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Abstract. Analogous to keywords describing the important and relevant content
of a document we extract key actions from learners’ usage data assuming that they
represent important and relevant parts of their learning behaviour. These key actions
enable the teachers to better understand the dynamics in their classes and the
problems that occur while learning. Based on these insights, teachers can intervene
directly as well as improve the quality of their learning material and learning
design. We test our approach on usage data collected in a large introductory C
programming course at a university and discuss the results based on the feedback of
the teachers.
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1 Introduction

In order to support students within a course – guiding them when they are on
the wrong track, giving advice even when they cannot ask precise questions and
general troubleshooting – teachers must be aware of what the students are doing
and have been doing so far. In other words: the teachers need information on
the students’ activities. Such information is also needed for the evaluation of
a course, its didactic concept and the materials provided, including contents,
tools and tests. Information on the students’ activities gives insights into which
materials actually have been used and which have not, when troubles occurred,
when the students started their work and in which parts of the course they got
stuck, etc. Such information can be referred to for optimising the course and
thus supporting the learning process.

One can monitor the students’ activities and list them in one large file. This
file, however, will contain more information than teachers and students can effec-
tively evaluate. It will therefore meet neither the needs of the teachers nor those
of the students. This is where learning analytics comes in as Siemens and Long
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explain [1]. A distillation of the recorded data is required, so that irrelevant in-
formation is filtered out and information overload is avoided. The question now
is which means of data distillation are useful and help students and teachers in
mastering their tasks.

This paper deals with one particular means of data distillation, namely the
extraction of key actions and key action sequences. We claim the hypothesis
that key action extraction is a very useful form of data distillation. We prove
our hypothesis by implementing the approach in a larger test bed, namely an
introductory programming course with theoretical lectures and practical lab ses-
sions. The course was held in the fall semester of 2011 at the Universidad Carlos
III de Madrid (UC3M), Spain.

The rest of this paper is structured as follows: in section 2, we will
describe background, related work and previous experiments. We will then re-
port on the evaluation of the approach within a larger test bed, namely the al-
ready mentioned course on C programming (section 3). Section 4 will deal with
the implementation of key action extraction and the setting of parameters for
the test bed. In section 5, we will report on the insights the teachers got from
the key actions and thus qualitatively evaluate the approach. Finally, in section
6 we will summarise and give an outlook on future work.

2 Related Work and Linguistic Background

2.1 User Monitoring and Learning Analytics

Many university courses consist of self-regulated learning activities. The students
take over responsibility for planning and reflecting these activities. Being aware
of one’s own activities is a prerequisite for reflection. In [2], we have shown that
one way of helping a learner to become aware of his actions and learning processes
is to record and store his interaction with his computer and to then analyse the
collected data. Results of these analyses can on the one hand be used to foster
his self-reflection processes or on the other hand to give recommendations, e.g.
of further steps in his current learning scenario. The same applies to teachers.

If the number of students in a course is high and the tasks the students are en-
gaged in are not trivial, then the teachers need assistance for keeping track of the
students’ activities. They cannot constantly observe their students themselves.
It will be of great advantage for them if monitoring is supported automatically.
A survey conducted by Zinn and Scheuer [3] about the requirements of student
tracking tools showed that aspects such as competencies, mastery level of con-
cepts, skills, success rate and frequent mistakes are seen as highly important to
teachers. Many teachers said that employing student tracking would allow them
(the teachers) to be able to adapt their teaching to the behaviour of the students
and to identify problems in the students’ learning processes.

Several approaches deal with the creation of feedback for the teacher to enable
him to improve the quality of his courses. Kosba et al. [4] for example developed
the TADV (Teacher ADVisor) framework which uses data collected by a course
management system to build student models and a set of predefined rules to
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recognise situations that require teachers’ intervention. Based on the student
models and the rules, the framework creates advice for the teacher as well as
a recommendation for what is best to be sent to the students. Similar to our
approach, the goal of this framework is to enable the instructors to improve
their feedback and guidance to students. However, our approach does not use
predefined rules as we do not want to force the instructor to perform a specific
action but to enable him to get new insights into the learning behaviour of his
students and thus to rethink and improve his teaching.

The CourseVis system also visualises data taken from a courses management
system [5]. It addresses social, cognitive and behavioural aspects of the stu-
dents’ interaction with the course management system. While the discussion
graph visualises the number of threads started and their number of follow-ups
per student, the discussion plot shows originator, date, topic and number of
follow-ups in a scatterplot. The visulisations of the cognitive aspects maps stu-
dents’ performance to the course’s concepts and another visualisation deals with
the students’ access times. While these details can be very useful for teachers,
CourseVis only depicts the students’ interaction with the course management
system and does not take other tool interactions into account.

Another relevant tool is the LOCO-Analyst by Jovanovic et al. [6] which is an
educational tool that can be embedded in various LCMSs to analyse the usage
data of learners. It has the goal to provide teachers with meaningful feedback
about the users’ interaction with the learning content. The teacher is for exam-
ple informed about the average time the students spent on each learning object.
When quizzes about the learning content are provided, the teacher gets detailed
feedback about the incorrect answers per question and which questions are the
toughest ones, as they have an error rate above the average. As with our ap-
proach, the LOCO-Analyst does not provide real time help, but tries to help the
teacher to improve the quality of his learning content and learning design. Even
though the LOCO-Analyst considers a lot of event types for its analysis, it does
not create and use sequences of events so far, which we assume give the teachers
of a course a better insight into the learning behaviour.

2.2 User Observation and Key Action Extraction

For our approach we make use of the contextualised attention metadata (CAM)
schema that allows for describing a user’s interaction with digital content [7]. The
schema is event centered and is thus well suited for the evaluation and analysis of
a user’s entire computer usage behaviour. The schema has evolved over years and
can be subject to further change in the future.1 Analysing collected CAM can for
example result in an overview of actions taking place in the environment or the
discovery of changes, trends, etc. in usage behaviour. In controlled environments,
e.g. formal learning, where activities are often scheduled, it can be useful to know
what takes place when. In less controlled environments, e.g. informal or blended
learning, CAM analyses can help to understand when users are active.

1 The latest version is available at https://sites.google.com/site/camschema/
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The concept of a key action is best described in analogy to a key word: a
list of key words is a superficial but albeit highly useful semantic representation
of a text [8]. The keywords of a text are those content words (or sequences of
words) that are significant for the content of the entire text and by which the
text can be distinguished from other texts. They do not exhaustively describe
what the text is about but still give a clear impression of its theme. Knowing
a text’s keywords, one can capture the essence of a text’s topic and grasp the
essential information the text is trying to pass along. In analogy, key actions
are those actions that are significant for an underlying set of actions and that
give an impression of what has happened. We deem key actions to represent the
session they are taken from (with a session being anything from a few minutes
or hours up to days, weeks, months, etc.). Key actions (or key action sequences
as a parallel to key phrases) indicate what a user has been doing. They give
an overview of the essential activities. By no means can they be exhaustive but
they provide a superficial yet almost noise-less impression.

Let it be given that we recorded all actions of one student in one practical
session. From these we extract the key actions which, so the idea, gives us an
impression of what the student essentially did in this session. The approach
we apply for the analysis of usage data in order to detect meaningful patterns
is the so called n-gram approach [9], followed by a ranking approach, namely
tf*idf weighting, with tf being the term frequency and idf the inverse document
frequency [10]. The following formula shows how the weight of a word can be
calculated in more detail, with wi,j being the weight of word j in document
i, ti,j being the term frequency of word j in document i, fi being the number
of documents containing word j and N being the number of documents in the
collection: wi,j = ti,j · logN

fj
.

We use the tf*idf algorithm to weight extracted key actions based on two
assumptions: First, if a collection of sessions contains a specific key action more
often than another collection of sessions, then this key action is more relevant
to the first set of sessions and gets a higher weight. Second, if a key action does
not appear as often in the collection of sessions as other actions, it should also
get a higher weight in the session it does appear in.

In the fall semester 2010 we ran a first round of tests to extract key actions
from CAM collected during a C programming course at UC3M [11]. The collected
interactions were gathered from a virtual machine with programming tools and
the forum interactions of the learning management system at the time. All cal-
culations were done on the basis of the whole course, i.e. taking all sessions from
all students into account at the same time. These first results were deemed useful
by the teaching staff and thus some events were analysed in a more detailed way
to find frequent error patterns.

The promising results motivated us to continue with our approach. Instead
of only analysing the whole course at the same time, we wanted to make the
available results more diverse and more detailed. We therefore again deployed
our approach during a second year C programming course at the Universidad
Carlos III de Madrid. This time, however, we look at the whole course as well
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as the different lecture degrees, lab sections, teams and individual students in
order to provide teachers with an even better idea of where their students are
at and how their learning processes can be supported.

3 Application of Key Action Extraction in Detail

3.1 A C Programming Course

We use the introductory C programming course at the Universidad Carlos III
de Madrid as a testbed to test our approach more diversely. The course has four
main objectives: The students are supposed to learn to write applications in C
with non trivial data structure manipulation and they are told to use industry-
level tools such as compiler, debugger, memory profiler and version control to get
familiar with it. Additionally, they work in teams and need to create their own
plans, divide tasks, solve conflicts etc. Finally, the course is assumed to increase
the self-learning capability of the students.

The course is split into two halves. In the first half of the course, the students
attend theoretical lectures to get a basic understanding of the programming
language and start to program in teams of two in supervised lab sessions. In the
second half they are split into larger groups of 4 - 5 people and work together on
larger projects. Altogether, 10 instructors work on supervising the course, all of
them having at least a master’s degree and 4 of them being professors. For the
theoretical lecture units, the students are divided into 5 groups that are taught
by the professors. For the lab sessions, they are divided into 11 groups that are
supervised by the 10 instructors.

At the beginning of the course, the students are offered a Virtual Machine that
is already pre-configured. It is a UNIX-based system having the compiler, text
editor, debugger and memory profiler – that the students are supposed to use
– already installed among additional standard tools, e.g. a browser. Within the
Virtual Machine, the main events we consider to be important for further analysis
are logged and whenever a student uses the subversion system to download a
document or upload own material, the collected events are uploaded and stored
in a central database (see [12] and [13] for further details). It is important to
mention that the students are well informed about the data collection process
and are reminded of it every time they open the Virtual Machine. If they do not
want to be monitored, they are able to easily stop it without stopping the use
of the Virtual Machine.

For registered students, the course material, i.e. documents, exercises and C
files, is accessible via an Apache Server. Every time a page is served, a new
log entry is created that can be analysed to extract the events. Additionally,
the forum functionalities of the learning platform Moodle are used to offer the
students a place to discuss problems and ideas. Given that Moodle offers the
teacher the possibility to download all events that took place within a course
in Excel format, the forum events can easily be extracted. For the Apache and
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Moodle Logs, the students are not able to stop the logging themselves but they
are informed about the analysis and can write an e-mail to their teacher stating
that they do not want to have their data stored which are then not considered
for the analysis.

Altogether, we were able to monitor 33 different event types from three dif-
ferent sources. For the complete course, we collected approximately 340,000
(156,000 first half / 184,000 second half)2 conducted by 332 distinct students in
the period from September 5, 2011, until December 18, 2011.

3.2 Events That Are Monitored

Accessing Web Pages. The course material is accessible to logged in and
authorised students. Every time a page is served, a new log entry is written
which comprises the time stamp, the user identifier, the IP address, the URL
served and the HTTP code. For the following analysis only the successful events
are considered, as most of the failed access attempts are due to the reason that
a student was not logged in or tried to log in with a false user name or password.
Certainly, the students do not only access the course material while learning or
programming. They also search for related material, forums that answer their
questions or code snippets they can use; additionally, they browse the web for
private purposes during breaks. This data is collated using the Virtual Machine
that is offered at the beginning of the course and captures the use of the browser
as well as of other main tools. Altogether, we were able to collect 131,071 (68,130
/ 62,941) web page accesses.

Program, Compile and Debug. The students were told to use the text editor
KATE to write their programs as they are supposed to learn to code from scratch
in the introductory course without any help from a development environment.
Within the Virtual Machine it is stored whenever KATE is opened or closed, but
no further information, e.g. about the file that is opened or actions that are per-
formed within KATE, are logged. The students are also expected to learn how
to use gdb as debugger to find problems in the code and Valgrind as memory
profiler to find memory leaks. As for KATE, it is only stored when the debugger
or memory profiler are opened, respectively closed. When the students compile
their code using gcc, the compile command is extracted from the command line
in the shell including the file that is compiled as well as the resulting warning and
error messages. These messages are stored as well, as they keep a lot of insight
for the students themselves, e.g. for self-reflection, as well as for the teachers,
e.g. to understand with which errors the students get stuck or which warnings
they just ignore [11]. With 87,148 (23,298 / 63,850) occurrences, the compile
event is the most frequent one in this category, followed by the text editor
KATE which was invoked 27,363 (6,875 / 20,488) times. Interestingly, with

2 If not otherwise indicated, the format of giving the numbers for the whole course
followed by the numbers for the first and the second half of the semester in brackets
is continued for the rest of this paper.
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Fig. 1. Screen capture of a Quiz in the Learning Material

13,591 (1,081 / 12,510) accesses, the memory profiler is more often used than
the debugger that was only accessed 2,838 (583 / 2,255) times.

Answering Quizzes in the Learning Material. Some of the learning re-
sources contain small quizzes after important sections to support the students
in testing their understanding of what they just read, see Figure 1. The students
can select an answer and click on “Grade” to find out if the answer was correct
or not. If the answer was wrong they can try again or display the correct answer.
Overall, 21,865 (19,380 / 2,485) times a test was carried out and 5,306 (4,908 /
398) times the students choose to show the correct results after a test and did
not try it again.

Communicating in the Course Forum. The Moodle forum used in this
course contains 219 discussions which comprise 439 posts. The larger part of
these were created during the first half of the semester, namely 148 discussions
with 334 posts, while only 71 discussions with 105 posts were created in the
second semester. All events conducted in Moodle can be downloaded by the
teachers as an Excel file. Each event comprises the name of the course, the time
stamp, the IP address, the full name of the student, the event type, e.g. course
view or forum add post and a field for further information, e.g. the name of
the viewed course or the title of the post added to the forum. Due to privacy
reasons the user names are mapped to the respective user ids before the events
are considered for further analyses. In total, there were 52,087 (31,605 / 20,482)
LMS-related events. 20,828 (12,886 / 7,942) of them were forum-related.

3.3 Stock Taking: Descriptive Statistics on Tool Usage

The activity of the students is not distributed equally. It is important to take
into account that the students work in tandem teams (first half) and small
groups (second half) during the lab sessions. Therefore, it is possible that they
always work on the computer of one student. However, most students (76,3%)
conducted between 100 and 2,000 events. 8,7% conducted less than 100 events.
This can have several reasons: (1) they do not use the virtual machine (i.e.
configure entirely their personal computer); (2) they use the virtual machine
but disable the event recording; (3) they work with somebody else and it is this
other person that generates events; (4) they do not actively participate in the

7



0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

2nd half

1st half
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course.3 The rest of the students (15%) can be said to be very active with 2,000
to 6,507 events per student.

Figure 2 shows the distribution of the ten most frequent events. Note that
we subsumed some events into one event for this diagram, e.g. start KATE and
close KATE are presented as KATE. The top event is web page access. This is
not surprising in the first and more theoretical half of the course as the students
need to access a lot of learning material and need to get familiar with the system
and the tools. We could for example observe that the students often need to look
up Linux commands. The graph also shows that the number of compile events
rose drastically in the second and more practical half of the course.

Figure 3 shows the normalised activity per group for the two parts of the
semester and the normalised average group size in comparison. The average
amount of events conducted by a single student is 1,019 (470 / 586). Group
B-2 is the group with the most active students with on average when looking
at the whole year (2063 events per student). This results in an activity score of
2063/1019 = 2.02. In the first half, group Group A-2 is the most active one with
an activity score of 1.55 and in the second half, Group B-2 is the most active
one with an activity score of 2.32. The least active group for the whole year as
well as the two halves is Group E-2 with an activity score of 0.61 (0.55 / 0.64).
This means, wherever the activity score of a course is higher than 1, its students
are more active than the average and vice versa. It is noticeable that in many
cases the lab groups that belong to the same theoretical group have a similar
activity score although the lab groups are not supervised by the same teachers.

Each lab group comprises on average 28.7 students. Group B-2 is not only the
most active but also the smallest group with only 10 students and a group size
score of 10/28.7 = 0.35. Group E-1 is the biggest group with 38 students and a

3 Given the way the data are collected, there is no simple way to distinguish the causes.
Clarifying which one would require some extreme, highly unfeasible measures such
as taping them in and out of class.
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Fig. 3. Web Graph Comparing All Activities per Group to the Group Size

group size score of 1.32. The figure shows that in many cases in which the group
size is below the average the activity of the students is above the average and
vice versa.

4 Extracting Key Actions

The n-gram approach has been applied to the complete data set as well as to the
several sub-sets of theoretical units and lab sessions. When extracting n-grams
for a user or a group, we first gather all actions using the userId(s) and order a
user’s actions depending on the actions’ time stamps. Additionaly we take the
sessionIds into account to not combine actions conducted in different sessions or
by different users.

The base of an activity is usually a complete CAM instance, i.e. time stamp,
student ID, and event type (e.g. visitUrl, start, send, etc.) together with an item
(e.g. a URL, a terminal command, a file, etc.) and a tool (e.g. editor, browser,
etc.). All activities have a time stamp and a student ID and most of these
activities have tool, event type and item as well. Some however, such as starting
or ending the editor or the debugger, do not have an item.

By specifically taking some aspects out of the calculation, results can be made
more general. The less information is taken into account, the more general the
results are. In our experiments the calculations were done for several granularity
levels: (a) tool, event type and item, (b) tool, event type and item where URLs
were shortened to their domain and C files ignored, (c) tool and item, (d) event
type only and (e) item only. As explained, shortening the URLs to their domain
allows a broader, more general combination of actions. Several students might
use Google to find information about the same task, their query term though
might differ. The action they execute, however, is essentially the same. This
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principle also applies to actions where the names of the C files are taken out
as students may use any name for their files, the fact that they compile a C
file, however, stays the same. During all calculations key actions of length one
and two were discarded as they had not been deemed meaningful enough by the
teaching staff of the course.

After extracting the key actions as described above tf*idf weights were cal-
culated for the theoretical units as well as the lab groups with the whole course
serving as the corpus. Then the 10 most frequent key actions of each calculation
were juxtaposed with the 10 highest weighted key actions of the tf*idf results.
The original key action extraction results and the tf*idf results were then given
to the course’s teachers for a qualitative evaluation.

5 Qualitative Evaluation of the Results

As we claim the hypothesis that key action extraction is a very useful form of
data distillation, we gave all analysis results (visualised as in Figure 4 and as text
files) to the course’s teaching staff and asked for feedback. We especially wanted
to know what they can deduce from the results and whether they think they are
useful or not and why. The following paragraphs summarise the feedback of the
different teachers about their lecture and lab groups as well as the whole course.

In the calculations for the whole course, many extracted key actions dealt with
the quizzes. The quizzes are directly embedded in the course notes and are not
mandatory to fill and can thus be deployed to measure the level of spontaneous
engagement with the course material. Very often students attempted to take a
quiz, presumably got a wrong answer and, instead of attempting the quiz again,
subsequently clicked on show result. For the teachers, this indicates that many
students not only did not know the answer of the first two questions of a quiz
but also that they needed – or wanted – to “be told” the answer instead of just
trying with a second option. Figure 4 shows a visualisation of such extracted key
actions.

The key actions reveal those questions that had to be repeated more often,
and therefore posed a more complex problem to students. This was deemed very
valuable information by the teachers. They concluded the following: The key
actions point to those questions that were interacted with the most and thus
should be reviewed in class, covered in more detailed or even discussed in the
forum. Another aspect of the quizzes is that they show the level of engagement of
students with the material. If key actions do not reflect quiz usage, then students
are not taking enough quizzes. The high frequency of pointer related questions
in the key actions, for example, denotes to the teachers that this is a block
that requires special treatment such as reviewing the material in an extra class,
complementary course notes, additional exercises, etc. In the key actions, not
only the reflection of answering quizzes, but also the rate of failures and redoing
of quizzes helped the teachers to understand what they can change in upcoming
courses. Also, the differences between doTest-key action-frequencies among the
different groups gave the teachers a reference point to see if they should improve
student engagement within their groups.
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Fig. 4. Visualisation of Some Key Actions from the Whole Course

From the calculations where the C files had not been taken to account, the
teachers noticed that there are fairly long and frequent compilation chains. As
one of the main objectives of the course is for the students to be able to write
applications in C, this was deemed a good result. Another interesting factor was
the comparison of the students’ compile behaviour from the different theoretical
units and lab groups. For three of the five theoretical units the longest key action
sequences were compile activities. For the other two the longest sequences came
from the browser. The teachers interpreted this as a possible lower engagement
in the course for these two units.

Looking at the different lab groups gave them even more detailed insights. For
five groups, the longest sequences were compilation activities. These groups were
deemed “on track”. Another five groups had such activitites as second largest
sequences after browser related sequences. That was seen as accaptable. The
one group that had the compile activities only in the fourth largest sequences
was seen as lacking behind and needed to improve. The teachers agreed that
in general they would like to see compile actions as the longest sequences for
every lab group. Figure 5 shows the normalised compile activity per group. As
can be seen in comparison to Figure 3, the number of compile activities and all
activities correlate as do the observations with the longest key action sequences.

The calculated key actions supported what was also reflected in the statistic
analysis: the debugger was not used as frequently as it should have been, ac-
cording to the teachers. For them, without the need of a much deeper analysis,
these results reveal that the debugging tool is used significantly below expecta-
tions. A straightforward consequence of these results is that changes need to be
introduced on the activities to lower the adoption threshold for this tool.

Many lab groups generated most of their key actions related to programming
in the second half of the course. This behaviour coincides with the assignment of
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the course’s main project that is due at the end of the second half. The key ac-
tions revealed that a relevant amount of students do not really start working on
actual programming tasks until they have the obligation to work on the project.
The teachers, however, would have liked to see more programming activity al-
ready during the weeks before the assignment.

One teacher noticed that the use of the memory profiler in his lab group had
a high tf*idf weight as did viewing forum discussions which was a good sign for
him. Other sequences that had rather some tf*idf weight included accesses to
the SVN material of the course. From this the teacher guessed that the students
did not put enough effort into learning the command syntax but just copied and
pasted it when they needed it. He appreciated this insight planning to work on
this topic more in his class.

Looking at tf*idf results calculated for the ten students with the highest final
mark revealed that they very frequently use both the compiler and the memory
profiler. When looking at the results for the ten students with the lowest final
mark, such key actions are not weighted high, instead they check the LMS, use
the text editor, surf the web and so forth. Teachers noticed a striking absence
of the compiler. The tf*idf results also showed that the students with higher
scores check the content of the forum more often, whereas students with lower
scores tend to consult course notes, notices, etc., but not so much the course
forum. What seems meaningless but was found remarkable by the teachers was
the fact that students with good final marks regularly checked the file containing
the course scores (as was reflected in their key actions), whereas students with
low final marks barely did so. They deduced that checking for the scores more
frequently denotes a higher level of commitment to the course.
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In many cases teachers found the information given in the tf*idf results more
interesting than the plain key action results. They said that computing the key
actions alone does give a first insight, but this insight is much more relevant
when followed with the tf*idf computations because in there, more meaningful
sequences appear that can be correlated with student behaviour and also allow
for a better comparison of the chosen group to the whole course.

Summing up it can be said that the teachers think key actions to be a very
useful form of data distillation. They were able to use the results for course
evaluation and liked getting better information from the key actions than from
the logs themselves. According to them there were “lots of eye-opening things in
there”. As the analysis was done in retrospect, the teachers are looking forward
to employing the analysis during a course.

6 Conclusion and Future Work

In this paper we presented our approach of key action extraction as a means
of data distillation for a collection of contextualised attention metadata. The
approach was implemented in a large test bed as part of a C programming
course at a university. Student activity data have been recorded, from these key
actions have been extracted which in turn have been used by the teachers for the
evaluation of the course, that is, for understanding how the students actually
dealt with their exercises and how the course can be improved according to their
behaviour. As the reactions of the teachers show, the key actions and especially
their subsequent tf*idf weighting give interesting insights into the course that
have not been provided otherwise.

Although we managed to answer the question whether key action extraction
results are useful for the teachers at all, new questions arise: Will it be possible
to apply the analysis during the course instead of in retrospect? Will this help
teachers to react directly and adapt their teaching? Another important question
is how to provide the students with their own data. Can it help them to self-reflect
on their learning activities? Do they perceive the system’s and the teachers’
feedback as useful?

In order to answer these new question, the key action extraction will be im-
plemented into the running system of the next fall semester’s C programming
course. From this we expect to gain even more insight of the usefulness of key
action extraction. Apart from providing students and teachers with the results
throughout the course and collecting general feedback impressions during sev-
eral stages, we will also employ questionnaires with which we especially want to
address privacy and security issues that are wont to arise.
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