is the orientation of a
tree, every projective Pi is thin, which means that the vector space (Pi)k associ-
ated to every vertex k is at most one–dimensional. Moreover, it is also clear that
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Pi has only one maximal sub-representation which hence coincides with its radical
and the quotient is the simple Si:

0 // rad(Pi) =
⊕

i→j Pj
// Pi // Si // 0. (3)

We notice that (3) is the minimal projective presentation of Si.
Dually, the injective indecomposable (left) A–modules are the indecomposable

direct summands of DA (viewed as left A–module), where D is the standard K–
duality. They are denoted by {Ik}k∈Q0 . As Q–representation, Ik has at vertex j
a vector space with basis consisting of all the paths of Q starting in j and ending
in k, and the arrows act by “concatenation”. From this, we see that Ik has simple
socle Sk and the quotient is injective again:

0 // Sk // Ik //
⊕

j→k Ij
// 0. (4)

The short exact sequence (4) is the minimal injective resolution of Sk. The opposite
algebra Aop, which is the path algebra of the opposite quiver, viewed as a (left)
A–module is given by Aop =

⊕

j∈Q0
Ij .

We hence see that subrepresentations of projectives are projectives, and hence
the category RepK(Q) is hereditary, in the sense that every module has projective
and injective dimension at most 1. In other words, every module M admits a
minimal projective resolution of the form

0 // PM1
ιM // PM0

πM // M // 0 (5)

and a minimal injective resolution:

0 // M // IM0
// IM1

// 0. (6)

It is not hard to describe the indecomposable direct summands of PM0 and PM1 :

PM0 =
⊕

i∈Q0
P

[M,Si]
i PM0 =

⊕

i∈Q0
P

[M,Si]
1

i
(7)

where the following shorthand is used and will be used throughout the text

[M,N ] := dim HomQ(M,N) [M,N ]1 := dim Ext1Q(M,N)

for any representations M and N . Similarly,

IM0 =
⊕

j∈Q0
I
[Sj ,M ]
j IM1 =

⊕

j∈Q0
I
[Sj,M ]1

j . (8)

For a Q–representation M, the collection (dimMi)i∈Q0 ∈ Z
Q0

≥0 of non–negative
integers is called the dimension vector of M , and it is denoted in bold by dimM .
Once the dimension vector is fixed, a Q–representation is uniquely determined by
linear maps: this leads us to the variety of Q–representations. Let d = (di)i∈Q0 ∈

Z
Q0

≥0 be a dimension vector. The vector space

Rd :=
⊕

i∈Q0

HomK(Kdi ,Kdi)
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is the variety of Q–representations of dimension vector d. The group

Gd :=
∏

i∈Q0

GLdi(K)

acts on Rd by base change: (gi)α · (Vα)α := (gt(α)Vαg
−1
s(α))α and Gd–orbits are in

bijection with isoclasses of Q–representations.
Given another dimension vector e ∈ Z

Q0

≥0 we consider the vector space of (“de-
gree zero”) K–morphisms

Hom(e,d) =
⊕

i∈Q0

HomK(Kei ,Kdi)

and the vector space of (“degree one”) K–morphisms

Hom(e,d[1]) =
⊕

α∈Q1

HomK(Kes(α) ,Kdt(α)).

Given N ∈ Re and M ∈ Rd we consider the map

ΦMN : Hom(e,d) → Hom(e,d[1]) : (fi)i∈Q0 7→ (Mα ◦ fsα − ft(α) ◦Nα)α∈Q1

This is a linear map between finite dimensional vector spaces and one can show
quite easily (see e.g. [39], [6]):

KerΦMN = HomQ(N,M), CoKerΦMN ≃ Ext1Q(N,M).

From these formulas we immediately get:

dimHomQ(N,M)− dimExt1Q(N,M) = dimHom(e,d)− dimHom(e,d[1]). (9)

We notice: dimHom(e,d) =
∑

i∈Q0
eidi and dimHom(e,d[1]) =

∑

α∈Q1
es(α)dt(α).

In particular, if d is a dimension vector we get

dimHom(d,d[1]) = dimRd. (10)

Given two arbitrary integer vectors e,d ∈ ZQ0 it is hence natural to define the
Euler form of Q as a bilinear form 〈−,−〉Q : ZQ0 × ZQ0 → Z given by

〈e,d〉 :=
∑

i∈Q0

eidi −
∑

α∈Q1

es(α)dt(α).

From (9) above, we immediately get

dimHomQ(N,M)− dimExt1Q(N,M) = 〈dimN,dimM〉. (11)

Formula (11) is called the homological interpretation of the Euler form.
The category RepK(Q) is Krull–Schmidt, in the sense that every finite dimen-

sional Q–representation can be decomposed in an essentially unique way as direct
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sum of its indecomposable direct summands. It is known that a KQ–module M
is indecomposable if and only if EndQ(M) ≃ K (see e.g. [6, Corollary VII.5.14] or
[42, Corollary 4.2, Example 4.2]). A famous theorem of P. Gabriel [27] (see also
[9] for a different proof and [6, Section VII.5] for a survey) states that a quiver Q
admits only a finite number of indecomposable representations if and only if Q is
a Dynkin quiver. As a consequence, we get that if Q is Dynkin, then Rd consists
of finitely many Gd–orbits, and hence, since such orbits are connected and locally
closed, there is one orbit which is dense. The corresponding representation is called
the generic representation of dimension vector d and we denote it by M̃d. The
stabilizer of a point M ∈ Rd is

dim StabGd
(M) = AutQ(M)

where AutQ(M) denotes the open subvariety of HomQ(M,M) consisting of invert-
ible morphisms. In particular, dim AutQ(M) = dim HomQ(M,M). In view of
(10) and (11), we hence get

codimRd
(Gd ·M) = dimRd − dim StabGd

(M) = dim Ext1Q(M,M).

We conclude that the orbit of M is dense in Rd if and only if Ext1Q(M,M) = 0. A

representation M such that Ext1Q(M,M) = 0 is called rigid. We thus reformulate
the above remark by: for Dynkin quivers a representation is generic if and only if
it is rigid.

The second part of Gabriel’s theorem recalled above, states that if Q is a Dynkin
quiver, then the dimension vector restricts to a bijection between the indecompos-
able Q–representations and the positive roots of the root system associated with
the underlying Dynkin graph of Q. Such dimension vector d satisfies the equation
〈d,d〉 = 1. In particular, for such a dimension vector, the generic representation
in Rd is indecomposable.

1.0.1. Almost split sequences. We conclude this section by recalling the fun-
damental notions of irreducible morphism and of Auslander–Reiten quiver of a
quiver Q (see e.g [5], [6]). A morphism f :M → N between two Q–representations
is called irreducible if f is neither mono–spli, nor epi–split (i.e. it does not admit
neither a left nor a right inverse) and whenever there is a factorization f = f2 ◦ f1,
then either f1 is epi–split or f2 is epi–split . It can be shown that if f is an
irreducible monomorphism, then M is indecomposable and, dually, if f is an irre-
ducible epimorphism then N is indecomposable. A short exact sequence

δ : 0 // N
f

// E
g

// M // 0

is called almost split if f and g are irreducible (in particular both N and M are
indecomposable) [5, Proposition V.5.9]. Almost split sequences are characterized
by the following property, which will be used later: the short exact sequence δ is
almost split if and only if it is non–split, both N andM are indecomposable and for
any morphism h : X →M which is not a split–epimorphism, there exists t : X → E
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such that h = g ◦ t. In particular, if δ is an almost split sequence, and M is not a
direct summand of X , then [X,E] = [X,N⊕M ]. Dually, it can be shown that δ is
almost split if and only if it is non–split, both N and M are indecomposable and
for any morphism h : N → X which is not a split–monomorphism, there exists
t : E → X such that h = t ◦ f . A fundamental result of Auslander and Reiten [5,
Theorem V.1.15] states that for every indecomposable M which is not projective,
there exists an almost split sequence δ as above (ending in M), which is unique
up to isomorphism [5, Theorem V.1.16]. One can show that almost split sequences
are rigid, in the sense that they are uniquely determined (up to isomorphisms) by
the three modules N , E and M [5, Proposition V.2.3].

In our situation, which is the case of an hereditary algebra of finite representa-
tion type, the (indecomposable) module N is obtained in the following way from
the (indecomposable non–projective) moduleM : we apply the contra-variant func-
tor HomQ(−, A) : Rep(Q) → Rep(Qop) to the minimal projective resolution (5) of
M and, since HomQ(M,A) = 0, we get

0 // HomQ(P
M
0 , A) // HomQ(P

M
1 , A) // Ext1Q(M,A) // 0

Now we apply the standard K–duality D := HomK(−,K) : Rep(Qop) → Rep(Q)
and get

0 // DExt1Q(M,A) // DHomQ(P
M
1 , A) // DHomQ(P

M
0 , A) // 0. (12)

The composition of endofunctorsD◦Hom(−, A) of RepK(Q) induces an equivalence
ν : Proj(Q) → Inj(Q) between the full subcategory Proj(Q) of projective modules
and the full subcategory Inj(Q) of injective modules. The functor ν is called the
Nakayama functor and it is characterized by the following property

ν(Pj) = Ij (13)

for all j ∈ Q0. The short exact sequence (12) is nothing but the minimal injective
resolution of the A–module DExt1Q(M,A). We claim that N ≃ DExt1Q(M,A). To

convince ourselves that this is true, we notice that, since PM0 is projective, there
is a non–degenerate bilinear map

χ : HomQ(P
M
0 ,M)×HomQ(M, ν(PM0 )) → K

(to see this, consider the linear map ωM : DHomQ(P
M
0 ,M) → HomQ(M, ν(PM0 ))

given by ωM (ψ)(n)(f) := ψ(p 7→ f(p)n). This map is an isomorphism [5, Propo-
sition II.4.4(b)]). Let h ∈ HomQ(M, ν(PM0 )) such that χ(πM , h) 6= 0. Then the
pull–back of (12) by h is an almost split sequence ending in M and hence it is
isomorphic to δ. This shows that N ≃ DExt1Q(M,A). It is customary to denote

τM = N = DExt1Q(M,A) and the almost split sequence ending in M becomes

δ : 0 // τM
f

// E
g

// M // 0. (14)
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To summarize, we have seen that given the minimal projective resolution (5)
of M then the minimal injective resolution of τM is:

0 // τM // ν(PM1 ) // ν(PM0 ) // 0. (15)

This fact will be used in section 5.
To conclude this sub–section we briefly recall the construction of the Auslander–

Reiten quiver of a Dynkin quiver Q. This is a quiver, denoted with ΓQ, whose
vertices are isoclasses of indecomposable Q–representations, and there is an arrow
[M ] → [N ] if there exists an irreducible morphism f : M → N (see e.g. [6,
Section IV.4]). If Q is a connected Dynkin quiver, its AR–quiver is connected
and it is explicitely described as follows. Let Q̂ be the infinite quiver obtained by
“repeating” the opposite quiver Qop: its vertices are pairs (i, k) with i ∈ Q0 and
k ∈ Z; there is an arrow (i; k) → (j; ℓ) if either 1) k = ℓ and there is an arrow j → i
in Q or 2) if j = k + 1 and there is an arrow i→ j in Q. Let τ : Q̂0 → Q̂0 defined
by τ(i; k) := (i; k− 1). The pair (Q̂, τ) is called a translation quiver. Every vertex
of Q̂ lies in a unique τ–orbit. The AR–quiver of Q, is obtained from Q̂ as follows:
consider the set of vertices (i; 0) in the zero copy of Qop. Identify each such vertex
(i; 0) with Pi. Let k(i) be the unique index such that τ−k(i)Pi is injective. Then the
AR–quiver is the full subquiver of Q̂ containing all vertices {(i; k)| 0 ≤ k ≤ k(i)}.
Given a vertex (i; k) of ΓQ we denote byM(i; k) the corresponding indecomposable
module. The almost split sequences have the form

0 // M(i; k) //
⊕

j→i∈Q1

M(j; k)⊕
⊕

i→j∈Q1

M(j; k + 1) // M(i; k + 1) // 0

(16)
I recommend the book [42] for more details about the construction of Auslander-
Reiten quivers of Dynkin quivers.

2. Quiver Grassmannians

LetQ be a finite quiver with n vertices and let A = KQ be the associated (complex)
path algebra. Given a dimension vector d, an A–module M ∈ Rd and another
dimension vector e such that d− e ∈ Z

Q0

≥0, in this section we define the projective
variety Gre(M) whose points parametrize submodules ofM of dimension vector e.
We need to ask ourselves “what is a submodule?”. This question has two answers:
first of all, a submodule is a collection (Ni)i∈Q0 of vector subspaces Ni ⊆ Mi

such that Mα(Ni) ⊆ Nj for every arrow α : i → j of Q. On the other hand, a
submodule N ⊂M can be tought of as an A–module N endowed with an injective
A–morphism ι : N → M . The two answers provide two different realizations of
Gre(M).

2.1. First realization: universal quiver Grassmannians. Let d and e be
two dimension vector for Q such that ei ≤ di for all i ∈ Q0. Let us consider
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the product of usual Grassmannians of vector spaces over the field K of complex
numbers: Gre(d) :=

∏

i∈Q0
Grei (K

di). Given M ∈ Rd(Q) and a point N ∈
Gre(d), the condition that N defines a sub-representation ofM isMα(Nsα) ⊆ Ntα .
We hence consider the incidence variety inside Gre(d)×Rd given by:

GrQe (d) := {(N,M) ∈ Gre(d)×Rd|Mα(Nsα) ⊆ Ntα , ∀α ∈ Q1}. (17)

The variety GrQe (d) is called the universal quiver Grassmannian associated with e,
d and Q. The two projections p1 : Gre(d)×Rd → Gre(d) and p2 : Gre(d)×Rd →
Rd induce two maps

GrQe (d)

pe

yytt
tt
tt
tt
tt pd

##●
●●

●●
●●

●●

Gre(d) Rd

The group Gd acts diagonally on GrQe (d) and the two maps pe and pd are Gd–
equivariant. Since Gre(d) is a projective variety, the map p2 is proper; moreover
GrQe (d) is closed in Gre(d)×Rd and the closed embedding GrQe (d) → Gre(d)×Rd

is proper. It follows that the map pd is proper, being the composition of two proper
maps. Its image is the closed subset of Rd consisting of those points M ∈ Rd

which admit a sub-representation of dimension vector e. The quiver Grassmannian
Gre(M) associated with a point M ∈ Rd is defined as the fiber of pd over M .

As shown in [14, section 2.2], the map pe realizes GrQe (d) as the total space of
an homogeneous vector bundle over Gre(d) of rank

∑

α∈Q1
ds(α)dt(α)+es(α)et(α)−

es(α)dt(α). In particular, GrQe (d) is smooth and irreducible of dimension

dim GrQe (d) = 〈e,d− e〉+ dim Rd.

By upper–semicontinuity of the fiber dimension, we see that for any point M in
the image of pd we have

dim Gre(M) ≥ dim GrQe (d)− dim Im(pd) ≥ 〈e,d− e〉. (18)

Moreover, since pd is Gd–equivariant, the image of pd contains a dense orbit of a
point whose fiber has dimension precisely dim GrQe (d) − dim Im(pd). If such a
dense orbit is the orbit of the rigid representation M̃d of dimension vector d (see
Corollary 3.3 for a criterion for this), then pd is surjective and hence

dim Gre(M̃d) = 〈e,d− e〉.

(For more properties of Gre(M̃d) see Theorem 3.6 below.)
Let D : Rep(Q) → Rep(Qop) be the standard duality which associates to a

Q–representation M its linear dual DM . There is an isomorphism of projective
varieties

ζ : Gre(M) → Grd−e(DM) : L 7→ AnnM (L) := {ϕ ∈ DM |ϕ(L) = 0} (19)
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where d := dim M and e ∈ Z
Q0

≥0 is any dimension vector.

If Q = Q′∪Q′′ is a disjoint union of two sub-quivers, then any Q–representation
M is a direct sum M = M ′ ⊕M ′′ of a representation M’ of Q′ and of a represen-
tation M ′′ of Q′′. Any quiver Grassmannian Gre(M) is a product of the form:

Gre(M) = Gre′ (M ′)×Gre′′ (M ′′). (20)

for some e′ ∈ Z
Q′

0

≥0 and e′′ ∈ Z
Q′′

0

≥0 .

2.2. Second realization: quiver Grassmannians as geometric quotients

and stratification. Following Caldero and Reineke [18], one can realize quiver
Grassmannians as geometric quotients. Recall the two vector spaces Hom(e,d)
and Hom(e,d[1]) of section 1 and the linear map ΦML : Hom(e,d) → Hom(e,d[1])
associated with L ∈ Re(Q) and M ∈ Rd(Q). Let us assume that ei ≤ di for all
i ∈ Q0. Given M ∈ Rd(Q) the algebraic map

ΦM : Re ×Hom(e,d) → Hom(e,d[1]) : (L, f) 7→ ΦML (f)

is used to define the following closed subvariety of Re ×Hom(e,d):

Hom(e,M) := {(L, f) ∈ Re ×Hom(e,d)|ΦML (f) = 0}.

Inside Hom(e,d) there is the open (and dense) subvariety Hom0(e,d) consisting
of collections of injective linear maps; the induced open subvariety Hom0(e,M) :=
Hom(e,M) ∩

(

Re ×Hom0(e,d)
)

is of particular importance for us. Indeed the
map

φ : Hom0(e,M) → Gre(M) : (L, f) 7→ f(L)

is surjective and each fiber of φ is a free orbit for the algebraic group Ge =
∏

i∈Q0
GL(ei) (see [18, Lemma 2]). This implies that the quiver Grassmannian

Gre(M) is a geometric quotient:

Gre(M) ≃ Hom0(e,M)/Ge. (21)

With this formulation, a point p of Gre(M) is represented (up to the Ge–action)
by a pair (L, ι) where L ∈ Re(Q) and ι : L → M is an injective homomorphism
of Q–representations; in this case we use the notation p = [(L, ι)]. As shown by
Caldero and Reineke, formula (21) implies the following description of the (scheme-
theoretic) tangent space Tp(Gre(M)) at a point p of the quiver Grassmannian.

Theorem 2.1. Given M ∈ Rd(Q) and a point p = [(L, ι)] ∈ Gre(M), there is an
isomorphism of vector spaces

Tp(Gre(M)) ≃ HomQ(L,M/ι(L))

where Tp(Gre(M)) denotes the (scheme–theoretic) tangent space at p of Gre(M).
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Remark 2.2. The tangent space formula only holds at level of schemes. The
usual example in this sense is given by considering a regular (indecomposable)
representationR2 of the Kronecker quiver of quasi–lenght 2 whose dimension vector
is (2, 2). The quiver Grassmannian Gr(1,1)(R2) is a point, but the tangent space
has dimension one.

Formula (21) allows to define a stratification of Gre(M) as follows (see [14,
Section 2.3] for more details): let p be the projection from Hom0

Q(e,M) to Re; its

fiber over a point N ∈ Re is the space of injective linear maps Hom0
Q(N,M). For

each isoclass [N ] in Re we can consider the subset S[N ] of Gre(M) corresponding
under the previous isomorphism to p−1(Ge ·N)/Ge. In [14, Lemma 2.4] it is shown
that S[N ] is a locally closed subset of dimension

dim S[N ] = [N,M ]− [N,N ].

In particular, a quiver Grassmannian Gre(M) admits a finite (since Q is Dynkin)
stratification

Gre(M) =
∐

[N ]

S[N ].

The irreducible components of Gre(M) are hence closure of some strata which we
called the generic sub–representation types of Gre(M) (see [16]).

3. Degeneration of Q–representations: Bongartz’s theorem

and applications to quiver Grassmannians

Given M,N ∈ Rd, M is said to degenerate to N and in this case it is customary
to write M ≤deg N , if the closure of the orbit of M contains N :

M ≤deg N
def
⇐⇒ Gd ·M ⊇ Gd ·N.

For arbitrary finite–dimensional algebras, it is a hard problem to control such a
notion. On the other hand, for algebras of finite representation type (i.e. admitting
a finite number of indecomposable modules) the following very useful characteri-
zation holds:

M ≤deg N ⇐⇒ [X,M ] ≤ [X,N ] ⇐⇒ [M,X ] ≤ [N,X ].
∀ X ∈ Rep(Q) ∀ X ∈ Rep(Q)

(22)

For Dynkin quivers this result was obtained by Bongartz [10] (but many other
people should be mentioned here: e.g. Riedtmann [38], Abeasis-Del Fra [1, 2,
3]). The surprising generalization to any algebra of finite representation type was
obtained by Zwara [45] (the second equivalence follows from Auslander–Reiten
theory [45, section 2.2], [4]).

In the analysis of the geometry of quiver Grassmannians developed in collabo-
ration with Reineke and Feigin, the following result of Bongartz played a prominent
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rôle (it is stated below for Dynkin quivers but it holds in full generality): in order
to formulate it we need to recall the notion of a generic quotient from Bongartz’s
paper [10, Section 2.4]. Suppose that U ∈ Re andM ∈ Rd are given, and also that

there exists a monomorphism ι : U → M ; in particular d− e ∈ Z
Q0

≥0 is a dimension
vector. The set of all possible quotients of M by U is an irreducible constructible
subset of Rd−e which is Gd−e–invariant. In particular, since Q is Dynkin, it is the
closure of a Gd−e–orbit of a point S called the generic quotient of M by U .

Theorem 3.1. ([10, Theorem 2.4]) Let M,N ∈ Rd such that M ≤deg N . Let U
be a representation such that [U,M ] = [U,N ] then the following holds:

(1) if U embeds into N , it embeds into M too;

(2) in this case every quotient of N by U is a degeneration of the generic quotient
of M by U.

We immediately get an interesting corollary which says that the generic sub-
representation of a generic representation is generic and its generic quotient is
generic. This was noticed also in the paper of Schofield [41], but the proof that I
give here relies entirely on Bongartz’s theorem. Here is the precise statement:

Corollary 3.2. Let M̃d be a rigid representation of dimension vector d. Let
N ⊆ M̃d be a sub-representation of dimension vector e. Then the rigid represen-
tation M̃e of dimension vector e embeds into M̃d with generic quotient M̃d−e. In
particular, there is a short exact sequence

0 // M̃e
// M̃d

// M̃d−e
// 0 (23)

Proof. For simplicity of notation, we put M := M̃d and L := M̃e. If e is either
zero or d, there is nothing to prove. Thus, let us assume that 0 ( N ( M is a
proper sub-representation of M . Then the quotient of M by the image of the em-
bedding N ⊆ M is a non–zero representation of Q of dimension vector d− e 6= 0

that we denote by the symbol M/N (this notation is misleading since it is not
sensitive to the particular embedding N ⊆ M but it is commonly used). We no-
tice that [N,M/N ]1 = 0: indeed [N,M/N ]1 ≤ [M,M ]1 = 0 (see [18, proof of
Corollary 3]). The representation R := L ⊕M/N is a representation of dimen-
sion vector d and hence M ≤deg R. Since L ≤deg N , in view of (22) , we get
[L,M/N ]1 ≤ [N,M/N ]1 = 0 and hence [L,R]1 = 0. In particular, [L,R] = 〈e,d〉.
In view of (22), we also have [L,M ] ≤ [L,R] = 〈e,d〉 ≤ [L,M ]. In conclusion,
[L,M ] = [L,R] = 〈e,d〉. Since L embeds into R by construction, the first part
of Theorem 3.1 guarantees that L embeds into M too. The second part of The-
orem 3.1 implies that the generic quotient of M by L degenerates to M̃d−e. In
particular the generic quotient of M by L is M̃d−e itself, proving (23).

In corollary 3.2, the non–emptiness of the quiver Grassmannian Gre(M̃d) was
assumed. The next result is a criterion to decide when this is the case.
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Corollary 3.3. Let d, e ∈ Z
Q0

≥0 be two dimension vectors such that d− e ∈ Z
Q0

≥0 is

again a dimension vector. Then the quiver Grassmannian Gre(M̃d) is non–empty
if and only if [M̃e, M̃d−e]

1 = 0.

Proof. Suppose that [M̃e, M̃d−e]
1 = 0. Let us consider the representation R :=

M̃e ⊕ M̃d−e. We have M̃d ≤deg R. It follows that [M̃e, M̃d]
1 ≤ [M̃e, R]

1 = 0 and

hence [M̃e, M̃d] = [M̃e, R] = 〈e,d〉. Since by construction M̃e embeds into R, by
Bongartz’s result, it embeds into M̃d too, proving that Gre(M̃d) is non–empty.

On the other hand, suppose that Gre(M̃d) is non–empty. Then, by corol-
lary 3.2, M̃e embeds into M̃d. Let Q be a quotient of M̃d by an embedding of M̃e.
Then [M̃e, M̃d−e]

1 ≤ [M̃e, Q]1 ≤ [M̃d, M̃d]
1 = 0 as desired.

Corollary 3.3 can be reformulated in terms of generic extensions [37].

Corollary 3.4. If [M̃e, M̃d−e]
1 = 0, the generic extension of M̃d−e by M̃e is M̃d.

Proof. In view of Corollary 3.3, if [M̃e, M̃d−e]
1 = 0 then Gre(M̃d) is non–empty.

In this case, there is a short exact sequence (23) whose middle term is rigid, and
hence its endomorphism ring has minimal dimension (among all the representations
of dimension vector d). In view of [37, Lemma 2.1] the proof is complete.

Remark 3.5. An interesting homological criterion for non–emptiness of a quiver
Grassmannian associated with an arbitrary Q–representation can be found in [33].

The next result collects properties of the quiver Grassmannians associated with
rigid representations of a Dynkin quiver.

Theorem 3.6. Let e,d ∈ Z
Q0

≥0 be dimension vectors such that d − e ∈ Z
Q0

≥0. If

[M̃e, M̃d−e]
1 = 0 then Gre(M̃d) is smooth and irreducible of dimension 〈e,d− e〉.

Proof. Let [(N, ι)] ∈ Gre(M). Since M is rigid, [N,M/ι(N)]1 ≤ [M,M ]1 = 0 and
hence the tangent space at p = [(N, ι)] has dimension [N,M/ι(N)] = 〈e,d − e〉,
proving smoothness. Consider the stratification Gre(M) =

∐

[N ] S[N ]. We know

from Corollary 3.2 that the rigid representation L := M̃e of dimension vector e

embeds into M . From the dimension formula for the strata we get

dim S[N ] = [N,M ]− [N,N ] ≤ [N,M/N ] = 〈e,d− e〉 = [L,M/L] =

[L,M ]− [L,L] = dim S[L].

If equality holds, then [N,M ]−[N,N ] = [N,M/N ] and hence [N,N ]1 ≤ [N,M ]1 =
0, proving that N is rigid and hence isomorphic to L. We conclude that Gre(M) =
S[L] is irreducible.

The next result provides an application of Theorem 3.1 to quiver Grassmanni-
ans which will be used later.
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Corollary 3.7. Let 0 //τM
ι //E

π //M //0 be an almost split sequence.
Then the quiver Grassmannian GrdimM (E) is empty and the quiver Grassmannian
GrdimM (τM ⊕M) is a reduced point. In particular,

dim GrdimM (τM ⊕M) = 1 > 〈dim M,dim τM〉 = −1. (24)

Proof. Since E and M are both rigid, if GrdimM (E) was non–empty, then, by
Corollary 3.2, it would contain M , which is not the case since [M,E] = 0.

The quiver Grassmannian GrdimM (τM⊕M) contains the canonical embedding
of M into τM ⊕ M . Let us show that this is its only point. Let [(N, j)] ∈
GrdimM (τM ⊕M). Suppose that N is not isomorphic to M . Then every map
f : N → M factors through π by the almost split property. In other words, the
map Hom(N, π) : HomQ(N,E) → HomQ(N,M) induced by π is surjective and
its kernel is HomQ(N, τM). From this we see that [N, τM ⊕M ] = [N,E]. By
theorem 3.1 this yields an embedding of N into E, contradicting the emptiness of
GrdimM(E). Thus N ≃ M . Since [M, τM ] = 0, the only embedding of M into
τM ⊕ M is the canonical one, proving that GrdimM(τM ⊕M) is just a point.
The tangent space at this point is isomorphic to HomQ(M, τM) which is zero
dimensional, proving that GrdimM(τM ⊕M) is a reduced point.

In Corollary 3.7 above the specific quiver Grassmannian GrdimM (M ⊕ τM)
was considered. The next result collects properties of the remaining quiver Grass-
mannians associated with M ⊕ τM .

Proposition 3.8. Let M be a non–projective indecomposable Q–representation,
and let e 6= dimM be a dimension vector such that Gre(M ⊕ τM) is non–empty.
Then Gre(M ⊕ τM) is smooth of dimension 〈e,d− e〉 where d := dim(M ⊕ τM).

Proof. For simplicity of notation, we put F := M ⊕ τM . As above, we denote
by E the middle term of a (and hence any) almost split sequence ending in M .
Let p = [(N, j)] ∈ Gre(F ). If every morphism f ∈ Hom (N,M) is not split–epi
(i.e. M is not a direct summand of N) then the almost split property implies that
[N,F ] = [N,E] and N embeds into E (this can be also deduced by Bongartz’s
Theorem 3.1). In particular [N,F/j(N)]1 ≤ [E,F ]1 = 0 and hence p is a smooth
point of Gre(F ).

If there is a homomorphism f ∈ HomQ(N,M) which is epi–split, then M
embeds into N . The quotientN/M is a sub–representation of (M⊕τM)/M ≃ τM ;
in other words N is the middle term of an exact sequence 0 → M → N → U → 0
for some U ⊆ τM . Since [U,M ]1 ≤ [τM,M ]1 = 0, we see that N ≃ M ⊕ U . The
embedding of N into F has the form

j : N =M ⊕ U





1M f
0 g





// F =M ⊕ τM

where g : N → τM is a monomorphism. The quotient F/N is isomorphic to
τM/g(U). Then [N,F/N ]1 = [U ⊕ M, τM/U ]1 = [M, τM/U ]1. If U = τM
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then the point p is clearly smooth. If U is a non–zero proper sub–representation
of τM , then the almost split property implies that τM/g(U) is a quotient of E
and hence [M, τM/U ]1 ≤ [M,E]1 = 0 and p is smooth in this case. If U is the
zero representation, then N = M and e would be equal to dimM , against the
hypothesis. We have shown that for any point p ∈ Gre(F ) the tangent space at
p has dimension equal to 〈e,d− e〉 and hence Gre(M) is smooth of dimension
dim Gre(F ) ≤ Tp(Gre(F )) = 〈e,d − e〉. In particular, we see that if e 6= dimM
is such that Gre(M) is non–empty, then 〈e,d− e〉 ≥ 0. Moreover, in view of (18)
we conclude that dim Gre(F ) = 〈e,d− e〉 as desired.

Remark 3.9. Theorem 4.1 below will imply that Gre(M⊕τM) is also irreducible.

The next result characterizes pairs (e,d) of dimension vectors such that there
exists a quiver Grassmannian Gre(M) associated with a point M ∈ Im p2 ⊆ Rd

which is smooth of minimal dimension.

Proposition 3.10. Let e,d ∈ Z
Q0

≥0 be dimension vectors such that d − e ∈ Z
Q0

≥0.
We consider the subset of Rd given by

Se,d = {M ∈ Rd|Gre(M) is non–empty and smooth of dimension 〈e,d− e〉}.

Then Se,d is non–empty if and only if [M̃e, M̃d−e]
1 = 0. In this case, Se,d is open

and dense in Rd.

Proof. If [M̃e, M̃d−e]
1 = 0 then M̃d ∈ Se,d which is hence non–empty. On

the other hand, let M ∈ Se,d. Then there is a point [(N, j)] ∈ Gre(M). We

have [N,M/j(N)]1 = 0 by assumption. It thus follows that [M̃e, M̃d−e]
1 ≤

[N,M/j(N)]1 = 0.
If Se,d is non–empty, then it contains the open orbit and hence it is dense in

Rd. Moreover, Se,d is (finite) union of Gd–orbits (since the map p2 : GrQe (d) → Rd

is Gd–equivariant) and so is its complement. By upper–semicontinuity of the fiber
dimension and of the dimension of the tangent space we see that the complement
is closed.

4. Main results

This section contains the main results of the paper, already discussed in the intro-
duction. In the whole section Q denotes a Dynkin quiver and a representation of
Q is complex and finite dimensional.

Recall that two projective varietiesX1 andX2 are called deformation equivalent
if they are fibres of a proper smooth family over a connected base space. In this
case X1 and X2 are diffeomorphic but the opposite is not true in general (there
is a vast literature concerning this topic. For high dimension the reader could
look at the classical papers [29, 30], in dimension two there is a more recent paper
by Manetti [31]). In particular X1 and X2 share the same topological invariants
(e.g. Poincaré polynomials, Euler characteristic..) and moreover they also have
the same Hodge numbers (which is not the case for diffeomorphic varieties).
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Theorem 4.1. Let e,d ∈ Z
Q0

≥0 such that d− e ∈ Z
Q0

≥0. Suppose that the set Se,d

defined in Proposition 3.10 is non–empty. Then for everyM1,M2 ∈ Se,d the quiver
Grassmannians Gre(M1) and Gre(M2) are deformation equivalent. In particular,
they are all diffeomorphic, irreducible, with the same Poincaré polynomial and
hence same Euler characteristic. Moreover they have the same Hodge numbers.

Proof. Let us consider the universal quiver Grassmannian GrQe (d) ⊂ Rd ×Gre(d)
and the map pd : GrQe (d) → Rd induced by the projection to Rd. It was already
observed that the map pd is proper and Gd–equivariant. Let us consider the
restriction

pd| : p
−1
d (Se,d) → Se,d.

Since Se,d is non–empty by hypothesis, it is open and dense in Rd, in particular it
is smooth and irreducible. The counterimage p−1(Se,d) is smooth and irreducible
being open and dense in the irreducible smooth variety GrQe (d). The restriction
map pd| is proper, since pd is. By hypothesis, the fiber of pd| over a point N ∈ Se,d

is the quiver Grassmannian Gre(N) which is smooth and of dimension 〈e,d− e〉.
Since the fibers have all the same dimension, pd| is flat (see [32, Corollary of Theo-
rem 23.1]). A proper flat morphism with smooth fibers is smooth [34, Theorem 3’,
Ch. III.10]. This shows that Gre(M1) and Gre(M2) are deformation equivalent.
By Ehresmann’s trivialisation theorem (see e.g. [43, Theorem 9.3]), pd| is locally
trivial, and hence (since Y is connected) its fibers are all diffeomorphic. In partic-
ular, all the fibers share the same topological invariants. They also have the same
Hodge numbers: indeed Hodge numbers are upper semi–continuous and they sum
up to the dimension of the cohomology spaces which are topological invariants.

Remark 4.2. The proof of Theorem 4.1 is inspired by [14, Proof of Theorem 3.2]
where the flatness of a restriction morphism of pd was used to deduce that degen-
erate flag varieties are flat degenerations of flag varieties.

Theorem 4.3. Let 0 // τM
ι // E

π // M // 0 be an almost split sequence in Rep(Q).
Then the quiver Grassmannians Gre(M⊕τM) and Gre(E) are deformation equiv-
alent if e 6= dimM . In particular they are diffeomorphic, χ(Gre(M ⊕ τM)) =
χ(Gre(E)) and they have the same Poincaré polynomial and the same Hodge poly-
nomial.

Proof. In view of Proposition 3.8, Proposition 3.10 and Theorem 4.1, it remains to
prove Gre(E) is non–empty if and only if Gre(M ⊕ τM) is non–empty. Since E is
rigid, if Gre(E) is non–empty then every representation with the same dimension
vector as E admits a subrepresentation of dimension vector e, since the map pd
is surjective in this case. In particular, Gre(M ⊕ τM) is non–empty. Viceversa,
if Gre(M ⊕ τM) is non–empty, then M ⊕ τM belongs to Se,d which is hence
non–empty and contains E in view of Proposition 3.10.

Remark 4.4. The diffeomorphism between Gre(E) and Gre(M ⊕ τM) does not
preserve the sub-representation types, in general. For example, it is not true that
the rigid representation M̃e embeds into M ⊕ τM , even if it does embed into E.
For a counterexample consider the quiver Q : 1 → 2 → 3 and the almost split
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sequence 0 → P2 → P1 ⊕ S2 → I2 → 0. Then Gr(1,1,1)(P1 ⊕ S2) = S[P1] and
Gr(1,1,1)(P2 ⊕ I2) = S[I2⊕S3]. They are both (reduced) points but with different
sub-representation types.

In type A, Theorem 4.3 can be straightened by proving that the two quiver
Grassmannians Gre(E) and Gre(M ⊕ τM) are actually isomorphic. This follows
from the explicit description of the almost split sequences given in [11] (since a
type A quiver algebra is a string algebra) and induction. On the other hand in
type D and hence E this is not the case: the following is a (counter-)example.

Example 4.1. Let
Q : 2

��
1 // 4 3oo

be a quiver of type D4 with subspace orientation. Consider the almost split sequence

0 // (1, 1, 1, 2) // (1, 1, 0, 1)⊕ (1, 0, 1, 1)⊕ (0, 1, 1, 1) // (1, 1, 1, 1) // 0

where the indecomposables are described by their dimension vectors. Let E :=
(1, 1, 0, 1)⊕ (1, 0, 1, 1)⊕ (0, 1, 1, 1) and F := (1, 1, 1, 2)⊕ (1, 1, 1, 1). They have the
following presentations

E : C2









1 0
0 0
0 1









��
C2









1 0
1 1
0 1









// C3 C2








0 0
1 0
0 1









oo

F : C2









1 0
0 0
0 1









��
C2









1 0
1 0
0 1









// C3 C2








0 0
1 0
0 1









oo

Notice that the restriction of both E and F to the sub-quiver of Q obtained by
removing vertex 1 defines the same representation. This is a general fact that
follows from Ringel’s paper [39] (in a previous version of this paper, this fact played
an important rôle). Let us consider dimension vector e = (1, 1, 1, 2). The quiver
Grassmannian Gr(1,1,1,2)(E) is (P2)∨ blown up in the three points P0 = [1 : 0 : 0],

P1 = [1 : −1 : 1] and P2 = [0 : 1 : 0]. On the other hand Gr(1,1,1,2)(F ) is (P2)∨

blown up in the three points Q0 = [1 : 0 : 0], Q1 = [1 : −1 : 0] and Q2 = [0 : 1 : 0].
Notice that the three points P0, P1 and P2 are in generic position while the three
points Q0, Q1 and Q2 are collinear. It follows that they are not isomorphic (to see
this one can notice that Gr(1,1,1,2)(E) is Fano, while Gr(1,1,1,2)(F ) is not).

4.1. Positivity. In this section we prove that quiver Grassmannians which are
smooth of minimal dimension have positive Euler characteristic. This is based on
the following key result.
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Theorem 4.5. For every indecomposable representation M of a Dynkin quiver
Q, and every dimension vector e, the quiver Grassmannian Gre(M) has zero odd
cohomology. In particular, χ(Gre(M)) ≥ 0.

Proof. Since by assumption M is indecomposable, its support is all contained in a
connected subquiver of Q. In particular, we can assume that Q itself is connected.
Let Γ be its AR-quiver. Since Q is connected, Γ is connected. We consider a total
ordering on the set {(i; k)|i ∈ Q0, 0 ≤ k ≤ k(i)} of vertices of Γ generated by the
relation: (i; k) ≤ (j; ℓ) if either k < ℓ or if k = ℓ then there is an arrow i → j in
Qop. We proceed by induction on such an ordering.

If M = M(i; 0) is projective, then the non–empty quiver Grassmannians asso-
ciated with M are points and hence the result holds. We hence proceed by induc-
tion, and we assume thatM =M(i; k) is a non–projective indecomposable module

(hence k > 0) and 0 // τM
ι // E

π // M // 0 is the almost split sequence ending
in it. We prove that Gre(M) has no odd cohomology. Since τM =M(i; k− 1), we
can assume by induction that Grg(τM) has no odd cohomology for every dimen-
sion vector g. Let us show that the same holds for Gre(E). This is based on the
following lemma.

Lemma 4.6. Let N1 and N2 be two rigid Q–representations such that N1 ⊕N2 is
rigid. Let e be a dimension vector such that Gre(N1 ⊕ N2) is non–empty. Then
the Poincaré polynomial of Gre(N1 ⊕ N2) is expressed in terms of the Poincaré
polynomials of the quiver Grassmannians associated with N1 and N2 by the formula

PGre(N1⊕N2)(q) =
∑

f+g=e

q2〈f ,dimN2−g〉PGrf (N1)(q)PGrg(N2)(q) (25)

=
∑

f+g=e

q2〈g,dimN1−f〉PGrf (N1)(q)PGrg(N2)(q)

In particular, if Grf (N1) and Grg(N2) have no odd–cohomology for all f + g = e,
then the same holds for Gre(N1 ⊕N2).

Proof. Recall the following fact (see [7, Section 4] or [28] or [19, Sec. 1]): let X
be a complex, projective and smooth variety on which the one–dimensional torus
T = C∗ acts algebraically. Let XT be the set of T–fixed points. The set XT is
a smooth projective variety whose irreducible components we denote by Vi. Let
Xi = {x ∈ X | limλ→0 λ · x ∈ Vi} be the subset of points of X which are attracted
by points of Vi. The subsets Xi of X form an α–partition (see [19, Sec. 1] or [7,
Section 3]) in the following sense: they can be indexed X1, · · · , Xn in such a way
that X1 ∪X2 ∪ · · · ∪Xi is closed in X for every i = 1, · · · , n. In [7, Theorem 4.3]
it is shown that the map Xi → Vi which sends x 7→ limλ→0 λ · x is a locally trivial
affine bundle (in the Zariski topology) whose fibers are complex affine spaces of
dimension pi. The integer pi is defined as follows: the action of T on X induces
a linear action of T on the tangent space Tp(X) at the fixed points p ∈ XT and
pi is the complex dimension of the subspace where the torus acts with positive
weights (this dimension is locally constant and hence pi is well–defined for any
irreducible component Vi of XT ). Then the Poincaré polynomial of X and the
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Poincaré polynomial of Vi are related by the following formula (see [8] for a proof
over any algebraically closed field)

PX(q) =

n
∑

i=1

t2piPVi
(q). (26)

In particular, formula (26) shows that if XT has no odd cohomology then the same
holds for X .

Let us apply formula 26 in our situation. Following Derksen, Weyman and
Zelevinsky [22, proof of Proposition 3.2], we let the 1–dimensional torus T = C∗

act on N1 ⊕ N2 by λ · (n1, n2) := (n1, λn2) for all n1 ∈ N1 and n2 ∈ N2. This
defines an automorphism of the Q–representation N1 ⊕N2 and hence it descends
to an action of T on the quiver Grassmannian X := Gre(N1 ⊕N2). The space of
T–fixed points is

XT =
∐

f+g=e

Grf (N1)×Grg(N2).

Given a T–fixed point p = (L, j), the torus T acts on the tangent space Tp(X) ≃
Hom (L,N1 ⊕N2/j(L)) by λf(ℓ) := λ · f(λ−1 · ℓ). Since the point p has the form
p = (L1 ⊕ L2, j), where L1 ⊆ N1, L2 ⊆ N2 and j is the diagonal embedding, the
tangent space at p is given by

Tp(X) ≃
⊕

i∈{1,2}

HomQ(Li, N1/L1)⊕HomQ(Li, N2/L2).

By definition, T acts with weight zero on HomQ(L1, N1/L1)⊕HomQ(L2, N2/L2),
with weight 1 on HomQ(L1, N2/L2) and with weight (-1) on HomQ(L2, N1/L1).

Since X is smooth and irreducible, and so are all the quiver Grassmannians
Grf (N1) and Grg(N2), formula (25) is hence an immediate consequence of for-
mula (26), by taking into account the classical Künneth formula to write

PGrf (N1)×Grg(N2)(q) = PGrf (N1)(q)PGrg(N2)(q).

The second equality in (25) is obtained by Poincaré duality.

In view of Lemma 4.6, we see that Gre(E) has no odd cohomology. Indeed,
we write E = E(1) ⊕ · · · ⊕ E(t) as a direct sum of its indecomposable direct
summands (it can be proved that t ≤ 3, but this is not important). In view of
(16), each summand E(j) has the form E(j) = M(kj ; ℓ) with (kj ; ℓ) < (i; k). By
induction we can assume that the quiver Grassmannians associated with E(j) have
no odd cohomology. Lemma 4.6 implies that the same holds true for Gre(E).

We are now ready to prove the statement for M. If e = dimM thenGrdimM(M)
is a point and the result is clear. For every e 6= dimM , by Theorem 4.3, the projec-
tive variety X := Gre(M ⊕ τM) is smooth and irreducible, and it is diffeomorphic
to Gre(E). In particular, this holds if e is a dimension vector such that Gre(M)
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is non–empty. In this case, we have

PGre(E)(q) = PGre(M⊕τM)(q) =

= q2〈e,dimτM〉PGre(M)(q) +
∑

f+g=e, f 6=e

q2〈f ,dimτM−g〉PGrf (M)(q)PGrg(τM)(q)

By inductive hypothesis, the polynomials PGre(E)(q) and PGrg(τM)(q) (for any g)
have no odd powers of q; thus the same holds for PGrf (M)(q) (for any f appearing
in the right hand side), since possible odd powers of Q would appear with the same
sign, and hence cancellation could not occur. In particular, PGre(M)(q) has no odd
powers of q, as desired.

Corollary 4.7. Every quiver Grassmannian Gre(M̃d) associated with the rigid
module in Rd has zero odd cohomology. In particular, χ(Gre(M̃d)) ≥ 0.

Proof. Let M̃d = E(1) ⊕ · · · ⊕ E(s) be the decomposition of M̃d into its inde-
composable direct summands. Lemma 4.6 together with Theorem 4.5 implies the
result.

Corollary 4.8. Let e and d be dimension vectors such that d− e is again a
dimension vector. If [M̃e, M̃d−e]

1 = 0 then every smooth quiver Grassmannian
Gre(M) of dimension 〈e,d− e〉 associated with M ∈ Rd has no odd cohomology.
In particular χ(Gre(M)) ≥ 0.

Proof. In view of Theorem 4.1, Gre(M) is diffeomorphic to Gre(M̃d) which has
the required property in view of Corollary 4.7.

Remark 4.9. The fact that the Euler characteristic of every quiver Grassmannian
of Dynkin type is non–negative was proved by Caldero and Keller [17, Theorem 3]
using Hall algebras and Lusztig’s canonical bases.

The fact that quiver Grassmannians associated with rigid representations of
an arbitrary acyclic quiver have no odd cohomology, was proved by F. Qin in [36,
Theorem 3.2.6] as a consequence of its formula for the quantum F–polynomials
of quantum cluster monomials. A geometric proof of this fact was obtained by
Nakajima [35, Theorem A.1].

4.2. Homology. In this section we analyze the homology groups of the quiver
Grassmannians (of Dynkin type) which are smooth and of minimal dimension.
Recall from [19, Sec. 1.7] that an algebraic variety X is said to have property (S)
if the following two properties are satisfied:

(S1) Hi(X) is zero if i is odd and it has no torsion if i is even;

(S2) the cycle map ϕi : Ai(X) → H2i(X) is an isomorphism for all i.

(HereHi(X) denotes the Borel–Moore i–th homology group and Ai(X) is the group
generated by k–dimensional irreducible subvarieties modulo rational equivalences
(see [25, Sec. 1.3]).)
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Theorem 4.10. Let Q be a Dynkin quiver and let M be an indecomposable Q–
representation. Let e ∈ Z

Q0

≥0 be a dimension vector such that the quiver Grassman-
nian Gre(M) is non–empty. Then Gre(M) has property (S1).

Proof. Since by assumption M is indecomposable, its support is all contained in a
connected subquiver of Q. In particular, we can assume that Q itself is connected.
Let Γ be its AR-quiver. Since Q is connected, Γ is connected and it is acyclic. We
choose a total ordering on the set {(i; k)|i ∈ Q0, 0 ≤ k ≤ k(i)} of vertices of Γ so
that (i; k) ≤ (j; ℓ) if k < ℓ and (i; k) ≤ (j; k) whenever there is an arrow i → j in
Qop. We proceed by induction on such an ordering.

IfM =M(i; 0) is projective indecomposable, then the non empty quiver Grass-
mannians associated with M are points. In particular the claim holds in this case.

We hence assume that M =M(i; k) is not projective (i.e. k > 0), and let

0 → τM → E →M → 0

be the almost split sequence ending in M. If e = dimM , then the quiver Grass-
mannian GrdimM (M) is a reduced point, and the claim holds. We hence fix
e 6= dimM and such that Gre(M) is non–empty. Since Gr0(M) is a point, by
induction we can assume that every non–empty quiver Grassmannian Grf (M) has

property (S1), for every f < e (here f < e means that e− f ∈ Z
Q0

≥0 and e 6= f).
Since τM = M(i; k − 1), the inductive hypothesis guarantees that Grg(τM) has
property (S1) for every g. Let us show that by induction we can also assume that
Gre(E) has property (S1). We decompose E = E(1) ⊕ · · · ⊕ E(t) as direct sum
of its indecomposable direct summands. We let the torus T = C∗ act on Gre(E)
by λ · (x1, x2, · · · , xt) := (λx1, x2, · · · , xt) and we consider the induced α–partition
(since E is rigid, Gre(E) is smooth and irreducible):

Gre(E) =
∐

f

Gre(E)f

where every piece is the total space of an affine bundle

Gre(E)f // // Grf (E(1))×Gre−f (E(2)⊕ · · · ⊕ E(t)).

By (16), E(1), · · · , E(t) correspond to vertices of Γ which are smaller than (i; k),
and hence by induction we can assume that both Grf (E(1)) and Gre−f (E(2)⊕· · ·⊕
E(t)) have property (S1). In particular, their product Grf1(E(1)) ×Grf2 (E(2) ⊕
· · · ⊕E(t)) has property (S1). We will use freely the following well–known fact: if

E // // X is an affine bundle (locally trivial in the Zarisky topology) and X has
property (S) then E has property (S) (see [19, Sec. 1.8]). The stratum Gre(E)f

has property (S1) and hence, by [19, Sec. 1.8], we conclude that the whole variety
Gre(E) has property (S1).

We can now prove that Gre(M) has property (S1). In view of Theorem 4.3,
Gre(E) is diffeomorphic to Gre(M ⊕ τM). In particular, Gre(M ⊕ τM) has
property (S1) and it is smooth and irreducible. We let the torus T = C∗ act on
Gre(M ⊕ τM) by

λ · (m,n) := (m,λn) (27)
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for every λ ∈ C∗, m ∈ M and n ∈ τM . The variety Gre(M ⊕ τM) has a
corresponding α–partition

Gre(M ⊕ τM) =
∐

f

Gre(M ⊕ τM)f

where Gre(M ⊕ τM)f is the total space of an affine bundle

Gre(M ⊕ τM)f // // Grf (M)×Gre−f (τM)

of rank 〈f ,dim τ M − e+ f〉 (see Lemma 4.6). For simplicity of notation, we put
X := Gre(M ⊕ τM). With our choice (27) of the torus action, we see that the
stratum X0 ≃ Gre(τM) is closed in X while the stratum Xe is open in X . We put
U := Xe and we notice that U is the total space of an affine bundle over Gre(M).
The closed complement of U is

Y :=
∐

f<e

X f .

For every f < e the stratum X f is the total space of an affine bundle on Grf (M)×
Gre−f (τM). Since by inductive hypothesis Grf (M) × Gre−f (τM) has property
(S1), each stratum X f has property (S1) and hence Y itself has property (S1).
For every i, we have an exact sequence

H2i+1(X) // H2i+1(U)
h // H2i(Y )

f
// H2i(X)

g
// H2i(U) // H2i−1(Y )

Both X and Y have property (S1). Let us show that the same holds for U . Since
H2i+1(X) = 0 the homomorphism h is injective and hence H2i+1(U) is torsion–
free, being a subgroup of the torsion–free group H2i(Y ). Since there is an affine

bundle U // // Gre(M) and by Theorem 4.5 the base space Gre(M) has no odd

cohomology, we see that also U has no odd cohomology. By Poincaré duality, this
means that H2i+1(U)⊗Q is zero. But since H2i+1(U) is torsion–free, we conclude
that H2i+1(U) = 0. It follows that H2i+1(Gre(M)) = 0. It remains to check
that H2i(Gre(M)) is torsion–free. We cannot see this from the sequence above.
Instead, we change torus action on Gre(M ⊕ τM): for every λ ∈ C∗, m ∈M and
n ∈ τM we define

λ ∗ (m,n) := (λm, n). (28)

The corresponding α–partition is

Gre(M ⊕ τM) =
∐

f

Gre(M ⊕ τM)f

where Gre(M ⊕ τM)f is the total space of an affine bundle

Gre(M ⊕ τM)f // // Grf (M)×Gre−f (τM)



24 Giovanni Cerulli Irelli

of rank 〈e− f ,dimM − f〉 (see Lemma 4.6). This α–partition is dual with respect
to the one above: attracting sets for one action are repulsive sets for the other.
In particular, the closed stratum is now Y ′ := Gre(M ⊕ τM)e ≃ Gre(M). The
complement is the open subset

U ′ := X − Y ′ =
∐

f<e

Gre(M ⊕ τM)f .

For all i, we have an exact sequence:

H2i+1(U
′) // H2i(Gre(M)) // H2i(X).

By induction we can assume that H2i+1(U
′) = 0. It follows that H2i(Gre(M))

is a subgroup of H2i(X) which is torsion–free by assumption. We conclude that
H2i(Gre(M)) is torsion–free and hence Gre(M) has property (S1).

Remark 4.11. I conjecture that Gre(M) has property (S2) as well. An evidence
for this conjecture is given by the fact that the Hodge number hp,q(Gre(M̃d)) = 0
if p 6= q (this can be proved with a similar argument as in Corollary 4.7). Indeed
the image of the cycle map ϕp is always in the (p, p)–component.

What is missing to prove this conjecture, is the fact that such a property is
not preserved under deformation. This is because the chow groups Ai(X) are not
invariant under deformation, while the homology groups are.

In type A, since Gre(E) and Gre(M ⊕ τM) are isomorphic, then this applies.
Actually, for quivers of type A equioriented, a much stronger result is valid: every
quiver Grassmannian admits a cellular decomposition (i.e. an α–partition into
affine spaces) [13, Theorem 12] and a space admitting a cellular decomposition has
property (S) [19, Sec. 1.10]. Caldero and Keller [17] conjecture that this is true
for any Dynkin quiver.

Corollary 4.12. Every smooth quiver Grassmannian (of Dynkin type) of minimal
dimension has property (S1).

Proof. Let M̃d be the rigid Q–represention in Rd and let e be a dimension vector
such that Gre(M̃d) is non–empty. In view of Theorem 4.1 it is enough to prove
that Gre(M̃d) has property (S1). We proceed by induction on the number of
indecomposable direct summands of M̃d. If M̃d is indecomposable, then the claim
is just Theorem 4.10 above. We write M̃d = E(1) ⊕ · · · ⊕ E(t) as a direct sum
of its indecomposable direct summands (t ≥ 2), we let the torus T = C∗ act on
Gre(M̃d) by λ · (x1, x2, · · · , xt) := (λx1, x2, · · · , xt) for any xi ∈ E(i). We consider
the induced α–partition

Gre(M̃d) =
∐

f

Gre(M̃d)
f

where every piece is the total space of an affine bundle

Gre(M̃d)
f // // Grf (E(1))×Gre−f (E(2)⊕ · · · ⊕ E(t))
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(the fact that this is an affine bundle follows from [7] by using that Gre(M̃d) is
a smooth and irreducible projective variety). By induction we assume that both
Grf (E(1)) and Gre−f (E(2) ⊕ · · · ⊕ E(t)) have property (S1). In view of [19,
Lemma 1.9], Gre(M̃d)

f has property (S1). In view of [19, Lemma 1.8] the whole
variety Gre(M̃d) has property (S1).

5. Applications to cluster algebras

In this section we provide a new proof of the formula of Caldero and Chapoton [12].
This formula associates to each indecomposable Q–representation M a Laurent
polynomial CC(M) in n–variables, so that the indecomposables correspond to the
non–initial cluster variables of the cluster algebras associated with Q. The formula
can be formulated in full generality, but we restrict to the coefficient–free setting,
for simplicity. The CC–formula consists of two ingredients: the g–vector and the
F–polynomial of M.

5.1. g–vector of a Q–representation. Let A = KQ be the path algebra of a
Dynkin quiver Q, over the field of complex numbers K. The Grothendieck group
of A, denoted with K0(Q), is, by definition, the free abelian group generated by
isoclasses [M ] of A-modules factored out by the subgroup generated by [L]+ [N ]−
[M ] whenever there is a short exact sequence 0 → L → M → N → 0 in A–mod.
The set of elements [M ] such that M is an indecomposable A–module is denoted
with ind K0(Q). By definition, if M ≃

⊕

M(k)mk is the decomposition of an
A–module M as a direct sum of its indecomposable direct summands, then [M ] =
∑

ak[Mk]. Thanks to the Jordan-Hölder property of A–mod, the set S := {[Si]| i ∈
Q0} of isoclasses of simple A–modules, form a basis of K0(Q) and the coordinate
vector of an element [M ] ∈ K0(Q) in this basis is nothing but its dimension vector
dimM if M ∈ A−mod. We fix the standard basis {αi}i∈Q0 of ZQ0 and the map
[Si] 7→ αi identifies K0(Q) with ZQ0 so that dimM =

∑

i∈Q0
diαi. In view of

its homological interpretation (11), the Euler form descends to a bilinear form on
K0(Q) and hence on ZQ0 . Let H be the matrix representing this form in the basis
S: 〈e,d〉 = etHd. The matrix H = (hij)i,j∈Q0 is given by

hij =







1 if i = j;
−1 if there is an arrow i→ j;
0 otherwise.

Since Q is acyclic, the Euler form satisfies the following identities:

〈[Pi], [Sj ]〉 = (dimPi)
tH dimSj = [Pi, Sj ] = δij (29)

From (29) we see that H is invertible (over Z) and its inverse has the i–th row
equal to dimPi. It is customary to define C = (cij)i,j∈Q0 to be the matrix whose
j–th column is dimPj which means

cij = #{paths from j to i in Q} (30)
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In particular, the k–th row of C is dim Ik so that the transpose matrix, denoted
with Ct, has dim Ik for its k–th column. From the above discussion we have:

CtH = 1. (31)

The matrices C and H = (Ct)−1 are respectively called the Cartan matrix and
the Euler matrix of Q (see e.g. [6] or [42]). Notice that C does not coincide with
the Cartan matrix of the Lie algebra associated with Q.

Since C is invertible (over Z), both the set P = {[Pi] ∈ K0(Q)| i ∈ Q0} of
isoclasses of projective indecomposables and the set I = {[Ij ]| j ∈ Q0} of isoclasses
of injectives indecomposables form a basis of K0(Q) (equivalently, this can be
deduced by the fact that every M ∈ A–mod admits an essentially unique minimal
projective and minimal injective resolution). We put ωj := [Ij ] so that the group
K0(Q) is identified with the lattice

⊕

j∈Q0
Zωj with respect to the basis I. This

choice is motivated by the standard convention in Lie theory that fundamental
weights are {ωi} while simple roots are {αi} (see Remark 5.2).

Definition 5.1. Let X ∈ K0(A). The g–vector or index of X, denoted with gX ,
is the coordinate vector of −X in the basis I.

The name g–vector comes from the Fomin–Zelevinsky theory of cluster algebras
(see [26]).

Remark 5.2. The reason why we put a minus sign in the definition of gM is that
we want gIj = −ωj. As explained in [44], g–vectors should be thought as weights,
while dimension vectors as roots.

One can be more explicit, and in view of (6), [M ] = [IM0 ] − [IM1 ] for any
M ∈ A–mod, we get the explicit formula for the i–th coordinate of gM :

(gM )i = −[Si,M ] + [Si,M ]1 = −〈Si,M〉.

Lemma 5.3. Let 0 // A
ι // B

π // C // 0 be a short exact sequence in Rep(Q).
Then gB = gA + gC. In particular, for any M and N

gM⊕N = gM + gN . (32)

Proof. The i–th component of gB equals −〈Si, B〉 which equals −〈Si, A〉 − 〈Si, C〉
(to see this, apply the covariant functor Hom (Si,−) to the given exact sequence).

By definition, dimM and −gM are the coordinate vectors of [M ] respectively
in the basis S and in the basis I of K0(Q). Since the columns of Ct are the
coordinate vectors of the elements of I in the basis S, and H is its inverse, we get

gM = −HdimM. (33)

Dually to the notion of an index, or g–vector, is the notion of the coindex.
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Definition 5.4. The coindex of [M], denoted with gM , is the coordinate vector
of −[M ] ∈ K0(A) in the basis P .

The following result establishes a relation between index, coindex and τ .

Lemma 5.5. For every indecomposable non–projective representation M we have

gτM = −gM = Ht dimM. (34)

Proof. In view of (7) we get (gM )i = −〈M,Si〉 = −di+
∑

j→i dj = −
∑

hjidj and

hence gM = −Ht dimM . The first equality follows from (15), using (13).

Corollary 5.6. For any indecomposable non–projective module M, we have

dimτM = −(H−1)(Ht)dimM (35)

gτM = −(C−1)(Ct)gM . (36)

The matrix Φ := −(H−1)(Ht) is called the Coxeter matrix of Q. The reason for
this name is the following: if M is non projective, then both dimM and dimτM
are roots for the underlying Dynkin diagram of Q. Let s1, · · · sn be the simple
reflections generating the corresponding Weyl group W. The possible orientations
of the underlying Dynkin diagrams are in bijection with the Coxeter elements of
W, which are the elements c = si1si2 · · · sin for all possible ik 6= iℓ ∈ [1, n]: given
an orientation Q

c−1
Q := cQ′ ◦





∏

i∈Q0:i is a sink

si





where Q′ is obtained from Q by removing all the sinks. For example

4

Q : 1 // 2 // 3

88♣♣♣♣♣♣

&&◆◆
◆◆

◆◆ c−1
Q = s1 ◦ s2 ◦ s3 ◦ s4 ◦ s5

5

where the Weyl group acts on the roots as functions. Then it can be proved that

dim τM = c−1
Q (dim M) (37)

and also
gτM = c−1

Q (gM ) (38)

Remark 5.7. Equation 37 provides a convenient way to compute dim τM : indeed
for any vertex i,

dim (si(d))j =

{

dj if j 6= i
−di +

∑

(k−i)∈Q1
dk if j = i

We are now ready to compare gτM and gM , for any indecomposable non–
projective A–module M . We need the following definition



28 Giovanni Cerulli Irelli

Definition 5.8. The exchange matrix of Q is the matrix B := H −Ht.

From the definition, it follows that the ij–entry bij of the matrix B is given by
bij = #{j → i ∈ Q1} −#{i → j ∈ Q1} (for i, j ∈ Q0)

1. Once again, the name of
B comes from the Fomin–Zelevinsky theory of cluster algebras.

Theorem 5.9. For any indecomposable non–projective A–module M, we have

gM + gτM + B dimM = 0 (39)

Proof. In view of (33) and (34), we have:

BdimM = HdimM −Ht dimM = −gM − gτM .

5.2. F–polynomial of a Q–representation. Given a Q–representation N , its
F–polynomial is the generating function of the Euler characteristic of the quiver
Grassmannians associated with N:

FN (y1, · · · , yn) :=
∑

e∈Z
Q0
≥0

χ(Gre(N))ye

where ye :=
∏

i∈Q0
yeii . Let us discuss some properties of F–polynomials. First

of all, since isomorphic representations have isomorphic quiver Grassmannian, the
F–polynomial FM is constant along the isoclass of M. The definition is formally
extended to the elements {−[Pi]| i ∈ Q0} by declaring

F−[Pi](y) := 1, (∀i ∈ Q0). (40)

Proposition 5.10. For any M,N ∈ A–mod, FM⊕N = FMFN .

Proof. This proof is due to Derksen–Weyman–Zelevinsky [22]. The 1–dimensional
torus T = C∗ acts onM⊕N by λ·(m,n) := (m,λn). This defines an automorphism
of M ⊕ N and hence it descends to an action of T on the quiver Grassmannian
Gre(M ⊕N). The T–fixed points are direct sums of subrepresentations of M and
of N: Gre(M⊕N)T =

∏

f+h=eGrf (M)×Grh(N). In particular, χ(Gre(M⊕N)) =

χ(Gre(M ⊕N)T ) =
∑

f+h=e χ(Grf (M))χ(Grh(N)) which proves the proposition.

Remark 5.11. Proposition 5.10 should be compared with Lemma 4.6. While in
Proposition 5.10 there are no assumptions on M , N and M ⊕ N , this is not the
case for Lemma 4.6: the reason is that the Euler characteristic of a projective
varieties on which a torus acts equal the Euler characteristic of the space of T–
fixed points, with no assumptions on X. But in Lemma 4.6 it was needed that the
quiver Grassmannians associated with M , N and M ⊕N were all smooth.

1In the original paper of Caldero and Chapoton [12], the authors made dual choices: they
defined the g–vector of M as what I define to be the coindex of M . In order to make theorem 5.9
working, this definition lead them to work with the opposite exchange matrix. Nowadays, after
the work of Derksen-Weyman-Zelevinsky [21, 22] it is customary to associate to Q the exchange
matrix as in definition 5.8, and this motivates my choice of the definition of g.
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Theorem 5.12. For any almost split sequence 0 // τM
ι // E

π // M // 0 the fol-
lowing formula holds:

FM (y)FτM (y) = FE(y) + ydim M . (41)

Proof. In view of Proposition 5.10, FM⊕τM = FMFτM . The rest follows by Theo-
rem 4.3:

FM⊕τM (y) =
∑

e

χ(Gre(M ⊕ τM))ye

=
∑

e6=dimM

χ(Gre(E))ye + ydimM

= FE(y) + ydimM .

5.3. CC-formula. We begin the section by recalling the CC–formula, formulated
in terms of g–vectors and F–polynomials.

Definition 5.13. Given aQ–representationM , the Laurent polynomial CC(M) ∈
Z[x±1

1 , · · · , x±1
n ] (where n = |Q0|) is defined as follows

CC(M) = FM (xB
1

, · · · ,xB
n

)xgM

where B1, · · · , Bn are the n columns of the matrix B (see definition 5.8). More
explicitly

CC(M) =
∑

e∈Z
n
≥0

χ(Gre(M))xBe+gM . (42)

Remark 5.14. In view of Corollary 3.3 formula (42) can be refined as follows: if
M ≃ M̃d is rigid (in particular if M is indecomposable), then

CC(M) =
∑

e: [M̃e,M̃d−e]1=0

χ(Gre(M))xBe+gM .

Proposition 5.15. Given two Q–representations M and N , we have

CC(M ⊕N) = CC(M)CC(N).

Proof. Since FM⊕N = FMFN (by Proposition 5.10) and gM⊕N = gM + gN (by
Lemma 5.3), the result follows.

Theorem 5.16. (1) For every k ∈ Q0

CC(Ik)xk = (
∏

k→i

xi)(
∏

j→k

CC(Ij)) + 1. (43)
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(2) For any almost split sequence 0 // τM
ι // E

π // M // 0 starting in a non–
injective module τM :

CC(τM)CC(M) = CC(E) + 1. (44)

In particular, the set {CC(M)|M ∈ ind(Q)} ∪ {xi| i ∈ Q0} is the set of all
cluster variables of the (coefficient–free) cluster algebra associated with Q and (43)–
(44) are all the primitive exchange relations.

Proof. (1) The simple module Sk is the socle of Ik and hence Sk is a sub-
representation of any non–zero sub-representation of Ik. We denote by R
the corresponding quotient. It is immediate to see that R ≃

⊕

j→k Ij . We
have

CC(Ik) = xgIk

(

∑

e

χ(Gre(Ik))x
Be

)

= x−1
k

(

∑

e=e′+dimSk

χ(Gre′ (R))xBe′+BdimSk + 1

)

= x−1
k





∑

e′

χ(Gre′ (R))xBe′ ∏

j→k

x−1
j

∏

k→i

xi + 1





= x−1
k

(

∑

e′

χ(Gre′ (R))xBe′+gR

∏

k→i

xi + 1

)

= x−1
k

(

CC(R)
∏

k→i

xi + 1

)

.

and (43) follows from Proposition 5.15 (in the third equality the definition
of the matrix B has been used).

(2) In view of Proposition 5.15, CC(M ⊕ τM) = CC(M)CC(τM). We have:

CC(M ⊕ τM) = FM⊕τM (xB
1

, · · · ,xB
n

)xgM⊕τM

= (FE(x
B1

, · · · ,xB
n

) + xBdimM )xgM⊕τM

= FE(x
B1

, · · · ,xB
n

)xgE + xBdimM+gM+gτM

= CC(E) + 1.

The second equality follows from (41); the third one follows from Lemma 5.3;
the last equality follows from Theorem 5.9.

In view of [44, Theorem 1.5] and (38), equations (43) and (44) are precisely
the primitive exchange relations of the (coefficient–free) cluster algebra associated
with Q and hence the last statement follows by induction.
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[33] K. Möllenhoff, M. Reineke, Embeddings of representations, Algebr Represent Theory
18 (2015), 977–987.

http://arxiv.org/abs/1206.4178
http://arxiv.org/abs/1209.3960
http://arxiv.org/abs/1112.3601


Quiver Grassmannians of Dynkin type 33

[34] D. Mumford, The red book of varieties and schemes. Second, expanded version. Lec-
ture Notes in Mathematics 1358 (1999).

[35] H. Nakajima, Quiver varieties and cluster algebras. Kyoto J. Math. 1 (2011). 71–126.

[36] F. Qin, Quantum cluster variables via Serre polynomials. With an appendix by Bern-

hard Keller. J. Reine Angew. Math. 668 (2012). 149–190.

[37] M. Reineke, Generic extensions and multiplicative bases of quantum groups. Repre-
sentation Theory 5 (2001). 147–163. J. Algebra 320 (2008), no. 1, 94–115.

[38] C. Riedtmann, Degenerations for representations of quivers with relations, Ann. Sc.
ENS 2 (1986), 275–301.

[39] C. M. Ringel Tame algebras and integral quadratic forms, Lecture Notes in Mathe-
matics 1099 (1984).

[40] C. M. Ringel Distinguished bases of exceptional modules. Algebras, quivers and rep-
resentations, Abel Symp. 8 (2013). 253–274.

[41] A. Schofield, General representations of quivers, Proc. London Math. Soc. (3) 65

(1992), no. 1, 46–64.

[42] R. Schiffler, Quiver Representations, CMS Books in Mathematics (2014). Springer.

[43] C. Voisin, Hodge Theory and Complex Algebraic Geometry I: Volume 1.

[44] S. W. Yang, A. Zelevinsky, Cluster algebras of finite type via Coxeter elements and

principal minors. Transform. Groups 13 (2008). 855–895.

[45] G. Zwara, Degenerations for modules over representation–finite algebras. Proc. AMS
127 (1999). 1313–1322.

Giovanni Cerulli Irelli, Dipartimento di Matematica “G. Castelnuovo”, Sapienza–
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