141 research outputs found

    Remote Sensing of Natural Hazards

    Get PDF
    Each year, natural hazards such as earthquakes, cyclones, flooding, landslides, wildfires, avalanches, volcanic eruption, extreme temperatures, storm surges, drought, etc., result in widespread loss of life, livelihood, and critical infrastructure globally. With the unprecedented growth of the human population, largescale development activities, and changes to the natural environment, the frequency and intensity of extreme natural events and consequent impacts are expected to increase in the future.Technological interventions provide essential provisions for the prevention and mitigation of natural hazards. The data obtained through remote sensing systems with varied spatial, spectral, and temporal resolutions particularly provide prospects for furthering knowledge on spatiotemporal patterns and forecasting of natural hazards. The collection of data using earth observation systems has been valuable for alleviating the adverse effects of natural hazards, especially with their near real-time capabilities for tracking extreme natural events. Remote sensing systems from different platforms also serve as an important decision-support tool for devising response strategies, coordinating rescue operations, and making damage and loss estimations.With these in mind, this book seeks original contributions to the advanced applications of remote sensing and geographic information systems (GIS) techniques in understanding various dimensions of natural hazards through new theory, data products, and robust approaches

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Drought Risk Management in Reflect Changing of Meteorological Conditions

    Get PDF
    Droughts are one of the main extreme meteorological, and hydrological phenomena, which influence both the functioning of ecosystems, and many important sectors of human economic activity. Throughout the world, various direct changes in meteorological, and climatic conditions, such as: air temperature, humidity, and evapotranspiration can be observed. They have a significant influence upon the shaping of the phenomenon of drought. Land cover and land use can also be indirect factors influencing evapotranspiration, and, by the same token, the water balance in the water catchment area. They can also influence the course of the process of the drought. The observed climate change, manifested mainly by increases in temperature, in turn, influencing evapotranspiration, may cause intensification in terms of both the degree and frequency of droughts. Droughts related to changes in the hydrological regime, and to the decrease in water resources. Its results can be observed in various sectors, related, among others, to a demand for water for people, agriculture and the Industry. It can also prove problematic for water ecosystems. To reflect the aforementioned information, a reasonable drought risk management is indispensable in order to ease the water demand related problems in various sectors of human activity. This book presents original research on various drought indicators, modern measurement techniques used, among others, for monitoring and predicting droughts, drought indicator trends, the impact of insufficient precipitation on human activity in the context of climate change, and examples of modern solutions devised to prevent water shortages

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    Geo-Information Technology and Its Applications

    Get PDF
    Geo-information technology has been playing an ever more important role in environmental monitoring, land resource quantification and mapping, geo-disaster damage and risk assessment, urban planning and smart city development. This book focuses on the fundamental and applied research in these domains, aiming to promote exchanges and communications, share the research outcomes of scientists worldwide and to put these achievements better social use. This Special Issue collects fourteen high-quality research papers and is expected to provide a useful reference and technical support for graduate students, scientists, civil engineers and experts of governments to valorize scientific research

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Avances en la regionalización estadística de escenarios de cambio climático para precipitación basados en técnicas de aprendizaje automático

    Get PDF
    A pesar de ser la principal herramienta para estudiar el cambio climático, los modelos globales de clima (GCM) siguen teniendo una resolución espacial limitada y presentan errores sistemáticos considerables con respecto al clima observado. La regionalización estadística pretende resolver este problema aprendiendo relaciones empíricas entre variables de larga escala, bien reproducidas por los GCM (por ejemplo, los vientos sinópticos o el geopotencial), y observaciones locales de la variable en superficie de interés, como la precipitación, objeto de esta tesis. Proponemos una serie de desarrollos novedosos que permiten mejorar la consistencia de los campos regionalizados y producir escenarios regionales plausibles de cambio climático. Los resultados de esta tesis tienen importantes implicaciones para los diferentes sectores que necesitan información fiable de precipitación para llevar a cabo sus evaluaciones de impactos.Even though they are the main tool to study climate change, global climate models (GCMs) still have a limited spatial resolution and exhibit considerable systematic errors with respect to the observed climate. Statistical downscaling aims to solve this issue by learning empirical relationships between large-scale variables, well reproduced by GCMs (such as synoptic winds or geopotential), and local observations of the target surface variable, such as precipitation, the focus of this thesis. We propose a series of novel developments which allow for improving the consistency of the downscaled fields and producing plausible local-to-regional climate change scenarios. The results of this thesis have important implications for the different sectors in need of reliable precipitation information to undertake their impact assessments

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Remote Sensing of the Aquatic Environments

    Get PDF
    The book highlights recent research efforts in the monitoring of aquatic districts with remote sensing observations and proximal sensing technology integrated with laboratory measurements. Optical satellite imagery gathered at spatial resolutions down to few meters has been used for quantitative estimations of harmful algal bloom extent and Chl-a mapping, as well as winds and currents from SAR acquisitions. The knowledge and understanding gained from this book can be used for the sustainable management of bodies of water across our planet
    • …
    corecore