33,508 research outputs found

    Key Action Extraction for Learning Analytics

    Get PDF
    Proceedings of: 7th European Conference on Technology Enhanced Learning (EC-TEL 2012): 21st Century Learning for 21st Century Skills. SaarbrĂŒcken, Germany, September 18-21, 2012.Analogous to keywords describing the important and relevant content of a document we extract key actions from learners' usage data assuming that they represent important and relevant parts of their learning behaviour. These key actions enable the teachers to better understand the dynamics in their classes and the problems that occur while learning. Based on these insights, teachers can intervene directly as well as improve the quality of their learning material and learning design. We test our approach on usage data collected in a large introductory C programming course at a university and discuss the results based on the feedback of the teachers.Work partially funded by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 231396 (ROLE project), the Learn3 project (TIN2008-05163/TSI), the eMadrid project (S2009/TIC-1650), and the AcciÂŽon Integrada DE2009-0051.Publicad

    Text Analytics for Android Project

    Get PDF
    Most advanced text analytics and text mining tasks include text classification, text clustering, building ontology, concept/entity extraction, summarization, deriving patterns within the structured data, production of granular taxonomies, sentiment and emotion analysis, document summarization, entity relation modelling, interpretation of the output. Already existing text analytics and text mining cannot develop text material alternatives (perform a multivariant design), perform multiple criteria analysis, automatically select the most effective variant according to different aspects (citation index of papers (Scopus, ScienceDirect, Google Scholar) and authors (Scopus, ScienceDirect, Google Scholar), Top 25 papers, impact factor of journals, supporting phrases, document name and contents, density of keywords), calculate utility degree and market value. However, the Text Analytics for Android Project can perform the aforementioned functions. To the best of the knowledge herein, these functions have not been previously implemented; thus this is the first attempt to do so. The Text Analytics for Android Project is briefly described in this article

    Social media analytics: a survey of techniques, tools and platforms

    Get PDF
    This paper is written for (social science) researchers seeking to analyze the wealth of social media now available. It presents a comprehensive review of software tools for social networking media, wikis, really simple syndication feeds, blogs, newsgroups, chat and news feeds. For completeness, it also includes introductions to social media scraping, storage, data cleaning and sentiment analysis. Although principally a review, the paper also provides a methodology and a critique of social media tools. Analyzing social media, in particular Twitter feeds for sentiment analysis, has become a major research and business activity due to the availability of web-based application programming interfaces (APIs) provided by Twitter, Facebook and News services. This has led to an ‘explosion’ of data services, software tools for scraping and analysis and social media analytics platforms. It is also a research area undergoing rapid change and evolution due to commercial pressures and the potential for using social media data for computational (social science) research. Using a simple taxonomy, this paper provides a review of leading software tools and how to use them to scrape, cleanse and analyze the spectrum of social media. In addition, it discussed the requirement of an experimental computational environment for social media research and presents as an illustration the system architecture of a social media (analytics) platform built by University College London. The principal contribution of this paper is to provide an overview (including code fragments) for scientists seeking to utilize social media scraping and analytics either in their research or business. The data retrieval techniques that are presented in this paper are valid at the time of writing this paper (June 2014), but they are subject to change since social media data scraping APIs are rapidly changing

    Towards Structured Analysis of Broadcast Badminton Videos

    Full text link
    Sports video data is recorded for nearly every major tournament but remains archived and inaccessible to large scale data mining and analytics. It can only be viewed sequentially or manually tagged with higher-level labels which is time consuming and prone to errors. In this work, we propose an end-to-end framework for automatic attributes tagging and analysis of sport videos. We use commonly available broadcast videos of matches and, unlike previous approaches, does not rely on special camera setups or additional sensors. Our focus is on Badminton as the sport of interest. We propose a method to analyze a large corpus of badminton broadcast videos by segmenting the points played, tracking and recognizing the players in each point and annotating their respective badminton strokes. We evaluate the performance on 10 Olympic matches with 20 players and achieved 95.44% point segmentation accuracy, 97.38% player detection score ([email protected]), 97.98% player identification accuracy, and stroke segmentation edit scores of 80.48%. We further show that the automatically annotated videos alone could enable the gameplay analysis and inference by computing understandable metrics such as player's reaction time, speed, and footwork around the court, etc.Comment: 9 page
    • 

    corecore