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para Precipitación Basados en Técnicas de Aprendizaje Automático
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enseñarme tanto sobre la (no tan) compleja naturaleza de los seres humanos. A Cristian,
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Abstract

Global climate models (GCMs) are the main tools used nowadays to study the evolution

of climate. These models numerically solve the equations that describe the physics of the

different components that form the climate system (like the atmosphere, the ocean and

the cryosphere) and the interactions that occur among them for the entire globe. However,

when compared to ground-truth observations, they present systematic errors, which limits

their usability in most practical applications. Moreover, mainly due to computational con-

straints, the spatial resolution of current GCMs remains insufficient for real-life problems.

Therefore, reducing GCM errors and deriving high resolution information for key varia-

bles like precipitation and temperature, is essential for producing local-to-regional reliable

climate change scenarios which allows for developing appropriate adaptation policies and

measures.

Statistical downscaling is one of the main approaches to bridge the gap between the

coarse-resolution provided by the GCMs and the need for local-scale information. To do

this, statistical downscaling aims to build statistical and machine learning models that

capture the empirical relationships that are established between a set of informative large-

scale variables, well reproduced by GCMs, and a target local variable of interest, such as

temperature or precipitation at surface.

This thesis focuses on statistical downscaling of precipitation, a challenging variable

to predict due to its highly local nature, semicontinuous character and non-normality. It

is a compilation of four articles that address the following topics: the simulation of real-

istic precipitation occurrence fields at several locations by means of Bayesian networks;

the configuration of the random forest machine learning technique to downscale the prob-

ability distribution of precipitation; the combination of the previous two methodologies

to downscale the joint probability distribution of precipitation at several locations; and,



finally, an analysis of the suitability of three machine learning techniques for providing

plausible local-to-regional climate change scenarios from GCM simulations.

This thesis constitutes a step forward in the field of statistical downscaling. Specifically,

it proposes a series of novel developments which allow for improving the consistency of

the downscaled fields and producing plausible local-to-regional climate change scenarios.

The results of this thesis have important implications for the different sectors in need of

reliable local information to undertake their tailored impact assessments.



Resumen (Spanish)

Los modelos climáticos globales (GCM, por sus siglas en inglés) son las principales her-

ramientas utilizadas hoy en d́ıa para estudiar la evolución del sistema climático. Estos

modelos resuelven numéricamente las ecuaciones que describen la f́ısica de los distintos

componentes que forman el sistema climático (como la atmósfera, el océano y la criosfera)

y las interacciones que se producen entre ellos para toda la Tierra. Sin embargo, cuando se

comparan con datos observacionales, presentan errores sistemáticos y su resolución espacial

sigue siendo insuficiente para la mayoŕıa de las aplicaciones prácticas. Reducir los sesgos

de los GCM y obtener información local de alta resolución sobre variables clave, como

la precipitación y la temperatura, es esencial para elaborar escenarios fiables de cambio

climático que sirvan de base para las poĺıticas climáticas y las medidas de adaptación.

La regionalización estad́ıstica es una de las principales metodoloǵıas para reducir la

distancia entre las simulaciones de los GCM y la necesaria información a escala local. Su

objetivo es construir modelos estad́ısticos y de aprendizaje automático que capturen las

relaciones emṕıricas entre variables clave a gran escala, bien reproducidas por los GCM,

y variables locales relevantes sobre una región de interés.

Esta tesis se centra en la regionalización estad́ıstica de precipitación, una variable

dif́ıcil de predecir debido a su naturaleza altamente local, su carácter semicontinuo y su

no normalidad. Se trata de una recopilación de cuatro art́ıculos que abordan los siguientes

temas: la simulación de campos realistas de ocurrencia de precipitación en varias localiza-

ciones mediante redes Bayesianas; la configuración de la técnica de aprendizaje automático

random forest para la regionalización de la distribución de probabilidad de precipitación;

la combinación de las dos metodoloǵıas anteriores para el downscaling de la distribución

de probabilidad conjunta de la precipitación en varias localizaciones; y, finalmente, un

análisis de la idoneidad de tres técnicas de aprendizaje automático para la regionalización
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de simulaciones de GCMs en condiciones de cambio climático.

Esta tesis constituye un paso adelante en el campo de la regionalización estad́ıstica.

En concreto, propone una serie de desarrollos novedosos que permiten mejorar la consis-

tencia de las variables regionalizadas y producir escenarios plausibles de cambio climático

regionales plausibles. Los resultados de esta tesis tienen importantes implicaciones para

los diferentes sectores que necesitan información fiable local para llevar a cabo sus evalu-

aciones de impacto.



Contents

Context, Objectives and Structure 5

I Introduction 9

1 Climate Modelling 11

1.1 Global Climate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Dynamical Downscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Statistical Downscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Bias Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Perfect Prognosis Statistical Downscaling 33

2.1 Conditions, Assumptions and Limitations . . . . . . . . . . . . . . . . . . . 38

2.2 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1



2.3 Distributional Consistency: Marginal, Temporal, Spatial and Multivariable

Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Statistical and Machine Learning Methods for Statistical Downscaling . . . 51

2.4.1 Analogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.2 Linear and Generalized Linear Models . . . . . . . . . . . . . . . . . 54

2.4.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.4 Bagging and Boosting Methods . . . . . . . . . . . . . . . . . . . . . 57

2.4.5 Neural Networks and Deep Learning . . . . . . . . . . . . . . . . . . 60

2.5 Methodologies Used in this Thesis . . . . . . . . . . . . . . . . . . . . . . . 65

2.5.1 Discrete Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . 66

2.5.2 Bernoulli and Gamma Generalized Linear Models . . . . . . . . . . . 72

2.5.3 A Posteriori Random Forests . . . . . . . . . . . . . . . . . . . . . . 75

2.5.4 Temporal and Conditional A Posteriori Random Forests . . . . . . . 77

2.5.5 Bayesian Network-Informed Conditional Random Forests . . . . . . 78

2.5.6 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 82

2.6 Experimental Framework: VALUE . . . . . . . . . . . . . . . . . . . . . . . 85

2.6.1 Experiment 1a: Perfect Conditions, Marginal Downscaling Perfor-

mance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.6.2 Experiment 1c: Perfect Conditions, Spatial Consistency . . . . . . . 86

2.6.3 Experiment 2a: Non Perfect Conditions, Historical and Future GCM

Downscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.6.4 Diagnostic Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2



II Main Thesis Contributions 91

3 Multisite weather generators using Bayesian networks: An illustrative

case study for precipitation occurrence 93

4 A Posteriori Random Forests for Stochastic Downscaling of Precipitation

by Predicting Probability Distributions 113

5 Bayesian Network-Informed Conditional Random Forests for Probabilis-

tic Multisite Downscaling of Precipitation Occurrence 133

6 Assessing Three Perfect Prognosis Methods for Statistical Downscaling

of Climate Change Precipitation Scenarios 169

III Concluding Remarks 185

7 Additional Contributions 187

7.1 Statistical downscaling with the downscaleR package (v3.1.0): contribution

to the VALUE intercomparison experiment . . . . . . . . . . . . . . . . . . 187

7.2 Assessing Multidomain Overlaps and Grand Ensemble Generation in CORDEX

Regional Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.3 Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.4 Open Research: Software Used and Reproducibility of Results . . . . . . . . 192

8 Conclusions and Discussion 195

9 Conclusiones y Discusión (Spanish) 201

10 Beyond this Thesis 209

3



10.1 Gridded Continental-Wide and Multi-Model Ensembles Downscaling . . . . 209

10.2 Multivariable Downscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10.3 Multivariable, Temporal and Spatial Downscaling . . . . . . . . . . . . . . . 212

10.4 Hybrid Dynamical-Statistical Downscaling . . . . . . . . . . . . . . . . . . . 215

Bibliography 0

4



Context, Objectives and Structure

Context

Global climate models (GCMs) are the main tool used nowadays to study the evolution

of climate change. These models numerically solve the equations that describe the physics

of the Earth’s climate system (energy and mass conservation, Navier-Stokes equations...)

for the entire globe based on different natural and anthropogenic forcings1. However, due

to a number of reasons, such as the imperfect representation of some physical processes

and the coarse resolution, that does not allow for an accurate representation of small-scale

processes, GCMs present systematic biases when compared to ground-truth observations

(specially in highly local variables such as precipitation), thus yielding them insufficient

for most practical applications.

Two main approaches aim to tackle this issue: dynamical and statistical downscaling.

On the one hand, dynamical downscaling relies on regional climate models (RCMs), nu-

merical models nested into GCMs that solve the governing equations of the atmosphere

over limited spatial domains, producing simulations at a much higher resolution. Despite

their higher resolution, RCMs tend to inherit part of the biases from their driving GCMs

and typically introduce their own, thus requiring additional corrections. Statistical down-

1The term forcing refers to any mechanism that has the potential to alter the Earth’s climate, for
instance changes in the energy balance of the planet due to a volcano’s eruption or to an alteration in the
concentration of greenhouse gases.
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scaling, on the other hand, relies on using statistical and machine learning models to learn

the empirical relationships that link a set of key large-scale predictors, well reproduced by

GCMs (like geopotential or synoptic winds), to the local surface predictand of interest (like

precipitation or temperature). Statistical downscaling models are trained with observed

records, so this approach does not need, in principle, any additional postprocessing.

Under the perfect prognosis approach, the focus of this thesis, these statistical and ma-

chine learning models are learnt considering some reanalysis over a recent historical period

for the predictors. These trained/calibrated models are subsequently applied to downscale

future GCM large-scale predictors, producing the corresponding local projections for the

variable of interest, which may lead to transferability and extrapolation issues.

Objectives

The main objective of this thesis is to propose robust strategies to produce reliable

probabilistic climate change projections of precipitation based on machine learning tech-

niques. Special attention is devoted to some important issues which still need to be better

understood by the climate community, and motivate the following specific objectives:

1. To explore the potential of different machine learning techniques to improve the

reproduction of the marginal (i.e. mean, standard deviation and higher order mo-

ments), spatial (dependencies among geographical locations) and temporal (transi-

tion probabilities, spells...) aspects of precipitation.

2. To gain methodological knowledge by performing a comprehensive assessment of

the different configuration options, parameters and algorithms for the techniques

analyzed.

3. To critically assess the transferability issue for different techniques.

4. To evaluate the capability of different techniques to produce plausible climate change

precipitation scenarios.

Structure

This is a compilation thesis, whose main body is comprised of four scientific articles.

Three of them are published in Water Resources Research and Geophysical Research Let-
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ters, both high impact journals belonging to the 1st quartile in Journal Citation Reports

(JCR). The fourth article is submitted to Water Resources Research, and is included as a

preprint. Each of these articles develops and applies different machine learning techniques

to the problem of statistical downscaling, aiming to address the objectives previously

outlined:

• Legasa, M. N., & Gutiérrez, J. M. (2020). Multisite weather generators using

Bayesian networks: An illustrative case study for precipitation occurrence. Wa-

ter Resources Research, 56 (7), e2019WR026416. doi: https://doi.org/10.1029/

2019WR026416. Chapter 3.

• Legasa, M. N., Manzanas, R., Calviño, A., & Gutiérrez, J. M. (2022). A posteriori

random forests for stochastic downscaling of precipitation by predicting probability

distributions. Water Resources Research, 58 (4), e2021WR030272. doi: https:

//doi.org/10.1029/2021WR030272. Chapter 4.

• Legasa, M. N., Chandler, R. E., & Manzanas R. (2022). Bayesian Network-

Informed Conditional Random Forests for Probabilistic Multisite Downscaling of

Precipitation Occurrence. Submitted to Water Resources Research. doi: https:

//doi.org/10.22541/essoar.168167381.15060857/v1. Chapter 5.

• Legasa, M. N., Thao, S., Vrac, M., & Manzanas, R. (2023). Assessing Three

Perfect Prognosis Methods for Statistical Downscaling of Climate Change Precipita-

tion Scenarios. Geophysical Research Letters, 50 (9), e2022GL102525. doi: https:

//doi.org/10.1029/2022GL102525. Chapter 6.

The thesis is organized in three parts. Part I provides a general introduction to climate

modeling (Chapter 1) and perfect prognosis statistical downscaling (Chapter 2). Part II

gathers the four articles listed above, which constitute the main thesis contributions. Fi-

nally, Part III presents some concluding remarks, including a few additional contributions

(Chapter 7), the conclusions and discussion (Chapter 8) and the future lines of work

(Chapter 10).
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1.1 Global Climate Models

Global climate models (GCMs) constitute the principal and most comprehensive tool

for studying current climate processes and investigating the potential future climates.

GCMs numerically solve the partial differential equations that describe the dynamics of the

different components of the climate system, including the atmosphere, the ocean and the

cryosphere (among others), as well as the interactions that occur between them (Hugues,

2015). These physical equations are based on the general principles of fluid dynamics

and thermodynamics, such as the conservation of mass, energy and momentum. Since

there is no closed-form solution for these equations, they are solved using numerical meth-

ods for partial differential equations, typically finite difference methods (LeVeque, 2007),

over a discretized 4-dimensional space formed by a 3-dimensional grid covering the entire

globe (longitude × latitude at vertical levels) through time (typically every 3 or 6 hours),

producing an average value for each gridbox at each time-step.

As the scientific understanding and the available computational resources have in-

creased during the last decades, GCMs have become successively more and more complex.

Nowadays, GCMs are being replaced by earth system models (ESMs1), which incorporate

new biogeochemical components (e.g., representation of the carbon cycle) and a better rep-

resentation of atmospheric chemistry and land cover. Likewise, the spatial resolution of

GCMs has substantially improved along the last two decades due to the rapid deployment

of faster and more efficient computational infrastructures.

Nevertheless, the existing computational constraints, together with the need for large

ensembles of long simulations, continues to limit nowadays the temporal and spatial re-

solution GCMs can achieve. For instance, the latest generation of GCMs included in the

6th phase of the Coupled Model Intercomparison Project2 (CMIP6) present a horizontal

resolution of up to 0.5◦ (Eyring et al., 2016), nearly 55 kilometers in mid-latitudes, which

is insufficient for most practical applications. Moreover, partly because of this coarse reso-

lution, which does not allow for an adequate representation of the processes that occur in

1In this thesis we will refer to global climate models as GCMs, independently of their complexity, i.e.,
the previous atmosphere-ocean coupled models (AOCMs) or the modern earth system models (ESMs).

2The Coupled Model Intercomparison Project (CMIP) started in 1995. It is the most ambitious initiative
for coordinating the design and distribution of GCM simulations for the past, current and future climate.
Its main objective is threefold: to address how the Earth will respond to natural and anthropogenic forcings,
what the origins and consequences of systematic model biases are, and how future climate changes can be
assessed given internal climate variability, predictability, and uncertainties in scenarios.
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spatial scales smaller than the size of the gridbox —e.g. radiation absorbed, scattered and

emitted by molecules, aerosols and droplets; cloud microphysics; boundary layer processes

and convection,— GCMs are known to exhibit systematic biases (that is, mean errors with

respect to reference observations, Wills et al., 2022), especially for surface variables such

as temperature and precipitation, among the most important for end-users.

This issue is partially alleviated through the incorporation of parameterization schemes

within the model’s architecture (McFarlane, 2011). Parameterizations entail sophisticated

empirical functions designed to calibrate the specific variable of interest (for instance, pre-

cipitation) yielded by the model, aligning it with more realistic values. GCMs typically

include more than 20 different parameterizations. Nevertheless, even with these parame-

terizations, GCMs still exhibit significant biases with respect to ground-truth observations

for many variables and regions (Di Luca et al., 2020; Kim et al., 2020; Nishant et al., 2022).

For instance, GCMs are not able to reproduce realistically convective precipitation, which

occurs very often in mountainous regions (Du et al., 2022; Pimonsree et al., 2023; Y. H.

Song et al., 2020). In addition, parametrizations do not increase the original model reso-

lution, and therefore they are not sufficient for many real-life problems that require local

information (Demory et al., 2020).

For illustrative purposes, the biases exhibited by the EC-Earth GCM (Döscher et al.,

2002; Hazeleger et al., 2010) when reproducing several precipitation statistics are shown in

Figure 1.1: mean errors surpass 50% (there is both overestimation and underestimation)

in magnitude for many of the 83 locations displayed. Note that this happens despite the

fact that EC-Earth has been shown to perform generally well in reproducing some key

large-scale processes affecting European precipitation such as storm tracks (Lee, 2015).

With respect to synoptic scales3, GCMs have been shown to reliably simulate the

general circulation of the atmosphere and its coupling to the ocean along the recent past

(Brands, 2022; W. Chen et al., 2022; Klaver et al., 2020; Ozturk et al., 2022), something

which is relevant for perfect prognosis statistical downscaling, the focus of this thesis, as we

will see in Chapter 2. It should be noted, however, that important performance differences

can be found across different GCMs (Fernandez-Granja et al., 2021) in their performance

reproducing large-scale features, which is still not perfect.

3Synoptic scale processes range in size from several hundred kilometers to several thousand kilometers.
This is the scale, for instance, of migratory high and low pressure systems of the lower troposphere.
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FIGURE 1.1: Relative bias in several precipitation indices for the EC-Earth GCM
(run r12i1p1, Hazeleger et al., 2010) at the nearest gridpoint to 83 locations over
Europe, with respect real observations, over the period 1979-2008. Relative bias is
computed as 100 × (Model – Observed)/Observed. R01 measures the proportion of
wet (> 1mm/day) days, SDII the mean rainfall on wet days and P98 the 98th per-
centile of rainfall on wet days. WW and DW measure the transition probability from
wet to wet and from dry to wet days, respectively. WetSpellMean and DrySpellMean
measure the mean duration of wet and dry spells (≥ 2 days).
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To simulate the future climate, GCMs are run subject to natural (that is, solar radia-

tion and volcanoes) and anthropogenic (aerosols and greenhouse gases emissions) forcings.

To do so, a set of possible representative concentration pathways (RCPs, Riahi et al.,

2011), or emission trajectories, was designed in CMIP5 (Taylor et al., 2012) by consider-

ing several socio-economic indicators (see Figure 1.2). These indicators encompass a range

of plausible future scenarios depending on the different paths human activities may take

greenhouse gas emissions. The RCPs are categorized based on the anticipated radiative

forcing levels projected for the year 2100. These pathways provide a framework for explor-

ing different potential future climates and serve as a basis for climate modeling and impact

assessment studies. They range form the optimistic RCP 2.6, assuming a low radiative

pressure of 2.6W/m2 by 2100 (Vuuren et al., 2011); to the RCP 8.5 (Riahi et al., 2011),

an extreme emissions scenario, in which greenhouse gasses will continue to be emitted

to the atmosphere without any restriction, reaching a radiative pressure of 8.5W/m2 by

2100. In the recent years, the community (and CMIP in its latest phase, CMIP 6, Eyring

et al., 2016) has moved towards the shared socioeconomic pathways (SSPs, Riahi et al.,

2017), which constitute the most comprehensive set of scenarios for environmental and

sustainable development research produced so-far. They comprise a narrative description

of future socio-economic development as well as quantitative data (such as population size,

urbanization rates, income, energy use and production, agriculture, land use and emis-

sions) derived from state-of-the art demographic, economic, and integrated assessment

models. A descriptive summary of the SSP narratives can be found in Table 2 in Riahi

et al. (2017).

It is important to note that, even though GCMs exhibit systematic errors and con-

siderable biases, in particular for surface variables such as precipitation, they resolve the

physical mechanisms that are responsible for the evolution of the climate system and,

therefore, the future projections they provide are physically-driven (for illustrative pur-

poses, Figure 1.3 shows the future changes expected for the same precipitation statistics

displayed in Figure 1.1, as projected by EC-Earth). Consequently, in both the public and

private sectors, mid to long-term adaptation policies are crafted based on climate change

scenarios supplied by various GCMs. For example, the CMIP simulations are analyzed

in the periodic assessment reports elaborated by the Intergovernmental Panel on Climate

Change4 (IPCC). These reports form the bedrock for developing adaptation strategies in

4The Intergovernmental Panel on Climate Change (IPCC) is a panel of worldwide experts, established
by the United Nations (UN) in 1988, aiming to inform the policy makers about the available scientific
knowledge regarding climate change.

15



Source Description

Simplified representations of physical pro-
cesses and insufficient spatial and temporal
resolution

GCMs use a simplified representation of
the Earth’s climate system, and parame-
terizations for complex processes that can-
not be simulated due to the limied resolu-
tion

Uncertainties in model inputs and param-
eterizations

GCMs require various inputs, such as
emissions scenarios, atmospheric composi-
tion, and land use, which are themselves
subject to uncertainties and errors.

Computational perturbations and the
chaotic behavior of the atmosphere

GCMs are essentially systems of partial
differential equations which are solved nu-
merically. Numerical perturbations and
uncertainties in simulations propagate and
amplify across time and space. The at-
mosphere itself is a chaotic system, which
implies that small differences can produce
huge differences in its evolution.

Table 1.1: Summary of sources of bias and uncertainty in global climate models.

numerous countries and supra-national organizations. However, there is a recurring de-

mand from policymakers and stakeholders for high-resolution projections, particularly for

regions and sectors that are especially vulnerable to climate change such as agriculture,

energy and civil infrastructures.

During the last decades, downscaling has emerged as an efficient way to bridge this

gap. The next sections are devoted to giving an overall description and comparison of the

two main approaches to downscaling: dynamical (Section 1.2) and statistical (Section 1.3)

downscaling.
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FIGURE 1.2: Comparison of representative concentration pathways (RCPs) and
shared socioeconomic pathways (SSPs). Time series with 5−95% ranges and medians
of (a) effective radiative forcings and (b) global surface air temperature projections
relative to 1850-1900 for the RCP and SSP scenario. Note that the nameplate radia-
tive forcing level refers to stratospheric adjusted radiative forcings in AR5-consistent
settings (Tebaldi et al., 2021) while effective radiative forcings may differ. Further de-
tails on data sources, calculations and processing are available in Chapter 4 in IPCC
(2021). Figure reproduced with permission from IPCC (2021).
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FIGURE 1.3: Relative changes in several precipitation indices for the EC-Earth
GCM (run r12i1p1, Hazeleger et al., 2010) projected for 2071-2100 over Europe,
with respect to the observed historical values, over the period 1979-2008, and for
the RCP8.5 emissions scenario. Relative signals are computed as 100 × (Future –
Historical)/Historical. R01 measures the proportion of wet (> 1mm/day) days, SDII
the mean rainfall on wet days and P98 the 98th percentile of rainfall on wet days.
WW and DW measure the transition probability from wet to wet and from dry to wet
days, respectively. WetSpellMean and DrySpellMean measure the mean duration of
wet and dry spells (≥ 2 days).
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1.2 Dynamical Downscaling

Dynamical downscaling relies on regional climate models (RCMs, Dickinson et al.,

1989) to provide the high resolution climate information at regional scales needed for

impact and adaptation studies (Giorgi, 2019). RCMs are numerical models nested into

GCMs that solve the governing equations of the atmosphere over limited spatial domains

at higher (with respect to GCMs) spatial and temporal resolutions. That is, GCMs resolve

the large-scale processes for the whole globe providing the boundary conditions for running

RCMs, which solve the finer-scale processes over smaller areas of interest (like Europe),

ideally simulating climate features that are missing in coarse-resolution GCMs. RCMs

can be used to downscale different GCMs to sample many different large-scale climate

conditions at the RCM’s domain boundaries and to produce an ensemble of several regional

plausible climates for the region of interest (Evin et al., 2021).

The higher resolution of RCMs allows for the explicit representation of small-scale pro-

cesses and physical mechanisms that are impossible to simulate using the low-resolution

GCMs. Examples of these include mesoscale circulations and the improved nonlinear in-

teractions between large and small scales. In particular, the increase in resolution also

offers a more precise representation of land cover, topography, coastlines, inland water

bodies, islands and urban areas (Di Luca et al., 2012; Mayer et al., 2015). This adds value

to the depiction of various surface-driven phenomena that yield significant climatic effects

at a local level, with potential influences at synoptic and planetary scales (Di Luca et al.,

2015; Rummukainen, 2016). For instance, utilizing a finer grid resolution in regions with

complex topography permits the resolution of smaller near-surface temperature gradients

arising simply from better-represented elevation features (Torma et al., 2015) and the gen-

eral altitude-based temperature gradient (Prömmel et al., 2010). The interaction between

middle-latitude synoptic weather systems and a more refined topography also improves

the rain-shadow effect5 (Van den Hende et al., 2021). Moreover, the smaller timescales

simulated by RCMs (that is, the increased temporal resolution) also improve the charac-

terization of phenomena produced at shorter timescales, such as subdaily characteristics

of precipitation and extremes (Rummukainen, 2016).

However, RCMs still require parameterizations for subgrid-scale physical phenomena

5The rain-shadow effect corresponds to the reduced rainfall on the mountain’s lee side with respect to
the windward side, see Wallace et al. (2006).
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(Laprise, 2008), need to be run on very powerful computing infrastructures (see e.g.,

Jacob et al., 2020), inherit some of the biases from their driving GCMs, and introduce

their own (Christensen et al., 2008). Indeed, the quality of the GCM used as boundary

conditions has a direct effect on the quality of the RCM simulation (Jury et al., 2015).

Because of this, different research institutions often employ particular parameterizations

and configurations for specific regions and applications, tailoring their RCMs for specific

interests and needs (see e.g. Bellprat et al., 2016 or Remedio et al., 2019). In this regard,

one key task in dynamical downscaling is to properly evaluate the different RCMs using a

common validation framework, as well as to efficiently coordinate, store and make available

the high volume of RCM simulations to serve as basis for impact studies in different

climate-sensitive sectors, such as agriculture or water management. Indeed, for a proper

assessment of the GCM-RCM spread and to better constrain modelling uncertainties it is

essential count on large ensembles of simulations (Fernández et al., 2019).

Drawing upon the groundwork laid by previous model intercomparison projects such

as ENSEMBLES (Hewitt, 2004) and PRUDENCE (Christensen et al., 2007)), the coor-

dinated regional downscaling experiment (CORDEX, Giorgi et al., 2015; Gutowski Jr.

et al., 2016; Jacob et al., 2020) aims to establish a common framework for the evaluation

of the sources of uncertainty and biases RCMs suffer from, and to coordinate the provision

of dynamically-donwnscaled simulations globally. The horizontal resolution of the RCMs

used in EURO-CORDEX (the European branch of CORDEX, which can be seen in Fig-

ure 1.4) ranges from 0.11o(∼ 12.5 km) to 0.44o(∼ 50 km) for the EUR-11 and EUR-44

domains (Gutowski Jr. et al., 2016), respectively.

Although it is a complex task, partly due to the GCM-RCM simulation matrix be-

ing sparse (Jacob et al., 2020), several studies have attempted to undertake a critical

assessment of the added value, or lack thereof, of RCMs’ increased resolution. For the

particular case of daily precipitation, Fantini et al. (2018) concluded that the performance

of an ensemble of high-resolution (11◦) EURO-CORDEX RCMs is better than that of the

previous generation of RCMs with lower resolution, with the exception of the frequency of

dry days, which still exhibits a considerable bias. Although these conclusions are mainly

in agreement with other studies (see e.g. Kotlarski et al. (2014) and Prein et al. (2016)),

some discrepancies have been found. For instance, Prein et al. (2016) concluded that RCM

simulations better reproduce mean and extreme precipitation for almost all regions and

seasons, in particular in areas with complex orography. However, in Fantini et al. (2018)

this improvement in bias was found to depend on whether the models tend to underesti-

mate or overestimate precipitation over a given region, since a consistent effect of RCMs’
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increased resolution is the increase of precipitation amounts. It cannot be concluded,

then, that increasing the resolution systematically improves regional mean biases. Indeed,

Demory et al. (2020) also showed that, when the spatial representation of precipitation is

improved (from 50 to 12 km horizontal resolution), the effect in daily precipitation dis-

tributions is comparatively small for most regions and seasons, the only exception being

mountainous and coastal regions.

One of the most comprehensive assessments of an ensemble of RCMs was performed in

Vautard et al. (2021), who considered a total of 55 members (using 8 GCMs and 11 RCMs

within the EURO-CORDEX domain) focusing on the most important climate variables

(temperature, precipitation, wind, radiation and sea level pressure) with the aim of guiding

the development of climate services. Their main conclusion, ”simulations are generally too

wet, too cold and too windy”, indicates that RCMs have important systematic biases.

Specifically, for precipitation, there is a consistent pattern of overestimation of daily

amounts, especially in winter (this coincides with other studies, e.g. Demory et al., 2020).

Indeed, median bias reaches +50% for all the assessed models across all Europe in winter,

with 5% of the assessed models exceeding +100% bias (i.e. more than double the observed

values) in a large number of regions. Simulations of precipitation are generally less biased

for the summer period excluding the Mediterranean, for which observed records indicate

that precipitation is essentially absent, yet the models tend to produce convective rainfall

events. Similar previous evaluation studies have reached analogous conclusions (see e.g.

Kotlarski et al. (2014)).

In addition to the biases, RCMs have been found to modify future climate change

signals projected by GCMs (Coppola et al., 2021). For obvious reasons, this difference

cannot be compared against any reference, but, as noted in Rummukainen (2016), when

this corresponds to physical processes resolved in the RCMs but not in the GCMs, it can

be taken as an indication of potential added value as it coincides with real mechanisms

and factors being accounted for. However, important discrepancies at large-scales exist

between global and regional projections (Boé et al., 2020) at synoptic scales. Indeed, in

Evin et al. (2021), it is concluded that, for seasonal changes in total precipitation, the

uncertainty at the end of the century (2071–2099) due to RCMs can be as large as the

uncertainty due to GCMs, although both uncertainty sources are mainly due to a small

number of individual models clearly identified.

Coppola et al. (2021) performed a comprehensive assessment of the projected changes
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of precipitation, temperature and various related indices over the Euro-CORDEX domain

using the same ensemble of GCM-RCM pairs reviewed in Vautard et al. (2021). They

performed dynamical downscaling using several RCMs for the emission scenarios RCP2.6

and RCP8.5, including projections both from CMIP5 and CMIP6 GCMs. They found

that the higher resolution of RCMs allows for a more detailed description of the change

patterns, especially over regions with more complex topography. In particular, a consistent

north-south dipole over Europe was found, with an increase in mean precipitation in the

northern part of the domain and a decrease in the southern part (and varying intensity

depending on the scenario and GCM-RCM pair considered). However, as can be clearly

seen in Figure 1.4 there are also large regions which exhibit projected changes that were

found to be not significant (using Student’s t test, see Coppola et al., 2021), for example

in the Mediterranean for the DJF season. This implies that GCM-RCM pairs can produce

inconsistent, and even conflicting (that is, with opposite sign) signals. The projections

also agree on a general increase of extreme precipitation over the Northern and Central

European regions, as measured by several indices like e.g. the 99th percentile, but there

is some disagreement over the southern part of the domain.

These conclusions agree with Christensen et al. (2019), who reviewed whether model

improvements and the higher RCM resolution achieved over time have been able to re-

solve apparent inconsistencies in climate change projections for Europe, like the previously

mentioned. They found that signal-to-noise ratios have not substantially improved from

PRUDENCE to EURO-CORDEX ensemble, and broadly agree on the regions where sig-

nificant changes are projected for the future. In this regard, notice the overall consistency

(albeit with significant differences) of the signals with those projected by EC-Earth, shown

in Figure 1.3, split for the R01 (mean wet days) and SDII (precipitation amount on wet

days).

Therefore, in order to avoid a potential underestimation of the uncertainties that dy-

namical downscaling entails, including discrepancies at synoptic scales between regional

and global climate models, impact studies should use the information provided by current

RCMs, but also consider the results obtained with GCMs.

Higher resolution simulations exist. Approximately 10 years ago, convection permit-

ting regional climate models (CPRCMs) emerged, as a promising tool to extend RCMs to

scales where deep convection (Wallace et al., 2006) can be simulated, ∼ 1 − 4km (Lucas-

Picher et al., 2021). The main advantage of CPRCMs is that, differently to RCMs, they

no longer need a parameterization of deep convection and can solve it explicitly. Never-
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FIGURE 1.4: Projected relative (%) changes in mean precipitation for Euro-
CORDEX (left column, 55 simulations, 0.11o resolution, RCMs), CMIP5 (middle
column, 12 simulations, 2o resolution, GCMs), and CMIP6 (right column, 12 simula-
tions, 1o resolution, GCMs); for 2041–2070 (mid-future) and 2071–2100 (far future)
relative to 1981–2010 and for RCP8.5 (SSP585 for CMIP6). Top panel (a) shows
changes for boreal winter (DJF), bottom panel (b) for boreal summer (JJA). Dashed
lines cover areas where the projected changes are not significant at the 95% confidence
level using the Student’s t test. Figure reproduced with permission from Coppola et
al. (2021).

23



theless, subgrid parameterizations are still required for processes that are unresolved by

CPRCMs (such as microphysics, shallow convection, turbulence or radiative processes).

As an example of an unresolved mechanism that is specially relevant for precipitation,

the focus of this thesis, the microscale processes (i.e. over distances from fractions of a

micrometer to several centimeters) of a cloud, are important to its behavior and lifetime:

it is well-known that clouds capability to generate rain or snow, lightning, and alter the

radiation balance of the earth, are largely attributed to their individual microstructures

(Lamb, 2003). These parameterizations are generally too simple to describe the true com-

plexity of the involved processes and/or too expensive to be executed at a high enough

temporal resolution.

In addition, due to their high computational cost, CPRCMs are currently not inte-

grated continuously in time over centuries and are instead run over periods of 10 years,

which are not sufficient for computing robust climate statistics, which typically employ

30 years. They are also not enough to reproduce neither long-term variabilities such as

El Niño nor extreme events, which have the potential for the biggest impacts, such as

extreme precipitation leading to floods or extreme temperatures leading to heat stress and

droughts. Moreover, they still inherit large-scale features like storm tracks or fronts from

their driving models, inheriting also their potential biases.

Ban et al. (2021) reviewed a multi-model ensemble of 10-year simulations from 6 dif-

ferent CPRCMs (∼ 2.2 − 4 km horizontal resolution), with the intention to specifically

address the added value, or lack of thereof, of increasing the resolution to convection-

permitting scales in precipitation simulations. The CPRCMs were intercompared against

an ensemble of RCMs running at a 12-km resolution over the Alps domain. They found

promising improvements in spatial representation, frequency and reproducibility of ex-

tremes; compared to their coarse-resolution counterparts, specially in the summer season.

Nevertheless, they found persisting biases and deficiencies, in agreement with a similar

study which showed some modest gains, but also considerable shortcomings and a large

spread across simulations (Soares et al., 2022). Also, whether this improvement in biases

comes from switching off the parameterizations of convection or the better representa-

tion of orography (Vergara-Temprado et al., 2020) remains to be studied. A companion

study, Pichelli et al. (2021), addressed future projections of precipitation downscaled from

GCMs and found promising results, producing an enhanced depiction of fine scale details of

mean daily precipitation, wet-day/hour frequency, wet-day/hour intensity, and heavy pre-

cipitation on a seasonal scale, thereby reducing uncertainties in certain regions. CPRCMs

appear to modify the sign of the precipitation intensity change and heavy precipitation
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over some regions, and demonstrate larger changes across all indices throughout the di-

urnal cycle, implying a change in convection duration in certain areas. The analysis also

reveals a more substantial positive shift in the frequency of heavy to severe precipitation.

Further studies are thus required to confirm that the changes shown by this ensemble are

both physically plausible and indeed improve the projection of precipitation changes over

coarser-resolution RCMs.

All in all, despite their potential added value, RCMs suffer from a large range of

uncertainties and biases, which are summarized in Table 1.2. Indeed, gaining a better

understanding of the origins and drivers of these biases and uncertainties in RCM simula-

tions is one of the major challenges nowadays for the downscaling community. The next

section introduces statistical downscaling, the main complementary approach to RCMs,

which allows for solving some of the aforementioned limitations.

Source Description

Their driving GCM used as boundary con-
ditions.

The biases produced by GCMs in their
simulation of the large-scale climate prop-
agate into the RCM simulations.

Still insufficient spatial and/or temporal
resolution.

Even at higher resolutions, RCMs are un-
able to capture all the small-scale pro-
cesses and phenomena that occur in the
real world, such as microphysics or radia-
tive processes.

Still simplified and/or incomplete repre-
sentations of complex processes.

RCMs use simplified parameterizations of
complex processes such as cloud formation,
land surface processes, and atmospheric
chemistry.

Uncertainties in model inputs. The various inputs that RCMs require,
such as land use or atmospheric composi-
tion, are themselves subject to uncertainty.

Table 1.2: Summary of sources of bias and uncertainty in regional climate models.
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1.3 Statistical Downscaling

As reviewed in the previous section, our main tools for understanding and anticipating

climate change, global climate models (GCMs), have insufficient spatial resolution and

exhibit systematic errors. Moreover, despite presenting finer spatial resolutions, regional

climate models (RCMs) are known to inherit part of the biases from the driving GCM

and produce their own. Therefore, unless some kind of correction is performed, it may be

expected that the future projections given by GCMs and RCMs are not very realistic. This

is an issue which needs to be carefully addressed before these projections are delivered to

the end-user.

GCM and/or RCM simulations can either be bias corrected, by transforming or adjust-

ing them so that their statistical properties match some observed reference (see Section

1.4); or statistically downscaled, by establishing a link function between the large-scale

conditions given by the model and local observed data. Both approaches can provide

potentially bias-free climate information since they go through a calibration process in

which observed data, and possibly some local feature such as orography, are considered

as reference. However, notice that whilst bias correction (BC) should not be applied with

the aim of increasing the original model resolution, statistical downscaling (SD) allows for

increasing this resolution whilst simultaneously correcting model biases.

SD methods aim to capture the set of statistical/empirical relationships that describe

the local variable of interest (the predictand, e.g., precipitation), either from observed

records of large-scale variables (typically reanalysis); or from direct model (GCM or RCM)

outputs (the predictors). The former framework is referred to as perfect prognosis (PP),

whereas the latter is called model output statistics (MOS).

As opposed to dynamical downscaling (see Section 1.2), SD methods are calibrated

directly with observations, and thus they have the potential to present very small (and

potentially null) biases, at least over the calibration period. Moreover, training and run-

ning SD methods is drastically cheaper than running an RCM, requiring much less com-

putational resources and energy. Indeed, the calibration of a typical SD model can take

minutes to days, and can be undertaken and deployed in personal computers, depending

on the particular technique used and the extension of the area of study. Once calibrated,

SD methods can be applied to obtain local downscaled results for the variable of interest.

However, building a SD model requires long enough observational records of high qual-
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ity to establish a robust link between the large-scale predictors and the local predictand

of interest, which limits its applicability in data-scarce regions of the world (Manzanas

et al., 2014). Also, SD methods do not resolve any physical process, and thus they can

not capture dynamical changes that are not reflected in the large-scale predictors. More-

over, the key limitation of SD is the stationary assumption or extrapolation issue, that

is, whether the statistical relationships learnt over the historical recent period used for

calibration remain valid for the future. This is especially relevant for the downscaling of

long-term climate change scenarios, and the key issue we address in Chapter 6.

To date, some intercomparison studies have been carried out to address the merits and

demerits of dynamical and statistical downscaling (Schmidli et al., 2007) Tang et al. (2016),

Vaittinada Ayar et al. (2016), although they are scarce and and include only a subset of

models or specific configurations. These studies indicate that SD methods outperformed

RCMs reproducing distributional aspects such as rain occurrence and mean climatology,

in particular when introducing a stochastic component. In particular, the analogs method

(see Section 2.4) handled variability, extremes and spatial aspects better than RCMs. In

terms of temporal aspects, SD models struggled to capture inter-annual variability, while

RCMs performed better for this particular task. A study for precipitation conducted over

South America within CORDEX (Bettolli et al., 2021) concluded that there is no single

model (statistical or dynamical) that performs best in all aspects evaluated. SD meth-

ods displayed an overall good performance in representing the different aspects of daily

precipitation during a warm season, albeit with some limitations in the reproduction of

extremes, a well-known drawback of deterministic SD methods, which we tackle in this

thesis. Moreover, a recent study by Hernanz et al. (2023) focused on different precipitation

aspects (including extremes as well as spatial, temporal and multivariable dependencies)

concluded that SD had better performance than six RCMs (without additional bias cor-

rection) from EURO-CORDEX, with only a few exceptions. This study was conducted

in perfect conditions (that is, with all the RCMs and SD methods driven by reanalysis,

see Chapter 2). A similar study using GCMs predictors instead of reanalysis ones is, to

date, lacking. A summary of the relative advantages and limitations of dynamical and

statistical downscaling is presented in Table 1.3.

As mentioned before, according to the nature of predictors in the calibration phase

of the SD model, two different approaches for SD exist, namely perfect prognosis (PP)

and model output statistics (MOS). The interested reader is referred to Marzban et al.

(2006) for a detailed discussion on this classification. Under the PP approach observed

predictors from reanalysis are used to calibrate the statistical models. Afterwards, the
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Dynamical Downscaling (RCMs) Statistical Downscaling

Increases the GCM resolution but inherits
and generates its own bias: it needs addi-
tional correction.

It is calibrated directly with observations:
potentially unbiased.

Computationally expensive (∼ months):
requires to be run on supercomputers and
the number of simulations is limited.

Computationally cheap (∼ hours/days):
can be deployed fast and on-demand.

Based on physical principles: ensures
inter-variable and spatio-temporal consis-
tency.

Derived from observed records: spatial,
temporal and multivariate consistency is
not granted.

Changes are physically driven: their po-
tential for extrapolation to future periods
under climate change conditions is uncon-
strained by observed records.

Subject to the stationarity assumption:
their potential for extrapolation is based
on the empirical relationships that are de-
rived from observations.

Only Perfect Prognosis: The transfer-
ability from pseudo-observations (reanaly-
sis) to model predictors is an additional
source of uncertainty

Table 1.3: Comparative summary of the relative merits and demerits of dynami-
cal and statistical downscaling. See also Table 1.2 for a detail of the sources and
description of biases of RCMs.

resulting models are typically applied to GCM predictor data under future emissions

scenarios to produce the corresponding local results. We devote Chapter 2 to PP SD, as

it is the main focus of this thesis.

Differently, under the MOS approach, predictors are taken from the same GCM for

both the calibration and the prediction phase. Typically, the only predictor variable con-

sidered in this approach is the model counterpart of the target predictand, e.g., GCM/RCM-

simulated precipitation for downscaling local precipitation. Therefore, as opposed to PP

SD, the main advantage of the MOS approach is that neither predictor nor domain screen-
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Definitions
Model Output Statistics versus Perfect Prognosis

Model Output Statistics (MOS) establishes a statistical link function between sim-
ulated data from a GCM/RCM and observed records of the variable of interest. This
link function is subsequently applied to the same GCM/RCM as post processing to
correct the distribution.

Perfect Prognosis (PP) establishes a statistical link function between large-scale
observed records (typically coming from a reanalysis) and observed records of the local
variable of interest. This link function is subsequently applied to downscale large-scale
variables simulated by different GCMs. Refer to Chapter 2.

ing is required (see Chapter 2 for more details). In a climate change context6, neither

GCMs nor RCMs are expected to exhibit day-to-day correspondence with real observa-

tions. For this reason, the link function MOS methods learn is not used with predictive pur-

poses, but rather as distributional correction. Once calibrated for a specific GCM/RCM

over a recent historical period of reference, MOS-learnt link functions can be subsequently

used to correct the outputs from the same GCM/RCM for future time periods. In other

words, in the climate change context, MOS methods can be categorized as BC techniques.

The next section provides further details about BC.

6MOS downscaling has been employed in the field of weather forecast for decades now, see (Glahn et al.,
1972).
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1.4 Bias Correction

As discussed in the previous sections, using raw GCM/RCM outputs is not a recom-

mended practice due to their biases, and some form of correction is needed prior to feeding

any impact model with climate data (Feddersen et al., 2005; Hansen et al., 2006; Hempel

et al., 2013; Sharma et al., 2007). Hence, due to their straightforward application and low

computational requirements (H. Li et al., 2010), as well as to the increasing availability

of GCM and RCM data, bias correcton (BC) techniques have become very popular in the

last decade. BC techniques aim to transform (i.e., correct or adjust) the distributions of

the raw GCM/RCM simulations such that, for a calibration time period, the corrected

simulations are equivalent to a reference observation in terms of one or several target

statistical features.

For a given statistical feature, θModel
F , the simplest BC techniques consist of apply-

ing either additive or scaling corrections (Casanueva et al., 2013; Durman et al., 2001;

Iizumi et al., 2011). Typically, additive corrections are performed for the future quantity

of interest simulated by the climate model as θ̃ = θModel
F − (θModel

H − θObserved), and there-

fore assume an additive mean error whilst potential biases in higher-order moments are

ignored. This approach is typically applied to correct temperatures. Differently, scaling-

based BC assumes that the mean error is relative, and thus it is corrected using the ratio

θ̃ = θModel
F / θObserved

θModel
H

. This other approach, typically used to correct precipitation, as-

sumes a constant coefficient of variation and applies a unique scaling factor to adjust both

the mean and the variance. Variations of these simple methods include applying power

law transformations (Leander et al., 2007) or using separate corrections for precipitation

occurrence and intensity (Schmidli et al., 2007).

Still, climate models, either GCMs or RCMs, are known to exhibit systematic biases

beyond the first and second order moments of the distribution, in particular in the tail.

To cope with this issue, distributional BC techniques (Fauzi et al., 2020; Lafon et al.,

2013; Piani et al., 2010; Turco et al., 2017) were designed to correct higher order moments

(e.g. a set of percentiles), being quantile mapping (Panofsky et al., 1968), along with

its multiple variants (Déqué, 2007; Haddad et al., 1997; Kallache et al., 2011), the most

popular alternative. Quantile mapping performs a quantile-to-quantile adjustment of the

probability distribution functions of the variable of interest. Parametric and empirical

versions of this technique have been widely used in climate change studies. On the one

hand, parametric quantile mapping assumes a theoretical distribution for the variable

of interest. For instance, Piani et al. (2010) proposes to correct observed and GCM
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rainfall intensities by assuming they are well approximated by a Gamma distribution.

More sophisticated versions such as the one proposed by Gutjahr et al. (2013) combine

a Gamma and a Generalized Pareto Distribution to better calibrate the extreme values.

On the other hand, in empirical quantile mapping the corrected distribution F̃ (Y ) of a

modelled variable of interest Y Model is obtained through the transformation

F̃ (Y ) = QObserved(FModel(Y Model)), (1.1)

for the inverse of the observed cumulative distribution function QObserved, and model cu-

mulative distribution function FModel, over the reference period considered for calibration.

Different methodologies have been proposed to correct the simulated quantiles which fall

beyond the range of the mapping built upon calibration (a situation which may typically

occur in climate change contexts), from taking empirical distributions (Wood et al., 2002)

to specifically modelling extreme precipitation intensities (Kallache et al., 2011; Michelan-

geli et al., 2009).

Although distributional BC methods have proved to be efficient for correcting differ-

ent marginal statistical properties, they present an important, known limitation: they are

not able to bias-correct the dependence structure (multivariable, spatial and/or temporal)

exhibited by the climate models (Manzanas et al., 2019; Maraun et al., 2017). In order

to cope with this issue, multivariate BC methods have been proposed in recent years.

For instance, Piani et al. (2012) and C. Li et al. (2014) proposed a bivariate correction

approach, by first quantile mapping one variable and then conditioning a second quantile

mapping on groups of the first variable. Other multivariate bias correction techniques

based on quantile mapping which aim to keep the observed inter-variable corrections have

been shown to provide promising results (Cannon, 2016; Cannon, 2018; Dekens et al.,

2017). Furthermore, Vrac et al. (2015) proposed a BC methodology that combines quan-

tile mapping with the Schaake shuffle (Clark et al., 2004) and was shown to adequately

reproduce the observed multivariate, spatial and temporal dependence. Similarly, Vrac

(2018) and the extensions proposed in Vrac et al. (2020) were developed to improve the

temporal properties and introduce some stochasticity to the methodology in Vrac et al.

(2015).

Moreover, the ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) mul-

tivariable method (Hempel et al., 2013; Lange, 2019) uses a parametric BC approach

which employs a comparatively complex mixture of corrections that includes regression

and transfer functions. It was developed within the ISI-MIP project, designed to synthe-

sise impact projections in different sectors (agriculture, biome, health, infrastructure and
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water) at different global warming levels (Warszawski et al., 2014).

This type of corrections can be seen as overriding the different distributional aspects

simulated by the climate models, which is a significant alteration. An interesting discus-

sion about the potential implications this may have is given in Section 12.5 in Maraun

et al. (2018) as well as in Vrac et al. (2022a). The latter work assesses whether or not

multivariate BC methods should reproduce, preserve or modify the changes in rank cor-

relations between daily temperature and precipitation. In a similar line, François et al.

(2020) concluded that multivariate BC methods can effectively adjust climate simulations’

statistical properties and correlations, although caution must be taken due to potential

instability affecting the corrected outputs. It’s crucial, then, to ensure BC methods do

not end up by degrading the desired statistical features.

As a final note, the statistical and machine learning methods described in Chapter

2.4 can generally be applied to bias correction. Recent examples include methods from

optimal transport theory (Robin et al., 2019), generative adversarial models (François et

al., 2021, see Section 2.4.5) and vector auto-regressive processes (Robin et al., 2021). In

addition, some BC approaches have been applied in combination with downscaling (Wood

et al., 2004) and interpolated spatially (Haas et al., 2014).
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2
Perfect Prognosis Statistical Downscaling
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As explained in the previous chapter, despite being the main tools used to simulate

the evolution of the climate system, GCMs are insufficient for most practical applications

and RCMs still present systematic biases that need an additional correction step. The

alternative approach1 to RCMs and MOS downscaling, already introduced in the previous

chapter, is perfect prognosis statistical downscaling (Storch et al., 1993)). It entails finding

the statistical relationships between observed records of large-scale synoptic variables, well

reproduced by GCMs, and the local variable(s) of interest over a specific region (Gutiérrez

et al., 2013). Perfect prognosis statistical downscaling, thus, exploits the overall good

skill of GCMs to simulate synoptic-scale processes, typically occurring at different vertical

levels of the atmosphere (such as the passage of cyclones/anticyclones), to downscale the

corresponding local-to-regional conditions at surface. Unless stated otherwise, from now

on we use the term statistical downscaling (SD) to refer, specifically, to perfect prognosis

statistical downscaling.

We can formally define SD as finding an empirical link function f : X −→ Y that maps

observed values of the state of large-scale atmospheric variables X (hereafter called the

predictors, whose spatial resolution is coarse) to local observational records of a variable

of interest Y (hereafter called the predictand(s)). This link can be established at different

temporal scales, although it is common to perform SD of daily values, as we do in this

thesis. We generally refer to the process of finding the link function f , independent of

the methodology used, as the training/calibration of the SD methods, as it is commonly

called in machine learning. Note that we employ the general notation X = X1, . . . , XD

to refer to all the predictors, with each Xd being a particular large-scale variable (e.g.,

geopotential) at a particular pressure level (e.g., 1000 Hectopascals) and geographical grid

point (e.g., 20o West, 40o North).

The coarse-resolution predictors X are typically chosen to be large-scale synoptic varia-

bles at different vertical levels of the atmosphere that are well reproduced by GCMs, such

as geopotential and temperatures. Y , in turn, varies depending on the application, ranging

from e.g. downscaling a single variable like temperature at surface (Huth, 2002) to poten-

tially downscaling different variables and/or at several geographical locations (Chandler,

2020). Y can also represent specific quantities (see e.g. Fan et al., 2021 for downscaling of

mean, maximum and minimum monthly temperatures over China) indices derived from

other variables (see e.g. Casanueva et al., 2019 for an illustrative study downscaling a

1Or rather, complementary. See, for instance, the illustrative studies Vrac et al. (2012) and Casanueva
et al. (2019))
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heat stress index), or specific statistics of interest like e.g. absence, presence and extreme

rainfall (Pham et al., 2019). More generally, Y can also be understood in a probabilistic

context, i.e. Y can also represent the parameter(s) of a probability distribution describing

some local-scale variable(s) of interest, like in Cannon (2008).

This is the approach followed in this thesis: we focus on the accurate characteriza-

tion of the downscaled probability distribution of precipitation. In practice, large-scale

predictors that adhere to the perfect prognosis conditions are limited in terms of pre-

dictive capacity for this variable. In other words, there exists an intrinsic limitation to

produce accurate deterministic downscaled precipitation values. Consequently, produc-

ing a downscaled probability distribution allows for properly describing the full range of

potential situations that may arise for a particular set of atmospheric large-scale condi-

tions. Indeed, a probabilistic prediction, if done reliably, is useful in three main ways:

First, it serves as a characterization of the uncertainty of the prediction itself. Second, the

probabilistic description can address specific questions such as the likelihood of extreme

precipitation at a certain location for different atmospheric conditions. Last, it can be

used to simulate as many downscaled series of the quantities of interest Y as required,

something which, as we will discuss later, is essential to sample downscaled series of the

variable of interest with properties that match the observed records.

The link function f is learnt over a historical reference period to predict observed

values of Y . Since there is no temporal correspondence between GCM simulations and

observed records, some reanalysis has to be employed as predictors during the training

process.

Reanalyses offer the most comprehensive depiction available of past climate condi-

tions. Climate observations are collected through the ever changing observational net-

work, which includes, but is not limited to, radiosonde, satellite, buoy, aircraft, ship and

station reports. Reanalyses assimilate all these observational sources with a short-range

weather forecast numerical model2, producing a physically consistent quasi-observational

4-dimensional (including the time dimension) gridded dataset. Stringent quality control

measures are implemented during reanalysis production, and their reliability is evaluated

2The observational network is unevenly distributed, both in time and space, and comes with errors.
Thus, they do not provide a complete picture of the state of the climate system across the globe at any
point of time. Data assimilation adjusts the highly skilful short-range forecasts slightly in a physically
consistent manner so that it matches the latest observations closely, taking into account uncertainties in
the observations and the short-range forecast.
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through comparisons with reanalyses generated by other research institutes. Still, reana-

lysis uncertainty (see e.g., Brands et al., 2012; Fernandez-Granja et al., 2021; Manzanas

et al., 2020b) exists and should be taken into account. Reanalyses play a crucial role

in climate research and services, being extensively utilized for various purposes. They

are instrumental in monitoring and comparing present climate conditions with historical

data, enabling researchers to identify the factors contributing to climate variations and

change. Furthermore, reanalyses are invaluable for producing local-to-regional climate

change scenarios using statistical downscaling.

In particular, the ERA-Interim reanalysis (Dee et al., 2011), which we use in this thesis,

is produced by the European Centre for Medium-Range Weather Forecasts (ECMWF).

It covers the time period from January 1, 1979, to August 31, 2019, providing a com-

prehensive representation of the Earth’s atmospheric conditions at a 0.75◦ (∼ 80km) hor-

izontal resolution. ERA-5 reanalysis (Hersbach et al., 2020) is the most recent release

from ECMWF, and significantly enhances the horizontal resolution to 0.25◦ (∼ 31km),

and benefits from a decade of developments in model physics, core dynamics and data

assimilation.

Once the SD methods have been trained with reanalysis data, that is, we have con-

structed f : XREA −→ Y , the final goal is to apply the so-calibrated models to downscale

the same large-scale variables, but as projected by GCMs, in order to obtain the cor-

responding downscaled values of Y for future periods. Throughout this thesis we use

XREA, XGCM to represent the same large-scale variables, but as coming from reanalysis

and simulated by GCMs, respectively. In addition, we use the terms perfect and non-

perfect to distinguish between applying f to reanalysis, f(XREA); and GCM predictors,

f(XGCM ), respectively. Even when applying f to unseen3 data, as it is often done to test

the performance of the SD methods (see Section 2.2), if the data comes from the same

distribution, we consider the conditions perfect. In the latter case, then, the conditions

are non-perfect, since we apply f to GCM predictors, which, as discussed in Section 1.1

and next, still present large biases with respect to the reanalysis used for calibration.

As discussed in Section 1.3, the fact that SD methods learn to predict observational

records implies that they require no additional correction, as observations are, in principle,

3With unseen, we refer to instances of the data that the SD method was not trained with.
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unbiased4. Note, however, that this does not imply that SD provides perfectly unbiased

downscaled results for the variable of interest, as we will later see.

4Observational datasets have uncertainties and errors themselves, like precipitation undercatch (Adam
et al., 2003) and interpolation errors in gridded datasets, yet they are still our most accurate reference.
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2.1 Conditions, Assumptions and Limitations

The accuracy and trustworthiness of SD is dependant on three main factors: the avail-

ability and quality of the observational records used to learn the link function, the ability

of the different statistical/machine learning methods to establish an adequate link func-

tion, and the reliability of the results obtained when applying this link function to different

GCMs and in a changing climate. We summarize the sources of bias and uncertainty of

PP SD in Table 2.1. In order to reduce these uncertainties, the PP approach requires

to choose the predictors X and link function f so that they fulfill three key conditions

(Maraun et al., 2018; Maraun et al., 2019a):

1. The perfect predictors condition: the predictors used to build the SD model must

be realistically simulated (ideally, bias free, hence the word perfect) in the present

climate and credibly projected into the future by GCMs.

2. Informative predictors: the predictors must be able to capture the observed climate

and explain the largest possible fraction of local variability. In a climate change

context, all the relevant predictors should be included so that the SD model can

capture the changes in the local climate resulting from the large-scale changes.

3. Robust link function: f must properly capture the influence of the predictors on the

predictand Y and filter the statistical noise. In addition, the relationships captured

by f must be transferable to GCM predictors and have at least some moderate

extrapolation capability to future climates.

These three conditions impose considerable restrictions in the selection of predictors

for perfect prognosis downscaling. Since f is learnt using reanalysis and applied to GCM

predictors, the first condition tries to ensure the consistency of the relationships encoded

in f when applying it to GCM predictors. For example, as explained in Section 1.3, in

MOS downscaling it is common to use the same (target) variable for both X and Y ,

e.g. precipitation. In PP SD, however, precipitation should not be used as predictor,

since GCMs exhibit comparatively high biases reproducing it (check Figure 1.1), greatly

violating the first condition: f will learn patterns in XREA which will not be present

in XGCM , which will create great inconsistencies. Nevertheless, it should be noted that

this condition is not typically fully met in practice, since GCMs still exhibit biases in the

comparatively well-reproduced synoptic variables. Thus, some minor bias correction is

often applied to GCM predictors in order to make them compatible with the reanalysis used
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Source Description

Potential large-scale biases in their driving
GCM.

As with RCMs, the biases produced by
GCMs in their simulation of the large-scale
climate propagate to the downscaled series
and results in transferability issues.

The choice of the predictors. Choosing the predictors that adhere to the
perfect prognosis conditions is a complex
task. Different predictor sets can affect the
downscaled series and produce conflicting
signals, even with automatic predictor se-
lection techniques.

The choice of the statistical approach, mis-
calibration, numerical and training errors.

Each statistical downscaling approach has
different strengths and weaknesses, re-
quiring parameter choices and calibra-
tion. Numerical algorithms, often em-
ployed to train the methods, have uncer-
tainties themselves.

The stationarity condition and extrapola-
tion issues.

Potential changes of the predictor-
predictand relationships, as well as
incapability of statistical methods to
extrapolate to changing climates, can
affect the downscaled results.

Table 2.1: Summary of sources of bias and uncertainty when performing perfect
prognosis statistical downscaling. See also Figure 2.1 for a schematic depiction of
these sources.

for calibration (this is known as harmonization), thus providing a better approximation

to the first condition (see e.g., Vrac et al., 2017 and the references therein for the effect of

bias correcting the predictors in SD), as we do in the article in Chapter 6.

Moreover, while reanalysis predictors are supposed to represent the real state of the

atmosphere at the synoptic scale, this is rarely the case in practice. Reanalysis data is itself

affected by errors due to limitations and changes in the underlying observational network,

the assimilation technique and the models employed (Brands et al., 2012; Horton, 2022;

Manzanas et al., 2014). Balmaceda-Huarte et al. (2021) evaluated 5 different reanalyses

over South America, concluding that none performed best and advising the use of multiple

reanalyses to account for uncertainty in statistical downscaling, especially in regions where
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the availability and coverage of reliable observational networks is limited.

In combination with the first condition, the second one is relatively straightforward: in

order to project the future changes for the local variables of interest, large-scale predictors

need to carry the climate change signal. Variables suitable for this task should account

for circulation (geopotential, winds) and thermodynamics (e.g. temperature, humidity) at

different vertical levels of the atmosphere.

The third condition is twofold. The first step when developing an SD method is

making sure that, in perfect conditions, the method finds true relationships and avoid

learning spurious ones, thus minimizing the instability and overall SD model error. In

the context of machine learning, this phenomenon, methods learning statistical noise,

is generally called overfitting. The opposite phenomenon is called underfitting, that is,

methods not being able to learn the true empirical relationships between the predictors

and the predictand, as when using a linear model to try to capture non-linear predictor-

predictand relationships. One of the most common ways overfitting and underfitting are

tackled is by employing cross-validation techniques, described in Section 2.2.

The second step, once the SD method has been optimally configured and proven suit-

able for downscaling under perfect conditions, is assessing whether the function f and

predictors of the SD method can be transferred to downscale simulations from GCMs.

This is due to the fact that potential issues may arise from differences in the distribution

of XREA and XGCM , i.e. when passing from perfect to non-perfect conditions, even for the

historical reference period. It is only once the transferability issue has been addressed for

the historical period, that the SD method may be used for producing future projections.

Finally, it should be noted that, on top of the transferability from reanalysis to GCM

predictors, the lack of an adequate extrapolation capability in the SD method may be

an important issue in climate change conditions (both transferability and extrapolation

capability are analyzed in the article in Chapter 6. For instance, specific humidity is a

key variable for precipitation, and is directly proportional to relative humidity for a given

temperature. However, specific humidity that results in cloud formation under present

climate may not do so in a warmer atmosphere. Similarly, the meridional wind component

carries moist and warm air northward (moisture advection). If, for instance, the moisture

carried by these winds changes significantly, part of the predictor-predictand relationship

f will change.

We schematize the potential sources of error and uncertainty surrounding PP SD in
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FIGURE 2.1: Statistical downscaling (SD) models are trained in perfect condi-
tions (left panel), and applied to downscale future GCM (non-perfect) scenarios (right
panel). This figure shows a schematic of the potential sources of uncertainties (red) in
perfect prognosis SD. See also Table 2.1 for the details on these sources of uncertainty.

Figure 2.1. Among them, the conditions outlined in this section are put in place to reduce

the SD model error in perfect conditions, the GCM bias and the transferability error.

There are many ways to learn the link function f and choose the predictors, ranging

from more classical and well-established techniques to more complex and/or experimental

ones. They vary substantially in their ability to extract information form the large-scale

predictors, explainability, robustness, transferability and extrapolation capability. We

devote Section 2.4 to explain the many approaches and techniques available nowadays for

SD, briefly describing their relative strengths and weaknesses.

Choosing predictor variables that fulfill the three conditions stated at the beginning

of this section is neither trivial nor fully solved in the literature. Many widely used SD

methods need a prior predictor selection step, a time-consuming task which can lead to

substantial differences in the future projections, as shown, e.g., in Balmaceda-Huarte et al.

(2022) and Manzanas et al. (2020a).

Specifically, precipitation at the daily scale is highly influenced by local processes, such

as convective instability, and the predictors need to account for both precipitation occur-

rence and amounts. Precipitation occurs once a layer of moist air is lifted and becomes
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supersaturated5 with respect to liquid water (or ice in some cases), forming cloud droplets

that, if sufficiently large, fall out and reach the ground without evaporating. Precipitation

intensity largely depends on vertical velocities and available moisture. A sensible predic-

tor for precipitation must therefore include some representation of relative humidity. If

available for the GCM of interest, relative humidity, or temperature and specific humidity

should be included (Manzanas et al., 2020a; Wilby et al., 2000). Synoptic circulation is

relevant for the air lifting that happens across large-scales. Thus, sea-level pressure or

pressure-related predictors such as geopotential height are often employed, with the idea

to capture vertical lifting from horizontal divergence. Orographic precipitation strongly

depends on flows across the mountains and is thus also linked to the synoptic circulation.

Large-scale circulation is also indirectly related to localised summer convection, by means

of local adiabatic heating of the lower atmosphere and heat release through condensation.

The passage of weather systems is associated to strong temporal changes in pressure and

temperature. Other predictors relevant for precipitation, such as the K-index (Karl et al.,

1990), the convective available potential energy (Perica et al., 1996) or the total-totals

index (Dayon et al., 2015); are rarely considered, since they do not fulfill the perfect

prognosis condition.

5Supersaturation is the condition existing in a given portion of the atmosphere when the relative
humidity exceeds 100%.
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2.2 Cross-Validation

Cross-validation techniques (see Chapter 7 in Hastie et al., 2009) are the cornerstone for

model assessment in the machine learning field. Cross-validation techniques are employed

to reduce as much as possible the SD model error when using reanalysis predictors, that

is, in perfect conditions (see Figure 2.1). This entails finding the true relationship f

linking the large-scale predictors X with the local state of the variable Y , filtering spurious

relationships which just represent statistical noise.

The complexity6 of a SD model must be carefully controlled so that f does not overfit

to statistical noise. The more complex the SD model, the higher its capability to adapt to

more complicated patterns and to reduce the training error, that is the error committed

predicting instances in the train set. Indeed, for n data points, it is trivial to build f

as a n-degree polynomial that perfectly fits the data. Similarly, a regression tree (see

Section 2.5) allowed to grow to its maximum depth with no restriction will build a link

function f perfectly matching the available data. However, these methods will generalize

poorly to unseen data, even in perfect conditions: as illustrated in Figure 2.2, the true

relationship between X and Y is much more parsimonious, whereas the overfit f will

predict inconsistent values when faced with new data points 7. We generally refer to the

error made by the models when predicting the training set as in-sample error, and to the

error made when predicting the unseen, test set as out-of-sample error.

Cross-validation consists of partitioning the entire observational dataset into disjoint

train and test sets. As the name suggests, the former set is employed for training the

model, leaving out the latter as unseen data, to test the validity of the function f learnt.

There are different cross-validation options available, and the reader is referred to Chapter

7 in Hastie et al. (2009) for further details. One of the most widely used is the k-fold cross

validation, in which the whole dataset available is divided into F1, . . . ,Fk disjoint subsets

6We use in this thesis the word complexity as the capability of a statistical/machine learning methodol-
ogy to approximate any potential given function from any potential set of predictors. Using this definition,
a linear model would be less complex than, e.g. a regression tree, since a linear model can only approx-
imate a linear response on the model parameters, whereas a regression tree can potentially approximate
any response function, including a linear one.

7This is generally referred to as the bias-variance tradeoff in machine learning (Hastie et al., 2009): as
the complexity of the model grows and becomes more capable to learn a very complex function the bias
(understood as the error in the training set) tends to decrease, while the the variance (understood as the
unstability of the learnt function) tends to increase. We do not use this terminology in this thesis to avoid
confusion with the term bias in the context of climate modelling.
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and the model is trained k times, for each i ∈ {1, . . . , k}, using F1, . . . ,Fi−1,Fi+1, . . . ,Fk

as train set and Fi as test set. The number of subsets or folds, k, is typically chosen to be

between 5 and 10 as a compromise between the computational complexity of training and

testing k models and the predictive capability uncertainty due to instability of the training

sets themselves (Bengio et al., 2004): for very low values of k the k-fold will overestimate

the error and potentially lead to wrong conclusions, due to the models being trained with

a small portion of the available data. For instance, k = 3 implies that the models will be

trained with just 66% of the data, so they will significantly underperform with respect to

using the entire dataset for training.

While it is common practice within the machine learning field to choose the sets Fi

randomly, the partitioning is often done chronologically within the SD field, given the

temporal structure in climate data (Gutiérrez et al., 2019). Furthermore, these sets can

also be chosen selectively, in order to assess the extrapolation capability to slightly different

climates. This is done, for instance, in Gutiérrez et al. (2013), which selected as test sets

the warmest years found in the training period, in order to test the extrapolation capability

of different SD methods, in perfect conditions, to warmer climates.

Within the perfect prognosis framework, where transferability may also be an issue,

it is crucial to properly tune the SD models to avoid any overfitting, since GCM and

reanalysis large-scale bias will still exhibit some distributional differences, which can lead

to biases and an overamplification or subestimation of projected climate change signals

for the future. In Chapter 6, we show how different SD methods behave reasonably well

in perfect conditions in terms of bias and predictive capability (Figure 1). However, when

transferred to the historical scenario of the EC-Earth GCM (i.e. when they are applied in

non-perfect conditions, Figure 2 in this same article), the biases are clearly amplified.

In practice, then, for two SD models behaving similarly in perfect conditions, the

simpler one should be preferred. This is not only standard practice in machine learning

(Hastie et al., 2009), but also specially relevant under the PP framework. As Figure 2.2

illustrates, overfitting implies that f is more wobbly, exhibiting a more chaotic or unstable

behaviour to small perturbations (or bias) in X. In this case, this instability will manifest

itself when the distribution of X is altered, as when transferring from reanalysis to GCM

predictors, modifying the signals and amplifying the bias for Y . A more stable f , especially

if accompanied by a robust probabilistic estimation of the uncertainty, will provide more

robust downscaled values of Y .
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FIGURE 2.2: Top panel: Schematics for an overfitted function (right, blue line)
for the true underlying relationship between X and Y (left, blue dashed line). For
illustrative purposes, the red stripe shows the estimate of the error range made by
each function, in perfect conditions (in practice the uncertainty may be estimated in
different ways and depends on the methodology employed). Bottom panel: The true
relationship and the overfitted function when transferred to non-perfect conditions,
applied to X0

GCM , as simulated with some bias by a GCM for the observed value of
the predictors X0 and its corresponding value of Y , Y 0. The uncertainty learnt in
perfect conditions is shown on the Y axis, along with the heatmaps showing a potential
probability density function describing it, and its expected value E(f(X0

GCM )).
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This is illustrated in Figure 2.2: overfitting not only affects the generalization error in

perfect conditions, but also the transferability of the predictor-predicatand relationships

and the description of the error. Indeed, the overfitted function matches much more

closely the points it was trained with, yet it is more unstable and underestimates the true

uncertainty (which is also estimated in perfect conditions), assumed to be as in the left

panel. When transferred to non-perfect conditions (bottom panel), the overfitted function

amplifies the GCM bias, with the true value of Y falling outside the uncertainty range

estimated from the model.

46



2.3 Distributional Consistency: Marginal, Temporal, Spatial and
Multivariable Aspects

In the previous section we defined downscaling as learning a function f from a set of

large-scale predictors X to the local variable(s) of interest Y . As already mentioned, cap-

turing the local distribution of Y is specially relevant for precipitation, since the predictive

capability of the large-scale variables used in SD methods is is comparatively low for this

variable: they contain information, but not nearly enough to produce downscaled series

without uncertainty8. The first step is to model the marginal probability distribution of

the downscaled variable, in our case the daily distribution. Indeed, it is essential to sam-

ple downscaled series of the variable of interest with properties that match the observed

records. The marginal probabilistic description of the downscaled rainfall distribution is

clearly illustrated in Figure 5 of Chapter 4: if only the expected value is downscaled,

the resulting series will exhibit, much lower variability than the observed one and high

precipitation values will not be simulated. Under the marginal distributional component

we include aspects like mean precipitation or precipitation over the 98th percentile, and

generally aspects stemming from the daily distribution of a variable at each location,

including its tail.

Nevertheless, in addition to the marginal distribution, which is typically what SD

methods focus on, the local variables of interest have additional distributional features

that need to be considered. These are schematized in Figure 2.3, and include the tem-

poral component, or the dependence of a variable at a given time-step with respect to

its state at previous time-steps; the spatial or multisite9 structure, i.e., the dependence

structure of locations that are geographically close; and the multivariable10 aspect, or the

interdependence of several climate variables. If these aspects are not accounted for, the

downscaled results may fail to meet the needs of specific end-users, as is the case with the

spatial structure of precipitation for hydrometeorological applications. Indeed, all these

8Note that, if predictors had enough information to accurately pinpoint a specific value of the variable
of interest, no additional distributional considerations would be needed, since the downscaled series would
perfectly match the reality, thus perfectly capturing all of the aspects discussed in this section. This is
clearly not the case for precipitation.

9We use the terms spatial and multisite in this thesis indistinctly.

10Although all the distributional aspects discussed can be understood in the statistical sense as mul-
tivariable, in this thesis we use the term multivariable to refer, specifically, to simultaneously modelling
multiple climate variables, for instance temperature and precipitation.
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aspects and their potential future changes are closely related to the so-called compound

events Zscheischler et al., 2020, a booming field of research (see e.g., Bevacqua et al., 2022;

Bloomfield et al., 2023; François et al., 2022; Hao et al., 2019).

The temporal aspect typically manifests in the context of climate variables as some

persistence of the series, which partly stems from real physical memory, for instance from

precipitation recycling11. The lack of temporal consistency can be seen in Figure 7 in

Chapter 5 and Figure 2 in Chapter 6. Note how the predictors do carry a considerably

high information to distinguish between wet (precipitation over 1mm) and dry days, as

measured by the area under the ROC (receiver operator characteristic) curve (AUC),

which reaches ∼ 0.88 on average across locations for two of the SD methods (see Figure

1 in Chapter 6). Still, the wet-to-wet and dry-to-wet day transition probabilities are not

well captured.

The spatial dependence structure of precipitation occurrence (absence or presence of

precipitation) can be clearly seen in Figure 5 in Chapter 5 in terms of multisite pairwise

correlations, which are greatly underestimated by the single-site GLMs (blue crosses).

Note, however, that these results are clearly improved by the method we introduce in this

article (BNICRF), which allows for modelling the correct spatial structure (red crosses),

even though the predictive capability of both methods is similar (see the AUC in Figure

4 in this same chapter). Multivariable dependence is not explored in this thesis, which

focuses exclusively on precipitation. Nevertheless, we plan to extend the methodologies

presented here and develop new ones to explore this relevant aspect in the future (see

Chapter 10).

It should be noted that all the distributional aspects discussed (marginal, spatial

and/or temporal) typically compound, yielding a complex joint temporal, spatial and

multivariable dependence structure. Moreover, the extremes in any (or more than one)

of these aspects are specially relevant in climate science, since they have the potential to

produce big impacts. For example, temporal and spatial aspects combined can be seen

in Chapter 3: in Figure 7, we show the temporal dependence exhibited among different

locations; and in Figure 8 we address the spatial spells, that is, the temporal and spatial

dependence combined to create dry and wet spells that extend over the whole geographical

domain. These kind of events are specially impactful (Zscheischler et al., 2020), due to

11Precipitation recycling refers to the contribution of evaporation within a region to more precipitation
in the same location.
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FIGURE 2.3: Schematic of the different distributional aspects involved in climate
variables. The blue (red) lines represent the observed precipitation (temperature)
values and the heatmaps correspond to a Gamma (Gaussian) distribution, accounting
for the potential values the variables may take for different states of the large-scale
variables.
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their potential to create droughts and floods over vast regions (Ansari et al., 2022).

Generally, the few works dealing with SD that have considered these distributional

aspects (multivariable, spatial and/or temporal dependencies) to date, apply a posteriori

corrections to impose the desired structure on the downscaled results based on correspond-

ing observed one (see e.g., Cannon, 2008). However, a relevant issue in this context is that

doing so may not be the most sensible methodology, since these aspects can not be as-

sumed to remain fixed under climate change conditions (see e.g., Faranda et al., 2020 or

Vrac et al., 2022b).
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2.4 Statistical and Machine Learning Methods for Statistical
Downscaling

The link function f between large-scale predictors X, well reproduced by GCMs, and

the local variable(s) of interest Y , can be built using many different approaches, from

classical, well-established techniques to state-of-the-art machine learning ones12. Recall

that perfect prognosis SD methods are trained to learn f by employing a dataset with

N (pseudo-)observed records {xi, yi}i=1,...,N ∈ XREA × Y . Typically, periods of 30 years

are considered and thus N ≈ 10957 (without accounting for missing records), since we

perform downscaling on a daily temporal resolution in this thesis.

We provide in this section a high-level overview of the most widely used techniques

for PP SD, describing them briefly without delving too much into the technical details.

We devote Section 2.5 for a more in-depth and technical description of the statistical and

machine learning techniques used in this thesis, including their different implementations.

Among the techniques explained in this section, it is common practice to classify them

either as stochastic (weather generators) or deterministic. The former generally refers to

introducing a stochastic component into the predictions to improve their variability in

order to better represent the whole range of states the target variable of interest may

take. In general, the methods explained in this section are inherently neither stochastic

nor deterministic, and instead can adopt both roles, depending on the application and

needs. For example, temperature can be modelled using a deterministic method, since the

information contained in the large scale is generally good enough to be able to produce

series with adequate variability (Baño-Medina et al., 2020) that reasonably well reproduce,

e.g., extremes. However, this is not the case for precipitation, for which a stochastic

component is required in order to properly reproduce the appropriate local variability from

the large-scale predictors (see the limited correlations attained in Figure 2 in Gutiérrez

et al., 2019 by all the deterministic methods when downscaling precipitation). Indeed, a

general way for introducing a stochastic component consists of simply using the residuals

to provide an estimate of the uncertainty of the SD method, as it is commonly done with

12Intentionally, no explicit distinction is made in this thesis between statistical and machine learning
methods, since many methodologies typically classified under either of the two terms can be used actually
used for the same purpose (the boundary that separates both fields is blurred). For instance, generalized
linear models are typically considered to be a statistical model, while deep learning methods are always
considered to lie within the machine learning field. However, other techniques, like support vector machines,
are sometimes placed in both categories, depending on the application and author.
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generalized linear models (see Subsection 2.5.2). We give an overview in this section of the

most commonly used techniques for SD, including analogs, weather typing, and regression-

based ones. A brief description of each technique is provided, to put them in context with

the methodologies used in this thesis, and the reader is referred to the given references for

more details.

Numerous intercomparison studies have revealed that no single method consistently

outperforms others in terms of accurately reproducing local variability and maintaining

distributional consistency (S.-T. Chen et al., 2010; Gutiérrez et al., 2019; Olmo et al.,

2022a; Sachindra et al., 2018; Wilby et al., 1998). Owing to their simplicity and generally

satisfactory performance, generalized linear models and analog methods have tradition-

ally been favored within the statistical downscaling community (Abaurrea et al., 2005;

Chandler, 2020; Chandler et al., 2002; Fealy et al., 2007; Hertig et al., 2013). As we

discussed in Section 2.2, broadly speaking, powerful non-linear techniques like boosting

and complex neural networks are particularly useful when there is no concise functional

form available for f and there is a need to account for complex predictor-predictand rela-

tionships. There is, however, a tradeoff, as this also makes the methods less interpretable,

prone to overfitting and hampers their transferability.

2.4.1 Analogs

The analogs (Zorita et al., 1999) method is a non-parametric technique that assumes

that similar (or analog) atmospheric conditions X over a given region lead to similar

outcomes of the variable of interest Y . For the GCM predictors state XGCM = xGCM , the

analog (y, xREA) is selected from the historical records (Y,XREA) as the one minimizing

a dissimilarity or error measure e(xREA, xGCM ), typically the euclidean distance (Matulla

et al., 2008), although other metrics like the Teweles-Wobus score have been employed

(see e.g., Blanc et al., 2022). That is, in its basic form, f is constructed as

f : XGCM −→ Y

xGCM −→ argmin
(
e (x, xGCM )

)
{
y∈Y | (y,x)∈(Y,XREA)

} (2.1)

Typically, formula 2.1 is not applied directly, but instead a set of the closest analogs is

used. In practice, there are many different variants of the analogs technique, including

using the predictors with seasonal restriction, for instance, by choosing analogs only in

a ±15-day window around the climatological day of interest. More elaborated two-step

analog methods (Obled et al., 2002; Ribalaygua et al., 2013) have also been proposed, that
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first select a preliminary set of analogs using some predictors over a domain, and then refine

the search using another set of predictors over a smaller region. Analog methods can also

be deployed stochastically, for instance by sampling from the 15 closest analogs, as in

Beersma et al. (2003) and Gutiérrez et al. (2013). Analogs have also been employed in

combination to, e.g., a linear model, as in Hidalgo et al. (2008), which trained a linear

model on the 30 closest analogues. The analogs technique is closely related to the k-nearest

neighbours algorithm (Chapter 2 in Hastie et al., 2009) which, in its standard form, can

be thought as a machine learning method that infers a prediction based on the k closest

analogs (see e.g., Gangopadhyay et al., 2005).

Despite its simplicity, the analogs technique can potentially perform as well as other

more sophisticated ones (Gutiérrez et al., 2019), particularly for downscaling daily pre-

cipitation. This is due to the fact that it makes no parametric assumption, nor on the

predictors neither on the predictands. Moreover, it can trivially capture complex non-

linear predictor-predictand relationships. Furthermore, an important advantage is that,

since it employs direct historical records for the prediction, the multivariate, spatial and

temporal consistency (see Section 2.3) is kept.

Previous works focusing on the distributional consistency include, for instance, Bettolli

et al. (2018), who downscaled daily precipitation, maximum and minimum temperatures

over South America, concluding that the methodology was able to reproduce marginal

extremes, their spatial distributions, as well as the probability of compound extremes.

Similarly, Raynaud et al. (2017) used the analogs technique to produce downscaled pre-

dictions of daily temperature and precipitation, achieving physical consistency between

them. Other studies, such as Dayon et al. (2015), used the analogs technique to study

the transferability issue based on several GCMs and reanalyses. Recent studies include

Amblar-Francés et al. (2020), which performed precipitation downscaling for an ensem-

ble of 24 climate models from CMIP5 using the analogs technique, as well as Horton

(2022), which tested the performance of several reanalyses using the analogs technique.

In Balmaceda-Huarte et al. (2022) the analogs method was evaluated for downscaling

temperature against two other SD methodologies (generalized linear model and a neural

network architecture, see Sections 2.4.2 and 2.4.5), concluding that its performance was

slightly worse than the other two for downscaling of temperature. These three methodolo-

gies were also assessed in Olmo et al. (2022b) and Olmo et al. (2022a), in the latter case to

downscale daily precipitation for an unprecedented ensemble of GCMs (see Section 2.4.5).

Moreover, in Bettolli et al. (2021), analogs and generalized linear models were intercom-

pared against dynamical approaches, exhibiting an overall good performance, albeit with
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some incapability to reproduce extremes.

However, this technique can be unstable, in the sense that it is prone to overfitting and,

since it is based on sampling observed values, it is generally regarded as non-generative.

This implies that values outside the observed range cannot be generated with the analogs

technique. Note, however, that many alternatives exists to achieve some generativeness,

for instance by applying a linear model within the chosen analogs, as in Hidalgo et al.

(2008), or by averaging analogs as in the k-nearest neighbours algorithm. The analogs

technique also requires careful predictor selection, as concluded by many of the studies

mentioned above, since it can not be used in high-dimensional settings (that is, with a

large number of predictor variables), due to the so-called curse of dimensionality13.

2.4.2 Linear and Generalized Linear Models

Generalized Linear Models (GLMs) were formulated by Nelder et al. (1972) to generalize

beyond two key assumptions of the classical linear regression technique. These assumptions

are, first, that the predictors X affect, linearly, the expected value of Y ; and that the error

(or uncertainty) of the prediction made by the model is normally distributed. Specifically,

they allow for modeling non-normally distributed variables from the so-called exponential

family14, providing an estimate for E(Y |X = x) using a non-linear link function g15, i.e.

f is defined as

f : X −→ Y

x −→ g−1(Bx + b),
(2.2)

where B represents a numeric matrix, i.e. a set of linear combinations of X (vectors,

in this case x and b, are expressed in columns throughout this thesis). In this regard, note

that in both linear and generalized linear models, additional predictors are often derived

from the original ones, in order to account for non-linear interactions (in addition to the

13The curse of dimensionality, in our context, refers to the difficulty of finding informative patterns
in data when the number of predictors is large. As the number of dimensions (or variables) increases,
the volume of the search space grows exponentially, leading to an increasingly sparse distribution of data
points.

14The exponential family includes, among others, the Bernoulli, Gaussian, Exponential and Gamma
probability distributions, see e.g., McCullagh et al. (1989).

15g is an invertible function, and E(Y | X) is expressed depending on X in the GLM literature using
the inverse of g.
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non-linearity introduced by the link g), when these are known to exist (Chandler, 2020).

Thus, GLMs can model non-linear responses and interactions if implemented sensibly, by

incorporating as an additional predictor, e.g., an interaction term between temperature

and humidity, or a quadratic function of latitude and longitude.

Essentially, the purpose of the link function g is to constrain the linear output Bx+ b

so that it fits the distributional assumption. For instance, for predicting a Bernoulli-

distributed variable such as precipitation occurrence (i.e., a logistic regression), the ex-

pected value E(Y | X) must necessarily lie within [0, 1], and thus g must map the real line

R to [0, 1] in this case. A traditional linear model, if faced with a predictor outside the

range it was trained with, may produce a probability value over 1 or below 0. Therefore,

in this sense, GLMs can be considered the natural and most conservative extension of

linear models to non-normally distributed variables.

GLMs are trained making use of numerical methods to maximize the likelihood function

over the parameter space (the B coefficients above). The likelihood function corresponds

to the density function of Y given the parameters B although, in practice, log-likelihood

function is used, which corresponds to the logarithm of the likelihood function. Since

the logarithm is strictly increasing and continuous, it turns into a maximization problem.

One of the most widely used algorithms for fitting GLMs is the iteratively reweighted least

squares (IRLS) method, employed by the Stats package in the R programming language

(R Core Team, 2023), which is an extension of the traditional weighted least squares

method (Dobson et al., 2018). Note that we can understand linear models under the GLM

framework, as a particular case, using the identity link and assuming Y to be normally

distributed. It can be easily shown that, in this case, maximizing the likelihood equals

minimizing the mean root squared error and thus the GLM is simply a standard linear

regression. Section 2.5.2 gives a more specific description of the GLMs used in this work.

GLMs have been widely employed for statistical downscaling and rainfall modeling

across different time-scales, as evidenced by a plethora of studies (Abaurrea et al., 2005;

Balmaceda-Huarte et al., 2022; Chandler et al., 2002; Gutiérrez et al., 2019; Manzanas

et al., 2015; Manzanas et al., 2020a; Manzanas et al., 2020b; Nikulin et al., 2018; Olmo

et al., 2022a; San-Mart́ın et al., 2017; Solman et al., 2021), and have been shown to offer

a competitive performance relative to other machine learning techniques (Gutiérrez et al.,

2019). An additional advantage of GLMs is their interpretability: the coefficients of the

model can be assessed to draw conclusions on the effect of predictors, including interaction

terms. Chandler et al. (2002) provide a good illustration of this. Although GLMs predict
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the expected value of Y from X, it is possible to reintroduce a stochastic element into

the model by estimating the standard deviation based on the model’s prediction error

on the training data. This enables the generation of stochastic simulations, as previously

explained. The specifics of how this is performed for the Gamma distribution are explained

in Subsection 2.5.2. Finally, note that GLMs have a natural extension, vector generalized

linear models (VGLMs, Yee et al., 1996), which further expand the family of functions

that can be modelled with GLMs and allow for predicting of multiple parameters, using

a link functions, as with GLMs (see e.g., Vrac et al. (2017) for an illustrative study on

VGLMs used for statistical downscaling).

2.4.3 Support Vector Machines

Support vector machines (SVMs, Vapnik, 1998) have been extensively used in climate

downscaling. They are based on the idea of support vector classifiers, which find linear

boundaries in the input feature space. In order to account for interactions and non-linear

predictor-predictand relationships, SVMs enlarge the feature space using basis expansions

such as polynomials or splines (Chapter 5 in Hastie et al., 2009). Linear boundaries con-

structed in this higher-dimensional space achieve better separation power and predictive

accuracy.

The generic SVM regression can be described as

f : X −→ Y

x −→ B · g(x) + b,
(2.3)

where g is a non-linear transformation defined to map the input space into a higher

dimensional feature space. It can be shown that f in Equation 2.3 can be written as

f(x) =
∑N

i=1(αi − α∗
i ) · k(x, xi) + b, where k is a function known as the kernel, · is the

dot product and αi and α∗
i are the Lagrange Multipliers16. Different kernel functions can

be employed, including e.g., polynomial, sigmoid and RBF (radial basis function) kernels.

The RBF kernel is the most widely used one in downscaling applications, and is defined as

k(x, xi) = e−ν||x−xi||2 , where ν is a model parameter, usually selected via cross-validation

techniques, and || · || is the squared euclidean distance.

16In optimization, the method of Lagrange multipliers finds the maximum or minimum of a function
when there are some constraints. See, e.g., Bertsekas (1996) for the details.
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SVMs and their natural extension to probabilistic regression, relevance vector machines

(RVMs, Tipping, 2001), have been extensively applied to statistical downscaling (Ahmed

et al., 2020; Ghosh et al., 2008; Joshi et al., 2015; Okkan et al., 2015; Pham et al., 2019;

Sachindra et al., 2018; Sachindra et al., 2013; Tripathi et al., 2012; Xu et al., 2020),

generally performing very competitively. Indeed, Xu et al. (2020) concluded that SVMs

were the preferred option against other two machine learning techniques (random forests

and a deep learning architecture, see next sections) for downscaling future precipitation

under two RCPs.

2.4.4 Bagging and Boosting Methods

Bagging and boosting are two different forms of ensemble learning techniques (Dietterich,

2000), which involve training several base models and aggregating them to increase the

predictive performance of the ensemble. They work, fundamentally, in two opposite ways

to achieve better predictive performance. The main idea in bagging (bootstrap aggregat-

ing, Breiman, 1996) entails training several models (typically with high complexity) on

different bootstrap samples of the training data, with the aim of avoiding overfitting in

the ensemble model’s prediction by subsequently inferring an ensemble prediction by ag-

gregating all the individual models’ predictions. Conversely, boosting works by iteratively

training weak models with low predictive power, with each model built based on all the

errors made by the previous model. Although other base models can be potentially used

for both techniques, classification and regression trees (CART, or simply trees, Breiman,

2017) are commonly employed as the building blocks of both bagging and boosting meth-

ods.

Trees are predictive models that separate the target variable Y into groups by recur-

sively splitting the predictors’ space using a dissimilarity measure. That is, each tree t

can be viewed as a partition of the space (X;Y ) into M (disjoint) regions R1, . . . , RM ,

creating a mapping
t : X −→ Y ∗

x −→ {y ∈ Y | (x, y) ∈ Rm}.
(2.4)

Although they are attractively simple and interpretable, trees are capable of capturing

non-linearities in the data and can thus be used in problems of different complexity and

nature. However, these models present several weaknesses that hinder their application in

real-life problems, mainly their lack of stability and tendency to overfit.

The mapping of trees to a set {y ∈ Y | (x, y) ∈ Rm} (called leaf) is constructed by
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means of a split function. It recursively chooses both the predictor variable X0 and its

threshold value X0 = x00 that best separate a subset Y0 of observations drawn from Y into

Y+ = {y ∈ Y0 | X0 ≥ x00} and Y− = {y ∈ Y0 | X0 < x00}. In particular, for the mean

observed value of each subset (y0, y+ and y− for Y0, Y+ and Y−, respectively), X0 = x00

is appropriately selected to maximize the reduction of the average error committed in the

leaves Err(y0, y) −
(
Err(y+, y) + Err(y−, y)

)
/2, where Err(y, y) measures how well y

represents (or summarizes) the observed values for each set, and is traditionally chosen to

be the mean in regression problems and the proportion of each class in classification ones.

In regression problems, the mean squared error (MSE) is typically used as Err (see e.g.,

He et al., 2016 or Xu et al., 2020), i.e. Err(y0, y) = 1
|Y0|
∑

y∈Y0
(y − y0)

2.

Employing this comparatively simple mechanism, trees can build either very complex

and overfit mappings or very conservative and underfit mappings. Indeed, a tree, if left

to grow uncontrollably without any regularization (Hastie et al., 2009) technique, will end

up creating one terminal leaf per distinct element (x, y) in the dataset. This will yield

a model with zero in-sample error (when predicting on the training dataset), that will

generalize very poorly to unseen data. Conversely, if the tree is only allowed to grow up

to a very limited number of leaves, it will underfit to the training data, yielding a low

predictive capacity. Bagging and boosting techniques profit from this behaviour.

The most well-known bagging technique is random forest (RF, Breiman, 2001). RFs

build an ensemble of K trees to predict the variable Y from the predictors X. Specifically,

a RF averages the predictions tk(x) made by each tree tk, building f as

f : X −→ Y

x −→ 1

K

K∑

k=1

tk(x).
(2.5)

Even though random forests’ trees are typically grown to a considerable depth, some re-

striction is put in place to the allowed maximum depth or on the minimum number of

elements that each leaf must have, to avoid overfitting. Moreover, RFs introduce two

additional mechanisms to reduce the risk of overfitting, make the individual tress be less

correlated and increase the predictive capability of the ensemble model: First, each indi-

vidual tree is trained with a bootstrap sample drawn from the original dataset. Second,

for each split in each individual tree, only a random subset of the total available predic-

tors, m, is considered as split candidate. Note that additional techniques like pruning and

regularization (Hastie et al., 2009, see Sections 9.2.2 and 10.12) are an option typically

used for individual trees, but they are not usually considered in RFs.
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As stated above, boosting proceeds by iteratively aggregating the outputs of many

weak models (shallow trees, not allowed to perform many splits) to produce a robust

prediction. In its basic form, boosting builds f = fK by iterating the recursion fk(x) =

fk−1(x) + ν · tk(x). That is, as opposed to bagging techniques, fk takes into account the

previous learners and adjusts the prediction accordingly, growing tk to predict the residuals

y− fk−1(x). This way, each new tree focuses on the samples where the previous trees did

wrong and yielded large residuals. The first learner, f0, is just a standard (shallow) tree.

ν corresponds to the learning rate (a model parameter, typical learning rates are 0.1 and

0.01), and can be viewed as downsizing the influence of each tree. The learning algorithm

slowly evolves f to accurately predict Y , and stops after a predefined number of iterations

is performed or the predictions no longer improve, possibly on a test set or employing

regularization techniques (Hastie et al., 2009). The most popular boosting algorithms are,

arguably, gradient boosting (J. H. Friedman, 2001) and Adaboost, introduced in Freund

et al. (1997) for binary classification problems and extended to regression by J. Friedman

et al. (2000).

Gradient boosting can be seen as the generalization of boosting to any (differentiable)

loss function. Specifically, in gradient boosting, tk is learnt to predict, from X, the so-

called pseudo-residuals,

tk : X −→ Y

x −→ −∇fk−1L(y, fk−1),
(2.6)

that is, the negative gradient of the loss function. Note that the gradient of the mean

squared error loss corresponds to the residuals y − fk−1(x), and thus yields the standard

boosting method. Consequently, gradient boosting performs gradient descent, a key algo-

rithm in optimization, notably relevant for training neural networks, check Section 2.5.6.

Note however that, differently from neural networks, gradient boosting updates the model

structure instead of just the parameters, descending the gradient by sequentially intro-

ducing learners. It is common to introduce some regularization term to avoid overfitting.

In this regard, feature and instance subsampling, both techniques borrowed from random

forests, can be employed on each step, tree or split to further enhance the robustness of

the algorithm.

In Adaboost, the weak learners are actually just stumps, that is, trees with just two

terminal leaves. Differently from gradient boosting, at each boosting step, a set of weights

w1, w2, . . . , wN is assigned to each of the N training observations. Initially, all weights

are set to wi = 1
N , where N is the number of training samples, and thus the first step

simply trains the stump on the data in a standard manner. For each subsequent iteration
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m = 2, 3, . . . ,M , the weights are individually adjusted, and the new tree is built to predict

the weighted observations. At step k, these weights are modified: for the observations

that were predicted worst at the previous step, they are increased. For those better

predicted, the weights are decreased. Consequently, as the boosting iterations progress,

instances that are challenging to predict accurately are given higher priority, with each

subsequent learner thus being forced to concentrate on the training observations that were

not accurately predicted in the previous steps.

RFs have been employed for statistical downscaling in several studies. In He et al.

(2016) two RF models are proposed for downscaling precipitation: one focused on low-

to-moderate precipitation and another one for localized extreme rainfall. Noteworthily,

this study also analyzed some spatial and temporal metrics, concluding that RFs perform

poorly reproducing these aspects, even after the introduction of an additional predictor

to account for them. Note that this is precisely one of the issues we try to address in

this thesis. In addition, Pham et al. (2019) recently compared RFs against other machine

learning methodologies, concluding that RFs outperformed the other methods (SVMs and

neural networks, see next section) when used to downscale rainfall discretized in 3 states

(dry, wet and high precipitation days). Similarly, Xu et al. (2020) assessed them for

downscaling future precipitation under two RCPs, concluding that SVMs were a better

option. A recent study also employed SVMs, as well as gradient boosting and RFs to

downscale precipitation for several CMIP5 GCMs, and gradient boosting was found to

perform best in terms of several metrics. Note that all of these studies used deterministic

predictions (see Section 2.5), instead of stochastic simulations, as we do in this work.

2.4.5 Neural Networks and Deep Learning

Similarly to bagging and boosting (see previous section), the core idea of neural networks

(NNs, Goodfellow et al., 2016; Hastie et al., 2009) lies also in compounding several weak

models. Specifically, NNs are based on the composition of a non-linear function with mul-

tiple linear models, which results in a powerful machine learning technique that has gained

widespread application across many different fields, due to its versatility and predictive

power. The fundamental structure of a NN, called feedforward neural network, can be

described as

f : X −→ Y

x −→ gL

(
bL + BLgL−1

(
. . . g2

(
b2 + B2

(
g1(b1 + B1x)

))
,

(2.7)
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where, as in the GLM and linear model formulation (Equation 2.2), each Bl is a matrix

of parameters (weights) to be learnt while each non-linear gl, called activation function,

provides the non-linearity to the model17. Several repetitions of this basic structure,

called layers, are often composed, to provide additional predictive power to the model.

Expressed here in matrix form, each Bl is an m × n matrix, where m is the number of

outputs (neurons) of the layer and n is the number of inputs from the previous layer 18.

The internal layers are typically called hidden layers, and NN architectures are typically

represented, graphically, as in Figure 2.4, in which a standard NN with a 5-dimensional

input X, a single hidden layer of 3 neurons and a 2-dimensional output layer is shown.

Broadly, the term deep learning is used for NNs that have many19 layers (Goodfellow

et al., 2016).

The weights in equation 2.7 are typically learnt by applying different implementations

of gradient descent, similarly to gradient boosting. In order to do so, the gradient, with

respect to the weights, is computed via the back-propagation algorithm (Rumelhart et al.,

1986). Back-propagation, which essentially employs the chain rule, allows computing the

gradient from equation 2.7, while a numerical algorithm (the optimizer) based on gradient

descent learns the weights that minimize the loss function, using this gradient. Specifically,

the process of learning the parameters of a NN implies, in its basic form, the following:

first, a forward pass is performed with the dataset to compute the current prediction of

the NN, then the gradient of the loss function is computed to find the direction in which

to move the weights to minimize the loss function; and, last, the weights are updated to

diminish the loss function. Extensions of the gradient descent algorithm include stochastic

and mini-batch gradient descent, which randomly select subsets of the dataset to update

the weights at each iteration; and Adam (adaptive moment estimation, Kingma et al.,

2015), which works with estimations of the first and second moments of the gradient to

adapt the learning rate.

17Note that using linear activation functions implies the final model is just a standard linear model.

18In a fully connected layer all the neurons depend on the previous layer neurons’ output, but other
types of connections exist, such as the locally connected layer structure used in convolutional layers, see
Section 2.5.6.

19We can consider deep neural networks as those with more than 1 hidden layer. Still, the term is
sometimes reserved for networks with a significantly larger number of layers, particularly beyond the
sequential stacking or the fully-connected feed-forward neural network in Figure 2.4, sometimes referred to
as multi-layer perceptron. The word perceptron dates back to Rosenblatt (1958), who first stacked several
neurons.
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Input Hidden Output

FIGURE 2.4: Diagram of a simple feedforward, fully-connected, neural network
architecture, with one hidden layer of 3 neurons, 5 input neurons (predictors, X) and
2 output neurons (predictands, Y ).

Typical activation functions, which are applied element-wise, include the sigmoid,

g(x) = 1/(1+e−x); hyperbolic tangent (g(x) = tanh(x)), and rectified linear units (ReLU).

ReLU20

g(x) = max(0, x), (2.8)

and its variants are currently the most commonly used activation functions, in particular

since they solve the vanishing gradient problem. The vanishing gradient problem arises

as backpropagation moves backward from the output layer to the input layer to compute

the gradient. Since the gradient is multiplied in each layer of the NN, it can become

infinitesimally small (vanish) for activation functions like the sigmoid. This flat derivative

makes it difficult to improve the weights through gradient descent, specially with many

layers. Note that the gradient of the ReLU is 1 for a positive input, which does not vanish

and keeps computation simple. Still, a well documented drawback of ReLU functions is

that they tend to produce dead hidden neurons (dying ReLU, see Lu et al., 2020), in which

the output of the ReLU function ends up being always zero due to the weights attaining

very negative values during the training process. This can potentially be a problem if it

results in too many neurons dying, and can in turn be avoided by using smaller learning

rates, which prevent the weights suddenly taking very negative values; or variants of the

20ReLU is not differentiable at 0. This is not a problem, since the exact 0 is seldom reached in a
numerical algorithm. In any case, it does not make any difference in the backpropagation algorithm, since
we can assign to this point 1 as derivative, since the distance between zero and the closest differentiable
point, is zero.
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ReLU function such as the leaky ReLU (Maas, 2013), which introduces a small slope on

the flat part of the ReLU.

No specific or principled way of choosing the NN architecture (number of layers, neu-

rons of each layer, and connections) exists, and this is typically performed by trial and

error relying on cross-validation techniques. Regularization techniques, like dropout, which

randomly disregards certain neurons in a layer during training iterations (see Chapter 7 in

Goodfellow et al., 2016), can effectively turn off neurons by making their weights close to

0. Other options include early stopping: a separate validation set, unseen for the training

algorithm, can be used to stop the training process when the NN no longer improves the

loss in this set for a determined number of iterations. This technique is employed in the

NN models trained in Chapter 6.

Beyond the basics of NNs summarized here, the development and application of NNs

and deep learning architectures has become a very active field of research in recent years.

The versatility of NNs, and recent architectures such as e.g., variational autoencoders,

generative adversarial networks and transformers, have made them gain widespread at-

tention. Additionally, convolutional neural network networks (CNNs, which are explained

in depth in Section 2.5.6 and used in Chapter 6) have recently gained much popularity due

to their ability to automatically extract patterns of information present in the predictors.

NNs, however, can quickly become too complex for the task at hand and require lots

of data, which, in statistical downscaling, can be problematic, since we have limited avail-

ability of observed records. Another disadvantage is their general lack of interpretability.

Indeed, NNs are often regarded as black box models, that is, it is very difficult (some stud-

ies, such as Gonzalez-Abad et al., 2022 and Rampal et al., 2022, have recently tackled this

issue in the context of climate downscaling) to understand how all the individual neurons

work together to arrive to a final output. This is in contrast with the good interpretability

of models with simpler formulations of f , like GLMs.

To date, relatively few NN architectures have been developed explicitly for perfect

prognosis SD, possibly partly due to the explainability issues and overfit potential pre-

viously discussed. The first attempts, recently made by means of convolutional Vandal

et al., 2019 and auto-encoders (Vandal et al., 2019), did not offer any clear advantages

over other well-established methodologies like analogs or GLMs. Pan et al. (2019) em-

ployed a combination of convolutional and fully-connected layers that outperformed some

existing machine learning techniques for the United States. Conversely, Sun et al. (2021)
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conducted a comparative analysis of a range of CNNs to downscale gridded precipitation

and temperature across China, obtaining some improvements for precipitation. Miao et al.

(2019) conducted a study to predict daily precipitation from the subseasonal-to-seasonal

ECMWF model over South China using a convolutional and long short term memory

network (Hochreiter et al., 1997). Baño-Medina et al. (2020) and Vaughan et al. (2022)

tested different CNN configurations, the latter study allowing predictions at locations not

seen during the calibration period, and Quesada-Chacón et al. (2022) used deep learning

models to obtain daily 1-km resolution gridded data for precipitation in the Eastern Ore

Mountains in Saxony.Rampal et al. (2022) addressed key research questions regarding the

training of CNNs in the context of statistical downscaling, including the choice of loss

functions targeting extreme rainfall events, and the selection of predictor variables across

spatial domains over New Zealand.

Importantly, few studies have transitioned from perfect to non-perfect conditions or

from deterministic to stochastic modelling. Notable studies using NNs to downscale a

GCM scenario include Stengel et al. (2020), which downscaled wind and solar outputs;

Baño-Medina et al. (2021), which applied the CNNs used in Chapter 6; and González-Abad

et al. (2023), who used a similar configuration to the CNNs we use in this work (see Section

2.5.6)to downscale temperature in a pseudo-reality experiment, that is, using as predictand

the outputs from a RCM. Recently, Olmo et al. (2022a) evaluated several methodologies,

including analogs, stochastic versions of NNs and GLMs for a variety of CMIP5 and

CMIP6 models, focusing on daily precipitation extremes. This study concluded that most

of the SD models added value in the simulation of the main features of daily precipitation,

especially in terms of spatial and intra-annual variability of extremes.
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2.5 Methodologies Used in this Thesis

Precipitation is a semi-continuous variable, with a probability distribution character-

ized by a positive mass at zero, indicating absence of precipitation (dry days), followed by

a continuous distribution with positive support representing rainfall intensity on wet days.

Consequently, it is typical to separately address the binary event occurrence (dry/wet days)

and the continuous event amount for wet days. The Gamma probability distribution has

been used extensively to characterize precipitation amount (Husak et al., 2007; Martinez-

Villalobos et al., 2019; Richardson, 1981; Wilks et al., 1992). Together with a Bernoulli

distribution, the Bernoulli-Gamma distribution (Cannon, 2008) is a sensible choice. It is

parameterized by p, the probability of a wet day, over 1mm; and α and β (strictly positive),

the shape and rate parameters of the Gamma distribution of precipitation amounts on wet

days, respectively. The probability density function of the Bernoulli-Gamma distribution,

for precipitation y (in mm), is defined as

D(y) =

{
pβαyα−1e−βy

Γ(α) y > 1

1 − p 1 ≥ y ≥ 0
(2.9)

where Γ(α) =
∫∞
0 zα−1e−zdz is the Gamma function.

This thesis embraces this probabilistic approach for the precipitation downscaling tech-

niques. The main objective is to generate a daily Bernoulli-Gamma probability distribu-

tion Y | X = x for each large-scale predictor state X = x, thereby comprehensively

characterizing the uncertainty inherent in the predictions. In the machine learning con-

text, this is sometimes referred to as conditional density estimation. The SD methods used

in this work focus on different aspects of this distribution for each day, whose expected

value is p · α
β . Utilizing this predicted distribution, the expected value of the predicted

distribution can be computed, yielding a single deterministic prediction, as well as dif-

ferent statistics of interest like percentiles. Moreover, random samples can be drawn to

produce predictive simulations for the local region of interest, providing a complete pic-

ture of the plausible scenarios under specific future large-scale conditions projected by

GCMs. Considering this perspective, this approach could be classified under the condi-

tional weather generators in the statistical downscaling field (Maraun et al., 2018). This

classification stems from weather generators, models that generate synthetic weather time

series, conditional on the state of some large-scale predictors.
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2.5.1 Discrete Bayesian Networks

Bayesian networks (BNs, Pearl, 1988) have emerged as a popular probabilistic machine

learning technique that integrates graphs and probability theory to construct tractable

probabilistic graphical models. They represent, by means of a directed acyclic graph

(DAG) the most significant independence relationships, both pairwise and conditional,

among a group of statistical variables (Koller et al., 2009). In this thesis we employ discrete

Bayesian networks, and thus this section is written considering a discrete, multivariate Y ,

as is the case of precipitation occurrence, that is, absence or presence of precipitation.

Note that the results shown here extend naturally to continuous Bayesian networks21,

which we plan to employ in the future, mainly to extend the methodology proposed in

Chapter 5 (check Chapter 10).

Let us consider a set of D discrete variables of interest Y d, where each Y d follows

a Bernoulli distribution representing the probability of rain at a specific location d and

time t. As explained in Section 2.3, the probability of rain at each of these locations can

not assumed to be independent neither from precipitation on the previous day nor from

precipitation on other locations, that is, precipitation occurrence exhibits a high temporal

and spatial structure. Therefore, we need to consider the joint probability distribution

(JPD) of Y = Y 1, . . . , Y D, which has 2D possible states.

This JPD can be specified using the chain rule as a product of conditional distributions:

P (Y 1, . . . , Y D) =
D∏

d=1

P (Y d | Y 1, . . . , Y d−1), (2.10)

with P (Y 1 | Y 0) = P (Y 1), the marginal distribution of Y 1. The specification of the JPD

for Bernoulli marginals using this formula requires the specification of 2D − 1 parameters,

and thus quickly becomes intractable as D increases. For instance, 11 stations require the

specification of 2047 parameters 22 without accounting for the temporal component. A

BN simplifies Formula 2.10 by finding conditional independence relationships in Y , thus

yielding an approximation of the JPD that captures the most relevant relationships and

greatly reduces the number of parameters required to specify it.

21Although there are limitations in the distributions that can be employed in the nodes. Refer to Chapter
10.

22It is common practice in climate downscaling to work with datasets of 30 years, that would yield an
approximate number of training instances of ∼ 10950, not accounting for missing data. Estimating 2047
probability values parameters from 10950 would yield highly overfitted probabilistic model.
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FIGURE 2.5: A directed acyclic graph (DAG) corresponding to a Bayesian network
capturing the relevant independence structure for precipitation occurrence at 11 lo-
cations in Germany. The DAG was learnt using Tabu search with maximum number
of parents set to 3 and BIC score. Note that the codes for the stations correspond to
an ancestral ordering. Orography data was obtained from Yamazaki et al. (2017).
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This approximation is determined by a directed acyclic graph (DAG, a directed graph

with no cycles, see e.g. Figure 2.5), and it is formalized through the concept of graph-

ical separation 23. The number and configuration of arcs (directed edges) in the DAG

determines the degree of approximation made by the BN, by lowering the threshold for

probabilistic independence. We refer the reader to Koller et al. (2009) and Scutari et al.

(2021) for further details on Bayesian network learning and inference algorithms and sum-

marize here two properties of Bayesian networks that are particularly relevant for this

work.

Firstly, each node Y d is conditionally independent of its non-descendants given its

parents, a property called the local Markov property. Secondly, the DAG of a BN always

has an ancestral ordering of the nodes (this ordering is not necessarily unique). That is,

the nodes in a DAG can be arranged as Y 1 ⪯ · · · ⪯ Y D, with Y i ⪯ Y j if and only if

Parents(Y j) ⊆ {Y 1, . . . , Y i}, for all i ̸= j. There is thus always at least one starting

node, i.e. a node with no parents, Y 1. Note how the nodes in Figure 2.5 have already

been labeled following an ancestral order. An immediate corollary can be extracted from

these properties: the JPD described in Formula 2.10 can be approximated by a Bayesian

network as PBN , with

P (Y 1, . . . , Y D) ≈ PBN (Y 1, . . . , Y D) =
D∏

d=1

P (Y d | ParentsBN (Y d)). (2.11)

This simplification makes the JPD of Y tractable. Each of the D terms on the right

hand side of Formula 2.11, P (Y d | ParentsBN (Y d), is called a conditional probability

distribution (CPD).

In addition, BNs provide a framework for a qualitative analysis of dependencies and

independencies represented in the graph. While this is not the main focus of the present

work, the DAG can be utilized to answer queries such as “Is precipitation on location

i independent of the state on location j given a set of other locations?”. As elucidated

in Chapter 3, the density of the graph (i.e., the number of arcs) can vary based on the

complexity required for the specific problem or application. A directed acyclic graph with

more arcs can capture a greater number of dependence relationships, albeit requiring more

parameters.

23A Bayesian network is, by definition, an independence map, i.e. the graph implies conditional proba-
bilistic independence, but not the other way around. See e.g. Koller et al. (2009)
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Building a BN requires to learn the appropriate network structure (DAG) representing

the relevant independencies from a given data set. Unfortunately, this problem has been

shown to be NP -hard (Chickering et al., 2004), since the number of possible DAGs is

superexponential on the number of nodes: a graph with p nodes can have up to 1
2p(p −

1) possible arcs. This results in 2O(p2) possible graphs and, therefore, several heuristic

methods have been developed for learning the optimal DAG for a given dataset. These

are called structure learning algorithms.

Structure learning methods can be classified as either constraint-based or score-based

approaches (Scutari et al., 2021). Constraint-based algorithms explore the possible con-

ditional dependencies and independencies among sets of variables by applying conditional

independence tests, such as χ2, following the rationale of placing an arc if two nodes

are dependent given sets of different nodes. In this case, the graph is formed by the

aggregation of the local dependencies. These algorithms are very sensitive to failures in

independence tests performed. Scutari et al. (2019) analyzed the performance of different

learning methods in climate problems and concluded that score-based methods performed

better than constraint-based methods. Indeed, we also found, in our experiments, that

constraint-based algorithms have shown to yield poor results. Therefore, we restrict our

study to score-based approaches.

Score-based approaches search through the space of possible DAG structures by maxi-

mizing a score that evaluates how well the graph represents the dataset, returning the best

model obtained after an iterative process. The most commonly used score is the Bayesian

information criterion (BIC), introduced in Schwarz (1978) and equivalent to the minimal

description length (Lam et al., 1994). Once the score has been selected, learning the

DAG essentially becomes an optimization problem: searching among the possible DAGs

to find the optimal one. Thus, any heuristic search procedure can be employed, from

simple greedy approaches like hill-climbing to more elaborate ones like genetic algorithms.

Formally, structure learning entails finding the DAG G that maximizes P (G | D), where

D is the dataset. It can be decomposed using Bayes theorem into

P (G | D) =
P (D | G)P (G)

P (D)
. (2.12)

As P (D) is constant the problem is equivalent to maximizing P (D | G)P (G), the product

of the prior distribution over the possible DAGs, P (G), and the probability of obtaining

the data from the distribution obtained by the factorization implied by G, P (D | G)

(likelihood in the Bayesian setting). The term P (D | G) is the actual theoretical score we

are looking to maximize, with P (G) allowing us to introduce informed priors using expert
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knowledge (for instance, linking a station with its past). It has been shown that P (D | G)

can be approximated with a bounded error by the BIC (Scutari et al., 2021), which can

be simplified in the context of Bayesian networks to

BIC(G,D) =

D∑

d=1

(
log
(
P (Y d | Parents(Y d))

)
− k |Θ(Y d)|

)
, (2.13)

which profits from the factorization 2.11. |Θ(Y d)| is the number of parameters of each

CPD associated to each node Yd, and k is the regularization parameter, which takes the

value log(n)/2 in the case of the BIC, where n is the number of observations in the dataset.

This term penalizes the score of high density DAGs, thus preventing the number of arcs

from growing too large. Although BIC score specifically uses k = log(n)/2, a practical

way to adjust the DAG complexity to our needs is by varying this parameter. The lower

this value, the more arcs the learning algorithm will place. It should be noted that, when

k = 1, this coincides with the Akaike information criterion (AIC, Akaike, 1998).

Once the score is chosen, the optimization is carried out. Ideally, all possible DAGs

would be searched for the one that fits best. As we have stated before, the superexponential

number of possible DAGs renders this impossible and heuristic approaches are required.

One of the best performing algorithms is the Tabu search (Glover, 1990; Koller et al., 2009).

It is a standard heuristic search procedure for maximizing the score in the discrete space

of possible DAGs. In its basic implementation, it is essentially a greedy approach (hill-

climbing) with a memory that stores a backtrack of already visited DAGs and performs

additional searches prohibiting previously visited local maxima, thus yielding better results

than simple hill-climbing. The empirical complexity of greedy search is cubic in the number

of nodes, but can be reduced to quadratic by constraining the search. The interested reader

is referred to Scutari et al. (2021) for a detailed analysis of the empirical complexity of

different approaches as a function of both the number of nodes and the size of data

available.

Once the DAG has been learned, parameter learning becomes straightforward. Proba-

bility values for the CPD can be estimated from the observed frequencies, using maximum

likelihood estimation (MLE) or in a Bayesian setting (see Scutari et al., 2021 for the

details), which allows the introduction of priors and expert knowledge, and is specially

useful for dealing with sparse tables, that is, in cases where there is insufficient data to

estimate some parameters of the CPDs. The simplified JPD, captured by the BN, allows

for a statistically stable estimation of the parameters of the model. For instance, the BN

from Figure 2.5 requires learning only 71 probability values.
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Once learnt, BNs can be used to answer questions about the nature of the data that

go beyond the mere description of the behaviour of the observed sample. For BNs, the

techniques used to obtain those answers are known in general as inference. In practice,

probabilistic reasoning on BNs works in the framework of Bayesian statistics and focuses

on the computation of posterior probabilities or densities. The reader can refer to Koller

et al. (2009) and Scutari et al. (2021) for the details on inference algorithms for BNs.

In particular, PBN can be employed to simulate samples of Y that reliably reproduce

the observed statistics of the JPD of Y . This is what we do in Chapter 3, in which

BNs are assessed as weather generators, i.e., for their capability to produce spatially and

temporarily consistent precipitation occurrence series.

Note that, in this section, we focused only on producing a description of Y , without

any link function f from large-scale predictors X. These could be incorporated into the

BN along with Y , obtaining a full description of (X;Y ), thus obtaining a link function

by simply conditioning on X = x, that is, f(x) = PBN (Y | X = x). However, this poses

several problems. First, discrete BNs, as presented in this section, require discretization

of X, either marginally, for each Xi; or by selecting appropriate clusters (e.g., by using

k-means or weather-typing Huth et al., 2008), which would provide a set of conditional

weather generators. This was explored in Legasa (2017), and results were concluded to be

very sensitive to the discretization of the variables. Continuous Bayesian networks could

also potentially be an option, but require Gaussian-distributed predictors and predictands,

which poses significant limitations, but could be explored for temperature downscaling.

Copula Bayesian networks arise as a sensible alternative, although the amount of variables

and different probability distributions poses a significant challenge. These will nonetheless

be explored in the future (see Chapter 10).

However, the high degree of correlation present in the gridded large-scale predictors

poses a significant obstacle to their straightforward implementation to capture the JPD

of (X;Y ). Indeed, as we will in Chapter 3 (see Figure 5), BNs partially rely on capturing

the strongest dependence pairs, while creating conditional independence relationships to

approximate weaker dependencies. Structure learning algorithms tend to focus on char-

acterizing the dependence among X, which offers the biggest gains, while sacrificing the

structure in Y , which is precisely what we want to capture. This motivates the introduc-

tion of Bayesian network-informed conditional random forests, explained in Section 2.5.5

and analyzed in Chapter 5, which solve this problem by employing an ensemble of random

forests to extract the information from X, while letting a Bayesian network inform the

local spatial dependence.
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2.5.2 Bernoulli and Gamma Generalized Linear Models

The GLMs used in this thesis are considered as benchmark baseline for the different

models proposed and assessed. GLMs are a sensible option for several reasons: They can

be thought as a linear model with a link to constrain the output Y to fit a distributional

assumption and, thus, this is arguably the least complex model we can have for a Bernoulli-

Gamma distributed variable. This poses advantages when applied to perfect prognosis

downscaling: the function f they learn has a conservative and interpretable closed form,

it is stable (see Section 2.2), and exhibits a predictable behaviour outside the observed

range. In addition, GLMs are well-established within the climate community and have

been extensively utilized for SD tasks (Abaurrea et al., 2005; Balmaceda-Huarte et al.,

2022; Chandler, 2020; Chandler et al., 2002; Manzanas et al., 2015; Manzanas et al., 2020a;

Manzanas et al., 2020b; Nikulin et al., 2018; Olmo et al., 2022a; San-Mart́ın et al., 2017;

Solman et al., 2021). Finally, despite their comparative simplicity in terms of predictive

power, GLMs still ranked among the top-performing methods in the SD methods in the

recent intercomparison study performed in Gutiérrez et al. (2019).

We follow the same approach as Chandler et al. (2002), adopting a two-stage approach,

based on Coe et al. (1982) and Stern et al. (1984), for implementing GLMs to predict

precipitation:

1. Precipitation occurence (wet and dry days) at a site are predicted using logistic

regression. Thus, f models the probability of rain conditional on the X as

f : X −→ Y

x −→ eBox

1 + eBox
.

Here g (the link in the context of GLMs, see Section 2.4.2) is the log-odds or logit

link, defined as g(p) = log p
1−p for the probability of rain p. Note that p is the

expected value of the Bernoulli distribution.

2. The expected value of rainfall on wet days is predicted as

f : X −→ Y

x −→ eBax,

where g is the logarithm link, defined as g(α/β) = log (α/β) for the expected value

of the Gamma distribution α/β.
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Here, Bo and Ba are the coefficient vectors to be learnt for the occurrence and amounts

models, respectively. Note that the shape of the daily Gamma distributed precipitation

amounts is assumed to be constant along the period. Specifically, they are assumed to have

a constant coefficient of variation, defined as the ratio of the variance to the mean squared.

That is, the Gamma density is modelled through GLMs in the form of the exponential

family, following Dobson et al. (2018), as

P(y;µ, ϕ) =
1

yΓ(1/ϕ)

(
y

ϕµ

)1/ϕ

e
− y

ϕµ . (2.14)

Under this reparameterization (α = 1/ϕ, β = 1
µϕ), the dispersion ϕ is assumed constant

among the different days and the Gamma GLM predicts the parameter µ from X, the

expected value. With ϕ estimated from the residuals, α = 1/ϕ is constant, and β = 1
µ(x)ϕ .

This constitutes a key difference with respect to the other methodologies addressed

in this thesis. Both a posteriori random forests (Section 2.5.3) and convolutional neural

networks (Section 2.5.6) can be employed to predict the three parameters of the Bernoulli-

Gamma distribution. Using GLMs as benchmark also allows us to assess whether the

additional model complexity introduced to model the whole daily distribution provides

substantial advantages.

The process of fitting a GLM necessitates the selection of a suitable set of predictors

X, followed by the estimation of the corresponding parameter vectors B for both steps.

We use in this work the maximum likelihood estimates of the parameters, obtained by

the iteratively reweighted least squares (IRLS) method, as described by McCullagh et al.

(1989), one of the most widely used algorithms for fitting GLMs and employed by the

Stats package in the R programming language (R Core Team, 2023). In addition, GLMs

require standardization of the predictors, a usual practice in machine learning that avoids

issues with the numerical convergence of the algorithms Hastie et al., 2009. Each predictor

variable is therefore transformed to have standard deviation 1 and mean 0 by substracting

its mean and dividing by its standard deviation at the gridbox level.

The specific configurations, in terms of predictors, employed in this thesis use the

GLMs developed in San-Mart́ın et al. (2017) and Bedia et al. (2020). Depending on the

application we use local predictor information at the 4 closest gridpoints to each predictand

site, or the leading principal components (PCs, Preisendorfer et al., 1988) as predictors

instead of local fields (this is listed as “GLMPC” method in Gutiérrez et al., 2019). In

particular, this model reduces the input space by projecting the predictor set onto the

PCs that explain 95% of the total variance over each region (see Section 2.6). For the
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multisite GLM model in Chapter 5, a comprehensive predictor selection is performed,

including interactions among predictors, using techniques such as likelihood ratio tests

(see, for example, section 9.3 in Cox et al., 1979). The Rglimclim package (Chandler,

2020) is used to train and configure the models. The specifics are detailed in Chapter 5.
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2.5.3 A Posteriori Random Forests

Random forests are a sensible methodology to apply to the problem of statistical down-

scaling: they can capture complex non-linear predictor-predictand interactions, handle

high-dimensional data and are very robust to overfitting (Louppe, 2015). As explained

in Section 2.4.4, for a given instance of the predictors X = x, a random forest with K

trees produces K subsets of predictive observations {y ∈ Y }tk(x). The core idea of a pos-

teriori random forests is to predict the Bernoulli-Gamma probability density function of

precipitation. Adaptations to RFs have been proposed in the literature in order to move

beyond the prediction of E(Y | X) (Meinshausen, 2006; Pospisil et al., 2018), in which

most of (if not all) studies to date using random forests in statistical downscaling focus on

(Ahmed et al., 2020; Homsi et al., 2020; Pham et al., 2019; Sa’adi et al., 2020; Xu et al.,

2020). While Meinshausen (2006) proposed to estimate quantiles at the terminal leaves,

we instead focus on downscaling the three parameters describing the Bernoulli-Gamma

distribution.

That is, instead of producing a single prediction by averaging all the summary measures

computed for each {y ∈ Y }tk(x), one can instead merge all of them into a common set
⋃

k=1...K{y ∈ Y }tk(x), from which the parameters of the predicted probability distribution.

f thus becomes, for the k trees of the random forest,

f(x) = Θ

(
K⋃

k=1

{y ∈ Y }tk(x)
)
, (2.15)

where Θ represents the particular procedure followed to estimate the local distribution

of interest. This is carried out as a posterior step once the trees have been built, hence

the name a posteriori random forests (APRFs). Since the number of samples available to

estimate the parameters increases notably, the choice of estimation method is much less

limited, and consistent estimators suffice. In addition, more costly numerical procedures,

which are required for the maximum likelihood estimators for the Gamma distribution

parameters, become feasible.

Note that we do not use bootstrap samples to train each tree for the APRFs presented

in this work. Instead, we draw samples without replacement with 0.632 times the number

of instances in the original dataset, since it can be shown that ∼ 36.8% is the expected

percentage of duplicated instances that are found in a sample drawn with replacement.

This avoids unnecessary repetitions in the training data that could potentially affect the

estimation of the parameters of the distribution, while also reducing the computational

cost.
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This methodology requires computationally efficient and reliable methods for estimat-

ing the parameters of the Gamma distribution (notice that the methodology can be easily

adapted to other probability distributions). This poses a problem for the Gamma distri-

bution, since no closed form unbiased estimators for α and β exist. In particular, and

despite the fact that both are consistent estimators (i.e. θ̃ → θ as sample size increases

for an estimator θ̃ of θ), the widely used Maximum Likelihood Estimators (MLE) and

the Moments Matching Estimators (MME) are positively biased (Choi et al., 1969; Smith

et al., 2009). A positive bias for an estimator θ̃ of θ means that E(θ̃) > θ. Furthermore,

there is no closed form for MLE and it must thus be computed numerically solving two si-

multaneous equations, which involve the digamma function Choi et al., 1969; K.-S. Song,

2008. MME estimators are defined as αMME = y2/s, βMME = y/s for the mean y and

standard deviation s of a sample {y}. Ye et al. (2017) and Louzada et al. (2019) both

proposed alternatives for less biased closed-form estimators. In particular, the latter work

proposed an estimator based on the hybrid MLE that exhibits less bias for very small

samples, called BC3 estimator, and defined for α as

αBC3 = α̇− 1

n

(
3α̇− 2α̇

3(1 + α̇)
− 4α̇

5(1 + α̇)2

)
, (2.16)

with α̇ = y/
(∑

y∈{y}(y − y) log(y)
)
. β can be trivially estimated as βBC3 = αBC3/y.

In order to account for the mixed nature of the Bernoulli-Gamma distribution of Y

when performing the splits, for the APRF used in Chapter 6 we employ as split function

a mixture of the Gamma deviance and the binary cross-entropy. Specifically, for a set of

predictive precipitation observations {yi} falling on a leaf, we define the split function as

Bernoulli Entropy︷ ︸︸ ︷
−p log p− (1 − p) log (1 − p) +

Gamma Deviance︷ ︸︸ ︷
2
∑

y+i ∈{yi}

(
−log

(
y+i
y+

)
+

y+i − y+

y+

)
, (2.17)

where p is the proportion of wet days in {yi}, y+i is the intensity/rainfall on wet days, and

y+ the mean precipitation intensity for the wet days. This split function, in particular

the Gamma Deviance, is concluded in Chapter 4 to be the optimal one when compared

to other alternatives, such as the log-likelihood or the root mean squared error.
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2.5.4 Temporal and Conditional A Posteriori Random Forests

The APRF methodology can be readily upgraded by incorporating two modifications that

improve its ability to capture the temporal and spatial components of precipitation, as de-

scribed in Section 2.3. If these components are not somehow accounted for in downscaling

methods, these are poorly reproduced in the downscaled series, as evident from Figure 5

in Chapter 5 and Figure 2 in Chapter 6. Thus, to overcome this limitation, we propose

two modifications of the APRF methodology.

The temporal component of precipitation essentially manifests itself in the binary

aspect, as measured by the wet/dry to wet day transition probabilities and spells 24.

We propose, thus, to use APRFs to additionally downscale the probability of precipita-

tion for each day conditional on the state of the previous day. Specifically, instead of

estimating the probability of precipitation over 1mm (p), we estimate pDW and pWW ,

where pDW = P (precipitation(t) > 1mm | precipitation(t − 1) ≤ 1mm) and pWW =

P (precipitation(t) > 1mm | precipitation(t − 1) > 1mm). The precipitation on day t

is then simulated by taking into account the wet or dry state of day t − 1. We call this

modified approach temporal a posteriori random forest (TAPRF), and is used in Chapters

5 and 6. This modification requires no additional change in the split function: we tested

including an entropy term for the transitions, but yielded no significant improvements.

In order to improve the spatial coherence of predictions, we propose using APRFs to

predict the joint probability distribution (JPD) of Y instead of just the marginal distribu-

tion of each Y d. For instance, for two variables Y 1 and Y 2, the random forest will predict

the parameters of P (Y 1) and P (Y 2 | Y 1), which fully determines the JPD of Y for X = x

(thus P (Y 2 | Y 1, X = x)). We refer to these models as conditional random forests (CRFs).

However, the dimensionality of the problem increases rapidly and becomes intractable for

relatively small values of D, as discussed in Section 2.5.1. To address this issue, we explain

in Section 2.5.5 that Bayesian networks (BNs) can be used to build an ensemble of CRFs

that predict the relevant conditional probability distributions in Y , while preserving the

spatial structure. CRFs’ performance does benefit from a split function that accounts for

the joint entropy of the downscaled quantities, this is explained in Section 2.5.5.

24The spearman correlation of precipitation intensity on consecutive wet days is very low (maximum
observed correlation is 0.32 and median 0.10), for the stations over Europe considered in Chapter 6.
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2.5.5 Bayesian Network-Informed Conditional Random Forests

We propose in this section a modelling framework where the link function f : X −→
Y preserves the dependence structure in Y for a set of locations Y = (Y 1, . . . , Y D).

The methodology is explained for precipitation occurrence at a set of locations, although

it could be applied in a broader sense, for instance encompassing multiple discretized

variables over multiple locations. In this regard, although the method is proposed for

discrete variables, we are working on an extension to continuous distributions (see Chapter

10.3).

Since, as explained in Sections 2.5.1 and 2.5.4, the specification of the full JPD of

Y is intractable, the core idea is to use an ensemble of CRFs, explained in the previous

section to link all the relevant conditional probability distributions within Y to the large

scale predictors X, with a BN (Section 2.5.1) informing which CPDs are relevant. That

is, thanks to the local Markov property and the factorization in Formula 2.11 produced

by the BN, we can use a CRF to predict the CPD of Y d | ParentsBN (Y d) from the large

scale predictors X for each location d. Once trained, these CPDs fully characterize Y | X
and allow us to simulate values from the JPD of the predicted Y . We call this ensemble

of CRFs Bayesian network-informed conditional random forests (BNICRF).

In the following, we will explain how to train a BNICRF, using the DAG in Figure 2.5

as illustration. The first step is to build an informative BN to find all the independence

relationships of Y . As explained in Section 2.5.1, for each location Y d the BN prescribes

a CPDd = P (Y d | ParentsBN (Y d)). For the DAG in Figure 2.5 we thus have 11 CPDs.

After the informative BN is built, an ensemble of D CRFs is trained to predict each CPD

from each large-scale predictors’ state X = x. Each CRF uses the predictors X relevant

to each location and its parents, and {Y d, ParentsBN (Y d)} as predictands, and is thus

trained to reduce the entropy of the JPD of both the location of interest and its parents. In

this regard, note that BNICRFs assume that the relationships learnt by the BN continue

to hold when we incorporate the large-scale predictors X, using the CRFs to predict

P (Y d | ParentsBN (Y d)) from each X = x, which we denote P (Y d | ParentsBN (Y d), X =

x). Judging by the results in Chapter 5, this is a reasonable assumption.

The first location, Y 1, has no parents, and thus the first CRF is actually a single-

response, standard RF model for Y 1, which is tasked with just predicting the probability

distribution P (Y 1 | X = x). We then proceed to build the CRF for Y 2, which has as single

parent Y 1, and thus this CRF is trained to reduce the joint entropy of (Y 1, Y 2), learing
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the CPD2(X = x) = P (Y 2 | Y 1, X = x). This process is iterated for each node/variable

in Y , with each CRF using information from the child Y d and its parents to predict

the CPDd(X = x) = P (Y d | ParentsBN (Y d), X = x) for each large-scale predictors state

X = x. For example, the location Y 11, the last variable in the DAG in Figure 2.5, requires

the specification of CPD11(X = x) = P (Y 11 | Y 2, Y 7, Y 8, X = x) for each X = x. The

chart in Figure 2.6 visually summarizes the training process for 5 locations and a simple

illustrative DAG.

Since the BN is an independence map (i.e. graphical separation implies independence,

but not the other way around), it allows the CRF flexibility on the dependence relation-

ships of Y . For example, a configuration in the form Y i −→ Y j implies that Y i and Y j are

not assumed to be independent. However, the CRF can still decide the degree of depen-

dence for each particular X = x, and it suffices to set P (Y j | Y i, X = x) = P (Y j | X = x)

to make Y j and Y i independent provided X = x. In this sense, the BN only forces rela-

tionships between different variables to be approximated by others, but does not force a

relationship to exist, which is handled by each CRF according to X. The precision and

complexity of the approximation made by the BN, in turn, can be decided by controlling

the complexity of the DAG (see e.g., Figure 5 in Chapter 3).

Additionally, in the BNICRF formulation, situations can arise in which the predictive

sample (see Section 2.5.3) does not provide information about some conditional distribu-

tions. For example, for node Y 11 and a particular predictor configuration X = x, the

CRF may produce a predictive sample with no data about a combination of its parents’

state (e.g. P (Y 11 | Y 2 = 1, Y 7 = 0, Y 8 = 1, X = x)). In these cases the locally marginal

probability of the child variable P (Y 11 | X = x) is used as an approximation, and thus in

this case P (Y 11 | Y 2 = 1, Y 7 = 0, Y 8 = 1, X = x) = P (Y 11 | X = x). Since the CRF only

uses the large-scale predictors, we can interpret this situation as the CRF prescribing a

conditional independence, on top of the BN, given the large-scale predictors X.

Once the ensemble of CRFs has been constructed, it can be used to make either deter-

ministic predictions, using Formula 2.11; or stochastic simulations for Y | X, by iteratively

drawing samples from the learnt CPDs following the same ancestral order determined by

the DAG, which guarantees we have already simulated parent nodes. We start, for each

large-scale predictors state X = x, by simulating from the marginal distribution of Y 1,

obtaining Y 1 = y1. We then simulate from the probability distribution Y 2 | Y 1 = y1. We

proceed iteratively by drawing samples from the CPDs until we obtain a simulation for

the complete set of locations Y .
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FIGURE 2.6: Diagram illustrating the BNICRF methodology. Once a Bayesian
network (left) has been trained to capture the (in)dependence structure for the loca-
tions of interest Y (in this figure for simplicity only 5 locations in Y are considered),
a conditional random forest (CRF) is trained for each location. These are trained
to link the large scale predictors X to the target location and its parents informed
by the Bayesian network. Each CRF predicts, for each X = x, the parameters of
Y d | Parents(Y d), ending up with a daily JPD for each Y | X = x.
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BNICRFs require a split function capable of minimizing the joint entropy for each

P (Y d | ParentsBN (Y d)). Therefore, we employ the joint information gain, i.e., the re-

duction of entropy of (Y d;ParentsBN (Y d)). Consequently, the entropy formula utilized

by each CRF is as follows:

H(Y d, Parents(Y d)) =
∑

y∈(Y d;Parents(Y d))

−P (y) log(P (y)), (2.18)

with the split function executing the splits that achieve the greatest entropy reduction.

For instance, the final CRF, which predicts P (Y 11 | Y 2, Y 7, Y 8), is trained to minimize

the entropy of (Y 2, Y 7, Y 8, Y 11). Experiments that considered only the entropy of the

child (e.g., Y 11 for the final CRF), yielded worse results, particularly in terms of spatial

consistency. The exploration of the optimal configuration of the BNICRF ensemble, as

well as the performance of the methodology, are addressed in Chapter 5.
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2.5.6 Convolutional Neural Networks

Convolutional Neural Networks (CNNs, Lecun et al., 1998) are a type of feedforward neu-

ral network (see Section 2.4.5), originally developed for applications in computer vision,

where data has a known, grid-like spatial structure, as is the case with climate models.

The key feature of CNNs is the incorporation of one or several convolutional layers. Con-

volutional layers arrange the layer’s parameters as kernels that perform a specialized linear

combination over the input, called convolution, over the spatial dimension of the input

layer, thereby facilitating the learning of spatial patterns present in the data. As in Section

2.3, we call spatial structure to the structure present in the large-scale predictor variables

X (e.g., geopotential or specific humidity) across different geographical gridpoints. We

use, in this section, Xi,j to refer to each single large-scale variable (e.g., specific humidity

at 1000 Hectopascals) at gridpoint (i, j) for the geographical domain considered.

Specifically, the kernels K are 2-dimensional matrices25 that perform the operation

g
( P∑

p=1

Q∑

q=1

K(p, q)Xi−1+p,j−1+q
)

(2.19)

over all the submatrices of size P × Q of the input, where P and Q, the dimensions of

the kernel, are always smaller than the dimensions of the geographical domain considered,

for instance, P = 3 and Q = 3 is a common choice in image recognition applications.

Therefore, the kernel can be seen as sweeping through the map of each variable X in

search of spatial features and producing feature maps. This is illustrated in Figure 2.7.

Note that more than one kernel is often employed at each layer, producing several feature

maps, each specialized in different spatial patterns in X. The parameters of a convolu-

tional layer, then, correspond to the entries K(i, j) of each kernel K. As in standard

neural networks (see Section 2.4.5), the function g provides the non-linearity. In practice,

several convolutional layers can be employed, which find spatial patterns in the output of

the previous convolutional layer, typically called feature maps. In addition, besides the

standard convolution given in formula 2.19, the actual operation performed in practice

may differ slightly, depending on the application.

25In its most general form, a convolution is an operation on two functions defined as an integral form.
The definition can be simplified in the context of neural networks to a matrix multiplication. These
matrices can be possibly one (vector) or multi-dimensional (tensor), although we restrict ourselves in this
thesis to 2-dimensional matrices, for the 2-dimensional grid of large-scale variables.
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Output (Feature Map)
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Convolution

FIGURE 2.7: Schematic of a convolutional layer applied over a hypothetical pre-
dictor covering the Iberian peninsula at a 2o resolution. The convolution is applied
over all the submatrices of size 3 × 3 of the input to produce the feature map on the
right. Note that this shrinks the feature map size, something that can be avoided by
adding zeroes to the input layer, a technique known as padding.

For instance, convolutional layers are sometimes combined with pooling (for instance,

max pooling uses the maximum value within some neighbourhood, and other options

include a weighted average based on the distance to the central pixel), which replaces the

output of the layer at a certain location with a summary statistic of the nearby outputs,

making the feature maps invariant to small perturbations in the location of the spatial

features. Also, the stride of the kernel can be bigger than one, that is, instead of applying

the kernel to all adjacent submatrices, it may be applied to the input skipping some of

them. Convolutions are a form of parameter sharing, in the sense that each kernel is

applied (shared) over the spatial dimension of the input.

The convolutional layers in CNNs have an edge on other machine learning methods,

including traditional neural networks, in applications where the predictors present some

spatial structure. This is, potentially, the case of the large-scale predictors X considered

under the PP paradigm. It is noteworthy that this does not imply that other machine

learning techniques are incapable of learning themselves the same spatial patterns. Say,

for instance, the interaction at locations (i1, j1) and (i2, j2) is relevant for predicting Y :

a traditional neural network architectures can employ subsequent layers with parameter

values describing the interaction between Xi1,j1 and Xi2,j2 . Similarly, a regression tree

can utilize recursive partitioning by dividing into Xi1,j1 > x1 and Xi2,j2 > x2 for some

threshold values x1 and x2. Nevertheless, if these spatial patterns are remarkably relevant

or prevalent, CNNs offer a more efficient approach than the aforementioned alternatives,

since, even if the input dimension is very high, the kernels employ only a very limited

number of parameters (Goodfellow et al., 2016).
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The CNNs used in this work produce, for each predictors’ state X = x, the three

distributional parameters describing the daily Bernoulli-Gamma distribution at each spe-

cific site, p, α and β. These three parameters are estimated simultaneously at every site.

Consequently, the output layer in this formulation consists of D × 3 neurons, where D

represents the number of locations of interest. The prediction of α, β and p is accom-

plished by training the weights of the CNN to minimize the negative log-likelihood (i.e.,

maximizing the log-likelihood) of the Bernoulli-Gamma probability distribution, defined

in Equation 2.9. Specifically, the loss function depends on the number of samples or batch

size Nb (see Section 2.4.5), and is defined as

Loss({yi}) = − 1

Nb

Nb∑

i=1

L(yi), (2.20)

with

L(yi) =

{
log p + (α− 1) log yi − yiβ + α log β − log Γ(α) yi > 1

log(1 − p) 1 >= yi >= 0
(2.21)

The CNN configuration used for intercomparison in this thesis follows from Baño-

Medina et al. (2021), which used the methodology to downscale precipitation over Europe.

Specifically, the CNN has 3 convolutional hidden layers, with the inputs sequentially con-

nected to the next layer. Each convolutional layers uses 50, 25 and 1 feature maps, with

a standard kernel size 3 × 3 in each convolutional layer, as this was deemed the optimal

configuration. ReLU functions are used as activation function at each hidden layer. The

output layer uses a sigmoid activation for the parameter p, which constrains p to lie within

[0, 1], and exponential activation functions to make α and β strictly positive. We train the

CNNs with Adam optimizer (adaptive moment estimation, Kingma et al., 2015), using

early stopping with 10% of the dataset as validation set (see Section 2.4.5). Different

additional configurations were tested, including using a separate CNN for each location of

interest, but yielded no significant improvement.
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2.6 Experimental Framework: VALUE

The European COST (Cooperation in Science and Technology) action VALUE (http:

//www.value-cost.eu, Maraun et al., 2015) aims to establish an experimental framework

for evaluating and comparing various statistical downscaling (SD) techniques for climate

change studies. This initiative brings together a diverse group of professionals including

climatologists, stakeholders, impact modellers and statisticians to facilitate collaboration,

knowledge transfer, and enhance research quality in downscaling.

Through this initiative, a multitude of publications have been compiled, assessing the

effectiveness of various well-established SD methods in reproducing the extreme (Hertig et

al., 2019), marginal (Gutiérrez et al., 2019), temporal (Maraun et al., 2019b), and spatial

properties of observed records (Widmann et al., 2019). In particular, Maraun et al. (2019a)

provides a comprehensive synthesis of the entire experimental design, objectives, and chal-

lenges foreseen in VALUE. In recent years, VALUE has evolved to EURO-CORDEX-ESD

(EURO-CORDEX empirical statistical downscaling), a branch of the EURO-CORDEX26

project that is dedicated to statistical downscaling. VALUE is structured in a series of

different experiments. The articles included in Part II of this thesis build on three of them,

which we describe next.

2.6.1 Experiment 1a: Perfect Conditions, Marginal Downscaling Performance

The aim of this experiment is to specifically evaluate the ability of SD methods to accu-

rately reproduce point-wise observations in perfect conditions (i.e. using reanalysis predic-

tors), thus providing a comprehensive assessment of the of the learnt f (SD model error)

plus the suitability of the large-scale variables selected for downscaling. The experiment

employs observational data for the predictands Y , from a selection of 86 weather stations

distributed across Europe, representative of various climates and diverse local features (see

Figure 1 in Chapter 4). The observations considered come from the European Climate

Assessment and Dataset project (ECAD, Klein Tank et al., 2002), which covers a time

range from January 1, 1979, to December 31, 2008. This dataset was chosen based on ex-

pert judgment from participating countries, taking into consideration representativeness,

data completeness, and the provision of multiple variables.

26EURO-CORDEX is the European branch of CORDEX, see Section 1.2
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A 5-fold cross-validation scheme is designed: The dataset is divided into five consec-

utive sub-periods (1979-1984, 1985-1990, 1991-1996, 1997-2002, 2003-2008), each of them

is used once as the test set while the remaining four sub-periods are used for calibration,

as explained in Section 2.2. ERA-Interim reanalysis is to be used for the predictors (Dee

et al., 2011). The predictors used in this work include temperature, geopotential, north-

ward wind, eastward wind and specific humidity at 1000, 850, 700, 500 hPa levels; as well

as air pressure at sea level. Note that this selection comprises circulation variables, which

are less affected by orography and model resolution, together with thermodynamic ones,

which are linked to changes in the radiation budget and need to be considered in climate

change studies (Huth, 2004).

Chapter 4, which focuses only on marginal aspects, is framed within this experiment.

2.6.2 Experiment 1c: Perfect Conditions, Spatial Consistency

This experiment is a variation of Experiment 1(a) that aims to specifically evaluate the

performance of the different SD methods for reproducing the observed spatial dependence

at various scales, ranging from an entire country to smaller regions. This is done by fo-

cusing on daily precipitation for a set of 53 stations from ECAD located within Germany.

Building partially on the design of Experiment 1(c), and in alignment with its main ob-

jective, Chapters 3 and 5 consider a subset of 11 (out of the 53 mentioned) locations over

a complex topography (see Figure 1 in Chapter 3) to assess the performance of the novel

BNICRFs proposed in Chapter 5.

2.6.3 Experiment 2a: Non Perfect Conditions, Historical and Future GCM
Downscaling

With the SD models trained in perfect conditions as in Experiment 1(a), (that is, using

large-scale ERA-Interim data as predictors and ECA&D observations as predictands over

the period 1979-2008), Experiment 2(a) aims to obtain daily downscaled values from the

predictors simulated by a specific GCM, the EC-Earth (Döscher et al., 2022; Hazeleger et

al., 2010), under both the historical and future RCP8.5 scenarios. EC-Earth was chosen for

this experiment due to its good performance in reproducing some key large-scale processes

affecting the European climate such as the storm tracks (Lee, 2015).

Building on this experimental design, Chapter 6 presents a comprehensive assessment
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of the transferability and extrapolation capability of three different PP SD methods.

2.6.4 Diagnostic Metrics

Table 2.2 shows the list of diagnostic indicators which have been selected to comprehen-

sively assess the predictive and distributional performance of the SD methods considered

in this thesis. In particular, these indicators allow for a broad and accurate evaluation of

the ability of the different SD methods to capture marginal (e.g., probability of rain, mean

precipitation, the tail of the distribution), temporal (e.g., transition probabilities, spells),

spatial (e.g., pairwise correlations) and compound aspects like multisite dry spells, used

in Chapter 3. Note that other measures like Spearman autocorrelation on consecutive wet

days were also computed but, since they were found to be very low (maximum observed

autocorrelation on wet days is 0.32 and median 0.10, for the stations used in VALUE),

they were left out of this thesis.

For each of the chapters in Part II, a different subset of the indicators listed in Table

2.2, depending on what the focus is (see the column Chapter in the table). Predictive

performance indicators (marked with a P in the column aspect in Table 2.2) are computed

comparing the expected value of the predicted distribution (p in the case of the Bernoulli

distribution, α/β in the case of the Gamma distribution, and pα/β for the Bernoulli-

Gamma distribution) against the observed values. Differently, distributional indicators

are computed from a sufficiently large number of simulations, to obtain a stable expected

performance. That is, we first simulate m downscaled series (e.g., 500 simulations, as in

Chapter 6), using the local predicted probability distribution. From these series, we obtain

m values of each indicator: θSD1 , θSD2 , . . . , θSDm . Subsequently, we compute the average of

these values for each SD method, yielding a good approximation of the expected value for

the analyzed metric E(θSD). Afterwards, in order to measure the bias27 with respect the

observed value of the indicator over the historical period θObserved
H , we typically either use

the ratio

Ratio(θ) =
E(θSD)

θObserved
H

, (2.22)

as in Chapters 4 and 5; or show the relative bias in percentage, computed in Chapter 6 as

RelBias(θ) = 100 ·
(
E(θSD) − θObserved

H

)
/θObserved

H (2.23)

27While bias is defined as in Section 1.4, it is often more useful to use relative bias or the ratio in order
to intercompare models and make the performance values invariant to different units.
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To assess the climate change signals produced for each indicator, in Chapter 6, we show

the relative change in percentage. This is computed for the SD method from m simulations

for both the historical and the future period. We thus obtain, for each location, a relative

change

∆SD(θ) = 100 ·
(
E(θSDF ) − E(θSDH )

)
/E(θSDH ), (2.24)

which is compared against the change produced by the raw outputs from the GCM at the

closest gridbox,

∆Model(θ) = 100 ·
(
θModel
F − θModel

H

)
/θModel

H , (2.25)

where θModel
F and θSDF are the indicators in the future period for the climate and SD

models, respectively.
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Code Description Aspect Chapter
AUC Area under the ROC curve, see

Kharin et al. (2003)
P 5, 6

BrierScore
∑ |p− o|2 for the predicted
probabilities of rain p and ob-
served wet/dry values o

P, M 5

Cor4, COR6 Spearman correlation between
observed and predicted series

P 4, 6

WetFreq3, R015,6 Proportion of wet days M 3 5, 6
Mean4, SDII6 Mean rainfall on wet days M 4, 6

SD Standard deviation of rainfall M 4
P05 5th percentile of rainfall M 4
P95 95th percentile of rainfall M 4

P95A Sum of total rainfall in days ex-
ceeding the 95th percentile

M 4

P98 98th percentile of rainfall on wet
days

M 6

P99 99th percentile of rainfall M 4
P99A Sum of total rainfall in days ex-

ceeding the 99th percentile
M 4

KS Kolmogorov-Smirnov statistic
between the observed and
simulated rainfall

M 4

DW Transition probability from dry
to wet days

T 3, 6

WW Transition probability from wet
to wet days

T 3, 6

LaggedAutoCor3, AutoCor5 Lagged mean autocorrelation T 3 5
DrySpell3, DrySpellMean5,6 Mean duration of dry spells T 3, 5, 6
WetSpell3, WetSpellMean5,6 Mean duration of wet spells T 3, 5, 6

DSAnnualMean3, DryLongestMean5 Mean of longest annual dry
spells

T 3, 5

WSAnnualMean3, WetLongestMean5 Mean of longest annual wet
spells

T 3, 5

DSAnnualMax Maximum of longest annual dry
spells

T 3

WSAnnualMax Maximum of longest annual wet
spells

T 3

Cor3, SPCor5 Pairwise correlation S 3 5
CondCor Conditional pairwise correlation S 3

LaggedCrossCor Lagged mean pairwise cross-
correlation

T, S 3

MultisiteDry Number of multisite dry spells T, S 3
MultisiteWet Number of multisite wet spells T, S 3

Table 2.2: Diagnostic indicators considered in this thesis. The third column (Aspect)
indicates whether the indicator analyzes a predictive (P), marginal (M), temporal (T)
or spatial (S) aspect of the distribution. Spell measures are computed for 2 or more
consecutive dry/wet days. Note that indicators used in Chapters 3 and 5 only measure
binary aspects (that is, using p of the Bernoulli distribution). The fourth column
(Chapter) indicates in which chapter(s) the indicator is employed. When different
naming is used for the same indicator, the chapter is indicated as superindex.
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3
Multisite weather generators using Bayesian networks: An

illustrative case study for precipitation occurrence

Legasa, M. N. & Gutiérrez, J. M. (2020).

Water Resources Research, 56, e2019WR026416.

https://doi.org/10.1029/2019WR026416
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Precipitation occurrence exhibits a complex spatial and temporal structure. This is

reflected by the existing high correlation among close locations as well as for the transition

probabilities at each location. Moreover, these two aspects compound, giving place to

inter-relationships that yield a complex spatio-temporal dependence structure. Spatio-

temporal aspects (see Table 2.2) include, for instance, lagged cross-correlations, or the

temporal dependence of precipitation at two distinct locations; as well as multisite spells,

that is, spells of e.g., dry days, simultaneously occurring in the major part of the domain

analyzed, thus extending over time and space.

This article, Legasa et al. (2020a), introduces Bayesian networks (BNs, explained in

Section 2.5.1) as a new methodology for capturing all the distributional aspects of pre-

cipitation occurrence. Therefore, focusing on the Bernoulli part of the distribution (see

Section 2.6), we show how discrete BNs perform well when calibrated to capture the full

joint probability distribution for a set of geographically close locations. This approach

proves advantageous when compared to other existing approaches for multisite weather

generation, which try to capture specific statistics of the observed data (typically pairwise

correlations for the spatial component) in order to generate spatially and temporarily con-

sistent series. Indeed, our results indicate that this is clearly not enough: even though

spatial pairwise correlations and transitions are an important part of the spatial distribu-

tion, they are just one of the many aspects that define the full dependence structure of

precipitation.

The methodology presented in this article is just explored as a weather generator,

that is, just to capture the distributional properties of the local variable of interest Y .

Weather generators are mathematical models that produce series of a variable, valuable

in weather and climate research for a number of reasons. For instance, they can generate

long sequences of daily weather data that may not be available from observational records,

which is particularly useful when studying long-term climatic trends or performing climate

change simulations. Additionally, BNs provide a probabilistic description of the local

variable of interest, and can help to address the challenges associated with missing or

sparse data at certain locations.

Nevertheless, in Chapter 5, BNs are coupled with an ensemble of random forests and

employed as an informative support to perform downscaling of precipitation occurrence

series that keep the spatial and temporal dependence structure.
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Multisite Weather Generators Using Bayesian Networks:
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Abstract Many existing approaches for multisite weather generation try to capture several statistics of
the observed data (such as pairwise correlations) in order to generate spatially and temporarily consistent
series. In this work, we analyze the application of Bayesian networks to this problem, focusing on
precipitation occurrence and considering a simple case study to illustrate the potential of this new approach.
We use Bayesian networks to approximate the multivariate (multisite) probability distribution of observed
gauge data, which is factorized according to the relevant (marginal and conditional) dependencies. This
factorization allows the simulation of synthetic samples from the multivariate distribution, thus providing a
sound and promising methodology for multisite precipitation series generation.

1. Introduction

Stochastic weather generators (WGs) produce synthetic time series of weather data of unlimited length for a
location based on the statistical characteristics of observed weather at that location. There are a number of
reasons why WGs may be required, including the need for long enough time series of daily weather not
directly available from observational records and the sparsity and/or missingness of data at some locations.
WGs are also needed in climate change studies to avoid the limitations of the raw outputs from global and
regional climate models (GCMs and RCMs, respectively), which are typically biased and require some cali-
bration or downscaling for practical applications (Gutiérrez et al., 2019; Manzanas et al., 2019; Maraun et al.,
2010). WGs are one of the available (stochastic) downscaling methodologies suitable for some applications,
like using “delta” changes obtained from climate change projections (Booij, 2005; Schlabing et al., 2014).

The first approach for developing WGs was proposed by Richardson (1981), in which the generation of pre-
cipitation involves itself a two‐step process: first modeling the occurrence of wet/dry days using a Markov
procedure and then modeling the amount of precipitation falling on wet days. The remaining variables
are then computed based on their correlations with each other and with the wet or dry status of each day.
These models are often referred to as Richardson‐type, and produce single‐site series with no spatial
dependence.

Precipitation has always been a key variable of interest in meteorology and, in particular, for WGs (Ailliot
et al., 2015), due to its challenging mixed discrete continuous nature and non‐Gaussianity (Duan et al.,
2007). Thus, most effort in the construction of WGs has been and is still devoted to precipitation, and most
of the currently available WGs still perform separate treatments of the precipitation occurrence (wet/dry)
and precipitation amount (Ailliot et al., 2015; Wilks & Wilby, 1999; Zhou et al., 2019). In this work we focus
on the discrete aspect: the generation of spatially and temporarily consistent dry/wet days series.

Richardson‐type generators have been successfully employed in a wide range of applications in hydrology,
agriculture, and environmental management. However, many applications require spatially consistent data,
reflecting not only the marginal statistics of the different sites but also intersite (or multisite) statistics such
as pairwise correlation (Fiener & Auerswald, 2009; Haile et al., 2009). A number of multisite WG methods
have been proposed in the literature, starting with the work of Wilks (1998), in which a multisite WG is pre-
sented that prescribes a spatial dependence pattern learnt from the data set. This dependence pattern is
simulated by generating uniformly distributed pairwise‐correlated series. Wet/dry days are simulated by
transforming these series using a threshold that corresponds to the wet‐wet and dry‐wet transition probabil-
ities. The correlation of the uniform random variables is chosen so that the final binary series have the
observed pairwise correlations.
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Existing approaches for multisite weather generation build on many different techniques to generate syn-
thetic spatially consistent series, such as empirical orthogonal function analysis (Zhou et al., 2019), weather
typing (Ailliot et al., 2015), nearest neighbours (Yates et al., 2003), and Gaussian processes (Kleiber et al.,
2012)—which permit the interpolation to locations where there are no direct observations—or more sophis-
ticated approximate Bayesian computation (ABC) methods for thresholded Gaussian processes (Olson &
Kleiber, 2017). In general, there is no overall best method, and the Wilks seminal contribution is still a good
first choice in terms of complexity and performance, as shown in different intercomparison studies (Keller
et al., 2015; Mehrotra et al., 2006). Moreover, this method is typically used as a benchmark to describe
new methodologies, thus allowing the (indirect) comparison of methods by contrasting their respective
improvement with respect to the Wilks benchmark. Therefore, we use the Wilks method for benchmarking
the new weather generation methodology based on Bayesian networks (BNs) introduced in this work.

BNs are a sound and popular machine learning technique which combines graphs and probability theory to
build tractable probabilistic models from data, representing the most relevant (pairwise and conditional)
dependencies among the variables (Castillo et al., 1997). BNs have gained widespread use in several fields
(Niedermayer, 2008; Pourret et al., 2008), boosted by the availability of several commercial and open soft-
ware packages allowing to efficiently learn them from data, such as the bnlearn popular implementation
in R used in this work (Scutari, 2010; Scutari & Denis, 2014). However, their application to environmental
sciences is still limited (Aguilera et al., 2011; Borunda et al., 2016; Uusitalo, 2007), and only a few applica-
tions for water resource management have been described in the literature (Phan et al., 2016; Ropero et al.,
2017). The use of BNs in meteorology was first described by Cano et al. (2004), illustrating their potential
application for weather prediction and generation. Most of the applications of BNs described so far in this
field correspond to probabilistic weather prediction and downscaling (Boneh et al., 2015; Cofiño et al.,
2002; Das & Ghosh, 2014, 2017; Hellman et al., 2012; Nandar, 2009; Sharma & Goyal, 2016; Smail, 2018),
and there are also some applications for drought/flood forecasting (Garrote et al., 2008; Madadgar &
Moradkhani, 2014). However, to our knowledge, a comprehensive application of BNs for stochastic weather
generation has not been described yet.

In this work we describe the application of BNs to stochastic weather generation of precipitation occurrence.
BNs learn tractable multivariate discrete models from the available historical data which encode the relevant
spatial and temporal dependencies among the stations. We illustrate the new methodology using a small
case study over Germany and validate the results using the Wilks WG (Wilks, 1998) as benchmark.

In order to facilitate the reproducibility of the results and testing the performance of the proposed methodol-
ogy, we have prepared an R package with the software used, which builds on the R package bnlearn (Scutari,
2010), and a Jupyter notebook illustrating the creation and use of some of the models presented in this work
(both available at https://github.com/MNLR/BNWeatherGen).

The remainder of this article is organized as follows: Section 2 explains the data used throughout this
work. Section 3 introduces and explains WGs. Section 4 introduces and explains BNs from a theoretical
perspective, and section 5 describes the methodology used to employ BNs as WGs. Since BNs require
the choice of a complexity parameter, section 6 is devoted to finding the optimal complexity. All gathered
results are described in section 7, and finally, section 8 gives the conclusions and establishes the future
lines of work.

2. Area of Study and Data

As an illustrative case study, we consider a subset of 11 stations in southeast Germany extracted from the
VALUE spatial validation experiment (Widmann et al., 2019). The data set is provided by the European
Climate Assessment & Dataset project (ECA&D), and the daily precipitation records used in this study range
from 1979 to 2008 (30 years, corresponding to the VALUE experimental period). We have restricted the
experiments to a subset of 11 stations for the sake of illustration and due to the computational cost of the
comprehensive analyses performed. Also, we treated observations from summer (JJA) and winter (DJF)
separately; that is, models are trained separately for each season using all the available daily data for the par-
ticular season. We omit the remaining seasons for brevity reasons, as results are analogous. In total, and hav-
ing removed observations with missing values (less than 5% of the days of the period considered), we have
2,668 daily observations for the JJA season and 2,614 for the DJF season. Since we require consecutive
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data for the WGs, the number of training instances left for the BNs are 2,548 and 2,553 for the JJA and DJF
seasons, respectively.

Discretization has been carried out with a day considered dry if precipitation amount was lower than 1mm
and wet otherwise. Table 1 describes the stations, including geographical information and some basic mar-
ginal and temporal statistics which will be used later in the study: wet‐day frequencies (WF) and mean of
annual maxima dry (DS)/wet (WS) spells. ID is the unique code that identifies the stations in the ECA&D
data sets, and Code is the unique code used throughout this work. The orography of the region is shown
in Figure 1a.

3. Multisite Weather Generators

Given a set of stations {1,…, p}, we consider the random variableX = (X1,…, Xp), where each Xi characterizes
rainfall occurrence (binary) at station i = 1, …, p (p = 11 in this work). If Xi = 1 codifies a wet day at station i
and Xi = 0 a dry day at station i, a multivariate WG can be viewed as a model to obtain samples from the dis-
tribution P(Xt | Xt−1, Xt−2, …), where Xt means X at time slice t. It is often simplified according to Markov
assumption as a Markov‐1 process, in which the future is assumed to be dependent on just the day before,
that is,

PðXt jXt−1; Xt−2; … Þ ≈ PðXt jXt−1Þ ¼ PððXt
1; …; X

t
pÞ jXt−1Þ: (1)

Due to the difficulties in obtaining a tractable multivariate estimation of the above distribution, this process

is often achieved by first computing P sampling from the univariate distributions PðXt
i jXt−1

i Þ; i¼ 1; …; p,

with the first step in a WG being computing the probabilities P01
i ¼ PðXt

i ¼ 1 jXt−1
i ¼ 0Þ and P11

i ¼ PðXt
i ¼ 1

j Xt−1
i ¼ 1Þ from the data set, often referred to as the transition probabilities.

Then, random number generators are employed to generate weather series that follow these transitions. For
multisiteWGs, these random numbers are often correlated to mimic the correlations observed between pairs
as an ad hoc methodology to impose the desired spatial structure. This is the case for the Wilks WG
(see Wilks, 1998 and an evaluation in Mehrotra et al., 2006), which we use in this work as a benchmark
for the new proposed methodology.

4. Bayesian Networks

Characterizing a multivariate discrete probability distribution such as (1) involves an intractable number
of parameters that grows exponentially with the number of variables, thus hindering practical applica-
tions. Bayesian networks (Castillo et al., 1997; Pearl, 1988; Scutari & Denis, 2014) are probabilistic graphi-
cal models that combine graph and probability theories to efficiently learn from data the Joint Probability
Distribution (JPD) of a set of discrete random variables, while also representing their relationships in an
easy‐to‐interpret graph. For a set of discrete random variables fX1; X2; :::; Xp describing the quantities of

interest (rainfall occurrence in a network of p stations in this case), the JPD P(X1,…,Xp) has 2p possible
categories and thus requires 2p−1 parameters. This poses a practical problem, since even in the case when
this is feasible computationally, we are unlikely to have a large enough data set to be able to adjust that
many parameters.

A BN builds on a directed acyclic graph (DAG)—a directed graph with no directed cycles and each node
associated with one variable Xi—which encodes the dependence and independence relationships among
the variables, so if there is no arc connecting two nodes, the corresponding variables are either indepen-
dent or conditionally independent given a subset of the remaining variables. In the example from
Figure 1b, station 5 is independent of any other station given we know the values of stations 3,7,
and 8. These nodes are the so‐called Markov Blanket for node 5. These relationships are formalized
through the concept of d‐separation (see Scutari & Denis, 2014 and Koller & Friedman, 2009 for a formal
definition of these concepts).

The independencies defined by d‐separation in the graph imply a factorization of the JPD in terms of the
probabilities of each of the variables conditioned to its parents (for a configuration in the form X→Y, X is
a parent of Y) (Koller & Friedman, 2009):
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PðX1; …; XpÞ ≈ PdagðX1; …; XpÞ ¼ ∏
p

i ¼ 1
PðXi jπðXiÞÞ; (2)

where π(Xi) is the set of parents of node Xi in the graph. This factorization on the right‐hand side requires,
for each node, the specification of a conditional probability table (CPT), that is, a probability distribution

for the node conditional to each combination of the parents' states.
In turn, each of these CPTs require a total of (s(Xi)−1) ∗ s(π(Xi))
parameters, where s represents the number of states of the variable
or combination of variables. This results in a joint probability model
that requires only a moderate number of parameters, leading to par-
simonious data‐driven models.

For instance, Figure 1b shows the DAG approximating the JPD of the
set of stations described in the previous section (corresponding to
summer‐JJA data), implying the following factorization for the JPD:

PðX1; …; X11Þ ¼ PðX4ÞPðX10jX4ÞPðX9jX4; X10ÞPðX6jX4; X9; X6Þ…:

Each node's associated CPT depends on the factorization. For exam-
ple, there is a CPT associated to the term P(X9|π(X9)) for node X9. It
requires the specification of one parameter for the Bernoulli distri-
bution of node X9 (probability of rain at that station) for each con-
dition (X10 = 0,X 4 = 0), (X10 = 0,X 4 = 1), (X10 = 1,X 4 = 0), and
(X10 = 1,X 4 = 1), thus requiring (s(X9)−1) ∗ s(π(X9)) = (2−1) ∗ 4
parameters. For this node and this particular data set (JJA), we have
the CPT shown in Table 2, as estimated from the data using
Bayesian estimation.

Similarly, since X10 and X4 have one and no parents, respectively,
their CPTs are those in Table 3.

BNs also allow for a qualitative analysis of the dependencies and
independencies codified in the graph, and although this is not the
purpose of this work, they can be used for answering questions such
as “Is variable Xi independent of Xj given a set of variablesXk?”As we
will see later, the density of the graph can vary depending on the
complexity required for the particular problem/application, since a
DAG with more arcs captures more dependence relationships but
requires more parameters.

Table 1
Description of Meteorological Stations Used in This Study Located in Southeast Germany Showing the Code, ECA&D ID, Altitude (in meters), Longitude, Latitude,
Relative Wet‐Day Frequency (WF), and Mean of Longest Annual Dry (DS)/Wet (WS) Spells for Summer‐JJA (s) and Winter‐DJF (w)

Code ID Alt Lon Lat WFs WFw DSs DSw WSs WSw Location

1 4007 921 9.94 50.5 0.40 0.48 11.41 11.17 6.76 8.6 WASSERKUPPE
2 4572 415 10.17 49.39 0.33 0.36 13.28 13.20 5.14 5.57 ROTHENBURG OB DER TAUBER
3 4472 435 10.51 48.83 0.34 0.31 12.26 14.73 4.90 5.2 REIMLINGEN
4 4617 937 10.77 50.66 0.41 0.50 10.69 10.43 7.03 8.97 SCHMUCKE
5 52 515 11.54 48.16 0.40 0.34 9.55 13.17 5.59 5.27 MUENCHEN
6 4083 657 11.84 49.98 0.40 0.47 10.62 10.87 7.31 8.53 FICHTELBERG OBERFRANKEN
7 4004 365 12.1 49.04 0.35 0.33 11.55 12.90 5.48 4.8 REGENSBURG
8 4079 472 12.73 48.48 0.37 0.34 11.21 13.10 5.90 5.4 KR.ROTTAL‐INN FALKENBERG
9 4954 418 12.87 50.79 0.35 0.32 11.69 14.33 4.76 5.03 CHEMNITZ
10 488 1213 12.96 50.43 0.43 0.49 9.86 9.80 6.52 8.17 FICHTELBERG
11 483 227 13.76 51.13 0.33 0.33 12.59 12.5 5.31 4.47 DRESDEN‐KLOTZSCHE

Figure 1. (a) Orography of the regions of study in Southeast of Germany and
location of the 11 stations used in this study. (b) Example of a directed acyclic
graph showing the dependence structure among the stations.
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4.1. Learning Bayesian Networks from Data

From a practical point of view, the application of Bayesian networks to
real‐world problems depends on the availability of automatic learning
procedures to infer appropriate network structure (DAG) representing
the relevant independencies from a given data set. Unfortunately, this
problem has been shown to be NP‐hard (Chickering et al., 2004), since
the number of possible DAGs is superexponential on the number of nodes

and a graph with p nodes can have up to
1
2
pðp − 1Þ possible arcs. This

results in 2Oðp
2Þ possible graphs, and several heuristic methods have been developed for learning the graphi-

cal structure (structure learning) and estimating the probabilities (parametric learning) from data in reason-
able times.

Structure learning methods can be classified in either constraint‐based or score‐based approaches (Scutari &
Denis, 2014). Constraint‐based algorithms explore the possible conditional dependencies and independen-
cies among sets of variables by applying conditional independence tests, such as χ2, following the rationale
of placing an arc if two nodes are dependent given sets of different nodes. In this case, the graph is formed by
the aggregation of the local dependencies. These algorithms are very sensitive to failures in independence
tests performed. Scutari et al. (2019) analyzed the performance of different learning methods in climate pro-
blems and concluded that score‐based methods performed better than constraint‐based methods. Indeed, in
our experiments, constraint‐based algorithms have shown to yield poor results, so we restrict our study to
score‐based approaches.

Score‐based approaches search through the space of possible graphical structures maximizing a score that
evaluates howwell the graph represents the data set, returning the best model obtained after an iterative pro-
cess. Therefore, they require

• A score, which should be representative of how well the graph represents the data set, that is, a quality
measure (Heckerman et al., 1995). The most commonly used score is Bayesian information
criterion (BIC), introduced in (Schwarz, 1978) and equivalent to minimal description length (Lam &
Bacchus, 1994).

• An optimization algorithm, that is, a heuristic search to maximize the score, from simple greedy
approaches like hill‐climbing to more elaborate ones like genetic algorithms.

Structure learning can be formalized as finding the DAG G that maximizes PðG jDÞ, whereD is the data set.
It can be decomposed using Bayes theorem into

PðG jDÞ ¼ PðD jGÞPðGÞ
PðDÞ :

As PðDÞ is constant, the problem is equivalent to maximizing PðD jGÞPðGÞ , the product of the prior
distribution over the possible DAGs, P(G); and the probability of obtaining the data from the distribution
obtained by the factorization implied by G, PðD jGÞ (likelihood in the Bayesian setting). The term PðD jGÞ
is the actual theoretical score we are looking to maximize, with P(G) allowing us to introduce informed
priors, like linking a station with its past. It has been shown that PðD jGÞ can be approximated with a
bounded error by the so called BIC score, defined in the context of BNs as (Scutari & Denis, 2014)

BICðG; DÞ ¼ ∑
p

i ¼ 1
log PðXi jπðXiÞÞð Þ − k jΘðXiÞjð Þ; (3)

which profits again from the factorization 2. |Θ(Xi)| is the number
of parameters (probability values) for each CPT associated to each
node Xi, and k is the regularization parameter, which takes the value log
ðnÞ=2 (≈3.94 for this data set in JJA for building the DAG in Figure 1),
where n is the number of observations in the data set. This term pena-
lizes the score of high‐density DAGs, thus preventing the number of

Table 3
CPTs for Nodes X4 and X10, Stations 4 and 10 in Figure 1

s(π(X4)) ∅ s(π(X10)) X4 = 0 X4 = 1

P(X4 = 1) 0.41 P(X10 = 1) 0.21 0.74

Table 2
CPT for Node X9, Station 9 in Figure 1

s(π(X9))
X10 = 0,
X4 = 0

X10 = 1,
X4 = 0

X10 = 0,
X4 = 1

X10 = 1,
X4 = 1

P(X9 = 1) 0.04 0.52 0.27 0.78
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arcs from growing too large. Moreover, taking the logarithm accounts for the fact that, even when there
are a lot of observations, the complexity of the model grows exponentially. Although BIC score
specifically uses k¼ logðnÞ=2, a practical way to adjust the DAG complexity to our needs is by varying
this parameter. The lower this value, the more arcs the learning algorithm will place. It should be
noted that, when k = 1, this coincides with the Akaike information criterion (AIC) (Akaike, 1998).

Once the score is chosen, the optimization is carried out. Ideally, all possible DAGs would be searched for the
one that fits best. As we have stated before, the superexponential number of possible DAGs renders this
impossible, and heuristic approaches are required. The Tabu search algorithm (Glover, 1990; Koller &
Friedman, 2009) is a standard heuristic search procedure for maximizing the score in the discrete space of
possible DAGs. In its basic implementation, it is essentially a greedy approach (hill‐climbing) with amemory
that stores a backtrack of already visited DAGs and performs additional searches prohibiting previously vis-
ited local maxima, thus yielding generally better results than simple hill‐climbing, as described in Scutari
et al. (2019). The empirical complexity of greedy search is cubic in the number of nodes but can be reduced
to quadratic by constraining the search. The interested reader is referred to Scutari et al. (2019) for a detailed
analysis of the empirical complexity of different approaches as a function of both the number of nodes and
the size of data available.

Figure 1b shows the graph obtained with Tabu search for the default regularization parameter k = 3.94,
whereas Figures 2a and 2b show two alternative graphs obtained with k = 1 and 0.5, respectively, for JJA
(similar results are obtained for DJF, not shown). The number of parameters grows from 67 to 119 and to
719, respectively (with 22, 33, and 48 links). The parameter k is essential to avoid overfitting, and it can be
easily checked that with k = 0, the result of the algorithm would simply be the complete DAG, with the fac-
torization from Formula 2 being that of the chain rule (Castillo et al., 1997). Dense DAGs yield large parent
sets implying large CPTs which have to be estimated from data, in some cases based on few or no samples,
thus becoming unstable. For example, node 5 alone in Figure 2b requires a specification of a probability for
28 = 256 (eight parents) different realizations (combinations) of parents, many of which may not even be
present in the data set. In this work, we use the k = 1 intermediate network, a compromise between fitting
data and model simplicity (see section 6) which, as stated before, coincides with AIC (Akaike, 1998).

Once the DAG has been learned, parameter learning becomes straightforward. Probabilities can be esti-
mated from the observed frequencies (maximum likelihood estimation, MLE) or in a Bayesian setting, using
their posterior distribution (see, e.g., Sivia & Skilling, 2006 for the details of Bayesian estimation), a metho-
dology which prevents the parameters from being exactly 0 in order to avoid sparse tables, with lots of 0 cells.
This is required to fulfill regularity conditions of model estimation and inference methods (Koller &
Friedman, 2009; Scutari & Denis, 2014).

In particular, the software used in this work (The R package bnlearn Scutari, 2010) computes the posterior
estimates as a weighted mean of a flat prior and the empirical frequencies, as follows. In the factorization,

Figure 2. Two graphs learnt from data, as in 1b, but with decreasing regularization parameter (a) k = 1 and (b) k = 0.5, thus increasing the number of links and
parameters (NP). Note that Figure 1b was obtained with the same algorithm but with the default regularization parameter (k = 3.94); for the sake of comparison
with this figure, panel (a) shows in blue the graph with regularization parameter (k = 3.94) and the newly added links corresponding to k = 1 in red.
Note that these are descriptive networks, as they do not have a temporal aspect.
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suppose we have to estimate P(Xi = 1 | Xj = 0) and recall that P(Xi | Xj) = P(Xi, Xj)/P(Xj). If we denote asepXi;Xj

the maximum likelihood estimator of Xi = 1, Xj = 0 (i.e., the number of observations for which Xi = 1, Xj = 0
divided by the total number of observations) and epXj

is the number of observations for which Xj = 0 divided

by the number of observations, then the posterior estimate ePðXi ¼ 1 j Xj ¼ 0Þ is

ePðXi ¼ 1 j Xj ¼ 0Þ ¼
ePðXi ¼ 1; Xj ¼ 0Þ

ePðXj ¼ 0Þ ¼
n

nþ 1
epXi ; Xj

þ 1
nþ 1

πXi; Xj

n
nþ 1

epXj
þ 1
nþ 1

πXj

;

where n is the number of observations, πXi; Xj ¼ 1=4 and πXj ¼ 1=2, since we consider flat priors (uniform

distribution) and are working with binary variables. Note that if there are no observations to inform the

parameters, then we have ePðXi ¼ 1 jXj ¼ 0Þ ¼ 0:5. Other priors based on expert knowledge are possible,
but a sensitivity analysis to the choice of different priors is out of the scope of this work.

5. Bayesian Networks as Weather Generators

Bayesian networks allow the factorization of equation 1 according to equation 2 in the following way:

PðXt jXt−1Þ ¼ PððXt
1; …; X

t
pÞ jXt−1Þ ≈ ∏

i ¼ 1; …; p
PðXt

i jπðXiÞt; Xt−1Þ: (4)

This factorization provides a simple form for simulating, one by one, in ancestral ordering—first parents
then children—a synthetic value for each of the variables i = 1, …, n.

From now on, we refer to nodes in time slice t as present nodes and to nodes in time slice t−1 as past nodes.
Also, spatial arcs or dependencies join either two present or two past nodes, and temporalarcs join a past and
a present node (not necessarily in that direction).

Note that if we assume thatXt
i is independent of allX

t−1
j ; j ≠ i, givenXt−1

i (i.e., all information from the past

comes through the node's past value), then 4 can be expressed as

PðXt jXt−1Þ ≈ ∏
i ¼ 1; …; p

PðXt
i jπðXiÞt; Xt−1

i Þ; (5)

resulting in a very simple factorization where each present node Xt
i can be simulated once the value of

their corresponding past node Xt−1
i and the node's present parents π(Xi)

t are known. We refer to this
BN as Markov (see Figure 3a).

However, other less restrictive extended approaches can be easily considered to build the temporal depen-
dencies such as the Unconstrained approach (see Figure 3b), consisting on leaving the algorithm to automa-
tically learn both spatial and temporal dependencies by using an extended DAG for the extended set of

variables ðXt−1
1 ; …; Xt−1

p ; Xt
1; …; X

t
pÞ, where the new data set is built using the values of consecutive days.

However, this model may not be optimized for the particular task; for instance, only nodes X8 and X10 are
connected to its past counterparts, and all other nodes received information from the past through a different
node (building on the data). Therefore, we consider an additional model, obtained by augmenting the
Markov BN structure shown in Figure 3a by allowing the training algorithm to include additional links
according to the data (see Figure 3c). This model seems to be appropriate since this kind of dependence
seems highly likely. Taking into account the dependence structure encoded in the DAG, in practice, this
is done by forcing the algorithm to place an arc but letting it choose the direction (Formula 6 considers arcs
to go forward for simplicity, from t−1 to t). In practice, they can go backwards to build the most accurate
model (note that arcs do not represent causal relationships). We call this model the Augmented model, for
which Equation 4 becomes

PðXt jXt−1Þ ≈ ∏
i ¼ 1; …; p

PðXt
i jπðXiÞt; Xt−1

i ; πðXiÞt−1Þ; (6)

with π(Xi)
t and π(Xi)

t−1 being decided by the algorithm.
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Letting the algorithm decide the complete structure is the pure machine learning approach, whereas intro-
ducing the arcs means using expert knowledge (recall the term P(G) in section 4.1) in the assumption that

there is a direct dependence between a station on a particular day (Xt−1
i ) and that same station on the follow-

ing day (Xt
i ). We first learn the spatial structure (learning a DAG for just the stations, without temporary

slicing) and then add the temporal structure by adding the past nodes.

Figure 3. Different Bayesian network models considered for weather generation. (a) Markov, in which only temporal relationships between a node and its past
are permitted; (b) Unconstrained, in which the algorithm decides all the arcs; and (c) Augmented, in which the arcs between a node and its past are forced
(the direction is chosen by the algorithm) and the algorithm places the rest of the arcs. Note that arcs do not imply a causal relationships, and thus arcs
facing backwards are perfectly normal. Their actual direction is decided based on the d‐separation criterion (Scutari, 2010), which considers the dependence
relationships across all nodes. Also note that spatial arcs in the time slice t−1 have been removed for visualization purposes, but they are present in the model with
the same spatial structure as the one in time slice t.
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Once the network and the resulting probabilities have been learnt, the simulation process to generate
weather series is straightforward. A basic property of a DAG is that it has a node with no parents (Pearl,
2013), whose CPT is just its marginal probability distribution. There is also a topological order of the nodes
(ancestral ordering) X1≤…≤ Xp such that either π(Xi)≤ Xi or π(Xi) =∅, that is, parents are ordered before
children (note that π(X1) =∅). For the DAG in Figure 3b, we have X4≤ X10≤ X9≤ X6≤ X1≤ X7≤ X2≤ X3≤
X8≤ X5≤ X11 Finally, as we have explained in section 4, each node has a CPT associated, which comprises a
probability function for each combination of fathers' states.

We can generate instances by applying a simple iterative process. We assume that nodes are sorted following
an ancestral ordering. We start by X1, which has no parents, and simulate from its marginal distribution
(in Figure 1b, this is Station 4), obtaining X1 = x1. We then simulate X2, as X2 has either no parents or it
has X1 as a parent. In the first case, we simulate as with X1, and in the second case, we use its CPT P(X2 |
X1 = x1), obtaining X2 = x2 (in Figure 1b, this is Station 10). We follow this process with X3 up to the
last node.

When working with WGs, as with DAGs in Figure 3, we follow this same process by instantiating the past

nodes Xt−1
1 ; …; Xt−1

p by updating the probabilities of Xt
i ; i¼ 1; …; n conditioned to this evidence (see chap-

ters 8 and 9 Castillo et al., 1997), and then we follow the process explained above. That is, we start with an

observation X0 ¼ ðX0
1 ¼ x01; …; X

0
p ¼ x0pÞ, and we follow with PðXt

1 jXt−1 ¼X0Þ, obtaining x11. We then con-

tinue with PðXt
2 jXt

1 ¼ x11; X
t−1 ¼X0Þ, and so on. Once we obtain X1 ¼ ðX1

1 ¼ x11; …; X
1
p ¼ x1pÞ, it serves as

the next evidence to the iterative process.

6. Choice of the Regularization Parameter k Using Cross‐Validation

As explained in section 4.1, the regularization parameter k determines the type of model obtained from the
learning process, increasing its complexity (larger number of links and parameters) as k decreases
toward zero.

In the case of the Bayesian network weather generators, the BIC score is defined with a regularization para-
meter k¼ logðnÞ=2 ≈ 3:92, where n is the number of training instances, which penalizes the growth of the
number of arcs. However, other alternative values have been also considered in the literature, such as k = 1,
which corresponds to the AIC, a well‐known estimator of the quality of statistical model for a given data set
(Akaike, 1998). From a practical point of view, for the end‐user, it may be difficult to choose the value of this
parameter. By lowering k, the model might be able to better represent the JPD of the data, but care must be
taken when doing so, since the number of parameters grows exponentially as the number of arcs increases,
leading to overfitting and scarcity of data examples to estimate some of the probability values of the
CPT tables.

Therefore, in order to assess the choice of k, we considered the Augmented BN, shown in Figure 3c for k = 1,
and performed a cross‐validation experiment using a 5‐fold cross‐validation (see section 7.10 in Hastie et al.,
2009) by dividing the data set into five consecutive folds with the observations divided into the years
1979–1984, 1985–1990, 1991–1996, 1997–2002, and 2003–2008. Figure 4 shows the results obtained for each
k from 0.25 to 3.75 (mean across all five folds is shown).

The performance of the resulting models was measured considering the log‐likelihood of the data given the
models, for both the test and training data (Figure 4a). In order to test the complexity of the resultingmodels,
we considered the number of parameters (probabilities of the CPTs) and the percentage of those which can-
not be estimated from the data because there are no observations of the particular event; see section 4.1
(Figure 4b). Finally, the predictive capability was measured considering the area under the ROC curve
(AUC; see Bradley, 1997) when predicting precipitation occurrence given the past values in the test samples
(Figure 4c).

Based on these results, we choose k = 1 as a compromise between performance and complexity. Higher
values, as shown in Figure 5, tend to lose pairwise correlations, whereas panels (a) and (b) from Figure 4
indicate missing parameters and overfittedmodels for smaller values of k and, even though the potential pre-
dictive capability is slightly higher, the log‐likelihood in test samples falls substantially for k = 0.75. Finally,
this choice is supported by the fact that, as stated before, k = 1 corresponds to the AIC.
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7. Results

For a robust comparison of the weather generation models based on both the benchmark, the Wilks method
(Wilks, 1998), and the different Bayesian network (BN) models described in the previous sections, we built
each model and then generated 250 series of approximately equal length as that of the observational data set
(2,668 = 29 × 92 for JJA and 2,614 ≈ 29 × 90 for DJF). We replicated series of 92 and 90 continuous days for
seasons JJA and DJF, respectively, to account for the discontinuities in the observational data set, thus mak-
ing spell measures comparable for observed and synthetic series. BNs can generate a synthetic initial obser-
vation using (2); however, for the sake of comparison, we used a real observation as initial conditions for
bothWilks and Bayesian models (therefore, each generated series has 29 real observations). Throughout this
section, all measures are the mean of the 250 diagnostic measures computed for each series, and all results
are shown for the JJA season (in general, results for DJF season are similar and not shown) if it is not other-
wise specified.

Mehrotra et al. (2006) describes some diagnostics to assess and compare the performance of the Wilks WG.
Here we extend this analysis with some additional measures and compare the results against the BN WG.
We focus on the representation of both temporal and spatial aspects, including the combination of both
(spatiotemporal aspects). The results correspond to the Unconstrained and Augmented BNs, explained in
the previous section.

The common approach to validate the spatial coherence of weather generated series (against observations) is
to compute the correlation between pairs of stations (Mehrotra & Sharma, 2009; Mehrotra et al., 2006).
However, there are other aspects of the spatial coherence beyond marginal pairwise correlations, such as
the conditional dependencies (correlations) or frequency of different realizations. Also, spatiotemporal

Figure 4. Results of the Bayesian networks for different values of the regularization parameter k. Panels show (a) the log‐likelihood of the train and test data,
averaged across the data sets' lengths for easy comparison; (b) the number of parameters of the resulting models (numbers inside the panel indicate the
proportion of parameters which cannot be learnt from data for the three cases that this happens, corresponding to k = 0.25,0.5,0.75); and (c) the predictive
performance as measured by the area under the ROC curve (AUC).
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validation measures, which consider both spatial and temporal aspects altogether can be considered:
multisite spells and lagged cross‐correlations. We first consider the following measures covering the
spatial and spatiotemporal aspects of precipitation, which we expand with corresponding figures and
some summary error measures based on these (see Table 4):

(a) Pairwise correlations. This is the general performance measure used in previous works, as in
Wilks (1998).

(b) Conditional pairwise correlations, which measure the correlation
between pairs of stations conditional to a third station.

(c) 1‐day lagged cross‐correlations, as in Wilks (1998). Note that lagged
autocorrelation is included for easy comparison against lagged
cross‐correlations but is actually a temporal validity measure that
captures the same concept as the indices WW and DW in the next
section.

(d) Multisite dry/wet observations. We compare the frequency of obser-
vations for which there is a dry/wet day for all stations. This further
characterizes the spatial coherence of the simulated series.
Combined, these observations comprise 37% and 44% of the data set
for the JJA and DJF seasons, respectively.

Figure 5. (a) Correlation between pairs of stations plotted against the observed one for Bayesian networks (BN) with different regularization terms (k) and Wilks
models. The diagonal shows perfect adjustment. (b, c) Pairwise correlation conditioned to X7 = 0 (blue) and X7 = 1 (red) for the Wilks and Bayesian network
(k = 1) model, respectively. For marginal pairwise correlations, the mean absolute error for the Wilks model is 0.14. For the BN model with k = 1, the mean
absolute error is 1.18.

Table 4
Table of Summary Measures Used for Assessing the Spatial Coherence of
Weather Simulations

Name Description

Cor Mean pairwise correlation
CondCor Conditional mean pairwise correlation
LaggedCrossCor Lagged mean pairwise cross‐correlation
LaggedAutoCor Lagged mean autocorrelation
MultisiteDry Number of multisite dry observations
MultisiteWet Number of multisite wet observations

Note. Results are shown in Tables 5 and 6.
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(e) Multisite spells. Spells have already been analyzed in previous works, usually for each station individu-
ally. Here we also analyze spells occurring simultaneously in more than 90% of the stations, as done for
the model introduced in Kleiber et al. (2012). A similar measure has been analyzed in Olson and Kleiber
(2017), in which they consider wet spell counts.

Wilks (1998) shows that theWilks model precisely adjusts probabilities for the events (1,1) and (0,0) between
pairs of stations. This is also analyzed in Mehrotra et al. (2006), this time in terms of correlations. This same
analysis can be seen in Figure 5a. Clearly, Wilks model is nearly perfect, whereas BNs tend to have more dis-
persion, particularly for simple models with high regularization parameter (e.g., k = 3.92). However, this dis-
persion errors are mainly concentrated in the lowest observed correlations, as BNs aim to obtain a
compromise model for the whole JPD by sacrificing weaker correlations for the sake of model simplicity.
As stated before, the balance between complexity and loss can be achieved by varying the regularization
parameter k up to the desired point; for instance, k = 0.5 yields very similar results to the Wilks model.
The chosen model, with k = 1, shows a good compromise between parsimony and loss of correlations for
data sets of this size (see section 6).

To further analyze the spatial structure of the generated series, Figures 5b and 5c show an example of cor-
relation between pairs of stations, this time when we condition to Station 7. We observe that the BN is able

Figure 6. (a,b) Correlations between pairs of stations Xi, Xj given Xk = 0 (blue) and Xk = 1 (red), for all i, j, k = {1,…,11}, i ≠ j ≠ k stations, sorted by their observed
value in ascending order (x axis, rank). Observed values are shown as a blue (conditional on Xk = 0) and red (conditional on Xk = 1) line. Results are shown for the
JJA season. Mean absolute error (multiplied by 100) is 4.1 for the Wilks model and 1.9 for both BN models.

Figure 7. Simulated versus observed 1‐day lagged cross‐correlations for (a) DJF and (b) JJA for three different models: Wilks, Unconstrained (UC BN), and
Augmented (AUG BN) Bayesian network. Triangle‐shaped points represent the autocorrelation values between stations. Mean absolute errors (multiplied by
100) are 9.2 (JJA), 12 (DJF) for the Wilks model; 1.7 for both seasons for the Augmented model; and 1.9 (JJA), 2 (DJF) for the Unconstrained BN model.
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to adjust reasonably well to this correlations, whereas Wilks model has more bias. This behavior can be seen
very clearly in Figure 6, in which we show all correlation values between pairs of stations conditional to a
third one, sorted by their observed value in ascending order. This suggests that there is no real adjustment
in the Wilks model for these correlations depending on the condition and that they adopt the mean value
between the two: for instance, the correlation of X1 and X6, given that variable X7 = 0(1) obtained directly
for data is 0.512(0.297), similar to the values simulated from the BN, 0.512(0.299). However, theWilks model
provides noninformative conditional correlations, 0.437 (0.420); that is, the spatial structure is not consistent
for the evidence on the state of station X7. Not reproducing conditional correlations implies that the model
may fail to represent complex orographical or physical (weather states) constraints.

These results raise a warning about the fact that Wilks model simulations are only pairwise coherent and
might not be representative of more general (conditional) dependencies encoded in the data set.

Along with spatial coherence, stations are also cross‐correlated between time slices due to, for example, the
tendency for precipitation systems to move from west to east (spatiotemporal coherence). Wilks (1998) con-
siders the 1‐day lagged cross‐correlation measure, showing that his model has a considerable bias in this
aspect, greatly underestimating these correlation pairs. Figure 7 shows these values for both seasons (as dif-
ference in correlations is relevant). BNs clearly outperform the Wilks model and simulate reasonably well
lagged cross‐correlations. Not surprisingly, the autocorrelations (marked as a triangle in the plot) are well
captured by Wilks model, whereas the BNs tends to perform as well as for the cross‐correlations
(see Tables 5 and 6).

Regarding multisite observations, we show the results in Table 7. We see a clear overestimation of multisite
wet days and an underestimation of multisite dry days by the Wilks model. In order to test whether the
observed frequencies can be considered a plausible simulation obtained with the Wilks and BN models
(among the 250 runs performed for each model), we performed a standard hypothesis test for proportions
(Zou et al., 2003), with the null hypothesis H0 : p − p0 = 0 and alternative hypothesis Ha: p − p0 ≠ 0. p
corresponds to the mean model proportion of multisite dry/wet days, and p0 is the corresponding observed
frequency.

Table 5
Spatial Validation Summary of Error Results for the Wilks Model, Unconstrained (UN), and Augmented (AUG) Bayesian
Network Models for the JJA Season

Measure Wilks UN AUG

Cor 0.14 (−0.35) 1.18 (−4.13) 1.22 (−4.53)
CondCor 4.10 (12) 1.90 (‐9.9) 1.90 (‐9.6)
LaggedCrossCor 9.20 (−21.0) 1.90 (−6.5) 1.70 (‐7.0)
LaggedAutoCor 0.31 (‐0.56) 2.27 (−3.9) 0.55 (−0.94)
MultisiteDry −8.68 ‐4.34 −4.40
MultisiteWet 23.83 −3.71 ‐3.63

Note. For the first four measures, we show the absolute errors multiplied by 100 for easy visualization, that is, 100·|s−o|,
for the simulated measures (s) and the observed (o) measures. Worst value (multiplied by 100) is shown between par-

entheses. For the multisite observations (last two rows), we show relative errors in percentage, that is, 100 ·
s − o
o

.

Boldface indicates the best (mean) results for each measure.

Table 6
As With Table 5, for DJF Season

Measure Wilks UN AUG

Cor 0.14 (−0.35) 1.2 (−4.10) 1.2 (−4.60)
CondCor 3.90 (17.0) 1.7 (9.5) 1.7 (9.0)
LaggedCrossCor 12.0 (−23) 2.0 (−6.8) 1.7 (‐4.6)
LaggedAutoCor 0.6 (‐0.3) 2.7 (−6.8) 0.9 (−1.6)
MultisiteDry −6.26 ‐3.14 −3.97
MultisiteWet 13.99 ‐6.54 −6.64
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The resulting p‐values are included in Table 8. For the Wilks model, hypothesis test rejects the null hypoth-
esis with a significance of 99.5% for observations in JJA season and of 97.5% in DJF season. We conclude
from the hypothesis test that the BN clearly outperforms the Wilks model in mimicking the proportions
of multisite dry and wet observations.

As stated before, we have also considered the multisite spells. Previous studies usually consider spell mea-
sures (consecutive sequences of dry/wet days), but they do this for each station, without taking into account
multisite spells. In combination with the proportions of multisite dry/wet observations and 1‐day lagged
cross‐correlations, this addresses the spatiotemporal aspect of the simulated series. We compare the percen-
tiles of the distribution of multisite spells, in which a day is considered wet/dry if it is wet/dry in over 90% of
the stations. These are shown in Figure 8. Even if there is a clear underestimation of dry spells for both sea-
sons and models, the BN model also outperforms Wilks model. Multisite wet spells are not very long in this
small region, and results are very similar for both methods.

Finally, we analyze some measures whose aim is to compare the Wilks WG against the BN models in terms
of temporal consistency alone, as is done in, for example, Mehrotra et al. (2006). The measures are computed
for each station and the mean value and standard deviation are shown, with each measure explained in
Table 9.

Results are shown in Table 10 and for JJA season, with DJF having similar results. A similar performance is
found forWilks and BNmodels, with largest differences for DW andWW (transition probabilities) which, as
explained before, are directly calibrated with the Wilks model (note how this exhibits a similar behavior as
that of pairwise correlations). In the case of the BNs, these probabilities are not direct parameters of themod-
els and, therefore, have slightly higher errors (smaller for the case of the Augmented model, which forces
these transition probabilities to be considered by the model). The relative errors are 0.011 for DW 0.006
for WW.

In some cases, the models perform poorly in capturing spells, which is a well‐known flaw in current WGs. In
particular, all models highly underestimate droughts (extreme droughts by 10% for JJA and up to 30% for
DJF); this could be attributed to considering a first‐order Markov process (Ailliot et al., 2015; Mehrotra et al.,
2006; Wilks & Wilby, 1999) and is slightly alleviated by the Augmented model, as opposed to the
Unconstrained version.

8. Conclusions and Future Lines of Work

We introduced Bayesian networks as a newmethodology with a well‐established theoretical background for
simulating discrete multisite precipitation series, mimicking spatial and temporal aspects simultaneously.
The performance of this method was assessed thorough a spatiotemporal validation analysis using the
Wilks model as benchmark.

Table 7
Multisite Dry/Wet Observations Compared to the Observed Values (first row)

Model Dry JJA DJF Wet JJA DJF

Observed 795 878 193 286
Wilks 726(26.8) 823(32.6) 239(17.9) 326(22.2)
BN 760(30.3) 843(41.5) 186(16.1) 267(18.4)

Note. BN corresponds to the Augmented Bayesian network model, as results are similar for the Unconstrained model.
Values are the mean of the 250 simulated series, with the standard deviation shown between parentheses.

Table 8
P Values of the Proportions Hypothesis Test with Null Hypothesis H0 : p− p0 = 0 and Alternative Hypothesis
Ha : p − p0 ≠ 0, where p is the Model Proportion and p0 is the Corresponding Observed Frequency of Dry/Wet Multisite
Observations And Both Seasons

Model Dry JJA DJF Wet JJA DJF

Wilks 0.004 0.024 0.001 0.012
BN 0.143 0.152 0.588 0.228
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Instead of focusing on pairwise dependencies among stations, BNs try to represent the whole probability dis-
tribution, considering all relevant conditional independencies (including pairwise as a particular case).
Thus, transition probabilities and pairwise correlations are expectedly better represented by Wilks model,
since this model directly adjusts them from the data set. However, when more complex features like lagged
cross‐correlations, multisite dry spells, or global proportions are analyzed, BNs perform better than Wilks
model. This illustrates the potential of this new approach, although further analysis with more complex
examples is necessary to fully test the advantages of this new methodology.

BNs are a sound machine learning technique supported by well‐known theory and algorithms and offer
some potential advantages compared to other approaches due to

Figure 8. Percentile values (from 5th to 95th) from the sample of multisite dry spell values for (a) JJA and (b) DJF and for multisite wet spells for (c) JJA and
(d) DJF seasons. Only spells affecting more than 90% of the territory (10 out of 11 stations) have been considered. For dry spells, spells greater than three days
are considered. For wet spells, since they are shorter, we consider spells starting in two consecutive days. Results for the Augmented Bayesian network model are
shown. Results for the Unconstrained model are similar.

Table 9
Table of Measures Used for the Performance Assessment of Temporal Coherence

Name Description

DW Dry‐wet transition probability
WW Wet‐wet transition probability
WetFreq Percentage of wet days
WetSpell (WS) Mean of wet spells
DrySpell (DS) Mean of dry spells
WSAnnualMean Mean of longest annual wet spells
DSAnnualMean Mean of longest annual dry spells
WSAnnualMax Maximum of longest annual wet spells
DSAnnualMax Maximum of longest annual dry spells

Note. All spell measures are in days (≥2) and probabilities are measured in percentage.
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1. Generalization: There is no need for an ad hoc adjustment of probabilities or correlations. BNs adjust the
whole distribution in a robust way, adapting to the local dependencies and characteristics implied by
existing records.

2. Flexible complexity: It may not be enough to just adjust transition probabilities for one particular loca-
tion; it may require data from other stations and/or previous time slices. It may also require information
from other locations combined.On the other hand, data may be scarce for computing one probability
value. A BN will automatically adapt to these situations.

3. Interpretability: A general property of BNs is their interpretability through their DAGs, which can be
easily interpreted and the dependence relationships analyzed in a user‐friendly way.

4. Expert knowledge: Apart from the information gathered from the data set, probabilistic models allow for
expert knowledge to be introduced in the model in a robust way. This feature, combined with interpret-
ability, potentially offers the possibility to further trim the model to user needs or to characteristics not
present in the existing data.

On the other hand, a disadvantage of this methodology is the increasing complexity and computation time
required to both learn and simulate from the models when the number of variables (and thus the number of
arcs) increases. There are a number of studies showing that BNs are tractable for problems from tens to a few
hundreds of variables (Scutari et al., 2019). In problems of larger complexity (hundreds or thousands of
stations), the complexity of the resulting model can be controlled through the regularization parameter k
(see section 6) or using more efficient learning and inference algorithms (Scutari et al., 2019).

This work paves the way for further investigating the potential of BNs in the field of WGs. We focused on the
discrete step of the precipitation modeling process, with the continuous counterpart (i.e., precipitation
amount on wet days) remaining to be studied in depth. There are several options: Discrete series, either bin-
ary or with more bins, could be coupled with an already implemented continuous model for evaluating the
added value to the continuous aspect of the problem. The next step should be making use of continuous BNs,
either as a separate model for the precipitation amount or even mixing discrete and continuous nodes in the
same model (hybrid BNs). It should be noted that this poses a considerable challenge, as BNs with contin-
uous nodes have restrictions (both in the distributions for the continuous nodes and the placement of the
arcs) that hinder their application to the problem of modeling the precipitation amount probability distribu-
tion, usually considered a gamma distribution.

Another potential is exploring conditional WGs extending the proposed methodology considering nodes
with GCM outputs, either at a gridbox level or clustered as weather types. This could potentially improve
the overall model performance in certain measures like multisite spells and, on the other hand, provide sto-
chastic climate change projections. Finally, spell reproducibility could also be improved by adding an addi-
tional node or set of nodes to track more than one day, making it a higher‐order Markov model.

In order to facilitate reproducibility of the results and testing the performance of the proposed methodology,
we have prepared an R package, BNWeatherGen—which builds on the R package bnlearn (Scutari, 2010)—
and a Jupyter notebook illustrating the creation and use of some of the models presented in this work

Table 10
Results for the Wilks Model and Bayesian Network Models for the JJA Season

Measure Observed Wilks UN AUG

DW 28.72 (2.18) 0.06 (0.04) 0.86 (0.55) 0.32 (0.16)
WW 51.89 (4.85) 0.09 (0.06) 1.33 (0.56) 0.33 (0.29)
WetFreq 37.44 (3.61) 0.09 (0.06) 0.17 (0.12) 0.1 (0.07)
WetSpell 3.10 (0.24) 0.05 (0.04) 0.08 (0.07) 0.05 (0.04)
DrySpell 4.57 (0.26) 0.16 (0.09) 0.15 (0.11) 0.07 (0.08)
WSAnnualMean 5.88 (0.89) 0.30 (0.18) 0.35 (0.26) 0.28 (0.19)
DSAnnualMean 11.34 (1.13) 0.80 (0.50) 0.72 (0.51) 0.51 (0.38)
WSAnnualMax 10.73 (1.90) 0.96 (0.80) 0.85 (0.87) 1.03 (0.74)
DSAnnualMax 21.18 (4.05) 2.55 (2.58) 2.54 (2.46) 2.5 (2.18)

Note. “Observed” column shows the mean (and standard deviation) of the observed values of the stations. The three last
columns indicate absolute errors, that is, |s−o|, between the diagnostics for simulations (s) and observations (o), again
in terms of mean and standard deviations. Boldface indicates the best (mean) results for each index.
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(both available at https://github.com/MNLR/BNWeatherGen). The notebook also contains an additional
larger example (44 stations) used to illustrate the complexity and scalability of the proposed methodology,
so interested readers can explore different learning alternatives. In particular, for the 44 stations example,
learning and simulation can be undertaken in a personal computer in less than 10min using the default
configuration of the package.
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As discussed in Section 2, the predictive capability of the large-scale predictors used

under the perfect prognosis approach to downscale precipitation is limited. Thus, a com-

petent downscaling of the probability distribution (instead of just deterministic values)

is key, both to properly characterize the uncertainty around the predicted value and to

have the possibility to simulate series of precipitation that capture as many distributional

aspects (see Section 2.3) as possible. This article, Legasa et al. (2022), explores the suit-

ability of random forests, explained in Section 2.5.3, for this task. Previous studies using

random forests focused mostly on specific regions and/or particular aspects of precipita-

tion, and thus a comprehensive assessment of their potential added value for distributional

downscaling of precipitation is still lacking.

Specifically, we provide an exhaustive evaluation of random forests for statistical down-

scaling of precipitation and propose a posteriori random forests (APRFs, see Section 2.5.3)

to provide a reliably characterization of the Gamma-distributed precipitation intensity.

The study is performed under perfect conditions, that is, using reanalysis predictors, both

in the training and predicting stages (cross-validation is applied). Thus, under the experi-

mental framework provided by the VALUE Experiment 1a (see Section 2.6), we performed

a comprehensive analysis of the different parameters and configuration options available

for APRFs, including the number of trees conforming the forest, the choice of split func-

tion and estimators for obtaining the shape and scale parameters of the target Gamma

distribution.

As shown in the article, APRFs can produce realistic stochastic precipitation down-

scaled series, offering superior distributional similarity with observations than GLMs, while

maintaining a good predictive power. All this makes this new methodology a promising

alternative to be applied in non-perfect conditions, that is, using GCM predictors. Indeed,

this is addressed in Chapter 6.
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1. Introduction
Despite being the main tool used nowadays to simulate the evolution of the climate system, the spatial resolution 
of the current global climate models (GCMs)—typically up to around a hundred kilometers—is still insufficient 
for most practical applications (see e.g., Doblas-Reyes et  al.,  2013 and references therein). To alleviate this 
limitation, statistical downscaling (SD) methods aim to build models linking a set of key large-scale predictors 
(e.g., geopotential or winds) with the target predictand (e.g., precipitation or temperature) over the area of interest 
(see e.g., von Storch et al., 1993). Under the perfect prognosis (PP) approach (Charles et al., 1999; Bürger & 
Chen, 2005; Fowler et al., 2007; Gutiérrez et al., 2013; Haylock et al., 2006; Hertig & Jacobeit, 2008; Sauter & 
Venema, 2011; Timbal et al., 2003), these models are trained/calibrated based on observed data over a historical 
reference period, relying on some reanalysis for the predictors. Typically, these trained/calibrated models are 
subsequently applied to (future) GCM large-scale predictors in order to obtain the corresponding downscaled 
values. In this work we focus exclusively on the training/calibration phase—i.e., using reanalysis predictors in a 
PP framework—and leave for a next study the application of the models to GCM predictors.

Abstract This work presents a comprehensive assessment of the suitability of random forests, a well-known 
machine learning technique, for the statistical downscaling of precipitation. Building on the experimental and 
validation framework proposed in the Experiment 1 of the COST action VALUE—the largest, most exhaustive 
intercomparison study of statistical downscaling methods to date—we introduce and thoroughly analyze a 
posteriori random forests (AP-RFs), which use all the information contained in the leaves to reliably predict 
the shape and scale parameters of the gamma probability distribution of precipitation on wet days. Therefore, 
as opposed to traditional random forests, which typically provide deterministic predictions, our AP-RFs allow 
realistic stochastic precipitation samples to be generated for wet days. Indeed, as compared to one particular 
implementation of a generalized linear model that exhibited an overall good performance in VALUE, our 
AP-RFs yield better distributional similarity with observations without loss of predictive power. Noteworthy, 
the new methodology proposed in this paper has substantial potential for hydrologists and other impact 
communities which are in need of local-scale, reliable stochastic climate information.

Plain Language Summary Statistical downscaling methods aim to improve the limited spatial 
resolution of current climate models by linking a set of key large-scale predictor variables (e.g., geopotential, 
winds, etc.) to the predictand of interest (e.g., precipitation). Recently, the Experiment 1 of the COST action 
VALUE carried out the most comprehensive intercomparison of statistical downscaling methods to date. 
However, it lacked the inclusion of machine learning techniques, whose popularity has rapidly grown during 
the last years. Therefore, building on the same data and experimental framework used in VALUE, this work 
aims to partially fill this knowledge gap by introducing a modification of random forests—a well-known 
machine learning technique—for stochastic downscaling of precipitation at 86 European locations. As opposed 
to traditional random forests, which typically provide deterministic predictions, our proposed model predicts a 
probability distribution of precipitation for each predictors’ state. This is key to appropriately characterize the 
uncertainty of the downscaled predictions, allowing us to produce realistic samples of precipitation for wet days 
and to answer questions such as “What is the probability of getting more than 40 mm of precipitation today?,” 
relevant for many impact activities.
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Many SD methods have been proposed in the literature during the last decades, ranging from techniques like 
linear or generalized linear models (GLMs), which normally involve a relatively low number of parameters, to 
highly non-linear deep neural networks, which need to optimize a large number of weights and are thus typically 
prone to overfitting. In the Experiment 1 of the COST action VALUE (http://www.value-cost.eu), Gutiérrez 
et al. (2019) intercompared the performance of more than 50 standard (i.e., well-established within the climate 
community) SD methods in PP conditions to downscale precipitation and temperature at 86 European locations. 
Although this study provides the largest and most comprehensive intercomparison of SD methods to date, it 
lacked the inclusion of machine learning techniques, which still need to be fairly compared against more classical 
alternatives such as GLMs (Nelder & Wedderburn, 1972) or analogs (Lorenz, 1969; Zorita & von Storch, 1999). 
Recently, Baño-Medina et al. (2020) completed a first step to fill this gap by assessing the performance of convo-
lutional neural networks using the experimental/validation framework proposed in Gutiérrez et al. (2019). The 
present work extends the VALUE experiment to include additional machine learning techniques by analyzing the 
suitability of random forests (RFs; Breiman, 2001) for SD of precipitation on wet days, a key variable for most 
hydrometeorological applications. To do so, we build as well on the experimental/validation framework proposed 
in Gutiérrez et al. (2019).

It is important to highlight that the predictive capability of the large-scale predictors used to build statistical 
models for climate downscaling is by nature limited, especially for precipitation. This implies the existence 
of a high degree of uncertainty in the predictions, something that can be seen from the limited correlations 
attained in Figure 2 of Gutiérrez et al. (2019). Hence, the main purpose of this work is to accurately predict 
the full probability distribution of precipitation instead of just its expected value, which would in turn allow 
for appropriately characterizing the uncertainty of the downscaled values. This kind of information provides 
enormous added value for hydrologists and other impact communities, which typically need high-quality, 
local-scale climate information to run their models subject to a set of different plausible scenarios (Ailliot 
et al., 2015; Booij, 2005; Chandler, 2020; Farmer & Vogel, 2016; Schlabing et al., 2014). Indeed, several 
studies have pointed out the importance of having access to reliable stochastic time-series of precipitation, 
since impact models tend to fail to reproduce the extreme events (e.g., floods) as a consequence of the 
underestimated variance typically exhibited by deterministic predictions, that collapse the uncertainty into 
a single value (Acharya et al., 2017; Mukundan et al., 2019; Nogueira & Barros, 2015). As suggested by 
several recent works, this limitation can be mitigated by introducing a meaningful stochastic component of 
uncertainty in the models (Farmer & Vogel, 2016; Haberlandt et al., 2015; Langousis & Kaleris, 2014; Neves 
et al., 2020).

Therefore, the potential of RFs to produce reliable stochastic precipitation is assessed in this work. So far, 
RFs already proved to be useful in regression problems dealing with ecological and environmental variables 
(Chan & Paelinckx, 2008; Vincenzi et al., 2011; Wei et al., 2010; Yu et al., 2011). Moreover, Ibarra-Berastegi 
et al. (2011) used RFs to predict three variables—including precipitation—at two locations and tested them 
against multilinear regression. Based also on RFs, Shi and Song (2015) and He et al. (2016) provided local 
precipitation fields over the Tibetan Plateau and the United States, respectively. Jing et al. (2016) found that 
RFs provided better results than three other machine learning techniques for SD over 378 meteorological 
stations in China encompassing very heterogeneous climate conditions. Furthermore, more recent studies 
(Sattari et  al.,  2020; Xiang et  al.,  2020) have analyzed the applicability of RFs to precipitation prediction, 
suggesting their potential to detect extreme events. Additionally, Xu et al. (2020) combined multiple machine 
learning methods—including RFs—to provide downscaled climate change projections using model output 
statistics (MOS), that is, building on GCM predictors. Still, to our knowledge, none of these studies has 
performed a comprehensive analysis of the different parameters and configuration options available for RFs, 
including the choice of the split function, which is a key element. Moreover, these studies focus mostly on 
specific regions and/or particular aspects of precipitation, and thus a comprehensive assessment of their poten-
tial added value for SD of precipitation is still lacking.

This work fills this gap by testing the suitability of a novel modification of traditional RFs, called a posteriori 
random forests (AP-RFs), for SD of daily precipitation on wet days. As opposed to traditional RFs, which 
predict a single precipitation value at each time-step following a bagging procedure (Hastie et al., 2009), our 
AP-RFs allow us to accurately predict the shape and scale parameters of the underlying gamma probabil-
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ity distribution without loss of predictive power, which in turn makes feasible to produce reliable stochastic 
wet-day series.

The paper is structured as follows: Section 2 describes the experimental framework and data used. Section 3 
explains the particularities of the RFs developed. The results obtained are presented through Section 4. Finally, 
Section 5 gathers the main conclusions drawn.

2. Experimental Framework and Data
The COST action VALUE (Maraun et  al.,  2015, http://www.value-cost.eu) was designed with the goal of 
providing a common, transparent, reproducible and comprehensive framework for intercomparing SD meth-
ods for climate. In its Experiment 1, Gutiérrez et al. (2019) presented an assessment of the relative strengths 
and weaknesses of more than 50 well-established techniques—mostly linear and analog-based—to downscale 
temperature and precipitation over Europe in perfect conditions, that is, using quasi-observed predictors from 
reanalysis. Therefore, in this work we use the same experimental framework and data proposed in Gutiérrez 
et al. (2019).

In particular, our target predictand is daily precipitation at the same 86 stations considered in the latter 
reference, which are provided by the European Climate Assessment & Data set project (ECA&D). Never-

theless, for the experiments presented in Sections 4.1, 4.2 and 4.3 (which 
deal with optimal model parameters selection and are computationally 
expensive), we consider a subset of 9 illustrative stations which are repre-
sentative of the 8 PRUDENCE regions covering Europe (Christensen & 
Christensen, 2007) and exhibit different rainfall regimes (see Table 1 for 
more details).

As predictors, we have considered the same large-scale variables used in 
Gutiérrez et  al.  (2019), which are listed in Table 2. In particular, for each 
predictand location, ERA-Interim reanalysis (Dee et al., 2011) information 
at the 4 nearest gridboxes was used. Throughout the manuscript we use X 
to refer to the set of large-scale predictors and Y to refer to our target down-
scaled variable (precipitation on wet days).

In addition, we also use the same 5-fold cross-validation employed in Gutiér-
rez et al. (2019), in which the total period of study, 1979–2008, is divided 
into 5 non-overlapping folds 𝐴𝐴 {1,… ,5} , with each fold comprising 6 years: 

ID Name (Lon, Lat) Region Altitude Wet days Annual rainfall

1 003946 MADRID-BARAJAS (–3.56, 40.47) Iberia (IP) 609 masl 14.4% 370.2 mm

2 000176 ROMA-CIAMPINO (12.58, 41.78) Mediterranean (ME) 105 masl 21.1% 837.8 mm

3 000450 SIBIU (24.15, 45.8) Eastern Europe (EE) 444 masl 24.4% 635.4 mm

4 000032 BOURGES (2.37, 47.07) France (FR) 161 masl 31.2% 756.5 mm

5 000013 INNSBRUCK (11.4, 47.27) Alps (AL) 577 masl 31.7% 884.4 mm

6 002006 BROCKEN (10.62, 51.8) Central Europe (CE) 1,142 masl 55% 1881.9 mm

7 000272 ESKDALEMUIR (–3.2, 55.32) British Isles (BI) 242 masl 50.1% 1735.5 mm

8 000028 HELSINKI-KAISANIEMI (24.95, 60.18) Scandinavia (SC) 4 masl 29.2% 651.9 mm

9 000191 KJOEREMSGRENDE (9.05, 62.1) Scandinavia (SC) 626 masl 23.5% 433.9 mm

Note. ID is the station code used in VALUE. The Wet Days column corresponds to the percentage of wet days (>1 mm) and Annual Rainfall is the mean rainfall 
accumulated each year along the period 1979–2008. See Figure 1 for a map with the location of the 86 meteorological stations considered.

Table 1 
Subset of Nine Representative Stations Considered for Some of the Experiments Carried Out in This Work

Description Height level

Air pressure Sea level

Geopotential 500, 700, 850 mbar

Temperature 2 m, 500, 700, 850 mbar

Eastward wind 500, 700, 850 mbar

Northward wind 500, 700, 850 mbar

Specific humidity 500, 700, 850 mbar

Note. The reader is referred to Gutiérrez et al. (2019) for details. Since we 
use the 4 nearest gridboxes, we have 68 individual predictor variables for 
each station.

Table 2 
ERA-Interim Large-Scale Predictors Used in This Work
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1 = 1979 − 1984, 2 = 1985 − 1990, 3 = 1991 − 1996, 4 = 1997 − 2002, 5 = 2003 − 2008 . For each of 
the 5 folds, predictions are obtained based on the method being trained using the remaining 4 folds. By doing so, 
we end up with an out-of-sample (i.e., based on previously unseen data) predicted wet-day series which covers 
1979–2008. Then, the so-obtained predictions/simulations  are validated in terms of the metrics described in 
Table 3, which allow us to assess their predictive power (as measured by the Spearman correlation: Cor), ability 
to reproduce the mean and standard deviation (Mean, SD), low values (P05) and the tail of the distribution (P95, 
P95A, P99, P99A). Finally, the Kolmogorov-Smirnov statistic, (KS, see Chapter 3 in Cox and Hinkley (1974)), 
which measures the maximum distance between the observed and simulated cumulative distribution functions, 
provides a summary for the overall distributional performance of our methods. Note that, except for correlation 
and the KS statistic, we use the predicted/observed ratio for direct comparison among different metrics and, 
therefore, higher/lower than 1 values indicate an overestimation/underestimation.

3. Methods
Precipitation is a semi-continuous variable with a probability distribution characterized by a spike at zero (dry 
days) followed by a continuous distribution with positive support (wet days). For this reason, it is common to treat 
separately the binary event occurrence (dry/wet days) and the continuous event amount for wet days (see e.g., 
Chandler and Wheater, 2002; Manzanas et al., 2015). This is the approach followed here for the two downscaling 
techniques considered, which are next described in detail: random forests and GLMs. Note however that the pres-
ent work focuses exclusively on the prediction of the precipitation amount distribution on wet days.

Here the rainfall on each wet day is assumed to follow a two parameter gamma distribution (Husak et al., 2007; 
Martínez-Villalobos & Neelin, 2019; Richardson, 1981; Wilks & Eggleston, 1992), which can be characterized 
by the parameters α and β (shape and rate, respectively), with its probability density function defined for positive 
values of y as

𝑓𝑓 (𝑦𝑦) =
𝛽𝛽𝛼𝛼𝑦𝑦𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑦𝑦

Γ(𝛼𝛼)
, 

where 𝐴𝐴 Γ(𝛼𝛼) = ∫
∞

0
𝑧𝑧𝛼𝛼−1𝑒𝑒−𝑧𝑧𝑑𝑑𝑧𝑧 is the gamma function.

As we will later explain, the methodology introduced in this article requires computationally efficient and relia-
ble methods for estimating the parameters of the gamma distribution (notice that the methodology can be easily 
adapted to other probability distributions). This poses a problem, since no closed form unbiased estimators for 
α and β exist. In particular, and despite the fact that both are consistent estimators (i.e., 𝐴𝐴 𝜃𝜃 → 𝜃𝜃 as sample size 
increases for an estimator 𝐴𝐴 𝜃𝜃 of 𝜃𝜃), the widely used maximum likelihood estimators (MLE) and the moments 
matching estimators (MME) are positively biased (Choi & Wette, 1969; Smith et al., 2009). A positive bias for an 

Code Description

Mean Mean rainfall

SD Standard deviation of rainfall

P05 5th percentile of rainfall

P95 95th percentile of rainfall

P95A Sum of total rainfall in days exceeding the 95th percentile value

P99 99th percentile of rainfall

P99A Sum of total rainfall in days exceeding the 99th percentile value

KS Kolmogorov-Smirnov statistic between the observed and simulated rainfall

Cor Spearman correlation between the observed and (deterministic) predicted rainfall

Note. Except for correlation and the Kolmogorov-Smirnov statistic, we use the simulated/observed ratio for direct comparison 
among metrics.

Table 3 
Subset of the Validation Metrics Used in Gutiérrez et al. (2019) Which Have Been Considered to Assess the Performance of 
the Different Statistical Downscaling Methods Used in This Work
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estimator 𝐴𝐴 𝜃𝜃 of 𝜃𝜃 means that 𝐴𝐴 𝐴𝐴
(
𝜃𝜃
)
> 𝜃𝜃 (Cox & Hinkley, 1974, Chapter 8). Furthermore, there is no closed form for 

MLE and it must thus be computed numerically solving two simultaneous equations, which involve the digamma 
function (Choi & Wette, 1969; Song, 2008). MME estimators are defined as 𝐴𝐴 𝐴𝐴MME = 𝑦𝑦

2
∕𝑠𝑠 , 𝐴𝐴 𝐴𝐴MME = 𝑦𝑦∕𝑠𝑠 for the 

mean 𝐴𝐴 𝑦𝑦 and standard deviation s of a sample {𝑦𝑦}. Ye and Chen (2017) and Louzada et al. (2019) both proposed 
alternatives for less biased closed-form estimators. In particular, the latter work proposed an estimator based on 
the hybrid MLE that exhibits less bias for very small samples. This estimator, which is called BC3 by the authors, 
is defined for α as

�BC3 = �̇ − 1
�

(

3�̇ − 2�̇
3(1 + �̇)

− 4�̇
5(1 + �̇)2

)

,
 (1)

with �̇ = �∕
∑

�∈{�}(� − �̄)log (�) . β can be trivially estimated as 𝐴𝐴 𝐴𝐴BC3 = 𝛼𝛼BC3∕𝑦𝑦 .

3.1. Random Forests

Classification and regression trees (CART) are predictive models that separate the target variable into homoge-
neous groups according to a sequence of if-else rules applied on the predictors’ space. Being attractively simple 
and interpretable, CART are capable of capturing non-linearities in the data and can thus be used in problems 
of different complexities and nature. However, these models present several weaknesses that hinder their appli-
cation in real-life problems, mainly their lack of stability and tendency to overfit. The well-known machine 
learning technique called random forest (Breiman, 2001; Hastie et al., 2009) alleviates these issues by combining 
an ensemble of K CART to predict the random variable Y (in this work rainfall on wet days at a meteorological 
station) from the predictors X (in this work a set of m reanalysis large-scale variables). Note that CART (and thus 
random forests) are not hindered by the different scales and variances of the predictors, since they are based on 
recursively splitting the predictors space. Therefore, reanalysis predictors are not standardized in the RFs used 
in this work.

Each of these tk trees maps a combination of predictors x ∈ X to a leaf containing a set 𝐴𝐴 {𝑦𝑦 ∈ 𝑌𝑌 }𝑡𝑡𝑘𝑘(𝑥𝑥) of observed 
records. This mapping is constructed by means of a split function, which recursively chooses both the predictor 
variable X 0 and its threshold value 𝐴𝐴 𝐴𝐴0 = 𝑥𝑥0

0
 that best separate a subset Y0 of observations drawn from Y into 

𝐴𝐴 𝐴𝐴+ =
{
𝑦𝑦 ∈ 𝐴𝐴0 | 𝑋𝑋0

≥ 𝑥𝑥0

0

}
 and 𝐴𝐴 𝐴𝐴− =

{
𝑦𝑦 ∈ 𝐴𝐴0 | 𝑋𝑋0 < 𝑥𝑥0

0

}
 . In particular, for the mean observed value of each subset 

(𝐴𝐴 𝑦𝑦0, 𝑦𝑦+ and 𝐴𝐴 𝑦𝑦− for Y0, Y+ and Y−, respectively), 𝐴𝐴 𝐴𝐴0 = 𝑥𝑥0

0
 is appropriately selected to maximize the reduction of 

the average error committed in the leaves 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴
(
𝑦𝑦0, 𝑦𝑦

)
−
(
𝐴𝐴𝐴𝐴𝐴𝐴

(
𝑦𝑦+, 𝑦𝑦

)
+ 𝐴𝐴𝐴𝐴𝐴𝐴

(
𝑦𝑦−, 𝑦𝑦

))
∕2 , where 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

(
𝑦𝑦𝑦 𝑦𝑦

)
 measures 

how well 𝐴𝐴 𝑦𝑦 represents (or summarizes) the observed values for each set (hence we call 𝐴𝐴 𝑦𝑦 the summary measure). 
Note that we will use the term split function to refer to the combination of the error function Err and summary 
measure 𝐴𝐴 𝑦𝑦 computed on the leaves henceforth.

In regression problems, the mean squared error (MSE) is typically used as Err (see e.g., He et al., 2016 or Xu 
et al., 2020), that is, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

(
𝑦𝑦0, 𝑦𝑦

)
=

1

|𝑌𝑌0|

∑
𝑦𝑦∈𝑌𝑌0

(
𝑦𝑦 − 𝑦𝑦0

)2 and the individual predictions 𝑦𝑦𝑡𝑡𝑘𝑘(𝑥𝑥) produced by each tree 
are directly averaged to obtain a final prediction 𝐴𝐴 𝐴𝐴𝐴 , that is,

�̂�𝑦(𝑥𝑥) =
1

𝐾𝐾

𝐾𝐾∑

𝑘𝑘=1

𝑦𝑦𝑡𝑡𝑘𝑘(𝑥𝑥). (2)

However, it is well known that the use of MSE as split function maximizes the likelihood function assuming Y | 
X follows a gaussian distribution with constant variance (Hastie et al., 2009, Chapter 2), which is not the case for 
precipitation. Indeed, we assume precipitation to follow a two-parameter gamma distribution here, which poses 
an additional problem: the mean no longer suffices as summary measure 𝐴𝐴 𝑦𝑦 , we must provide both α and β for each 
X = x to fully characterize Y | X = x.

Using the log-likelihood as error function is a natural choice to tackle these issues. For a continuous variable Y 
and a sample {y} drawn from Y, the log-likelihood function is defined as 𝐴𝐴 𝐴𝐴(𝜃𝜃𝜃 {𝑦𝑦}) =

∑
𝑦𝑦∈{𝑦𝑦}

log(𝑓𝑓 (𝑦𝑦 | 𝜃𝜃)) , where 
f is the probability density function of Y and θ are the parameters of this distribution. Note that this definition 
assumes all elements in the sample to be drawn independently, which is a reasonable assumption, since the lag-1 
autocorrelation (i.e., the correlation between precipitation amount on one wet day and the previous wet day) is 
already small. Indeed, its median value across the 86 stations is ≈0.089, being smaller than 0.23 in all cases.
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In this work, the actual error function Err corresponds to the negative log-likelihood (NLL), which is lower for 
better-split subsets. For the gamma distribution f, the negative log-likelihood is derived from the definition given 
in Section 2,

𝑁𝑁𝑁𝑁𝑁𝑁(𝛼𝛼𝛼 𝛼𝛼𝛼 {𝑦𝑦}) =
∑

𝑦𝑦∈{𝑦𝑦}

− 𝛼𝛼 log(𝛼𝛼) − (𝛼𝛼 − 1)log(𝑦𝑦) + 𝛼𝛼𝑦𝑦 + log(Γ(𝛼𝛼)). 

α and β need to be estimated for each split candidate (these are the summary measures used instead of the mean 
𝐴𝐴 𝑦𝑦 ), and the final prediction of the RF is the average of these two estimates predicted by each individual tree. For 

the log-likelihood split function, we consider in this work the MME and BC3 estimators discussed in the previous 
section (see Table 4).

However, as an alternative that does not require the estimation of α and β at each split in each tree, we have also 
considered the gamma deviance (Dunn & Smyth, 2018, Chapter 11), whose formula is

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(
𝑦𝑦𝑦 {𝑦𝑦}

)
= 2

∑

𝑦𝑦∈{𝑦𝑦}

[
−log

(
𝑦𝑦

𝑦𝑦

)
+

𝑦𝑦 − 𝑦𝑦

𝑦𝑦

]
. 

It can be used as a split function with the mean of all the elements in the node 𝐴𝐴 𝑦𝑦 as summary measure. Although 
it is an approximation which assumes one of the parameters of the gamma distribution to be fixed, the deviance 
has the advantage of making the split function faster and potentially less likely to be biased by estimation error 
at each candidate split. We analyze in Section 4.1 the effect that the choice of split function may have to obtain 
reliable estimates of Y | X. To do so, the 4 split functions listed in Table 4 are considered.

Beyond the issue of the choice of split function, trees are known to be prone to overfitting to the training data 
set (Hastie et al., 2009, Chapter 9). Thus, their depth must be carefully prevented to grow too much. This is 
typically accomplished by either directly applying some restriction to the allowed maximum depth or by setting 
a minimum number of elements that each leaf must have (we call this parameter the minimum leaf size). As 
we will explain in Section 4.3, setting up the optimal configuration/complexity of the forest based on these two 
parameters is not a straightforward task. Note that additional techniques like pruning and regularization (Hastie 
et al., 2009, see Sections 9.2.2 and 10.12) are an option typically used for individual trees, but they are not usually 
employed in RFs and will not be considered in this work.

Moreover, RFs introduce two additional mechanisms to reduce the risk of overfitting, make the individual tress be 
less correlated and increase the predictive capability of the ensemble model: First, each individual tree is trained 
with a bootstrap sample drawn from the original data set. Second, for each split in each individual tree, only a 
random subset of the total available predictors, m, is considered as split candidate. In this work we use m = 22, 
that is, one third of the total 68 predictor variables available, which corresponds to the standard choice for this 
parameter in regression problems (note that other values of m were also tested, but none yielded substantially 
better performance than m = 22).

3.2. A Posteriori Random Forests

For a given instance of the predictors X = x, a random forest with K trees produces K subsets of predictive obser-
vations 𝐴𝐴 {𝑦𝑦 ∈ 𝑌𝑌 }𝑡𝑡𝑘𝑘(𝑥𝑥) , whose size depends on the minimum leaf size. Instead of producing a single prediction by 
averaging all the summary measures computed for each 𝐴𝐴 {𝑦𝑦 ∈ 𝑌𝑌 }𝑡𝑡𝑘𝑘(𝑥𝑥) , which we call the averaging (AVG-RF) 

Split name Summary measure Description

MSE Mean 𝐴𝐴 𝑦𝑦 Mean squared error

Deviance Mean 𝐴𝐴 𝑦𝑦 Deviance for the gamma distribution

NLL-MME𝐴𝐴 𝐴𝐴MME = 𝑦𝑦
2
∕𝑠𝑠 , 𝐴𝐴 𝐴𝐴MME = 𝑦𝑦∕𝑠𝑠 Negative log-likelihood using moments matching estimators

NLL-BC3 See formula 1 Negative log-likelihood using BC3 estimators defined in Louzada et al. (2019)

Table 4 
The Different Split Functions and Their Summary Measures Used in This Work
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approach, one can instead merge all of them into a common set 𝐴𝐴
⋃

𝑘𝑘=1…𝐾𝐾
{𝑦𝑦 ∈ 𝑌𝑌 }𝑡𝑡𝑘𝑘(𝑥𝑥) , from which the parameters 

of the predicted probability distribution—in this work α and β—can be estimated. Formula 2 thus becomes

�̂�𝑦(𝑥𝑥) = Θ

(
𝐾𝐾⋃

𝑘𝑘=1

{𝑦𝑦 ∈ 𝑌𝑌 }𝑡𝑡𝑘𝑘(𝑥𝑥)

)
, (3)

where Θ represents the particular procedure followed to estimate α and β, which is carried out as a posterior step 
once the trees have been built. We call this approach a posteriori (AP-RF) random forests. Since the number of 
samples available to estimate α and β increases notably, the choice of estimation method is much less limited, 
and more costly or biased procedures such as MLE become feasible via a numeric method, provided they are 
consistent. Throughout this work, and unless otherwise specified, we use the BC3 estimators defined in Section 4 
as the estimation procedure Θ when using AP-RFs.

Therefore, the AP-RFs produce a gamma probability distribution Y | X = x for each large-scale predictors’ state 
X = x, thus fully characterizing the uncertainty of the predictions. From this predicted distribution we can compute 
its expected value α/β to provide a single deterministic prediction, or we can instead draw random samples to 
produce predictive simulations, which can in turn be used to validate the reliability of the downscaled probability 
distributions. Figure 2 illustrates the AP-RF approach as compared to the traditional AVG-RF approach.

Note that we do not use bootstrap samples to train each tree for the AP-RFs presented in this work. Instead, we 
draw samples without replacement with 0.632 times the number of instances in the original data set, since it 
can be shown that ∼36.8% is the expected percentage of duplicated instances that are found in a sample drawn 

Figure 1. Location of the 86 meteorological stations considered in the Experiment 1 of VALUE, which are also used here. 
The different colors identify the 8 PRUDENCE regions covering Europe. The 9 illustrative stations selected for the some of 
the experiments presented in this work are marked with the symbol × (see Table 1 for details). This figure has been adapted 
from Figure 1 in Gutiérrez et al. (2019).
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with replacement. This avoids unnecessary repetitions in the training data 
that could potentially affect the estimation of α and β, while also reducing 
the computational cost.

3.3. Generalized Linear Models

We consider in this work GLMs for benchmarking purposes. GLMs (Chan-
dler, 2005) are a generalization of linear regression which allow for modeling 
non-normally distributed variables, providing an estimate 𝐴𝐴 𝐴𝐴𝐴 for E(Y | X = x) 
using a non-linear link function g as 𝐴𝐴 𝐴𝐴𝐴 = 𝑔𝑔−1(𝐵𝐵𝐵𝐵) , where 𝐵𝐵 are the linear 
coefficients.

They have been extensively used for statistical downscaling and rainfall 
modeling at different time-scales (Abaurrea & Asín,  2005; Chandler & 
Wheater,  2002; Manzanas et  al.,  2015; Manzanas, Gutiérrez, et  al.,  2020; 
Manzanas, Fiwa, et al., 2020; Nikulin et al., 2018; San-Martín et al., 2017) 
and provide competitive results compared to other machine learning models 
(Gutiérrez et  al.,  2019). In addition, they can also be used to obtain both 
deterministic and stochastic predictions, which makes them ideal as baseline 
model.

The two configurations used here correspond to GLM-DET and GLM meth-
ods used in Gutiérrez et al. (2019) (rows 38 and 39 in Table 3, respectively) 
to provide deterministic and stochastic predictions of precipitation amounts. 
Both methods use the gamma distribution as error function and the logarithm 

as link function. For the sake of comparability with AP-RFs, the two GLMs applied in this work consider the 
actual predictor fields at the 4 nearest grid boxes instead of the 20 leading principal components used in Gutiérrez 
et al. (2019). Moreover, we have verified for the case study presented in Section 4.4 that the use of local predic-
tor information yields overall slightly better results than the 20 leading principal components used in Gutiérrez 
et al. (2019) (not shown here for brevity).

In particular, we use in this work standardized (mean 0 and standard deviation 1) predictor fields for the GLMs 
considered. Standardization is made over time at each gridbox separately. Importantly, GLMs do not incorporate 
any predictor information that explicitly accounts for seasonality, low troposphere’s stability and/or any inter-
actions (neither do the RFs), which could doubtless improve the performance of the predictions. Nevertheless, 
obtaining the best possible GLM predictions is out of the scope of the present work, which is aimed at introducing 
the novel AP-RFs and providing a first comparison with a simple implementation of the well-known GLMs. In 
this regard, note that, whilst GLMs in their standard form can only relate the predictors to one of the two parame-
ters of the gamma distribution—the other is assumed to be fixed—AP-RFs allow to simultaneously predict both, 
which constitutes a key advantage. Indeed, as we will show later, this allows for generating realistic stochastic 
predictions, including high precipitation values.

4. Results
We present in this section a thorough analysis which allows us to better understand the performance of RFs and 
to assess their suitability for downscaling of precipitation on wet days. Section 4.1 is devoted to evaluate the 
influence that the choice of split function can have on the predictions, a relevant issue which has not been deeply 
studied before. In Section 4.2, we demonstrate that AP-RFs outperform traditional AVG-RFs in capturing Y | X. 
Section 4.3 shows that AP-RFs and AVG-RFs have the same predictive power and deals with the optimization 
process of the RFs, focusing on two key parameters: the number of trees and the minimum leaf size. To conclude, 
Section 4.4 shows that the AP-RF model produces reliable predictions and overall better results than the imple-
mentation of the GLM technique used in the Experiment 1 of VALUE in terms of distributional similarity. Note 
that Sections 4.1, 4.2 and 4.3 focus on the 9 stations listed in Table 1, whereas in Section 4.4 we consider the 
complete set of 86 stations from the Experiment 1 of VALUE.

Figure 2. Chart illustrating the a posteriori approach (AP-RF) introduced in 
this work for random forests versus traditional averaging approach (AVG-RF).
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All the results shown hereafter correspond to out-of-sample predictions/simulations, that is, to the complete 
time-series (covering the period 1979–2008) obtained according to the 5-fold cross-validation scheme explained 
in Section 2. Note that, except correlation, all measures in Table 3 are computed for stochastic simulations drawn 
from the predicted distribution, and thus the validation metrics shown correspond to the mean value obtained 
from 250 realizations, allowing us to assess the performance of the model for simulating downscaled rainfall. 
For the case of correlation, in order to comprehensively assess the predictive power of the different techniques, 
deterministic predictions (obtained as the expected value α/β of the modeled distributions) are employed.

4.1. Sensitivity to the Split Function in a Posteriori Random Forests

As outlined in Section 3, a relevant question when working with AP-RFs is how the choice of split function may 
affect the results. In AP-RFs the split function is used to iteratively divide the predictor space in order to predict 
Y | X and, even though the estimation procedure is carried out after the trees have been built, the split function 
should ideally take into account the probability distribution of Y.

In order to assess the effect of the split function on AP-RFs, we put to the test the four alternatives listed in 
Table 4, considering BC3 estimators as the estimation procedure Θ in all cases. The boxplots in Figure 3 show 
the cross-validated results obtained with 200 trees and minimum leaf size 5 (similar conclusions were found for 
other configurations of the forest) in terms of the five metrics shown in Table 3 along the 9 stations of Table 1.

Although the differences are subtle, the gamma deviance outperforms the rest of split functions. This can be seen 
both for the distributional measures and for correlation. MSE performs slightly worse than the deviance, which 
gives place to less centered boxplots with larger spread. Interestingly, for the case of the negative log-likelihood, 
no clear improvement is found when using the BC3 estimators (with respect to the more biased MME estima-
tors). Nevertheless, the negative log-likelihood (both with MME and BC3 estimators) exhibits generally worse 
performance than both MSE and deviance. Therefore, unless stated otherwise, the gamma deviance will be the 
split function used hereafter for yielding overall the best results.

Figure 3. Cross-validated results obtained along the 9 stations of Table 1 when the different split functions of Table 4 are used, in terms of different metrics. In all 
cases, an AP-RF with 200 trees and minimum leaf size 5 was used, with BC3 estimators as estimation function Θ. Except for correlation, 250 stochastic simulations 
were first produced, leading to 250 values for each metric which were finally averaged. For the case of correlation, in order to comprehensively assess the predictive 
power of the different techniques, deterministic predictions (obtained as the expected value α/β of the modeled distributions) are employed.
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4.2. Distributional Performance: Averaging Versus a Posteriori

This section illustrates how the AP-RF approach introduced in this work (see Section 3.2), as compared with 
traditional AVG-RF, much better captures the probability distribution of Y | X. To do this, panels (a and b) in 
Figure 4 show, for two illustrative predictions, the predictive observations 𝐴𝐴 {𝑦𝑦 ∈ 𝑌𝑌 }𝑡𝑡𝑘𝑘(𝑥𝑥) (black histograms) along 
with the predicted gamma distributions obtained according to different implementations of the AVG-RF and 
AP-RF approaches (colored curves).

For the AVG-RF approach, in addition to the mean (in red), we have also considered the median (in orange) as 
averaging function to see if it yields less biased results. For the case of the AP approach, three different options, 
which only vary in the type of estimator � used—MLE (blue), MME (purple) and BC3 (cyan)—are assessed. 
Note that, for the sake of consistency, the same RF with 200 trees and minimum leaf size of 5 is used in all 
cases, although similar results are obtained for other configurations. Moreover, for a direct comparison between 
AVG-RF and AP-RF approaches, the NLL-BC3 split function is used in all cases.

For completeness, the boxplots in panel (c) allow us to assess the similarity between the predictive observations 
and predicted distributions obtained along the 9 stations described in Table 1. To do this, we rely on the Kolmog-
orov-Smirnov (KS) statistic (see Table 3), which measures the maximum distance between two cumulative distri-
bution functions and, therefore, the lower the statistic, the better. For each station, all KS statistics (one per day) 
have been averaged.

Our results show a clear difference between AVG-RF and AP-RF approaches, with the latter exhibiting a much 
better ability to capture the whole distribution of predictive observations, regardless of the estimator used. Indeed, 
the KS statistic is around 0.1 for all AP-RFs—with BC3 estimators yielding the best results by a small margin—
whilst it increases to approximately 0.35 (0.5) when the median (mean) is used in traditional AVG-RFs.

4.3. Sensitivity to the Model Complexity

As explained in Section 3.1, two main parameters control the overall complexity of a RF model: the number of 
trees and the minimum leaf size. Figure 5 assesses their relative effect for the case of deterministic and stochastic 
RFs (panels a and b, respectively). In particular, panel (a) shows the results obtained, in terms of daily correla-
tion with observations for deterministic predictions, for AVG-RFs and AP-RFs (topleft and bottomright triangle, 

Figure 4. Panels (a and b) show, for two illustrative predictions (i.e., days), the predictive observations 𝐴𝐴
⋃𝐾𝐾

𝑘𝑘=1
{𝑦𝑦 ∈ 𝑌𝑌 }𝑡𝑡𝑘𝑘(𝑥𝑥) (black histograms) along with the predicted 

gamma distributions, as obtained according to different implementations of the AVG-RF and AP-RF approaches (colored curves). In the case of the AP-RF approach, 
only the estimator used varies. The boxplots in panel (c), which encompass the 9 stations described in Table 1, assess the performance of each of the alternatives in 
terms of distributional consistency, by showing the mean Kolmogorov-Smirnov statistic (averaged over all days) between the cumulative distribution function of the 
predictive observations and predicted gamma distributions.
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respectively). For the latter, predictions were obtained as the expected value of the predicted gamma probability 
distribution, that is, 𝐴𝐴 𝐴𝐴∕𝛽𝛽 . Panel (b) corresponds to the mean Kolmogorov-Smirnov statistic (KS, see Table 3) 
value of 250 stochastic realizations following the AP approach using BC3 estimators. In all cases, the RFs were 
built using the gamma deviance as split function because of its previously shown good performance.

In general, the best predictive performance in terms of correlation is obtained for minimum leaf sizes ranging 
between 3 and 15. When the minimum leaf size is set to 1, RFs suffer from overfitting (which is clearly notice-
able in terms of distributional performance in panel b), although this can be partially alleviated by adding more 
trees. For minimum leaf sizes greater than 15 the models start lacking predictive power (underfitting). In terms of 
distributional performance, as measured by the Kolmogorov-Smirnov statistic, all configurations with minimum 
leaf size greater than 1 perform very similarly.

As per the number of trees, the models with small minimum leaf sizes tend to improve their overall performance 
by adding more trees. Indeed, this is particularly noticeable for minimum leaf size of 1, both in terms of predic-
tive and distributional performance. For minimum leaf sizes greater than 5, all configurations tend to perform 
similarly for models with 25 or more trees.

The best results in terms of predictive performance, as measured by correlation, are found for the particular case 
of 200 trees and minimum leaf size of 5. This configuration, which is marked in green in both panels of Figure 5, 
will be used in the next section.

Importantly, Panel (a) in Figure 5 reveals that traditional AVG-RF and the AP-RF approaches lead to the same 
results in terms of correlation with the observed precipitation amounts. This indicates that the predictive power 
of our AP-RFs is maintained with respect to that of traditional AVG-RFs, with the advantage that AP-RFs allow 
us to accurately estimate the parameters of Y | X (see Figure 4 and the next section).

Figure 5. Cross-validated results averaged over the 9 stations listed in Table 1, as a function of the minimum leaf size and number of trees parameters (axis x and y, 
respectively). Panel (a) corresponds to deterministic predictions as obtained by averaging (topleft triangle, AVG-RF) and by considering the expected value of the 
predicted distribution using the AP-RF approach with BC3 estimators (bottomright triangle). In order to assess the distributional performance, panel (b) shows the mean 
Kolmogorov-Smirnov statistic obtained from 250 stochastic simulations drawn from the distributions predicted by the AP-RFs. In all cases, the RFs were built using 
the gamma deviance as split function. The model configuration leading to the best correlation (on average for the 9 stations) is highlighted in green in both panels. Note 
that, although it is not shown, there is some variability across stations, with correlations differences of up to 0.3 units between the best and the worst performing case (in 
general, better results are found for stations with larger sample sizes available for training).
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4.4. Extending the VALUE Experiment 1 With a Posteriori Random Forests

Finally, we compare in this section the performance of AP-RFs and GLMs for the 86 stations considered in the 
Experiment 1 of VALUE. To do so, we have employed the best configuration found in the previous sections, 
which consists of 200 trees and minimum leaf size of 5, and considers the gamma deviance as split function 
and the AP-RF approach with BC3 estimators to estimate the shape and rate parameters of the predicted gamma 
distribution.

For illustrative purposes, Figure 6 shows the density of the daily gamma distribution predicted by the AP-RF 
(white-to-green color scale) for a time-series of 100 chronologically ordered wet days at station 6 in Table 1. 
The corresponding observed precipitation values are marked with red dots, and the predicted expected values 
(computed as α/β) are given in blue.

This figure illustrates the degree of uncertainty involved in the daily predictions and thus the importance of 
having fully characterized Y | X, which allows us, for instance, to calculate the probability of a certain extreme 
value occurring for a given day. As an example, the probability of receiving more than 40 mm of rainfall for day 
97 is 0.10 (notice how the observed value was 40.7 mm and the predicted expected value was only 17.05 mm). 
For comparison, the probability of getting more than 40 mm of precipitation for day 22 is 0 ≈ 10 −15 (the observed 
precipitation was 1.4 mm). Actually, for this particular day, the probability of having more than 3 mm of rain is 
0.0856, thus the uncertainty of this prediction is comparatively low.

Figure 7 shows the cross-validated results for 250 stochastic simulations obtained from the benchmark GLM 
(blue) and the newly proposed AP-RF (red), in terms of all metrics listed in Table 3. For each metric, the corre-
sponding boxplots encompass the 86 stations from the Experiment 1 of VALUE (see Section 2).

Whilst performing similarly for correlation (the difference in the median correlation is smaller than 0.01), our 
AP-RF reliably reproduces the observed distributions, providing better results than the benchmark GLM for all 
metrics in the left panel. Although both models accurately represent the mean precipitation over the considered 
period, a clear improvement is encountered in the rest of distributional measures, not only in terms of the stand-
ard deviation (SD), but also for the tail (P95, P95A, P99, and P99A) and low precipitation values (P05). These 
results are summarized by the difference in performance as measured by the Kolmogorov-Smirnov statistic (KS).

For the sake of comprehensiveness, the comparison is also presented season by season in Figure 8. Note that 
neither the GLM nor the AP-RF are trained separately for each season and, thus, the results shown in Figure 8 
should not be expected to be as good as those displayed in Figure 7. In general, our AP-RF performs better than 
the benchmark GLM, particularly for the SD and for the percentiles (especially in DJF). Note that, for both meth-
ods, the lowest correlations are found for JJA. Presumably, this may be due to the smaller percentage of wet days 
in this season, which reduces the sample size available for training. Indeed, for the most extreme case (Málaga, 

Figure 6. Results obtained for our AP-RFs at station 6 (Brocken, see Table 1), for an illustrative time-series of 100 chronologically ordered wet days. The daily 
observed precipitation values are indicated with a red dot—note that values above 30 mm are given with numbers—whereas the density of the corresponding (daily) 
predicted gamma distribution is shown in a white-to-green color scale (which is limited to 0.15 for better visualization). In addition, the (daily) predicted expected 
values, α/β, are marked in blue.
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Iberian Peninsula), there is only 1.66% of wet days in JJA (182 rainfall observations), whereas this proportion 
increases to 17.57% (1925 rainfall observations) in DJF. A similar situation occurs for some of the Mediterranean 
stations.

5. Conclusions
This work presents a thorough analysis about the suitability of random forests (RFs) for statistical downscaling 
of rainfall on wet days, a task for which this popular machine learning technique has been rarely used to date. 
To do this, we put to the test several configurations that RFs can potentially admit but had not been taken into 
account before in a climate prediction context. In particular, beyond analyzing the effect that the complexity of 
the forest (i.e., the number of individual trees and the minimum number of elements that each leaf is required to 
have) can have in the final results, we test the appropriateness of different split functions and introduce a novel a 
posteriori (AP-RF) approach, in which the data in the leaves are used to estimate the shape and rate parameters 
of the underlying gamma distribution. As opposed to other traditional, well-established techniques in the climate 
community such as GLMs which, in their standard form, can only relate the predictors to one of the two parame-
ters (assuming the other is kept fixed), this is a key feature of the methodology presented here, since it allows us 
to fully characterize the uncertainty of our downscaled predictions.

Notably, the AP-RF approach here presented can be trivially adapted to any probability distribution, thus making 
the use of RFs extensible to other variables which may not be necessarily gamma-distributed such as temperature, 
winds, etc. For this reason, a relevant issue is the choice of the split function for each candidate distribution to 
model Y | X. Although in the case of rainfall the effects are somewhat subtle, the results obtained in this work 
hint that special care has to be put into choosing a split function that suits the probability distribution used to 
model Y, something that has not received enough attention. For the particular case of precipitation amount in wet 
days (which is assumed to follow a 2-parameter gamma distribution in this work), we have seen that the gamma 
deviance—which accounts for the shape of the gamma distribution but is still an approximation that assumes 

Figure 7. Cross-validated results obtained for the stochastic versions of our optimized AP-RF (see the text for details) and 
the benchmark GLM. The values shown in the boxplots in the left panel are the ratio between the simulated and observed 
metrics. The rightmost panel shows the Spearman correlation between observed and predicted wet-day sequences. All 
the boxplots encompass the 86 stations from the Experiment 1 of VALUE. Except for correlation, the results shown here 
correspond to the average of 250 metrics which were derived from simulations drawn from the predicted distributions. For 
the case of correlation, in order to comprehensively assess the predictive power of the different techniques, deterministic 
predictions (obtained as the expected value α/β of the modeled distributions) are employed.
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Figure 8. As Figure 7 but for individual boreal seasons: winter (DJF, cyan) spring (MAM, green), summer (JJA, orange) and 
autumn (SON, red). Note that neither the AP-RF nor the GLM have been separately trained for each season.

 19447973, 2022, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
030272 by U

niversidad D
e C

antabria, W
iley O

nline L
ibrary on [26/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

LEGASA ET AL.

10.1029/2021WR030272

15 of 17

one of the parameters to be fixed—provides better results than other common options such as MSE and the 
log-likelihood.

Since the uncertainty of the predictions in downscaling of precipitation is high, sensibly capturing the whole 
distribution of downscaled rainfall becomes essential. The ability of the AP-RFs introduced in this work to relia-
bly characterize the entire rainfall distribution (instead of just providing its expected value) without a significant 
loss of predictive performance with respect to traditional random forests is key for practical applications, since 
they allow for a much better representation of the uncertainty and variability of each prediction. This, in turn, 
makes AP-RFs ideal to generate realistic ensembles of stochastic predictions.

Indeed, as compared with a benchmark GLM which was shown to yield overall good results in the Experiment 1 
of the COST action VALUE, our AR-RFs provide in general better performance in terms of distributional consist-
ency with observations. This is particularly evident for the standard deviation and modeling the tail of the rainfall 
distribution, as measured by indicators such as the 99th percentile, which may have important implications for 
hydrology, crop modeling and other human activities which need reliable rainfall information as input.

In terms of computational costs, AP-RFs are generally more expensive than GLMs, although this depends on 
the complexity of the forest (the number of trees considered and the depth of each individual tree have a high 
impact on the time required to train the model). However, our results indicate that AP-RFs do not require a large 
number of trees, likely due to the fact that they use all the observations falling in the leaves of all trees instead of 
just a summary measure from each tree. For the datasets considered in this paper, an AP-RF with 200 trees and a 
minimum leaf size of 5 which considers the gamma deviance as split function can be trained in around 1–5 min 
(depending on the location) in an Intel i7-8700 processor, making it feasible for personal computers. Note that 
trees can be built in parallel, which further speeds up computation.

In this regard, we have created an R package called RandomForestDist which allows the user to apply all the 
split functions and estimation approaches here described (plus others). This package, which builds on a modi-
fied version of the well-known rpart (Therneau & Atkinson, 2019), is publicly available at https://github.com/
MNLR/RandomForestDist. For the sake of reproducibility, it includes a Jupyter notebook (https://github.com/
MNLR/RandomForestDist/blob/master/WorkedExample.ipynb) with worked examples which illustrate how to 
train/apply the RFs presented in this paper over the 9 stations shown in Table 1. Note that this notebook can be 
easily modified to cover the particular needs of the interested readers.

Finally, we foresee to extend the present work in various ways. First, we are currently developing a single AP-RF 
which allows to simultaneously model both the binary and the continuous aspect of precipitation through a 
mixture of Bernoulli and gamma probability distributions. Second, in order to improve the spatial consistency 
of our results, we will analyze the potential of AP-RFs for multisite downscaling (i.e., the same model is used to 
predict at several locations at the same time). Third, we will also test the suitability of AP-RFs to downscale other 
meteorological variables, such as temperature or winds.

Data Availability Statement
All the data used in this work, both ECA&D observed rainfall and ERA-Interim predictors, are publicly availa-
ble and can be downloaded from http://www.value-cost.eu/data. The R package downscaleR (Bedia et al., 2020, 
https://github.com/SantanderMetGroup/downscaleR), which is part of the climate4R bundle (Iturbide et al., 2019, 
https://github.com/SantanderMetGroup/climate4R), was used to train and apply the GLM considered as bench-
mark model.
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As shown in Chapter 3, Bayesian networks provide a robust way to characterize the

spatio-temporal structure of precipitation occurrence. While this description is useful

as a weather generator, we propose in this article to extend the explanatory power of

Bayesian networks to spatially and temporally-consistent downscaling. This could be done

by conditioning to large-scale discretized states, for instance by building different models

for different weather types. As explained before, another option would be introducing

additional nodes representing the large-scale predictors X. However, this is challenging,

for a number of reasons explained in Section 2.5.5.

This article, Legasa et al. (2023c), proposes an alternative, Bayesian network-informed

conditional random forests (BNICRFs, see Section 2.5.5), for downscaling the joint proba-

bility distibution of precipitation occurrence at several locations. BNICRFs use an ensem-

ble of conditional random forests, explained in 2.5.4, with Bayesian networks, capturing

the relevant information from large-scale predictors and combining it to make spatially

consistent probabilistic predictions. That is, in essence, we use a Bayesian network to

characterize the conditional relationships explaining the joint probability distribution of

Y , and let random forests extract the relevant information from the large-scale predictors

X.

The performance of BNICRFs, which maintain strong single-site predictive perfor-

mance and capture spatial relationships, surpasses that of a robust multisite methodology

based on GLMs (Rglimclim, see Chandler, 2020). Moreover, we also also propose an ex-

tension that explicitly takes into account the temporal structure to produce temporally

and spatially realistic downscaled precipitation occurrence fields. This extension is also

employed in the next chapter.
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Abstract17

This work presents Bayesian network-informed conditional random forests (BNICRF),18

a novel multiresponse classification technique able to downscale the joint probability dis-19

tribution of precipitation occurrence at a set of geographical locations of interest from20

large-scale predictors. BNICRFs combine a Bayesian network, which provides a descrip-21

tion of the multisite/spatial dependence structure of the target locations; with an en-22

semble of conditional random forests, which extract the relevant information from the23

large-scale predictors to produce accurate probabilistic predictions. This work extends24

two previous articles that explored Bayesian networks (Legasa & Gutiérrez, 2020) and25

random forests (Legasa et al., 2022) in the context of statistical climate downscaling. Build-26

ing on the experimental and validation framework proposed in the experiment 1c of the27

COST action VALUE (the largest, most exhaustive intercomparison study of statisti-28

cal downscaling methods to date) and under the perfect prognosis approach, we thor-29

oughly assess the performance of the proposed methodology focusing on its capability30

to reproduce several multisite and single-site statistics of the observed series. BNICRFs31

accurately capture the relevant spatial relationships while keeping the same single-site32

predictive performance than both single-site random forests and a Generalized Linear33

Model that exhibited a good performance in VALUE. Moreover, we compare BNICRFs34

against a robust multisite methodology proposed in Chandler (2020), obtaining better35

predictive capability while keeping similar spatial performance. Since the assessed mod-36

els still underestimate autocorrelation, we also propose a straightforward extension of37

BNICRFs that incorporates the temporal structure at each location of interest able to38

produce both temporarily and spatially realistic precipitation occurrence fields.39

Plain Language Summary40

Statistical downscaling methods aim to improve the limited spatial resolution of current41

climate models by linking a set of key large-scale predictor variables (e.g. geopotential42

or winds) to the predictand of interest (e.g. precipitation). A relevant issue in this con-43

text is how to perform precipitation downscaling at several geographically close locations44

of interest while capturing the spatio-temporal relationships that exist among them (gen-45

erally called multisite or spatial downscaling), something particularly important in hy-46

drological applications. This work presents Bayesian network-informed conditional ran-47

dom forests (BNICRF), a novel machine learning methodology that combines a Bayesian48

network, to inform the dependence relationships at the locations of interest, with ran-49

dom forests, that extract the relevant information from the large-scale predictor variables.50

We conduct a series of tests to assess this methodology within the COST action VALUE,51

which carried out the most comprehensive intercomparison of statistical downscaling meth-52

ods to date, and conclude that BNICRFs are able to downscale the joint probability dis-53

tribution of precipitation occurrence while keeping the dependence relationships among54

the downscaled locations, without loss of performance with respect to well-established55

single-site models and with better predictive performance with respect to a multisite model56

chosen as benchmark.57

1 Introduction58

Global climate models (GCMs) are the main tool used nowadays to simulate the evo-59

lution of the climate system. However, their spatial resolution —typically around one60

hundred kilometers— is still insufficient for most practical applications (see e.g. Doblas-61

Reyes et al. (2013) and references therein). Statistical downscaling (SD) methods tackle62

this issue by building statistical/empirical models that link a set of key large-scale pre-63

dictors (e.g. geopotential or winds) with the target local-scale predictand (e.g. precip-64

itation or temperature) over the area of interest (see e.g. von Storch et al. (1993)). Un-65
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der the perfect prognosis (PP) approach (Charles et al., 1999; Timbal et al., 2003; Bürger66

& Chen, 2005; Haylock et al., 2006; Fowler et al., 2007; Hertig & Jacobeit, 2008; Sauter67

& Venema, 2011; Gutiérrez et al., 2013), these models are trained/calibrated based on68

observed data over a historical reference period, relying on some reanalysis for the pre-69

dictors. Typically, these trained/calibrated models are subsequently applied to down-70

scale future GCM large-scale predictors in order to obtain the corresponding downscaled71

values. In this work we focus exclusively on the training/calibration phase, i.e. we use72

reanalysis predictors in a PP framework.73

Precipitation, a key variable for many hydrometeorological applications, is notably dif-74

ficult to model, due to its positive mass at zero accounting for dry days and a contin-75

uous non-normal intensity for wet days. Thus, most of the currently available models76

deal separately with precipitation occurrence (wet/dry) and precipitation amount (Coe77

& Stern, 1982; Stern & Coe, 1984; Ambrosino et al., 2014; Zhou et al., 2019; Chandler,78

2020). This makes sense, since different physical mechanisms control the binary occur-79

rence and the continuous amounts. Historically, most SD methods have been developed80

for independently downscaling at multiple locations, yielding predictions which fail to81

take into account the relevant spatio-temporal relationships among the downscaled lo-82

cations. These relationships are key for producing reliable multisite precipitation series,83

and are particularly important in hydrological applications (Singh, 1997; Grayson & Blöschl,84

2001). Indeed, many applications require spatially consistent data, reflecting not only85

the marginal statistics of the different sites, but also the multisite (or spatial) statistics86

such as pairwise correlation (Fiener & Auerswald, 2009; Haile et al., 2009). Streamflow87

also generally depends strongly on its accurate representation (Segond et al., 2007). As88

opposed to precipitation amount, which is often modeled via copulas by using a trans-89

formation to marginal normality at each site (which keeps the covariance matrix), mod-90

eling the spatial structure of precipitation occurrence is notably problematic (Yang et91

al., 2005; Chandler, 2020). Therefore, we focus in this work on precipitation occurrence92

exclusively.93

Several methodologies have been proposed in order to keep the spatial dependence struc-94

ture of downscaled precipitation occurrence. Previous studies have tried to preserve this95

spatial structure by linking the local climate covariance to the global circulation covari-96

ance, something often called expanded downscaling (Bürger, 1996). Within this method-97

ology, Cannon (2008) proposed an expanded artificial neural network producing outputs98

that preserve the correlation matrix by adding a penalization term in the cost function;99

and in Chandler (2020) this was done by using latent Gaussian variables. In Yang et al.100

(2005), the spatial structure was approximated by means of directly modeling the num-101

ber of wet sites using the beta-binomial distribution. Charles et al. (1999) conditioned102

the downscaled series on a hidden weather state variable. All these studies focused on103

particular statistics or aspects of the joint probability distribution (JPD), instead of mod-104

eling the JPD itself. Indeed, some approaches were designed for use in specific situations,105

e.g. the beta-binomial model in Yang et al. (2005) was designed for use in small areas106

where dependence is uniformly very high, whereas the hidden Markov models of Charles107

et al. (1999) were designed for use at large spatial scales at which days can be classified108

into weather types with their own distinctive rainfall patterns.109

To solve the limitations of the aforementioned studies, in this work we propose a model110

that combines the explanatory power of Bayesian networks (BN) (Pearl, 1988) and the111

predictive capability of random forests (RF) (Breiman, 2001) to produce downscaled pre-112

cipitation occurrence fields that keep the spatial JPD for all the target locations. In essence,113

BNs provide an approximation of the multisite dependence structure of the locations of114

interest (see Legasa and Gutiérrez (2020) for an in-depth description of BNs as weather115

generators), and RFs extract the relevant information from the large scale predictors to116

produce accurate multisite probabilistic predictions (see Legasa et al. (2022) for the ap-117
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plication of random forest for probabilistic precipitation downscaling). RFs have been118

extensively applied for modeling meteorological variables, due to their skill handling non-119

linear, multi-class, unbalanced, noisy and very high dimensional datasets (Hengl et al.,120

2015; He et al., 2016; Fox et al., 2020; Georganos et al., 2021; Saha et al., 2021). They121

also require very little to no pre-processing of the data, and are robust to outliers (Belgiu122

& Drăguţ, 2016; Rodriguez et al., 2006; Wang et al., 2019). All this makes RFs, to date,123

the most prevalent machine learning methodology for climate change risk assessment stud-124

ies (Zennaro et al., 2021).125

In addition to the predictive capability of the models, in this work we assess the relia-126

bility of the downscaled joint probability distribution of precipitation occurrence. We127

do so by measuring the predictive performance of the models and how accurately they128

represent several multisite and single-site statistics when drawing samples from the down-129

scaled probability distributions, an approach often referred to as stochastic downscal-130

ing or weather generation conditioned on large-scale covariates.131

The remainder of this article is structured as follows: Section 2 describes the experimen-132

tal framework and data used. Section 3 explains the particularities of the different tech-133

niques considered, including a detailed description of the proposed methodology. The134

results obtained are presented through Section 4, with Section 5 gathering the main con-135

clusions.136

2 Experimental Framework and Data137

The proposed methodology is put in context by using the Experiment 1c of the COST138

action VALUE (http://www.value-cost.eu, Gutiérrez et al. (2019)), designed with the139

goal of providing a common, transparent, reproducible and comprehensive framework140

for intercomparing SD methods for climate. The experiment 1c (Widmann et al., 2019)141

considers a dense set of 53 stations within Germany and is specially designed to focus142

on the spatial aspects of the predictions. For illustrative purposes, we test our method-143

ology on a smaller subset of 11 locations in southern Germany, which are listed in Ta-144

ble 1.145

This subset of 11 stations corresponds to the same set of stations previously used in Legasa146

and Gutiérrez (2020), thus allowing for a direct comparison of the results. Daily obser-147

vational records of precipitation from European Climate Assessment & Dataset project148

(ECA&D) ranging from 1979 to 2008 (30 years) have been used, with a threshold of 1mm149

for the discretization of precipitation into dry (lower than 1mm) and wet (higher than150

or equal to 1mm) days. Only complete observations (i.e. none of the 11 locations have151

a missing datum for a given day) have been used, leaving 10636 training instances (days).152

As predictors we use the same large-scale variables used in Gutiérrez et al. (2019), all153

of them coming from ERA-Interim reanalysis (Dee et al., 2011) on a daily basis over a154

2° resolution regular grid (blue crosses in Figure 1). As in Gutiérrez et al. (2019), we rely155

on local predictor information, using the 4 nearest grid points to each target location.156

The list of predictors considered is shown in Table 2. Throughout the manuscript we use157

X to refer to this set of predictors and to Y = (Y 1, . . . , Y 11) to refer to the downscaled158

variable, i.e. absence/presence of precipitation.159

To avoid overfitting the statistical models, we applied the same 5-fold cross-validation160

employed in Gutiérrez et al. (2019), in which the total period of study, 1979-2008, is di-161

vided into 5 non-overlapping folds {F1, . . . ,F5}, with each fold comprising 6 years: F1 =162

1979−1984, F2 = 1985−1990, F3 = 1991−1996, F4 = 1997−2002, F5 = 2003−2008.163

For each of the 5 folds, predictions are obtained by training the model using the remain-164
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ing 4 folds. By doing so, we end up with an out-of-sample (i.e. based on previously un-165

seen data) predicted probabilistic time-series which covers 1979-2008.166

Then, the so-obtained out-of-sample downscaled series are validated in terms of the met-167

rics shown in Table 3, extracted from the VALUE validation framework. Note that from168

now on we will refer to the downscaled parameters of the JPD as the predicted proba-169

bility values and to series drawn from these probabilities as simulations. The measures170

in Table 3 allow us to assess their quality in terms of their predictive power, using the171

area under the ROC curve (AUC, see Kharin and Zwiers (2003)); consistency of the prob-172

abilistic values (Brier Score, see Weigel et al. (2007)); marginal distributional performance173

(R01); spatial consistency, as measured by the pairwise Pearson correlations (SPCor);174

autocorrelation (AutoCor); spell reproducibility (WetSpellMean, DrySpellMean); and175

extreme spell reproducibility (WetLongestMean, DryLongestMean).176

Both AUC and Brier score are computed from the predicted probability values. The rest177

of the metrics are computed from 250 simulations drawn from the predicted probabil-178

ity values. We compute them for each simulation and average them to obtain a stable179

mean, and then we compute the ratio between this averaged measure and the observed180

series’ metric. Therefore, a value higher (lower) than 1 implies overestimation (under-181

estimation) of the respective measure. In the case of AUC (Brier score), a value closer182

to 1 (0) implies better performance.183

3 Methods184

We aim to predict the probability of rain Y = (Y 1, . . . , Y D) over a set of D locations185

while keeping the spatial structure among the variables in Y . Each marginal distribu-186

tion Y d follows a Bernoulli distribution with 1/0 representing presence/absence of pre-187

cipitation. Traditional single-site models that ignore this structure fail to reproduce the188

correlation exhibited among the downscaled locations, as we will later see for the GLM189

shown in Figure 5.190

In this work we introduce a novel model, which has not been, to our knowledge, proposed191

before: An ensemble of conditional random forests (CRFs) able to predict the conditional192

probability distributions (CPDs) relevant to capture the joint probability distribution193

(JPD) of the complete set of locations of interest. Which CPDs are relevant is informed194

by a Bayesian network (BN), which ensures they approximate the full JPD as accurately195

as possible.196

The full specification of the proposed model, which we call Bayesian Network-Informed197

Conditional Random Forests, is explained in Section 3.3, with Sections 3.1 and 3.2 fo-198

cusing on the most relevant aspects of RFs and BNs used in this work.199

3.1 A Posteriori Conditional Random Forests200

For a dataset {yi, xi}i=1,...,N , where each yi, xi are drawn from Y and X respectively,
a random forest (Breiman, 2001) is a machine learning model built as an ensemble of K
individual classification and/or regression trees (Hastie et al., 2009, Chapter 15). The
kth tree tk maps each combination of predictors x to a leaf containing a set of obser-
vations {y ∈ Y }tk(x) based on a set of decision rules. The decision rules are constructed
by means of a split function, which is tasked with recursively splitting the space of X
in order to minimize a measure of dissimilarity in Y , typically entropy in the context of
classification. Traditionally, a summary measure ŷtk(x) is computed from {y ∈ Y }tk(x)
for each tree tk, with the random forest yielding a prediction ŷ(x) as the average out-
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put of the K trees:

ŷ(x) =
1

K

K∑

k=1

ŷtk(x) (1)

In a random forest individual trees are not trained with the entire training dataset, but201

with a randomly selected bootstrap sample. Also, only a random subset of the available202

predictors X is made available as candidate split each time a split is to be performed,203

potentially allowing trees to reach better non-greedy solutions. These two mechanisms204

provide more robust and better-performing models (Hastie et al., 2009, Chapter 9).205

Legasa et al. (2022) introduced a posteriori random forests (AP-RFs hereafter), and showed
how they are capable of capturing the probability distribution of rainfall while keeping
full predictive power. As opposed to the traditional approach in Formula 1 (refered to
AVG-RFs hereafter), AP-RFs take advantage of the full range of values in the leaves (which
we call predictive sample) to estimate the parameters of the probability distribution of
Y | X = x (see Figure 2 in Legasa et al. (2022)). Thus, Formula 1 becomes

ŷ(x) = Θ

(
K⋃

k=1

{y ∈ Y }tk(x)
)
, (2)

where Θ is a function which estimates the relevant parameters of the probability distri-206

bution of Y | X. The key advantage of a posteriori random forests is that they provide207

a large sample drawn from Y | X, allowing for a reliable estimation of all the parame-208

ters of the predicted distribution.209

In order to maximize the spatial coherence of our predictions, we propose in this work210

to use AP-RFs to predict, for each X = x, the JPD of Y instead of just the marginal211

of each Y d. For example, for two variables Y 1, Y 2, the random forest predicts the pa-212

rameters of P (Y 1) and P (Y 2 | Y 1), fully determining the JPD of Y for X = x (thus213

P (Y 2 | Y 1, X = x)). We call these models Conditional Random Forests (CRFs).214

Note, however, that this poses a hard practical limitation since, as we will see in the next215

section, the dimensionality of such a problem increases very rapidly, becoming intractable216

for relatively small values of D. Bayesian networks, explained in the next section, pro-217

vide an efficient tool to tackle this issue by identifying the relevant independence rela-218

tionships that are established in Y . As we will explain in Section 3.3, BNs will allow us219

to build an ensemble of CRFs which can predict the relevant conditional probability dis-220

tributions in Y , whilst keeping its spatial structure.221

3.2 Bayesian Networks222

The joint probability distribution of any discrete multivariate Y can be specified using
the chain rule as a product of conditional distributions:

P (Y 1, . . . , Y D) =

D∏

d=1

P (Y d | Y 1, . . . , Y d−1), (3)

with P (Y 1 | Y 0) = P (Y 1), the marginal distribution of Y 1. The specification of the223

JPD for Bernoulli marginals using this formula requires the specification of 2(D−1)+2(D−2)+224

· · ·+1 probability distributions, and thus quickly becomes intractable as D increases.225

For instance, 11 stations require the specification of 2047 parameters.226

A Bayesian network (Koller & Friedman, 2009; Scutari, 2010, BN) is a probabilistic graph-227

ical model which simplifies Formula 3 by capturing conditional independencies in the dataset,228

thus yielding an approximation of the JPD. This approximation is determined by a di-229

rected acyclic graph (DAG, a directed graph with no cycles, see e.g. Figure 1), and it230
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is formalized through the concept of graphical separation (a BN is, by definition, an in-231

dependence map, i.e. the graph implies conditional probabilistic independence, but not232

the other way around. See e.g. Scutari (2010) or Koller and Friedman (2009)). The num-233

ber and configuration of arcs (directed edges) in the DAG determines the degree of ap-234

proximation made by the BN, by lowering the threshold for probabilistic independence.235

We refer the reader to Koller and Friedman (2009) and Scutari (2010) for further details236

on Bayesian network learning and inference algorithms and summarize here two prop-237

erties of Bayesian networks that are particularly relevant for this work.238

Firstly, each node Y d is conditionally independent of its non-descendants given its par-239

ents. As we will later see, this property is essential to build the ensemble of RFs pro-240

posed in this work. This is called the local Markov property. Secondly, the DAG of a BN241

always has an ancestral ordering of the nodes (not necessarily unique). That is, the nodes242

in a DAG can be arranged as Y 1 � · · · � Y D, with Y i � Y j if and only if Parents(Y j) ⊆243

{Y 1, . . . , Y i}, for all i 6= j. There is thus always at least one starting node, i.e. a node244

with no parents, Y 1. Note how the nodes in Figure 1 have already been labeled follow-245

ing an ancestral order. As we will later see (Section 3.3), we use this property to sim-246

ulate from the proposed model.247

An immediate corollary can be extracted from these properties: the JPD described in
Formula 3 can be approximated by a Bayesian network as PBN , with

P (Y 1, . . . , Y D) ≈ PBN (Y 1, . . . , Y D) =
D∏

d=1

P (Y d | ParentsBN (Y d)). (4)

This simplification, together with the properties explained above, effectively allows us248

to divide the problem of predicting the JPD of Y | X into a set of D tractable subprob-249

lems, as we explain in the next section. Each of the D terms on the right hand side of250

Formula 4 is called a conditional probability distribution (CPD).251

To automatically learn the DAG from the observed occurrence precipitation records, score-252

based algorithms rely on the maximization of the Bayesian information criterion (BIC)253

over the space of all possible DAGs. BIC equals the log-likelihood plus a penalization254

term k = log(N)/2 (where N is the number of training instances) multiplied by the num-255

ber of parameters of all the CPDs. Note that, as we will see in Section 4.3, even though256

BIC is strictly defined with k = log(N)/2, we can fine-tune the density (number of arcs)257

of the DAG by varying k. Increasing k results in sparser DAGs, whereas reducing it re-258

sults in denser DAGs.259

Since the number of possible DAGs that can be built for D nodes is 2O(D2), heuristic al-260

gorithms have to be employed. Legasa and Gutiérrez (2020) showed how tabu search (Glover,261

1990; Koller & Friedman, 2009) algorithm reliably captures the spatio-temporal links for262

precipitation occurence, yielding robust approximations of the JPD for several locations.263

Tabu search is a standard heuristic search procedure for maximizing the BIC in the dis-264

crete space of possible DAGs, by essentially running several hill-climbing searches with265

a memory that stores a backtrack of already visited DAGs and performing additional266

searches prohibiting previously visited local maxima. It yields generally better results267

than the greedy hill-climbing. We thus employ tabu search to learn the BN structures268

used in this work.269

3.3 Bayesian Network-Informed Conditional Random Forests (BNICRFs)270

The model we propose in this work aims to predict Y | X for a set of locations Y = (Y 1, . . . , Y D)271

while preserving the dependence structure in Y . Since, as explained before, the speci-272

fication of the full JPD is intractable, the core idea is to use an ensemble of conditional273
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random forests to link all the relevant conditional probability distributions within Y to274

the large scale predictors X, with a Bayesian network informing which CPDs are rele-275

vant. That is, thanks to the local Markov property and the factorization in Formula 4276

produced by the BN, we can use a CRF to predict the CPD of Y d | ParentsBN (Y d) from277

the large scale predictors X for each location d. Once trained, these CPDs fully char-278

acterize Y | X and allow us to simulate values from the JPD of the predicted Y . We call279

this ensemble of CRFs Bayesian network-informed conditional random forests (BNICRF).280

In the following, we will explain how to train a BNICRF, using the DAG in Figure 1 for281

illustration. The first step is to build an informative Bayesian network which approx-282

imates all the independence relationships of Y . As explained in Section 3.2, for each lo-283

cation Y d the BN prescribes a CPDd = P (Y d | ParentsBN (Y d)). For the DAG in Fig-284

ure 1 we thus have 11 CPDs. After the informative BN is built, an ensemble of D CRFs285

is trained to predict each CPD from each large-scale predictors’ state X = x. Each CRF286

uses as predictors the 4 nearest gridboxes to each location including the parent locations,287

X, and {Y d, ParentsBN (Y d)} as predictands, and is thus trained to reduce the entropy288

of the JPD of both the location of interest and its parents. In this regard, note that BNI-289

CRFs assume that the relationships learnt by the BN continue to hold when we incor-290

porate the large-scale predictors X, using the CRFs to predict P (Y d | ParentsBN (Y d))291

from each X = x, which we denote P (Y d | ParentsBN (Y d), X = x). As we will later292

see in Section 4, this is a reasonable assumption.293

The first location, Y 1, has no parents, and thus the first CRF is actually a single-response294

RF model for Y 1, which is tasked with just predicting the probability distribution P (Y 1 | X =295

x). We then proceed to build the CRF for Y 2, which has as single parent Y 1, and thus296

this CRF learns the CPD2(X = x) = P (Y 2 | Y 1, X = x). This process is iterated for297

each node/variable in Y , with each CRF using information from the child Y d and its par-298

ents to predict the CPDd(X = x) = P (Y d | ParentsBN (Y d), X = x) for each large-299

scale predictors state X = x. For example, the location Y 11, the last variable in the300

DAG in Figure 1, requires the specification of CPD11(X = x) = P (Y 11 | Y 2, Y 7, Y 8, X =301

x) for each X = x. The chart in Figure 2 visually summarizes the training process for302

5 locations and a simple illustrative DAG.303

Since the BN is an independence map (i.e. graphical separation implies independence,304

but not the other way around), it allows the CRF flexibility on the dependence relation-305

ships of Y . For example, a configuration in the form Y i −→ Y j implies that Y i and306

Y j are not assumed to be independent. However, the CRF can still decide the degree307

of dependence for each particular X = x, by setting P (Y j | Y i, X = x) = P (Y j | X =308

x) to make Y j and Y i independent provided X = x. In this sense, the BN only forces309

relationships between different variables to be approximated by others, but does not force310

a relationship to exist. The precision and complexity of this approximation, in turn, can311

be decided by controlling the complexity of the BN (as we sill show in Figure 6 in Sec-312

tion 4.3).313

Additionally, in the BNICRF formulation, situations can arise in which the predictive314

sample (see Section 3.1) does not provide information about some conditional distribu-315

tions. For example, for node Y 11 and a particular predictor configuration X = x, the316

CRF may produce a predictive sample with no data about a combination of its parents’317

state (e.g. P (Y 11 | Y 2 = 1, Y 7 = 0, Y 8 = 1, X = x)). In these cases the locally marginal318

probability of the child variable P (Y 11 | X = x) is used as an approximation, and thus319

in this case P (Y 11 | Y 2 = 1, Y 7 = 0, Y 8 = 1, X = x) = P (Y 11 | X = x). Since the320

CRF only uses the large-scale predictors, we can interpret this situation as the CRF pre-321

scribing a conditional independence, on top of the BN, given the large-scale predictors322

X. This approximation has to be done in at least one configuration for approximately323

10% of the training days for the reference model, which is explained and analyzed in Sec-324
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tion 4. Note that, if the ensemble of CRFs is well calibrated (i.e. there is no overfitting),325

the probability of drawing that particular configuration of the parents can be considered326

to be 0.327

Once the ensemble of CRFs has been constructed, it can be used to make either deter-328

ministic predictions, using Formula 4; or stochastic simulations for Y | X, simulating by329

iteratively drawing samples from the learnt CPDs following in the same ancestral order330

determined by the DAG, which guarantees we have already simulated parent nodes. We331

start, for each large-scale predictors state X = x, by simulating from the marginal dis-332

tribution of Y 1, obtaining Y 1 = y1. We then simulate from the probability distribu-333

tion Y 2 | Y 1 = y1. We proceed iteratively by drawing samples from the CPDs until we334

obtain a simulation for the complete set of locations Y .335

The last issue to consider here is the split function, which, as mentioned in Section 3.1,
is tasked with finding the optimal set of split points in the space of X in order to reduce
the entropy for each P (Y d | ParentsBN (Y d)). In this work we use, for each CRF, the
joint information gain, i.e. the reduction of entropy of (Y d, Parents(Y d)). The formula
for the entropy used by each CRF is, thus,

H(Y d, Parents(Y d)) =
∑

y∈(Y d,Parents(Y d))

−P (y) log(P (y)), (5)

with the split function performing the splits that obtain the highest reduction of entropy.336

For example, the last CRF, which predicts P (Y 11 | Y 2, Y 7, Y 8), is trained to reduce the337

entropy of (Y 2, Y 7, Y 8, Y 11). Experiments carried out considering the entropy of the child338

(e.g. Y 11 for the last CRF) yielded worse results, particularly in terms of spatial con-339

sistency. The decision on the best parameters for the CRF ensemble, i.e. the number of340

trees and maximum depth of each tree, is tackled in Section 4.1.341

4 Results342

All the results shown in this section correspond to out-of-sample predictions/simulations,343

i.e. to the complete time-series downscaled by the models covering the period 1979-2008,344

obtained according to the 5-fold cross-validation scheme explained in Section 2. Recall345

that, in order to assess the performance of the different models considered, we use the346

measures in Table 3, computed for the deterministic series (using the predicted proba-347

bility values) in the case of AUC and Brier score and on 250 stochastic simulations for348

the rest of the measures.349

Note that in Sections 4.1, 4.2 and 4.3 we aim to find the optimal model configuration,350

and thus, for brevity, we focus only on the predictive performance (AUC), the number351

of wet days (R01) and the spatial pairwise correlation (SPCor), which provide an overview352

of model performance. Differently, in Sections 4.4 and 4.5 we use all the measures in Ta-353

ble 3.354

4.1 Sensitivity to the Random Forest Configuration355

In this section we aim to find the optimal combination of parameters for the conditional356

random forest models. As explained in Sec. 3.1, two main parameters control the over-357

all complexity of a RF: the number of trees and the minimum leaf size. Figure 3 shows358

the cross-validated results obtained for the measures in Table 3. Ideally, we aim for a359

combination of parameters that attain the maximum AUC (i.e. the maximum predic-360

tive performance) while keeping a good distributional performance, as measured by the361

ratio in the R01 and the SPCor.362
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We conclude from Figure 3 that there is a clear tradeoff between the predictive and dis-363

tributional performance. Models with lower minimum leaf size values tend to obtain greater364

predictive performance, but also slightly bias the distributional measures. From a min-365

imum leaf size of 50 and upward the ensembles show no bias on distributional metrics366

but start gradually losing predictive performance. Therefore, we chose a minimum leaf367

size of 15 as a good compromise. In terms of the number of trees, models with just 10368

trees tend to perform badly at both the distributional and predictive performance, with369

the difference being slim for more than 25 trees. We therefore choose CRFs with 100 trees370

and 15 minimum leaf size as the optimal configuration, and we call this model the ref-371

erence BNICRF hereafter.372

4.2 BNICRFs vs Single-Site Models373

Since capturing the spatial structure of Y requires additional model complexity with re-374

spect to predicting marginally at each site Y d, a relevant question is whether our model375

introduces additional bias in the predictions for each individual station. This section ad-376

dresses the tradeoff between single-site predictive performance and multisite/spatial per-377

formance.378

To answer this question we compare our proposed model against three single-site mod-379

els: a GLM described in Legasa et al. (2022), a well-known robust downscaling technique380

proven to be very reliable at individual stations (Gutiérrez et al., 2019); and 2 single-381

site random forests, one using the averaging approach (AVG-RF, standard classification382

random forest) and the other one using the AP-RF approach (Legasa et al., 2022), which383

employs the same configuration (the best performing models are employed). Results are384

shown in Figure 4.385

For the multisite models, in addition to the reference BNICRF from Section 4.1(red),386

we include for completeness two additional models. The first one corresponds to a ran-387

dom forest using the proposed methodology but with minimum leaf size of 50 (orange),388

which, as explained in the previous section, better captures the parameters of the dis-389

tribution (both multisite and singlesite), but slightly loses predictive performance. The390

second one uses the same parameters as the reference model but instead employs aver-391

aging (brown) instead of the AP-RF approach. All models use the default informative392

BN configuration (see Section 4.3).393

For the spatial models, we conclude that using the AP-RF approach (red, orange) is es-394

sential to capture the relevant spatial relationships. Instead, traditional AVG-RF approach395

(brown) fails to reproduce pairwise spatial correlation (SPCor) and performs worse re-396

producing the number of wet days for individual stations (R01). This supports the re-397

sults in Legasa et al. (2022), where it was concluded that the AP-RF is essential to cap-398

ture the full probability distribution. In addition, when compared against single-site mod-399

els (cyan, green, blue) which, as expected, fail to reproduce the relevant spatial relation-400

ships, both multiresponse BNICRFs (red, orange) slightly lose either some predictive per-401

formance (orange, AUC) or some distributional similarity (red, R01). Finally we find a402

tradeoff for the two BNICRFs: as concluded in the previous section, those which bet-403

ter capture the distributional aspects tend to lose some predictive performance. This dif-404

ference is small, with the median AUC falling from ∼ 0.86 for the reference BNICRF405

to ∼ 0.845 for the BNICRF with 50 as minimum leaf size, but this is a symptom of some406

potential underfitting.407

In addition to the SPCor measure, we show in Figure 5 all the observed and simulated408

pairwise correlation values for the single-site GLM and the BNICRF. It can be clearly409

seen how the proposed model accurately captures the spatial dependence structure. How-410

ever, and although the predictors (recall that the 4 nearest gridpoints to the locations411
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of interest are used) do carry some spatial information, the single-site GLMs are unable412

to capture the full dependence, greatly underestimating the correlation between loca-413

tions. This effect is particularly strong for the higher correlations: the maximum observed414

correlation is 0.75, well simulated as 0.761 by the BNICRF but decorrelated to 0.46 by415

the GLM. Instead, the BNICRF tends to slightly underestimate the lower —and thus416

less relevant— correlation values.417

Following from these results, from now on we stick to the reference BNICRF, which pro-418

vides a tradeoff between predictive performance and distributional similarity.419

4.3 Sensitivity to the Bayesian Network Configuration420

As explained in Section 3.2, structure learning algorithms maximize the log-likelihood421

in combination with a complexity parameter k multiplied by the number of parameters422

of the model. For the BIC score, k is set to k = log(N)/2 (where N is the number of423

training instances), but this parameter can be decreased/increased for denser/sparser424

DAGs. Although we found in Legasa and Gutiérrez (2020) the parameter k = 1 to be425

the best choice for modeling the dependence among the stations used in this study, the426

CRFs introduce an additional layer of complexity, and thus we reassess in this section427

the choice of the Bayesian network complexity parameter k.428

Figure 6a shows the pairwise correlation for different values of k. We stick to the CRF429

parameters selected in the previous section (100 trees and minimum leaf size 15). Note430

that an additional way to control the complexity is by limiting the number of parents431

that each node in the DAG can have, and thus we show, in Figure 6b, the same anal-432

ysis for different limitations on the number of parents. Since no significant difference is433

found in single-site performance by varying the Bayesian network complexity, we focus434

this section on the spatial (pairwise correlation) aspect.435

From Figure 6a, we decide to stick to the default penalization value corresponding to the436

BIC score: k = 4.64 ≈ log(N)/2, where N is the number of training instances in the437

complete dataset. Decreasing the penalization results in too dense DAGs that could po-438

tentially bias the final results and require the CRFs having insufficient information to439

estimate that many CPDs. It should be noted that using sparser DAGs, e.g. with k =440

25 (with 23 arcs for this example) may be an option in certain applications, such as when441

having computational constraints, as the difference in spatial performance is relatively442

small. We also conclude that the improvement when allowing 4 parents or more (no more443

than 4 parents are used for the default k) is marginal, and thus it does not compensate444

for the additional computational cost and overfit potential.445

Therefore we fully determine the specification of the BNICRF model for the final com-446

plete experiment: an ensemble of CRFs with 100 trees and minimum leaf size 15 each,447

informed by a BN learnt using tabu search with BIC score and 3 parents maximum.448

4.4 Complete Validation vs a multisite GLM449

So far, different variants of the BNICRF model have been compared with each other and450

with simple single-site downscaling procedures to illustrate the effects of the various im-451

plementation choices. In this section we present a tougher test, comparing the BNICRF452

performance with that of an existing multisite downscaling approach. This approach is453

based on multisite GLMs as implemented in the Rglimclim software package (Chandler,454

2020). Like the single-site GLMs considered above, Rglimclim handles precipitation us-455

ing logistic regression models for occurrence, but includes a variety of options for induc-456

ing inter-site dependence in the simulated time series of daily precipitation occurrence.457

–11–



manuscript submitted to Water Resources Research

This methodology has been chosen for comparison against a BNICRF because it has been458

shown to perform competitively by comparison with other multisite downscaling tech-459

niques (e.g. Frost et al., 2011; Ayar et al., 2016).460

Although the 5-fold cross-validation described in Section 2 was used to develop and train461

and test the Rglimclim models, a key difference between the two approaches is that a462

BNICRF is trained automatically whereas Rglimclim models must be developed man-463

ually, using diagnostics and expert judgement to identify an appropriate model struc-464

ture. Due to the element of judgement involved, it is hard to develop completely inde-465

pendent Rglimclim models for each fold. Acknowledging this feature of statistical down-466

scaling models in general, Maraun et al. (2015) suggested that a pragmatic approach to467

cross-validation for such models is to identify the model structure using the complete train-468

ing data set and then, conditional on this structure, to estimate the model parameters469

separately for each fold. Although this suggestion potentially saves time (it typically takes470

an experienced Rglimclim user two or three hours to develop a precipitation occurrence471

model for a multisite data set of the size considered here), we have carried out both the472

model identification and estimation separately for each fold to ensure that the Rglim-473

clim and BNICRF modelling results are as comparable as possible. To minimise the pos-474

sibility that the chosen Rglimclim model structure from one fold will influence the de-475

cisions made for subsequent folds, a structured model development protocol was followed476

throughout: this is described below.477

The manual nature of the Rglimclim model development also has implications for the478

number of predictors that can be considered. In particular, it is not feasible to consider479

all of the 68 atmospheric predictors listed in Table 2 (17 separate predictors at each of480

4 grid nodes) for each location. The predictor data were simplified for the Rglimclim mod-481

els therefore, by averaging each predictor over all of the 12 ERA-Interim grid nodes shown482

in Figure 1. This approach is standard in other applications of GLMs for downscaling.483

In the logistic regression models used in Rglimclim, the probabilities of rain at each lo-484

cation are linked explicitly to the values of multiple covariates representing the effects485

of seasonality, topography, temporal dependence and large-scale atmospheric structure.486

This contrasts with the BNICRF approach where the effects of, for example, seasonal-487

ity and topography are not represented explicitly but, instead, are reflected in the (au-488

tomatically) chosen predictor configurations. Denoting by πi the probability that for lo-489

cation i is wet on a particular day, and denoting the corresponding covariate values by490

xi1, . . . , x
i
p, the logistic regression model specifies491

log

(
πi

1− πi

)
= β0 + β1x

i
1 + . . . βpx

i
p .

The coefficient vector β = (β0 β1 . . . βp)
′

is estimated by maximising a log-likelihood492

defined as though all locations are conditionally independent given the covariates. Stan-493

dard errors and confidence intervals for the coefficients, together with hypothesis tests494

allowing the formal comparison of nested models, are adjusted for potential dependence495

between locations (Chandler et al., 2006; Chandler & Bate, 2007; Chandler, 2020). When496

simulating from the fitted models, several mechanisms are available for inducing real-497

istic levels of inter-site dependence: that used here is based on a correlated latent Gaus-498

sian field as introduced by Ambrosino et al. (2014), which is appropriate in situations499

where (as confirmed during the model development for each fold) there is a clear decay500

of inter-site dependence with distance.501

The protocol for model development was, first, to define a candidate set of covariates for502

each primary source of variation (seasonality, topography and so forth); then, for each503

fold, to consider each source of variation in turn and examine alternative representations504
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of its effects from among the candidates. For example, the candidates to represent sea-505

sonality were cos (2πkt/365.25) and sin (2πkt/365.25) for k = 1, 2, 3 where t denotes506

time in days; those representing temporal dependence were various functions of rainfall507

occurrence at all locations on each of the four days preceding the time point of interest;508

those representing topographic variation included a variety of measures such as altitude509

and aspect as in Ambrosino et al. (2014); and those representing large-scale atmospheric510

structure were a subset of the spatially averaged ERA-Interim predictors (several pre-511

dictors with highly significant time trends were excluded from consideration, because there512

were no significant time trends in the precipitation occurrences). Throughout, modelling513

decisions were based on a combination of hypothesis tests, diagnostic plots and moni-514

toring of standard errors as protection against overfitting Chandler (2020, Section 4) .515

The full process is documented in the notebook accompanying this paper (Rglimclim Multi-516

Site GLM - Model Development and Reproducibility of Results.ipynb, located in https://517

github.com/MNLR/BNICRF).518

Under this protocol, most modelling decisions were clear-cut and led to similar model519

structures across all folds. In the limited number of exceptions, the final decision was520

typically to adopt the more complex of the alternatives under consideration. The jus-521

tification is that the increased complexity typically involved one or two additional pa-522

rameters and, with more than 90 000 observations in total, the performance of a model523

is unlikely to be affected adversely overall by a handful of potentially redundant terms.524

The final models selected for each of the five folds have 65, 65, 71, 66 and 65 coefficients525

respectively.526

The results of the comparison between the BNICRF and Rglimclim are shown in Fig-527

ures 7 and 8. Figure 7 shows that the approaches have similar performance with respect528

to R01 and spatial correlation. The BNICRF performs slightly better than the Rglim-529

clim model on measures that describe predictive performance: thus it has a higher me-530

dian AUC (0.87, compared with around 0.81 for the Rglimclim model) and a lower Brier531

score. By contrast, Rglimclim outperforms the BNICRF capturing autocorrelation (Au-532

toCor), which translates in slightly better capturing the spell measures (WetSpellMean,533

DrySpellMean, WetLongestMean and DryLongestMean). Both models accurately repro-534

duce the proportion of wet days (thus the marginal Bernoulli probability distribution)535

and they also capture the inter-site dependence structure accurately as represented by536

pairwise correlations between locations (see Figure 8).537

Note that we have also carried out this same analysis separately for each season for the538

BNICRF, by dividing the simulations into the four boreal seasons and computing the539

measures in Table 3, excluding the spells for simplicity. We show the results in Figure540

S1 (supplementary information file). We observe that, even though the model has not541

been trained separately for each season, BNICRFs adequately represent seasonality, with542

no significant differences found in performance across seasons: the maximum difference543

is found between summer (JJA, red) and winter (DJF, cyan), with AUC falling from around544

0.89 in winter to around 0.84 in summer. This effect is also seen for the Brier score, and545

coincides with results found in Legasa et al. (2022), in which AP-RFs were shown to per-546

form worse in summer, probably due to the locations of interest having significantly less547

wet days in summer than in winter.548

These results may be summarised as: both BNICRFs and multisite Rglimclim GLMs549

perform well overall, but each outperforms the other slightly with respect to aspects that550

it is better suited to reproduce: for example, the better predictive performance of the551

BNICRF is probably due to its greater flexibility to represent nonlinear predictor-predictand552

relationships, whereas the representation of autocorrelation and spell lengths in the Rglim-553

clim model follows from the explicit inclusion of previous days’ rainfall occurrences in554

the model structure.555
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4.5 Spatio-temporal Bayesian Network-Informed Conditional Random For-556

est557

Up to this point, this work has been devoted to building a model capable of capturing558

the multisite dependence structure at the downscaled locations. With the BNICRF re-559

lying only on the large-scale predictors in Table 2 and no explicit term accounting for560

the temporal dependence structure, BNICRFs are unable to reproduce the autocorre-561

lation of the series and underestimate both the wet and dry day spell length, as can be562

seen in Figure 7.563

A straightforward way to fix this is to force BNICRFs to learn the relationship of each564

location with its past in the same way we learn the inter-site relationships. Let us de-565

note Y d
t and Y d

t−1 absence/presence of precipitation at location d on the present and pre-566

vious day, respectively, and ParentsBN,t(Y
d) the parents determined by the DAG in the567

present day. We propose the CRFs to predict Y d
t | ParentsBN,t(Y

d), Y d
t−1, which is roughly568

equivalent to adding 11 extra nodes (the 11 locations considered in the previous days)569

in the BN and forcing an arc in the direction Y d
t−1 → Y d

t . We call this model T-BNICRF.570

Figure 9 shows the results for T-BNICRF using the reference configuration (100 trees571

and minimum leaf size 15) in purple, put in context with the Rglimclim GLM and BNI-572

CRF of the previous section. With almost no loss of predictive performance (as measured573

by the AUC and the Brier Score) or spatial consistency (SPCor), a clear improvement574

can be seen in all measures dealing with temporal aspects: the underestimation of the575

lag-1 autocorrelations (Autocor) is now much lower, and the model is able to produce576

realistic spell lengths, both dry and wet (WetSpellMean, DrySpellMean, WetLongest-577

Mean and DryLongestMean). We conclude that the T-BNICRF model performs very578

well in all metrics and is able to keep predictive capability, leading to considerably bet-579

ter performance than the Rglimclim benchmark.580

5 Conclusions581

We introduced in this work Bayesian network-Informed Conditional Random Forests,582

a novel machine learning model capable of accurately downscaling precipitation occur-583

rence at several locations from large-scale predictors whilst preserving the multisite de-584

pendence structure. With no loss of predictive performance with respect to well-performing585

single-site downscaling models (two single-site random forests and a GLM), our BNICRFs586

provide a full and explicit description of the downscaled joint probability distribution587

of precipitation occurrence for each individual day. We use this description to provide588

spatially consistent downscaled precipitation occurrence fields at 11 locations in Germany,589

and thoroughly assess them using several diagnostic indices used in the COST action VALUE590

validation framework. We also put BNICRFs in context with other state-of-the-art single-591

site and multisite downscaling methodologies.592

The multisite model used as benchmark corresponds to a GLM implemented in the Rglim-593

clim software package, which has been shown to perform competitively with respect to594

other multisite downscaling techniques. With similar performance capturing the mul-595

tisite structure, we observe that BNICRF exhibits better predictive performance, prob-596

ably due to its greater flexibility to represent nonlinear relationships. This highlights how597

the BNICRF framework enables us to explore the relationship between precipitation and598

daily atmospheric predictors in a lot of detail. For example, it would not be feasible to599

build a Rglimclim GLM using the individual grid-cell values of all the predictors, so we600

just spatially-averaged them, sacrificing some information in the predictors. This is partly601

due to the difficulty in incorporating the individual predictors instead of their spatial av-602

erages, a limitation with respect to machine learning techniques of the Rglimclim sta-603
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tistical approach. Nevertheless, we consider that this work has highlighted the difference604

between the two approaches in a very helpful way, a comparison which has not been prop-605

erly attempted before in the downscaling literature.606

Given that it explicitly includes previous days’ rainfall occurrences in the model struc-607

ture, the Rglimclim multisite GLM slightly better captures autocorrelation and spell lengths.608

In this regard and, since the predictor fields chosen in this work alone do not carry enough609

information to capture the temporal structure of daily precipitation, in Section 4.5 we610

propose to include lagged precipitation values to reproduce the temporal dependence struc-611

ture with the BNICRF, leading to the T-BNICRF model. T-BNICRFs proved able to612

produce spatially and temporarily consistent simulations of precipitation occurrence fields,613

that account for autocorrelation and realistically simulate both wet and dry spells, even614

reproducing extreme spells, and performing better than the Rglimclim GLM used as bench-615

mark. Even though other predictor fields might potentially carry additional temporal616

information, the proposed T-BNICRF provides a straightforward way to capture the tem-617

poral dependence structure automatically.618

The introduction of the T-BNICRF also highlights how the methodology can incorpo-619

rate expert knowledge into the model easily: in this work we forced the model to include620

lagged information, but other relationships are certainly an option. In this respect, an-621

other alternative could be considering as nodes of the BN the set {Y 1
t , . . . , Y

D
t , Y 1

t−1, . . . , Y
D
t−1}622

and letting the structure learning algorithm to learn all the arcs. This could potentially623

help the proposed model to capture spatio-temporal aspects like e.g. day-1 lagged cor-624

relations (Legasa & Gutiérrez, 2020). A thorough study should be carried out to assess625

the added value and potential downsides of this approach.626

A clear advantage of the BNICRF methodology introduced in this paper is that there627

is no need to select predictors, since RFs are robust to increasing the number of predic-628

tors. This avoids the task of manually selecting the most adequate large-scale variables.629

This task, at present, relies on human expertise, is very time-consuming, and constitutes630

a substantial source of uncertainty for downscaling climate change projections (see e.g.631

Manzanas et al. (2020)). Also, our BNICRF selects the local predictor information, also632

avoiding the need to manually search the optimal geographical domain of interest (Gutiérrez633

et al., 2013).634

Another relevant advantage of BNICRFs is the fact that they do not impose the observed635

correlation structure over the downscaled series. In this sense, the BNICRF model only636

forces some relationships to be approximated by others, while still letting the model learn637

the strength of this relationships. This implies that the multisite structure can also change638

according to the predictors. In addition, this new approach does not require adding an639

additional penalization term in the cost or split function, nor any correction done on the640

final downscaled probabilities to force the observed correlations into the downscaled val-641

ues, like in (Cannon, 2008). All this implies that BNICRFs can potentially provide adapt-642

ability to the potential change in the multisite structure under climate change conditions.643

The suitability of the model to downscale climate change projections is something we644

are exploring on a follow-up article.645

In terms of computational complexity, BNICRFs are comparatively more time consum-646

ing than both single and multisite GLMs. For the reference configuration used in this647

work (100 trees and minimum leaf size 15), a BNICRF for 11 locations is trained in around648

30 minutes in an Intel® Core™ i7-8700 Processor. Note that half of the computing time649

is spent on building the informative Bayesian network using Tabu search, and that we650

can reduce the complexity of Tabu search if required by time-constraints by trading off651

some spatial performance.652
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Even though in this work we explicitly removed all missing records, note that algorithms653

exists for handling missing values, both for Bayesian networks and random forests. The654

characterization of the conditional probabilities also allow for the incorporation of ex-655

pert knowledge into the model (Koller & Friedman, 2009; Scutari, 2010), which could656

be explored in the future to handle missing values and imputation. Finally, a relevant657

open question in which we are currently working on is the extension of the approach to658

continuous and hybrid (semicontinuous) probability distributions. In a follow-up paper659

we plan to extend this to the full distribution of precipitation, i.e. to predict both wet/dry660

days and rainfall on wet days. There are several issues to consider here, since Bayesian661

networks have several limitations on the probability distribution that can be used on the662

nodes. The most straightforward way to extend the methodology is by performing a sen-663

sible discretization of the variables of interest for the informative BN. The extension of664

discrete Bayesian networks to continuous and semicontinuous distributions is still an ac-665

tive field of research. In particular, Gaussian Bayesian networks only allow for normally666

distributed nodes and are limited to linear relationships among them. There are exten-667

sions proposed in the literature, including non-parametric (Friedman & Nachman, 2000;668

Schwaighofer et al., 2007) and semi-parametric Bayesian networks (Atienza et al., 2021).669

An approach we are currently exploring is Copula Bayesian networks (Elidan, 2010), which670

provide a promising extension to discrete BNs to model continuous multivariate distri-671

butions via copulas utilizing the independence assumptions encoded by a DAG.672

For reprodicibility of the results, we have created a Github directory (https://github673

.com/MNLR/BNICRF), containing the functions and data required to build the BNICRF674

and Rglimclim models used in this work. The interested reader can find two Jupyter note-675

books, one for reproducing the results of the BNICRF model in Figures 1, 7 and 8 in this676

article (BNICRF: Worked Example and Reproducibility of Results.ipynb), and the other677

one explaining in detail the Rglimclim GLM model development process (Rglimclim Multi-678

Site GLM - Model Development and Reproducibility of Results.ipynb).679
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Figure 1. A directed acyclic graph (DAG) corresponding to a Bayesian network capturing the

relevant independence structure for precipitation occurrence at the 11 stations described in Table

1. The DAG was learnt using tabu search with maximum number of parents set to 3 and BIC

score (see Legasa and Gutiérrez (2020) for the details), and corresponds to the Bayesian network

used in this work for the 11 stations in Table 1 and the first fold of the cross-validation procedure

(check Section 2). Note that the codes for the stations correspond to an ancestral ordering. We

use these codes throughout all the article. ERA-Interim reanalysis grid cell centres (Dee et al.,

2011) are shown as blue crosses. The list of predictors is shown in Table 2. Orography data was

obtained from Yamazaki et al. (2017).
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Figure 2. Diagram illustrating the BNICRF methodology. Once a Bayesian network (left) has

been trained to capture the (in)dependence structure for the locations of interest Y (in this figure

for simplicity only 5 locations in Y are considered), a conditional random forest (CRF) is trained

for each location. These are trained to link the large scale predictors X to the target location

and its parents informed by the Bayesian network. Using the a posteriori approach described in

Legasa et al. (2022), each CRF predicts, for each X = x, the parameters of Y d | Parents(Y d),

ending up with a daily JPD for each Y | X = x.
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Figure 3. Cross-validated results for the measures AUC, R01 and SPCor (see Table 3) ob-

tained for different values of the minimum leaf size and number of trees parameters (axis x and

y, respectively). R01 and SPCor correspond to the averaged ratio between 250 simulated and

observed measures, whereas AUC is computed from the predicted probability values. We show

the average of the 11 stations for the AUC and R01 and 55 correlation ratios for SPCor. In all

cases, the RFs were built using joint entropy as split function and the same informative BN

configuration (with 3 parents maximum).
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Figure 4. Comparison of 3 multisite BNICRF models against 3 single-site models, using mea-

sures listed in Table 3, for the 11 stations listed in Table 1. For all multisite models we use the

same informative Bayesian network configuration. The BNICRF models correspond to the pro-

posed approach, using minimum leaf size 15 (red) and 50 (orange). We also include a BNICRF

using the AVG-RF approach for the CRFs (brown, check Legasa et al. (2022)). The single-site

models correspond to a random Forest using the AP-RF approach (cyan), a random forest using

the AVG-RF approach (aquamarine), and the GLM described in Legasa et al. (2022) (blue).
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Figure 5. Simulated pairwise correlation values for the proposed Reference BNICRF (red)

against a single-site GLM (blue, each Y p predicted independently), for the period and stations

shown in Table 1.
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Figure 6. Simulated pairwise correlation for different values of the parameter k (panel a) and

maximum allowed number of parents using the default k = log(N)/2 (panel b). In all cases the

CRFs have 100 trees and minimum leaf size 15. Topleft legend shows the number of arcs and the

log likelihood (divided by the number of days i.e. training instances) of the DAGs.
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Figure 7. Comparison of the proposed model (Reference BNICRF, using minimum leaf size

15 and 100 trees), and the Rglimclim GLM, using the measures listed in Table 3, for the set of 11

stations listed in Table 1.
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Figure 8. Comparison between the observed and simulated pairwise correlation values for the

proposed Reference BNICRF (red) and a multisite GLM (Blue) constructed using Rglimclim, for

the 11 stations in Table 1.
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Figure 9. As Figure 7, including a BNICRF that takes into account information from each lo-

cation in the previous day (purple), by training the CRFs to predict Y d
t | ParentsBN,t(Y

d), Y d
t−1,

with Y d
t−1 and Y d

t representing absence/presence of precipitation at location Y d on the previous

and present day, respectively. ParentsBN,t(Y
d) represents the parents of Y d in the DAG for the

present day.
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Code ID Alt Lon Lat Wet Days Location Name

1 4572 415m 10.17 49.39 32.2% ROTHENBURG OB DER TAUBER
2 4083 657m 11.84 49.98 40% FICHTELBERG OBERFRANKEN
3 4472 435m 10.51 48.83 30.4% REIMLINGEN
4 4004 365m 12.1 49.04 30.4% REGENSBURG
5 4007 921m 9.94 50.5 42% WASSERKUPPE
6 4617 937m 10.77 50.66 43.3% SCHMUCKE
7 488 1213m 12.96 50.43 42.7% FICHTELBERG
8 4954 418m 12.87 50.79 31.5% CHEMNITZ
9 52 515m 11.54 48.16 34.7% MUENCHEN
10 4079 472m 12.73 48.48 32.8% KR.ROTTAL-INN FALKENBERG
11 483 227m 13.76 51.13 30% DRESDEN-KLOTZSCHE

Table 1. List of the 11 stations used in this work, which have been previously used in (Legasa

& Gutiérrez, 2020). Note that the code given in this work (1st column) is different, and cor-

responds to an ancestral order given by the directed acyclic graph in Figure 1. We also show

the ECA&D identifier (ID), altitude in meters (Alt), longitude (Lon), latitude (Lat), Wet-day

Frequency (Wet Days) and the location name.

–32–



manuscript submitted to Water Resources Research

Description Height Level

Air pressure Sea level
Geopotential 500,700,850 mbar
Temperature 2-meter, 500,700,850 mbar

Eastward wind 500,700,850 mbar
Northward wind 500,700,850 mbar
Specific humidity 500,700,850 mbar

Table 2. ERA-Interim (Dee et al., 2011) large-scale reanalysis variables used in this work,

defined over the 2º regular grid shown in Figure 1 as blue crosses. As in Gutiérrez et al. (2019),

we use the 4 nearest gridboxes, and thus we have a total of 68 individual predictor variables for

each location. Note that these may overlap for some stations and that we use the corresponding 4

predictors for both the child and the parent locations (see Section 3.3), with repetitions removed.
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Code Measured On Description

AUC Prediction Area under the ROC Curve
R01 Simulations Number of wet days

AutoCor Simulations Lag-1 autocorrelation
SPCor Simulations Spatial pairwise correlation

WetSpellMean Simulations Mean duration of wet spells
DrySpellMean Simulations Mean duration of dry spells

WetLongestMean Simulations Mean of longest annual wet spells
DryLongestMean Simulations Mean of longest annual dry spells

BrierScore Prediction
∑ |p− o|2, for the predicted probabilities p and observed values o

Table 3. Validation metrics considered to assess the performance of the different SD methods

used in this work. Note that, except for the AUC and Brier Score, we use the predicted/observed

ratio for direct comparison among metrics. Excluding the Brier score, the closer to 1, the better.

As for the Brier score, the lower, the better. The second column indicates how metrics are com-

puted. Metrics measured on the prediction are computed over the downscaled probability values,

whereas measures marked on simulations are computed from a binary simulation drawn from

the downscaled prediction. In the later case, 250 simulations are drawn, for a stable mean of the

measure.
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So far, the methodologies presented in the previous chapters have been developed and

assessed in perfect conditions, that is, using reanalysis data. This last article, Legasa

et al. (2023a), aims to delve into the transferability and extrapolation issue, by applying

three representative SD methods in non-perfect conditions, that is, using the EC-Earth

predictors. In particular, we put to the test GLMs, APRFs and CNNs, explained in

Section 2.5. GLMs are chosen because they are a widely used methodology within the

climate community and builds a relatively conservative, closed-form and interpretable

link function f . APRFs displayed a good distributional performance in Section 4, and

can capture high-dimensional and complex non-linear predictor-predictand relationships.

Finally, CNNs are deep learning models, potentially capable of achieving more predictive

performance due to their convolutional layers capturing additional (spatial) information

from the large-scale predictors. All of them are used to downscale the parameters of the

Bernoulli-Gamma probability distribution of precipitation, which are subsequently used

to simulate multiple series.

For completeness, we first present a comparison of the three methods in perfect con-

ditions in order to provide a baseline of their respective performance. Then we move on

to downscale the historical scenario of EC-Earth. At this stage, we can no longer provide

a predictive performance assessment, due to the lack of temporal correspondence of GCM

simulations with observed records, yet we can look at distributional indicators, which allow

us to check the added bias (or lack of thereof, ideally) when transferring the link function

f , learnt with reanalysis, to GCM predictors.

Finally, we apply the three SD methods to downscale the RCP8.5 scenario from EC-

Earth to obtain the corresponding climate change signals. This time we can neither

provide a predictive performance assessment nor address the consistency of distributional

indicators. Nevertheless, and despite the presence of systematic biases (see Figure 1.1), the

future changes in precipitation projected by EC-Earth are physically based and constitute

a significant reference. Therefore, we compare the future changes projected by each of the

three SD methods at a given location with those given by the raw outputs from EC-Earth

at the closest gridbox. The idea is that, unless justified by process-understanding, large

deviations from the climate change signal produced by EC-Earth might warn about a

deficient extrapolation capability for the SD methods.



1. Introduction
Global climate models (GCMs) are the main tool used nowadays to simulate the evolution of the climate system at 
a global scale. Still, when compared to ground-truth observations, they present systematic errors and their spatial 
resolution—typically around hundreds of kilometers—remains insufficient for most practical applications (see 
e.g., Doblas-Reyes et al., 2013 and references therein). Besides dynamical downscaling (Giorgi & Mearns, 1999; 
Laprise et al., 2008; Vaittinada Ayar et al., 2016), statistical downscaling (SD, von Storch et al., 1993) methods 
aim to alleviate this limitation by statistically linking a set of key large-scale predictors, like geopotential or 
winds, to the local surface predictand of interest, like precipitation or temperature. Under the perfect prognosis 
(PP) approach (Bürger & Chen, 2005; Charles et al., 1999; Gutiérrez et al., 2013; Haylock et al., 2006), these 
empirical/statistical relationships are learned from observed data (some reanalysis is used for the predictors) over 
a recent historical reference period. Afterward, they are applied to downscale future GCM large-scale predictors, 
producing projections for the local variable of interest corresponding to the future climate.

Abstract Under the perfect prognosis approach, statistical downscaling methods learn the relationships 
between large-scale variables from reanalysis and local observational records. These relationships are 
subsequently applied to downscale future global climate model (GCM) simulations in order to obtain 
projections for the local region and variables of interest. However, the capability of such methods to produce 
future climate change signals consistent with those from the GCM, often referred to as transferability, is an 
important issue that remains to be carefully analyzed. Using the EC-Earth GCM and focusing on precipitation, 
we assess the transferability of generalized linear models, convolutional neural networks and a posteriori 
random forests (APRFs). We conclude that APRFs present the best overall performance for the historical 
period, and future local climate change signals consistent with those projected by EC-Earth. Moreover, we 
show how a slight modification of APRFs can greatly improve the temporal consistency of the downscaled 
series.

Plain Language Summary Even though they are the main tool to study climate change, global 
climate models (GCMs) still have a limited spatial resolution (around a hundred kilometers) and exhibit 
considerable biases with respect to the observed climate. Statistical downscaling aims to solve this issue by 
learning statistical relationships between large-scale variables, well reproduced by GCMs (e.g., synoptic 
winds or specific humidity), and local observations of the target surface variable (e.g., precipitation). These 
relationships are learned over a historical period, and thus a relevant question is whether they can be transferred 
to the future GCM simulations, that is, whether climate changes produced by GCMs (e.g., changes in mean 
rainfall) are broadly preserved by the downscaling methods. The rationale behind this is that, even though GCM 
simulations are biased, GCMs resolve the physical processes responsible for the evolution of the climate system 
and these changes are thus physically driven. Using the EC-Earth GCM, we assess the transferability of three 
statistical downscaling methods (generalized linear models, convolutional neural networks and a posteriori 
random forests (APRFs)) for precipitation downscaling over Europe. We intercompare them using several 
diagnostic metrics, concluding that APRFs produce reliable projections, with future climate changes consistent 
with those projected by EC-Earth.
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Several statistical and machine learning techniques, including analogs (Lorenz, 1969; Zorita & von Storch, 1999), 
weather generators (Wilby et al., 2002), support vector machines (SVMs) and neural networks (Hastie et al., 2009) 
have been recently applied to the statistical downscaling of climate change scenarios of different meteorological 
variables projected by GCMs (Amblar-Francés et al., 2020; Araya-Osses et al., 2020; Baghanam et al., 2020; 
Fan et al., 2021; Pour et al., 2018; Siabi et al., 2021). Wootten et al. (2020) and Hernanz et al. (2022) performed 
a comprehensive evaluation of different machine learning alternatives, the latter concluding that the choice of 
technique can affect the downscaled results up to the point of producing climate change signals of reverse sign for 
precipitation. Moreover, even for the same SD technique, Manzanas, Fiwa, et al. (2020) showed that the choice of 
predictor variables considered can also lead to dramatically different precipitation projections.

In this context, Legasa et al. (2022) recently introduced a posteriori random forests (APRFs). APRFs are a modi-
fication of the random forest (RF) machine learning technique (Breiman, 2001) similar to quantile random forests 
(Meinshausen, 2006) able to model the whole parametric probability distribution of the target variable. On top 
of their interpretability and their skill capturing non-linear predictor-predictand relationships, RFs automatically 
perform feature/predictor selection, thus avoiding the complex, time-consuming and often human-guided task 
of pre-defining an informative set of predictors. Nevertheless, Legasa et al. (2022) tested APRFs using reanaly-
sis  predictors, thoroughly assessing the calibration/training stage, and thus a relevant next question is whether this 
technique is also suitable for SD of climate change scenarios, that is, using GCM predictors. This issue is often 
referred to as transferability (Dayon et al., 2015; Hernanz et al., 2022). The present article assesses this topic for 
precipitation, a variable notably difficult to model (see, e.g., Gutiérrez et al., 2019; Legasa et al., 2022) due to its 
semi-continuous nature (a continuous probability distribution for wet days with positive mass at 0 accounting for 
dry days) and the limited predictive capability of the large-scale predictors (see Gutiérrez et al., 2019; Themeßl 
et al., 2011; Vaittinada Ayar et al., 2016 and the references in the next paragraphs).

When producing local future scenarios, it is essential that climate change signals projected by the GCM over the 
future scenario with respect to the reference historical period (e.g., change in the number of wet days or mean 
rainfall) are preserved by the statistical downscaling procedure. The rationale behind this is that, even though 
GCM simulations are biased (Vrac & Friederichs, 2015), GCMs resolve the physical processes that are responsi-
ble for the evolution of the climate system and these changes are thus physically driven.

Nevertheless, there is a notable lack of studies focusing on this transferability issue (Baño-Medina et al., 2021; 
Dayon et al., 2015; Manzanas, Fiwa, et al., 2020). This is particularly the case for RFs, whose most common 
recent use in literature has been to build a multi-model ensemble of precipitation projections for different repre-
sentative concentration pathways (RCPs, van Vuuren et al., 2011), as in Ahmed et al. (2020), Homsi et al. (2020), 
and Sa'adi et al.  (2020). RFs were recently compared against other machine learning methodologies in Pham 
et al. (2019) and Xu et al. (2020). Pham et al. (2019) compared linear discriminant analysis, SVMs and RFs, 
concluding that RFs outperformed the other methods when used to downscale rainfall discretized in 3 states 
(dry, non extreme rainfall, extreme rainfall). Xu et al. (2020), instead, assessed three methods (RFs, SVMs, and a 
deep learning architecture) for downscaling future precipitation under two RCPs, concluding that SVMs were the 
preferred option. Nevertheless, these two studies used traditional RFs instead of APRFs, which allow us to model 
the whole distribution of precipitation.

The present article aims to fill this gap of knowledge by assessing the suitability of APRFs to produce local 
climate change scenarios of precipitation over Europe, using 83 meteorological stations and the RCP8.5 scenario 
from EC-Earth. Moreover, APRFs are put in context with two other relevant machine learning methodologies: 
the well-established general linear models (GLMs, Chandler, 2005) and the widely used convolutional neural 
networks (CNNs, Lecun et al., 1998).

The remainder of this article is structured as follows. In Section 2, we describe the data sets, SD methods and 
diagnostic metrics we work with. In Section 3, we analyze the results obtained. Lastly, Section 4 summarizes the 
conclusions drawn from this study.

2. Experimental Framework and Methods
2.1. Data

In this article we follow the experimental framework proposed in the Experiment 2a of the European COST 
(Cooperation in Science and Technology) action VALUE (Maraun et al., 2015), designed to assess the suitability 
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of different SD methods to produce local climate change scenarios. We perform downscaling of daily precip-
itation at the 83 representative locations used in Legasa et  al.  (2022), which are distributed across Europe 
(12° West–32° East, 36° North–72° North, see Figure S1 in Supporting Information S1). We build on the PP 
approach, that is, the three SD techniques considered are trained with ERA-Interim reanalysis (Dee et al., 2011) 
as large-scale predictors and observed precipitation from ECA&D (European Climate Assessment & Dataset 
project, Klein Tank et al., 2002) as local-scale predictand. All the methods are trained over the period 1979–2008, 
and are subsequently applied to downscale precipitation from the EC-Earth GCM, both for the historical and 
future scenarios.

EC-Earth (Döscher et  al.,  2022; Hazeleger et  al.,  2010), a member of the Coupled Model Intercomparison 
Project Phase 5 (see IPCC, 2014), was chosen for the VALUE Experiment 2a due to its consistency reproducing 
key large-scale processes affecting the European climate (Lee, 2015). Here, we use both the historical scenario 
for 1979–2008 (the same period considered to train the three SD methods) and the RCP8.5 (Riahi et al., 2011) 
for 2071–2100 to analyze the future climate change signals. In all cases, the run r12i1p1 is considered. The 
predictors used in this work for both ERA-Interim and EC-Earth are temperature, geopotential, northward 
wind, eastward wind and specific humidity at 1,000, 850, 700, 500 hPa levels. This selection includes circu-
lation variables, which are less affected by orography and model resolution, together with thermodynamic 
ones, which are linked to changes in the radiation budget and need to be considered in climate change studies 
(Huth, 2004).

To avoid the misrepresentation of the annual cycle in the GCM, we corrected the EC-Earth daily predictors, 
according to ERA-Interim, as follows,

�̂�𝑋GCM = 𝑋𝑋GCM − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
(
𝑋𝑋

month

HISTORICAL

)
+ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(
𝑋𝑋

month

REANALYSIS

)
, 

for the monthly means 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋month) . Note that this simple transformation, applied to both the historical and 
RCP8.5 predictors, brings the first-order moment of the reanalysis and the GCM into agreement, thereby 
providing a better approximation for the perfect prognosis assumption of relying on predictors well repre-
sented by the GCM (Gutiérrez et al., 2019; Manzanas, Fiwa, et al., 2020). EC-Earth was re-gridded from 
its native spatial resolution (1.12°) to the ERA-Interim's grid considered in VALUE (2°) using bilinear 
interpolation.

We consider the predictand, precipitation, to follow a Bernoulli-Gamma distribution (Cannon,  2008) param-
eterized by 𝐴𝐴 𝐴𝐴 (the probability of having a wet day, >1 mm) and 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 (the shape and rate parameters of the 
Gamma distribution of precipitation amounts on wet days, respectively). The probability density function of the 
Bernoulli-Gamma distribution, for precipitation 𝐴𝐴 𝐴𝐴 (in mm), is defined as

𝑓𝑓 (𝑦𝑦) =

⎧
⎪
⎨
⎪
⎩

𝑝𝑝𝑝𝑝𝛼𝛼𝑦𝑦𝛼𝛼−1𝑒𝑒−𝑝𝑝𝑦𝑦

Γ(𝛼𝛼)
𝑦𝑦 𝑦 1

1 − 𝑝𝑝 1 𝑦= 𝑦𝑦 𝑦= 0

 (1)

where 𝐴𝐴 Γ(𝛼𝛼) = ∫
∞

0
𝑧𝑧𝛼𝛼−1𝑒𝑒−𝑧𝑧𝑑𝑑𝑧𝑧 is the Gamma function. The three SD methods used in this work estimate the three 

parameters of this distribution for each day, whose expected value is 𝐴𝐴 𝐴𝐴 ⋅
𝛼𝛼

𝛽𝛽
 .

2.2. Statistical Downscaling Methods

APRFs were introduced and thoroughly assessed in Legasa et al.  (2022) for downscaling precipitation inten-
sity under the PP paradigm. APRFs are a modification of traditional random forests that allows for accurately 
predicting the parametric distribution of any potential variable of interest. In this work we extend the method-
ology presented in the aforementioned reference, which was originally focused on the Gamma distribution, to 
model the Bernoulli-Gamma distribution described in the previous section. For this purpose, we update the split 
function used in Legasa et al. (2022), which is tasked with splitting the predictors' space to provide predictive 
samples of precipitation, to account for the mixed nature of the Bernoulli-Gamma distribution by considering a 
mixture of the Gamma deviance and the binary cross-entropy. Specifically, we define the split function to be, for 
a set  of  predictive precipitation observations 𝐴𝐴 {𝑦𝑦𝑖𝑖} falling on a leaf,
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Bernoulli Entropy

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−𝑝𝑝log 𝑝𝑝 −
(
1 − 𝑝𝑝

)
log

(
1 − 𝑝𝑝

)
+

Gamma Deviance

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

2
∑

𝑦𝑦
+
𝑖𝑖
∈{𝑦𝑦𝑖𝑖}

(
−log

(
𝑦𝑦+
𝑖𝑖

𝑦𝑦
+

)
+

𝑦𝑦+
𝑖𝑖
− 𝑦𝑦

+

𝑦𝑦
+

)
,

 

where 𝐴𝐴 𝑝𝑝 is the proportion of wet days in 𝐴𝐴 {𝑦𝑦𝑖𝑖} , 𝐴𝐴 𝐴𝐴+
𝑖𝑖
 is the intensity/rainfall on wet days, and 𝐴𝐴 𝑦𝑦

+ the mean precipitation 
intensity for the wet days. This allows us to estimate, using the a posteriori approach, the three parameters of the 
Bernoulli-Gamma distribution. Using a cross-validation scheme (not shown for brevity), we selected the optimal 
configuration of the random forest, corresponding to 200 trees and at least 5 observations in each terminal leaf. 
The interested reader is referred to Legasa et al. (2022) for further details on the APRF methodology. For each 
target location, all the gridpoints in the PRUDENCE zone it falls within (see Figure S1 in Supporting Informa-
tion S1) are used as predictors.

Besides APRFs, two other methodologies which have been used for SD of precipitation in previous studies 
have been considered in this article. The first one corresponds to the widely used GLMs (see e.g., Chandler and 
Wheater, 2002), a generalization of traditional linear models which allow for modeling non-normally distrib-
uted variables. As done in many previous works (e.g., Abaurrea & Asín, 2005; Manzanas, Fiwa, et al., 2020; 
Manzanas, Gutiérrez, et al., 2020; Manzanas et al., 2015; Nikulin et al., 2018; San-Martín et al., 2017) we build 
two independent GLMs: one for modeling precipitation occurrence (𝐴𝐴 𝐴𝐴 ) using the logit link and another one for 
modeling intensity (𝐴𝐴 𝛼𝛼∕𝛽𝛽 ) using the logarithm link. Note that the latter GLM assumes 𝐴𝐴 𝐴𝐴 to be constant conditional 
on the predictors' state and is thus estimated from the residuals (see Chandler, 2005). For each target location, 
both occurrence and intensity GLMs use as predictors the principal components explaining 95% of the variance 
over the PRUDENCE region it falls within (shown in Figure S1 of the Supporting Information S1). This config-
uration corresponds exactly to the GLM method used in Gutiérrez et al. (2019) (row 39 in Table 3).

The second one corresponds to a deep learning technique known as convolutional neural network (CNN, 
Lecun et al., 1998). This methodology was applied to downscale precipitation over E-OBS land-gridpoints in 
Baño-Medina et al. (2021) in Europe, with the same predictors used in this work. Therefore, we use in the present 
article the same configuration: the input layer is convolutionally and sequentially connected to 3 hidden layers 
with 50, 25, and 1 feature maps, with a standard kernel size (3 × 3) in each convolutional layer. We train the CNNs 
with Adam optimizer (adaptive moment estimation, Kingma & Ba, 2015), using early stopping with 10% of the 
data set as validation set. The net is fully connected to the output layer, and, as the APRFs, provides 𝐴𝐴 𝐴𝐴, 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴 for 
each day by using the same loss function as in Cannon (2008). The interested reader is referred to Baño-Medina 
et al. (2020) and Baño-Medina et al. (2021) for further details of this methodology. We use for CNNs the entire 
geographical domain covering the 83 locations (12° West–32° East, 36° North–72° North) as predictors.

Although we do not show it for the sake of brevity, note that for each of the downscaling methods used in this 
work we have undertaken a thorough search of the optimal configuration. In addition, we also rely on the conclu-
sions drawn in Baño-Medina et al. (2020) and Legasa et al. (2022), which conducted a comprehensive assessment 
of the suitability of different settings for CNNs and APRFs for statistical downscaling, respectively. Therefore, 
the present study provides a representative overview of the merits and demerits of the different techniques consid-
ered for our target task.

Finally, note that both CNNs and GLMs require standardization of the predictors, a usual practice in machine 
learning that avoids issues with the numerical convergence of the algorithms (Hastie et al., 2009). Here, each 
predictor variable was transformed to have standard deviation 1 and mean 0 by substracting its mean and dividing 
by its standard deviation at the gridbox level. APRFs do not require this transformation, since the scale of the 
different predictor variables does not influence the splitting process. In addition, while both APRFs and GLMs 
build a separate statistical model for each location, CNNs downscale all locations simultaneously with a single 
model. Using a CNN for each location yielded no significant difference.

2.3. Diagnostic Metrics

To measure the predictive performance, in Section 3.1, we use the area under the ROC (receiver operating char-
acteristic) curve (AUC, Kharin & Zwiers, 2003); and the Spearman correlation (COR) between the observed and 
predicted time-series. Note that they are computed for the predicted expected values: for the AUC using 𝐴𝐴 𝐴𝐴 , and 
for the correlation using 𝐴𝐴 𝐴𝐴 ⋅

𝛼𝛼

𝛽𝛽
 .
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In addition, a set of diagnostic indicators from the VALUE validation framework has been selected to compre-
hensively assess the distributional performance of the three SD methods considered. R01, SDII, and P98 
address the marginal precipitation distribution: R01 measures the proportion of wet (>1 mm/day) days, SDII 
the mean rainfall on wet days and P98 the 98th percentile of rainfall on wet days, accounting for the tail of the 
distribution. The remaining indicators focus on temporal aspects. In particular, DW and WW measure the  tran-
sition probability from wet to dry and from wet to wet days, respectively. DrySpellMean and WetSpellMean, 
which are only shown in Section 3.4, measure the mean duration of dry and wet spells (≥2 days), respectively. 
All the indicators are computed from 500 simulations drawn from the downscaled probability distributions. 
For each particular indicator, these simulations give place to 500 values which are subsequently averaged.

In the next sections, for each indicator we compute (averaged from 500 simulations), when comparing against the 
reference observed value, we show the relative bias in percentage, computed as 100 × (downscaled − observed)/
observed. To assess the climate change signals produced in each diagnostic indicator, we show the relative change 
in percentage, that is, computed as 100 × (future − historical)/historical.

Note that the standard deviation and the correlation on consecutive wet days were also computed. We found that 
the standard deviation follows a very similar pattern to P98 in all aspects assessed in this work, and thus we do 
not show it here for brevity. The correlation for consecutive wet days is very low (maximum observed correlation 
is 0.32 and median 0.10), and thus we do not assess it in this work.

3. Results
The assessment of the transferability of the three SD methods presented in this work is performed in three steps. 
First, following a 5-fold cross-validation scheme (Hastie et al., 2009) and using only reanalysis predictors (both 
for training and predicting, i.e., in perfect conditions), we assess the performance of the three methodologies using 
the AUC, COR, and the marginal distribution indicators described in the previous section (Section 3.1). Second, 
we apply the SD methodologies, trained using reanalysis for the whole reference historical period, to downscale 
the historical scenario of the EC-Earth. At this point we aim for the SD methods to provide simulations that relia-
bly reproduce the local observed indicators (Section 3.2). Last, we downscale the RCP8.5 scenario, assessing the 
consistency between the climate change signals provided by the raw EC-Earth outputs and those downscaled by 
our three SD methods (Section 3.3). Therefore, in Sections 3.2 and 3.3 the conditions are non-perfect, since we 
apply the relationships learned from reanalysis to the GCM predictors. Section 3.4 is devoted to a small modifi-
cation of APRFs that leads to better performance in reproducing all the temporal indicators.

3.1. Cross-Validation in Perfect Conditions

The same 5-fold cross-validation scheme designed in the Experiment 1a of VALUE and applied in Legasa 
et al. (2022) was considered to assess the performance of the three SD methods in perfect conditions, that is, using 
ERA-Interim data both for the calibration and the prediction phase. We split the calibration period, 1979–2008, 
into 5 sets of 6 consecutive years. To predict precipitation for each 6-year period, each statistical model is trained 
with the remaining 24 years. This way, we assess the performance of the SD methods considered in this work 
when applied on unseen data. The results are shown in Figure 1, which leads to several conclusions.

In terms of predictive performance, measured by the AUC and COR, GLMs fall behind CNNs and APRFs. 
This difference is not evenly distributed across all locations, with some of them exhibiting significantly poorer 
performance than others. In particular, the geographical location with worst performance for the GLM (Karasjok, 
Norway, ECAD ID: 190) has an AUC/COR of 0.74/0.46. APRFs and CNNs significantly outperform GLMs at 
this location, with an AUC/COR of 0.82/0.51 and 0.81/0.54, respectively. Still, the difference in average predic-
tive power (across all locations) is small: the mean AUC/COR equals 0.886/0.662 for the CNN, 0.886/0.657 
for  the APRFs and 0.861/0.63 for the GLMs. The differences found between the GLMs and the other two SD 
methods suggest that capturing non-linear predictor-predictand relationships is particularly relevant at some loca-
tions. Moreover, the fact that CNNs and APRFs perform similarly suggests that the convolutional layers over the 
entire geographical domain do not provide any significant added value.

In terms of distributional performance, the three methodologies reproduce the frequency of wet days reliably, as 
measured by the R01. Regarding the mean rainfall (SDII), CNNs exhibit some biases, whereas GLMs and APRFs 
do reproduce it realistically. Indeed, for this measure, the worst bias is −2.67% (−6.58%) for the APRFs (GLMs), 
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Figure 1. Cross-validated results obtained for the different statistical downscaling methods (in columns) in perfect 
conditions, in terms of some of the diagnostic metrics described in Section 2.3 (in rows). For AUC and COR, the average 
performance over the 83 stations is shown in the colorbar for each statistical downscaling method.
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ranging in between −1.63% and 3.65% for the rest of stations. For the CNNs, 8 locations exhibit a bias in SDII 
between 5% and 10% and another 8 between −5% and −10%.

All three SD methods suffer from some biases in reproducing the 98th percentile of rainfall, but APRFs perform 
slightly better than both CNNs and GLMs. On average across the different locations considered, the absolute 
value of the relative bias (so that negative and positive biases do not compensate) for this indicator is 8.73% for 
GLMs, 5.94% for CNNs and 3.78% for APRFs. Therefore, taking into account R01, SDII, and P98, we conclude 
that APRFs provide the best results in terms of distributional performance.

Figure 2. Relative bias with respect to the observations obtained using the different statistical downscaling methods (in 
columns), computed as 100 × (Downscaled − Observed)/Observed, for the different distributional indicators specified in 
Section 2.3 (in rows). The methods are trained with reanalysis and applied to downscale the EC-Earth historical scenario.
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3.2. Downscaling in Non-Perfect Conditions: EC-Earth Historical Scenario

We assess in this section the three SD methods in non-perfect conditions. This means that they are trained 
with reanalysis predictors (for the period 1979–2008) and are subsequently applied to downscale the historical 
scenario of the EC-Earth for the same period (1979–2008). Ideally, we want them to provide simulations that 
reliably reproduce the observed statistics at the different locations, correcting the bias exhibited by the EC-Earth 
at the nearest gridpoint (shown in Figure S2 of the Supporting Information S1). The results obtained are shown 
in Figure 2.

As opposed to the considerably good performance shown in perfect conditions (Section 3.1), the three SD meth-
ods exhibit more bias when applied to the EC-Earth predictors. Although relatively weak for R01, the effect is 
particularly noticeable for SDII, which reaches more than 25% relative bias for the CNN at some locations, with 
APRFs and GLMs leading to better, similar results. Moreover, APRFs also perform better than GLMs and CNNs 
at capturing the P98, which is generally overestimated by the GLMs and underestimated by the CNNs. The tran-
sitions (WW and DW) are not well reproduced by any of the three SD methods. On average across the different 
locations considered, GLMs, CNNs, and APRFs underestimate WW by −11%, −8.2%, and −10.2% and overes-
timate DW by 9.7%, 8.3%, and 12.9%, respectively. This is the reason motivating the introduction of TAPRFs, a 
small modification to APRFs which improves this aspect, described in Section 3.4.

3.3. Downscaling EC-Earth RCP8.5 Scenario

In this section we address the climate change signals produced by each SD method when downscaling the histor-
ical and future (RCP8.5) EC-Earth scenarios. To do so, we compare the local downscaled relative signals against 
those produced by the raw EC-Earth outputs at the nearest gridpoint, thus assessing whether the changes produced 
by the different methodologies are consistent both with EC-Earth and among them. Figure 3 shows the EC-Earth 
projected changes for 2071–2100 under the RCP8.5 emissions scenario for Europe, along with the comparison of 
the projected/downscaled changes for the different indicators and SD methods used in this work.

Overall, the three SD methods considered yield local climate change signals which are broadly compatible with 
those given by the raw outputs from EC-Earth. However, GLMs and CNNs tend to deviate more from the changes 
projected by EC-Earth than APRFs. This effect is particularly evident for GLMs and the P98 indicator, with a 
clear amplification of the changes expected. Quantitatively, the average difference (across all locations and meas-
ured as the absolute value of the relative changes to avoid negative and positive values compensating) between 
the EC-Earth's raw climate change signal and the signal downscaled by GLMs/CNNs/APRFs is 6.52/4.79/3.54 
for the R01; 7/4.93/4.49 for the SDII and 10.1/7.8/7.73 for the P98. For the transitions, these differences are 
11.66/10.47/6.38 in WW and 4.39/4.7/5.98 in DW.

A potential explanation for these results might be related to how the different SD methodologies extrapolate 
values outside the historical domain: GLMs extrapolate exponentially due to the logarithm link, and CNNs 
response is highly non-linear, by construction. APRFs, instead, estimate distributions from predictive historical 
records, thus leading to more constrained climate change signals.

3.4. Temporal A Posteriori Random Forests

Figure 2 shows that none of the downscaling methodologies is able to accurately reproduce the observed tran-
sitions, neither WW nor DW. Although we do not show it for brevity, this occurs not only when downscaling 
the historical scenario of EC-Earth, but also in perfect conditions. A straightforward way to overcome this limi-
tation is by introducing a small variation to APRFs: instead of estimating the probability 𝐴𝐴 𝐴𝐴 of a wet day, the 
already-trained APRF can be used to produce downscaled estimates of the probability of precipitation for each 
day conditional on the state of the previous day. That is, instead of estimating the probability of precipitation 
over 1 mm, 𝐴𝐴 𝐴𝐴 , we now estimate 𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷  and 𝐴𝐴 𝐴𝐴𝑊𝑊𝑊𝑊  , with 𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷   = Probability(precipitation(t) > 1 mm | precipita-
tion(t − 1) ≤ 1 mm) and 𝐴𝐴 𝐴𝐴𝑊𝑊𝑊𝑊   = Probability(precipitation(t) > 1 mm | precipitation(t − 1) > 1 mm), where precip-
itation(t) and precipitation(t − 1) indicate precipitation on day t and t − 1, respectively. We can then simulate 
precipitation on day t by taking into account if day t − 1 was wet or dry. We call this method temporal a posteriori 
random forest (TAPRF).

Results for the TAPRFs, compared against the APRFs, are shown in Figure 4. Note that only the temporal metrics 
in Section 2.3 are shown, since both APRFs and TAPRFs perform similarly for the rest of diagnostic metrics. 
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Figure 3. The left column shows the climate change signals projected by the EC-Earth for the period 2071–2100 under the 
RCP8.5 scenario, expressed as relative changes (%) across the entire Europe. The right column shows the climate change 
signals produced by each downscaling methodology (y-axis) compared against the changes produced by the EC-Earth at 
the nearest gridpoint (x-axis). These signals are computed in percentage as 100 × (Future − Historical)/Historical, for the 
indicators specified in Section 2.3.
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Although the two configurations lead to similar climate change signals (right column), it can be clearly seen 
that the TAPRFs provide much better results than APRFs in terms of bias for all the temporal indicators (left 
and middle columns): the average (across locations) absolute value of the relative bias is reduced from 10.3%, 
12.9%, 3.1%, and 7.6% for the APRF to 3.8%, 4.7%, 2.7%, and 3.7% for the TAPRF, for the indicators WW, DW, 
WetSpellMean and DrySpellMean, respectively.

This suggests that TAPRFs are preferable over APRFs for the generation of local climate change scenarios, since 
they are expected to provide more reliable projections in terms of temporal structure, which is relevant in impact 
sectors such as hydrology and agriculture.

4. Conclusions
This work presents a comprehensive assessment of the suitability of three perfect prognosis methods 
(GLMs, CNNs, and APRFs) for statistical downscaling of climate change precipitation scenarios at 83 locations 

Figure 4. For the temporal metrics described in Section 2.3, relative bias with respect to the observations for the historical 
scenario, for the APRFs (first column) and TAPRFs (second column). The rightmost column shows, with different symbols 
(see the legend) the climate change signals produced by APRFs and TAPRFs (y-axis) compared against the signals produced 
by EC-Earth at the closest gridpoint (x-axis) for the 2071–2100 period under the RCP85 scenario.
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distributed across Europe. Under the PP assumption, we focus on the transferability issue, that is, on whether the 
relationships learned using reanalysis predictors and observed records can be transferred to downscale climate 
change scenarios projected by GCMs.

Both APRFs and CNNs provide better predictive performance, as measured by the higher correlation with the 
observed series and AUC in perfect conditions, suggesting that capturing non-linear predictor-predictand rela-
tionships is relevant for some geographical locations. In addition, these two SD methods automatically extract 
the relevant information contained in the predictor fields, avoiding the need to conduct an exhaustive predictor/
geographical domain screening, a complex, time-consuming task that has to be typically undertaken in many 
widely used statistical downscaling techniques and, in particular, in GLMs (Manzanas, Fiwa, et al., 2020).

In general, the three machine learning methodologies tested lead to local climate change signals which are 
broadly compatible with those given by the raw outputs from EC-Earth. Nevertheless, GLMs and CNNs tend to 
deviate more from the changes projected by EC-Earth at some locations than APRFs, sometimes considerably 
amplifying the changes. APRFs, instead, yield more stable results, which are in better agreement with those 
projected by EC-Earth, while also performing slightly better than CNNs and GLMs in terms of bias when down-
scaling the historical scenario of the EC-Earth. Moreover, a slight modification of ARPFs that explicitly models 
the transition probabilities from dry/wet to wet days, which we call TAPRF, greatly improves the performance in 
all  the temporal indicators, giving higher confidence about the plausibility of the local scenarios obtained with 
this technique. This modification also illustrates the extensibility of the technique, which we plan to apply to other 
and more complex distributions, including to perform multivariable downscaling, for example, to simultaneously 
produce consistent scenarios of precipitation and temperature; and to other GCMs and regions.

Taking into account that the main limitation of any machine learning method is its limited capability to extrap-
olate outside the predictor values' range, the results presented in this article are promising. Nevertheless, even 
though the climate change signals are overall consistent with those projected by the EC-Earth, a machine learning 
methodology with a properly controlled extrapolation mechanism of the climate change signals is still lacking and 
is an important research perspective.

Data Availability Statement
All the data used in this work (ECA&D observed rainfall, ERA-Interim and EC-Earth predictors), are publicly 
available and can be downloaded from http://www.value-cost.eu/data. The R (R Core Team,  2020) packages 
downscaleR (Bedia et  al.  (2020), https://github.com/SantanderMetGroup/downscaleR), downscaleR.keras 
(Baño-Medina et al. (2021), https://github.com/SantanderMetGroup/downscaleR.keras) and RandomForestDist 
(Legasa et al. (2022), https://github.com/MNLR/RandomForestDist) were used, respectively, to train the general-
ized linear models, convolutional neural networks and a posteriori random forests used in this work.
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7
Additional Contributions

We briefly describe in this chapter some additional contributions stemming from and

during the realization of this thesis which have not been gathered in the main body. This

includes two more scientific articles, Bedia et al. (2020) and Legasa et al. (2020b), published

in the journals Geoscientific Model Development and Geophysical Research Letters (both

Q1 in JCR), respectively:

• Bedia et al. (2020) describes an R package for statistical downscaling. A brief sum-

mary of the article is given in Section 7.1.

• Legasa et al. (2020b) focuses on overlapping domains in the context of dynamical

downscaling. A brief summary of the article is given in Section 7.2.

Furthermore, contributions in conferences, the software used during the realization of

this thesis, as well as the code and packages developed for the reproducibility of results

are also listed here.

7.1 Statistical downscaling with the downscaleR package (v3.1.0):
contribution to the VALUE intercomparison experiment

As outlined along this thesis and, in particular, in Chapter 2, numerous statistical

downscaling methodologies are available to climate scientists, motivating recent efforts

for their thorough assessment, such as the VALUE initiative, covered in Section 2.6. The

187



systematic comparison of SD techniques carried out within VALUE, many of which are in-

dependently formulated by various authors, modeling centers and programming languages,

has shown a requirement for new tools facilitating their application within an integrated

framework. In this context, downscaleR, an R package, has been developed for the sta-

tistical downscaling of climate information, encapsulating the most prevalent approaches:

model output statistics (including bias correction methods) and perfect prognosis.

downscaleR is primarily designed to function with daily data, and can be used in both

seasonal forecasting and climate change studies. Its full integration within the climate4R

framework (Iturbide et al., 2019) makes possible the development of comprehensive down-

scaling applications, ranging from data acquisition and preprocessing to model construc-

tion, validation, and prediction. The key characteristics of downscaleR are demonstrated

by replicating some of the findings obtained in VALUE (Gutiérrez et al., 2019), placing

particular emphasis on the most technically intricate stages of perfect prognosis model

calibration, explained in Sections 2.1 and 2.2 (predictor selection, cross-validation, and

model selection), which can be accomplished via simple commands that allow for flexible

model tuning (see Figure 7.1). This flexibility is suited to users needing a straightforward

interface for differing levels of experimental complexity. As a component of the open-

source climate4R framework, downscaleR is freely accessible, and the requisite data and R

scripts needed to fully reproduce the experiments discussed in this paper are also provided

in an accompanying notebook (see the “Code and data availability” Section in the article).

7.2 Assessing Multidomain Overlaps and Grand Ensemble Gen-
eration in CORDEX Regional Projections

In collaboration with the World Meteorological Organization, the Chinese Academy

of Meteorological Sciences and the Mohammed VI Polytechnic University, in Legasa et al.

(2020b) we switch our focus from statistical downscaling to dynamical downscaling (see

Section 1.2). We aim to address the fraction of uncertainty coming from the choice of the

CORDEX domain as compared to that coming from the choice of GCM-RCM pair itself.

As explained in Section 1.2, CORDEX is the flagship initiative that provides a frame-

work for evaluating the uncertainties affecting regional climate projections. CORDEX is

formed by 14 overlapping continental-scale regional domains covering the most inhabited

regions of the world (see Figure 7.2), where different reanalysis and GCM-driven RCMs

have been used to produce regional information building on a common framework, allowing
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FIGURE 7.1: Schematic overview of the R package downscaleR and its framing
into climate4R (Iturbide et al., 2019). Figure reproduced with permission from Bedia
et al. (2020).
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FIGURE 7.2: Number of overlapping CORDEX domains. Figure reproduced with
permission from Legasa et al. (2020b).

for intercomparison of results. We assess in Legasa et al. (2020b) the uncertainty related

to the choice of domain focusing on future changes in precipitation over the Mediterranean

region, where the European (EURO-CORDEX) and African (AFR-CORDEX) domains

overlap. We do so by quantifying the variance explained by the domain and the different

GCM-RCM pairs for different metrics.

The results (see Figure 7.3) indicate that the uncertainty of the projections is largely

influenced by the GCM-RCM pair choice rather than the domain, suggesting that over-

lapping domains can combine different model simulations without the risk of getting con-

flicting signals. The findings in this article streamline decision-making, specifically where

multiple GCM-RCM pairs and domains contribute to a wide catalog of climate change

information which may be difficult to assimilate by most of users: the results obtained

support the use of overlapping domains for regional climate change assessment.
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FIGURE 7.3: Summary of the variance decomposition of the projected changes
(2071–2100 with respect to 1971–2000) for the diagnostic metrics considered (Mean:
Mean precipitation. R01, SDII, WWProb and DWProb as in Table 2.2. WWProb:
Median of the annual/seasonal wet spell maxima. DWProb: Median of the annu-
al/seasonal dry spell maxima. AnnualCycle: Relative amplitude of the daily annual
cycle in %, relative to the mean. R95pTOT: Fraction of the sum of precipitation in
days over 95th percentile). Within each bar, the colored/gray/white part corresponds
to the GCM-RCM/domain/combined contribution to the total variance. Except for
AnnualCycle and R95pTOT, results are presented for the whole year (black), boreal
winter (DJF: blue) and summer (JJA: red). Figure reproduced with permission from
Legasa et al. (2020b).
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7.3 Conferences

The following contributions have been presented in international conferences, as oral

presentations:

• Multi-domain intercomparison and potential conflicts from CORDEX simulations:

An example for the Mediterranean region. ICRC-CORDEX 2019. Beijing, China. A

preliminary study that led to the article Legasa et al. (2020b), overviewed in Section

7.2.

• Reproducible Statistical Downscaling with the climate4R R-Based Framework: The

downscaleR package. ICRC-CORDEX 2019. Beijing, China. Based on the article

Bedia et al. (2020), overviewed in Section 7.1.

• Testing the Suitability of Tree-based Models for Climate Statistical Downscaling.

10th International Conference on Climate Informatics (2021) Virtual. A preliminary

study testing the applicability of both extreme gradient boosting (XGBoost, T. Chen

et al., 2016) and random forests (see Section 2.4.4) for statistical downscaling.

• Assessing the Suitability of A Posteriori Random Forests for Downscaling Climate

Change Projections. EGU General Assembly 2022. Vienna, Austria. A preliminary

study in which we applied random forests for downscaling climate change projections

of temperature and precipitation. It resulted in the article Legasa et al. (2022),

included as Chapter 4.

• Extending A Posteriori Random Forests for Multivariate Statistical Downscaling

of Climate Change Projections. EGU General Assembly 2023, Vienna, Austria.

This work included some preliminary results on extending APRFs for multivariable

downscaling of temperature and humidity (see Chapter 10).

7.4 Open Research: Software Used and Reproducibility of Re-
sults

Most of the code developed during the realization of this thesis has been written in

the R open source programming language (R Core Team, 2023), with a special focus on

the reproducibility of the results and the extensibility of the approaches. The climate4R

bundle (Iturbide et al., 2019) has been extensively used for accessing and postprocessing
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climate data. In addition, the package downscaleR (Bedia et al., 2020), explained in

Section 7.1, has been used to train some of the SD models used as benchmark during

the thesis, including GLMs. The R package Rglimclim (Chandler, 2020) has been used

for the more advanced spatial GLMs used in Chapter 5. The package downscaleR.keras

(Baño-Medina et al., 2020) has been employed to train the CNNs applied in Chapter 6, as

well as Keras (Chollet et al., 2015), which runs on top of the machine learning platform

TensorFlow (Abadi et al., 2015).

Additionally, the packages BNWeatherGen(https://github.com/MNLR/BNWeatherGen)

and RandomForestDist (https://github.com/MNLR/RandomForestDist), both publicly

available in GitHub, have been developed during the realization of this thesis building

respectively on bnlearn (Scutari, 2010) and rpart (Therneau et al., 2022), to deploy the

Bayesian networks and random forest models used in the articles presented in Part II.

In this regard, transparency and reproducibility are key ingredients to develop high-

quality science. Recently, the community has gathered to define a set of FAIR (findability,

accesibility, interoperability and reuse) principles that provide guidelines for users to pro-

mote re-usability of their data and code (Wilkinson et al., 2016). In alignment with these

principles, the following notebooks have been made publicly available at GitHub and allow

for easily reproducing the results presented in Part II of this thesis:

• Reproducibility of the results in Chapter 3:

https://github.com/MNLR/BNWeatherGen/blob/master/2019_BNWeatherGen_WRR.

ipynb,

• Reproducibility of the results in Chapter 4:

https://github.com/MNLR/RandomForestDist/blob/master/WorkedExample.ipynb,

• Reproducibility of the results in Chapter 5 for the BNICRFs:

https://github.com/MNLR/BNICRF/blob/main/BNICRF%20-%20Worked%20Example%

20and%20Reproducibility%20of%20Results.ipynb

• Reproducibility of the results in Chapter 5 for the Rglimclim GLMs:

https://github.com/MNLR/BNICRF/blob/main/Rglimclim%20Multi-Site%20GLM%

20-%20Model%20Development%20and%20Reproducibility%20of%20Results.ipynb.
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8
Conclusions and Discussion

Statistical downscaling (SD) is an invaluable tool for bridging the gap between the large-

scale spatial scale, well represented by global climate models (GCMs), and the local infor-

mation required for assessing regional climate change and its impacts. Under the perfect

prognosis (PP) approach, SD methods learn an empirical link function based on observed

values of a set informative large-scale atmospheric predictor variables and the local predic-

tand variable of interest. Building a PP SD model entails a sequence of decisions that may

significantly impact the downscaled results, with its own cascade of uncertainty, starting

with the selection of adequate predictor variables (which must carry the climate change

signal while being well represented by GCMs) coming from a particular reanalysis. The

choice of GCM represents another source of uncertainty. Moreover, CCM predictors should

be made compatible with their counterpart variables in the reanalysis used for calibration

(this is usually known as harmonization), for which several statistical postprocessing meth-

ods may be applied. Moreover, the many techniques and methods available for building

the link function adds another important layer of uncertainty. Indeed, as shown in Chap-

ter 6, leaving all other decisions fixed (same large-scale predictors, reanalysis, GCM and

harmonization process), three conceptually different SD methods yield dissimilar climate

change signals in terms of different metrics.

Backed by previous studies and also concluded in this thesis, the predictive capability

of typical large-scale variables is very limited for precipitation. Therefore, a good distri-

butional performance (in terms of all marginal, spatial and temporal dimensions) becomes

key to simulate the full range of local realities consistent with the corresponding future

large-scale conditions. The a posteriori random forests (APRFs) introduced in Chapter 4

can be viewed as a conditional resampling of observations of the local variable of interest
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with a posterior estimation of a parametric distribution. This makes them stable and

versatile, and have proven to provide an overall good characterization of the target local

distributions. In addition, ARPFs lie in a middle ground with respect to other method-

ologies in terms of interpretability: APRFs are not as interpretable as generalized linear

models (GLMs), but they are generally more interpretable than deep learning models. For

instance, analyzing the log-likelihood gain provided by each predictor is an option within

random forests.

In this thesis we explored spatio-temporal aspects of precipitation occurrence, devel-

oping a methodology to robustly downscale this binary event, which has proven to exhibit

an intertwined mixture of spatial, temporal and extreme aspects. Although the spatial

dependence structure of precipitation amounts is weaker, significant relationships exist

between precipitation occurrence at a given site and precipitation amounts at its sur-

rounding locations. Therefore, there is still work to do in the spatial aspect to incorporate

into the model the continuous precipitation amounts, and potential ways to explore this

are explained in Chapter 10.

We have seen that the temporal structure is mainly defined by the binary transitions.

Indeed, as stated in Chapter 6, the autocorrelation of precipitation amounts is very low.

The autocorrelation of precipitation occurrence and amounts is also low, and we actually

tested downscaling the parameters of the Gamma distribution conditioned to the previ-

ous day binary state, yielding no significant improvements. Therefore, and despite its

simplicity, we conclude that the temporal extension used in Chapters 5 and 6 covers the

temporal aspect of precipitation reasonably well, at least over Europe. In regions or varia-

bles of interest where there is a significant temporal structure for precipitation amounts,

the extension proposed in Section 10.2 is a promising approach to capture it. As opposed

to other methods that impose the observed spatial and/or temporal structure in their

implementation, the techniques developed in this thesis do not, which constitutes a key

advantage since they can potentially adapt to changing spatial and/or temporal relation-

ships that might be found in the future decades. Indeed, we have detected changes in the

wet-to-wet-day transition probabilities, which we address next.

Still, a good distributional consistency of SD methods in perfect conditions is just

the first requirement. They must also exhibit good transferability to GCM predictors.

That is, since perfect prognosis SD methods are calibrated first in perfect conditions (i.e.

using reanalysis predictors), significant differences can afterwards be found when they are

applied in non-perfect conditions (i.e. using GCM predictors). An assessment can be made
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depending on whether the distributional performance of the SD methods either degrades

significantly from perfect to non-perfect conditions, or is sub-optimal in both cases. In the

first case, the method can be concluded to have a transferability issue. In the second case,

the method exhibits sub-optimal distributional performance, even in perfect conditions.

We broadly conclude that the second situation is found for GLMs. The bias for the

three marginal indicators in perfect and non-perfect conditions exhibits a similar pattern

(as seen in Figures 1 and 2 in Chapter 6), very low for the wet day frequency and mean

precipitation intensity and comparatively high for the 98th percentile. This supports

the idea of using more complex methodologies, specially those able to estimate all the

parameters of the local distribution, such as APRFs or, for instance, vector generalized

linear models.

Conversely, we find a significant difference in distributional performance exhibited by

convolutional neural networks (CNNs) when passing from perfect to non-perfect condi-

tions. This is patent in the bias reproducing the 98th percentile, which is significantly

lower in magnitude, compared to GLMs, in perfect conditions, but similar in non-perfect

conditions. The bias in APRF is also slightly amplified, but it is concluded to be more sta-

ble compared to the other methods. This is where their resampling observations strategy

and general robustness to overfitting (Louppe, 2015) is potentially offering a significant

advantage.

With respect to the extrapolation capability of the SD methods, the projected cli-

mate change signals for the final part of the century in mean precipitation occurrence and

amounts are relatively similar among the different SD methods assessed, and in general

good agreement with those projected by their driving GCM. Thus, we can broadly con-

clude that SD methods are capable of extrapolating the number of wet days and mean

precipitation intensity, as well as transition probabilities. However, significant differences

appear in the projected changes in the tail (98th percentile) of the distribution, which is

specially relevant in terms of impacts.

The three SD methods assessed in Chapter 6 seem to perform poorly in capturing the

tail of the distribution of precipitation, as measured by the 98th percentile. This raises a

red flag about some potential incapability of SD methods to fully capture these changes,

and is potentially where the stationarity assumption of SD methods may be sticking out.

It may be preferred, then to have no signal, than inconsistent signals: in the worst case, for

an increase of 5% in P98 projected by EC-Earth, CNNs and GLMs downscale an increase
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of more than 25%, when there is no reason to believe this change is based on anything

other than instability or statistical errors. However, APRFs estimate distributions based

on observed records, and thus never amplify this measure by more 5% with respect to

EC-Earth, which suggests the downscaled results are more credible. In general, additional

correction steps could be performed (this is briefly discussed in Section 10.4) to produce

more consistent climate change signals. The comparatively higher instability of CNNs and

GLMs could be potentially mitigated by controlling the output layer activations and the

link function, respectively. This is still problematic, though, since we do not know the

explicit form of the link function beyond the observed historical calibration period.

The wet-to-wet day transition probabilities present an interesting case. In essence, the

three SD methods attenuate the climate change signal projected by EC-Earth. APRFs

produce more pronounced signals, more in line with those projected by EC-Earth. How-

ever, the temporal extension developed for APRFs (TAPRFs, see Section 2.5.4), which

considerably reduces the biases for the historical period, brings the wet-to-wet transitions

in line to the other two methods. There is, thus, reasons to believe that SD methods

should be trusted for this measure, since there is a high similarity among the three of

them in terms of the projected signals, and a consistent tendency towards moderating

those projected by the GCM.

On this matter, even though significant deviations in the projected climate change

signals or incapacity to produce them is not desirable, it should be noted that the down-

scaled changes do not necessarily need to perfectly match the ones produced by the GCM.

Instead, ideally, SD methods should be expected to modify, where necessary and in a

physically credible way, the raw signals projected by the GCM, thus adding potential

value. Adding value, here, implies giving place to more realistic future conditions due to

the SD methods empirically capturing relevant sub-grid factors. For instance, a GCM will

not see the different altitudes within a gridbox, and will thus project an average signal

corresponding to the average altitude of the entire gridbox. Nevertheless, the issue here

is, of course, that there is no fundamental way to check the veracity of the climate change

signals obtained by any method.

There is no perfect way to address this issue. The transferability and extrapolation

capability of SD methods can be fundamentally tested in three ways, each with its benefits

and drawbacks. In this thesis, we have followed the approach described in the first row of

Table 8.1. The other two alternatives described in the second and third rows essentially

imply mimicking the future local reality, either using a regional climate model (RCM,
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pseudo-reality) or a recent past period (pseudo-future). On the one hand, pseudo-reality

entails using RCM simulations as local observations, which requires to use as predictors

the synoptic patterns produced by the driving GCM 1, thus ignoring model biases and the

transferability issue. Indeed, the validity of the link function learnt in perfect prognosis,

i.e., using reanalysis predictors, is not evaluated. On the other hand, the pseudo-future

approach, which tests the methods on target periods of interest (see e.g., Bettolli et al.,

2021 for a study targeting extreme rainfall events) does not allow for fully (if at all) testing

the extrapolation capability. Therefore, we strongly recommend, ideally, to combine more

than one of these approaches to assess the transferability and extrapolation capability

of any SD method that is intended to be used in climate change studies. Other options

include the comparison of the signals produced by SD methods against those projected by

an ensemble of RCMs, using the same driving GCM in both cases, similarly to Olmo et al.

(2022a). In this case, as with the approach we follow, the signals can only be checked for

a general agreement with those projected by dynamical models.

The comprehensive analyses performed in this thesis allow us to conclude that APRFs

are a promising alternative for statistical downscaling of climate change precipitation pro-

jections. Their good predictive performance, in line with CNNs, on top of their good

distributional performance and the reasonable climate change signals they produce make

this new technique a very interesting alternative which is worth exploring in more detail

in future works. Furthermore, APRFs can be easily upgraded to account for more distri-

butional aspects beyond the marginal ones and more variables, as shown both in Chapters

5 and 6 and outlined in Chapter 10, where we explore multivariable extensions.

Moreover, a significant advantage of both APRFs and CNNs is that they can auto-

matically extract the relevant information contained in the predictor fields, avoiding the

need to conduct an exhaustive predictor/geographical domain screening, a complex, time-

consuming task which is typically undertaken based on human expertise and often implies

a loss of pertinent information and/or the inclusion of statistical noise. Moreover, it has

been demonstrated that distinct predictor sets may lead to substantially different (even di-

verging) precipitation projections (Manzanas et al., 2020a). Therefore, it is of paramount

importance to count on techniques that wisely perform an efficient automatic predictor

selection, avoiding thus these potential issues.

1This is known as an emulator, see, e.g., Babaousmail et al. (2021), statistical models aiming to predict
RCM simulations from their driving GCM. The purpose of an emulator is to provide computationally
cheap simulations of GCM-RCM pairs.
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Evaluation Approach Benefits Limitations

As in Chapter 6, in true
conditions.

Tests methods exactly as
they are meant to be de-
ployed. Simultaneously ad-
dresses their transferability
and extrapolation capabil-
ity.

The true signal is unknown,
and can not be verified,
only checked for consis-
tency.

Pseudo-reality: Building
the link function between
an RCM (playing the role
of the local observations,
ignoring the biases) to its
driving GCM.

The future is known and
signals can be directly com-
pared.

The SD method is not eval-
uated in perfect progno-
sis conditions, ignoring the
transferability issue.

Pseudo-future: Using re-
cent observed past as a fu-
ture period, possibly specif-
ically targeting warmest
periods.

Methods are simulta-
neously tested for their
transferability and some
moderate extrapolation
capability.

The signal, specially for
precipitation, is compara-
tively weak, and the data
used to train the methods
is greatly reduced.

Table 8.1: The different ways perfect prognosis statistical downscaling methods
can be evaluated for their extrapolation and transferability, along with the relative
advantages and disadvantages of each approach.

Overall, the results in Chapter 6 should serve as warning when applying very complex

methods for perfect prognosis SD, like recently developed deep generative models. What

is a well known issue in the machine learning field, model robustness and complexity,

becomes critical when deploying SD methods under the PP paradigm, specially since we

have detected some transferability issues for the tail of the distribution, which is highly

relevant in climate science.
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9
Conclusiones y Discusión (Spanish)

This chapter is a direct translation to Spanish of Chapter 8.

La regionalización estad́ıstica (SD, por sus siglas en inglés: statistical downscaling) es

una herramienta inestimable para aumentar la resolución de los modelos globales de clima

(GCMs, por sus siglas en inglés: global climate models), y la información local necesaria

para evaluar el cambio climático y sus impactos a nivel regional. Bajo la metodoloǵıa de

perfect prognosis (PP), los métodos de SD aprenden una función de enlace basada en los

valores observados de un conjunto informativo de variables atmosféricas de larga escala

(predictores) y la variable local de interés (predictando). La construcción de un modelo de

PP SD implica una secuencia de decisiones que pueden afectar significativamente a los re-

sultados finales, con su propia cascada de incertidumbre, empezando por la selección de las

variables predictoras adecuadas (que deben ser portadoras de la señal de cambio climático

y estar bien representadas por los GCM) procedentes de un determinado reanálisis. La

elección del GCM representa otra fuente de incertidumbre. Además, los predictores de

los GCM deben hacerse compatibles con sus variables homólogas en el reanálisis utilizado

para la calibración (lo que suele conocerse como armonización), para lo cual pueden apli-

carse varios métodos estad́ısticos de posprocesamiento. Además, las numerosas técnicas y

métodos disponibles para construir la función de enlace añaden otra importante capa de

incertidumbre. De hecho, tal y como se muestra en el Caṕıtulo 3, dejando todas las demás

decisiones fijas (mismos predictores de larga escala, reanálisis, GCM y proceso de armo-

nización), tres métodos de SD conceptualmente diferentes producen señales de cambio

climático diśımiles para distintas métricas.

Respaldado por estudios anteriores y también, como concluimos en esta tesis, la ca-
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pacidad de predicción de las variables t́ıpicas a gran escala es muy limitada para la pre-

cipitación. Por lo tanto, un buen rendimiento en terminos distribucionales (marginal,

espacial y temporal) se convierte en clave para simular toda la gama de realidades locales

coherentes con las correspondientes condiciones futuras a gran escala. La metodoloǵıa

de a posteriori random forests (APRFs) introducida en el Caṕıtulo 4 pueden verse como

un remuestreo condicional de observaciones de la variable local de interés con una esti-

mación paramétrica posterior de la distribución de probabilidad. Esto los hace estables y

versátiles, y han demostrado proporcionar una buena caracterización general de las dis-

tribuciones locales. Además, los ARPF se sitúan en un término medio con respecto a otras

metodoloǵıas en términos de interpretabilidad: Si bien no son tan interpretables como los

generalized linear models (GLM), en general son más interpretables que los modelos de

deep learning. Por ejemplo, analizar la ganancia de log-likelihood proporcionada por cada

predictor es una opción dentro de los random forests.

En esta tesis exploramos aspectos espacio-temporales de la ocurrencia de precipitación,

desarrollando una metodoloǵıa para regionalizarla. De hecho, este evento binario ha de-

mostrado exhibir una mezcla entrelazada de aspectos espaciales, temporales y extremos.

Aunque la estructura de dependencia espacial de las cantidades de precipitación es más

débil, existen relaciones significativas entre la ocurrencia de precipitación en un lugar

determinado y las cantidades de precipitación en su entorno.

Observamos que la estructura temporal está definida principalmente por las transi-

ciones binarias. De hecho, como se indica en el caṕıtulo 6, la autocorrelación de las

cantidades de precipitación es muy baja. La autocorrelación de la ocurrencia y las can-

tidades de precipitación también es baja, y de hecho probamos la regionalización de los

parámetros de la distribución Gamma condicionada al estado binario del d́ıa anterior, sin

obtener mejoras significativas. Por lo tanto, a pesar de su simplicidad, concluimos que la

extensión temporal utilizada en los caṕıtulos 5 y 6 cubre el aspecto temporal de la precip-

itación razonablemente bien, al menos para Europa. En las regiones o variables de interés

en las que existe una estructura temporal significativa para las cantidades de precipitación,

la extensión propuesta en la Sección 10.2 es un enfoque prometedor para capturarla. A

diferencia de otros métodos que imponen la estructura espacial y/o temporal observada en

su implementación, las técnicas desarrolladas en esta tesis no lo hacen, lo que constituye

una ventaja clave, ya que pueden adaptarse potencialmente a las relaciones espaciales y/o

temporales cambiantes que puedan encontrarse en las décadas futuras. De hecho, hemos

detectado cambios en las probabilidades de transición de d́ıas húmedos a húmedos, que

abordamos más adelante.
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Aún aśı, una buena consistencia distribucional de los métodos SD en condiciones perfec-

tas es sólo el primer requisito. Además, también deben mostrar una buena transferibilidad

a los predictores del GCM. Dado que los métodos SD se calibran primero en condiciones

perfectas (es decir, utilizando predictores de reanálisis), pueden encontrarse después difer-

encias significativas cuando se aplican en condiciones no perfectas (es decir, utilizando

predictores del GCM). Se puede hacer una evaluación dependiendo de si el rendimiento se

reduce significativamente al pasar de condiciones perfectas a condiciones no perfectas. En

el primer caso, se puede concluir que el método presenta un problema de transferibilidad.

En el segundo caso, el método muestra un rendimiento distribucional subóptimo, incluso

en condiciones perfectas.

A grandes rasgos, concluimos que la segunda situación se da en los GLMs. El sesgo de

los tres indicadores marginales en condiciones perfectas y no perfectas presenta un patrón

similar (como se observa en las figuras 1 y 2 del caṕıtulo 6), muy bajo para la frecuencia de

d́ıas húmedos y la intensidad media de las precipitaciones y comparativamente alto para el

percentil 98. Esto respalda la idea de utilizar metodoloǵıas más complejas, especialmente

aquellas capaces de estimar todos los parámetros de la distribución local, como los APRF

o, por ejemplo, los GLMs vectoriales.

Por el contrario, encontramos una diferencia significativa en el rendimiento distribu-

cional que exhiben las convolutional neural networks (CNN) al pasar de condiciones per-

fectas a no perfectas. Esto queda patente en el sesgo a la hora de reproducir el percentil

98, que es significativamente menor, en comparación con las GLM, en magnitud en condi-

ciones perfectas, pero similar en condiciones no perfectas. El sesgo en APRF también se

amplifica ligeramente, pero se concluye que es más estable en comparación con los otros

métodos. Aqúı es donde su estrategia muestrear observaciones y su robustez general al

sobreajuste (Louppe, 2015) ofrecen potencialmente una ventaja significativa.

En cuanto a la capacidad de extrapolación de los métodos SD, los cambios previstos

para la última parte del siglo en la ocurrencia y cantidades de precipitación son relati-

vamente similares, tanto entre los métodos SD como entre el GCM que regionalizan. En

general, podemos concluir que los métodos SD son capaces de extrapolar el número de

d́ıas de lluvia y la intensidad media de las precipitaciones, aśı como las probabilidades

de transición. Sin embargo, aparecen diferencias significativas en los cambios proyectados

en la cola (percentil 98) de la distribución, que es especialmente relevante en términos de

impactos.
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Los tres métodos de SD evaluados en el caṕıtulo 6 parecen mostrar un rendimiento

deficiente a la hora de captar la cola de la distribución de precipitación. Esto parece

apuntar a una cierta incapacidad de producir estos cambios por parte de los métodos de

SD, y es potencialmente donde la suposición de estacionariedad de los métodos de SD

puede estar siendo una limitación. En el peor de los casos, para un aumento de 5% en

P98 proyectado por EC-Earth, las CNNs y los GLMs producen un aumento de más de

25%, cuando no hay razón para creer que este cambio se basa en otra cosa que no sea

inestabilidad o errores estad́ısticos. Sin embargo, los APRF estiman distribuciones basadas

en registros observados y, por tanto, nunca ampĺıan esta medida en más de 5% con respecto

a EC-Earth, lo que sugiere que los resultados reducidos son más créıbles. En general,

podŕıan realizarse pasos de corrección adicionales (esto se discute brevemente en la Sección

10.4) para producir señales más consistentes. La inestabilidad comparativamente mayor

de las CNN y los GLM podŕıa mitigarse controlando las activaciones de la capa de salida

y la función de enlace, respectivamente. Sin embargo, esto sigue siendo problemático,

ya que no conocemos la forma expĺıcita de la función de enlace más allá del periodo de

calibración histórico.

Las probabilidades de transición binarias presentan un caso interesante. En esencia,

los tres métodos de SD atenúan la señal de cambio climático proyectada por EC-Earth.

Los APRF producen señales más pronunciadas, más acordes con las proyectadas por EC-

Earth. Sin embargo, la extensión temporal desarrollada para los APRF (TAPRF, véase

la sección 2.5.4), que reduce considerablemente los sesgos para el periodo histórico, hace

que las transiciones estén en ĺınea con los otros dos métodos. Hay, por tanto, razones

para creer que se debe confiar en los métodos SD para esta medida, ya que hay una gran

similitud de las señales entre los tres, y un patrón consistente hacia la moderación de las

señales del GCM.

A este respecto, aunque no son deseables desviaciones significativas en las señales

proyectadas o incapacidad para producirlas, cabe señalar que las señales producidas por

los métodos de SD no tienen por qué coincidir perfectamente con las producidas por el

GCM. Al contrario, lo ideal es que los métodos de SD modifiquen, cuando sea necesario

y de forma f́ısicamente créıble, las señales brutas proyectadas por el GCM, añadiendo

aśı valor. En este caso, el valor añadido implica hacer que las señales sean más realistas

gracias a que los métodos de SD captan emṕıricamente las variaciones por debajo de la

resolución del GCM. Por ejemplo, un GCM no verá las diferentes altitudes dentro de una

cuadŕıcula y, por tanto, proyectará una señal media correspondiente a la altitud media de

toda la cuadŕıcula. Sin embargo, la cuestión aqúı es, por supuesto, que no hay una forma
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fundamental de comprobar la veracidad de las señales de cambio climático.

No existe una forma perfecta de abordar esta cuestión. La capacidad de transferencia

y extrapolación de los métodos de SD puede probarse fundamentalmente de tres maneras,

cada una con sus ventajas e inconvenientes. En esta tesis, hemos seguido el enfoque descrito

en la primera fila de la tabla 9.1. Las otras dos alternativas descritas en la segunda y tercera

filas implican esencialmente simular la realidad local futura, ya sea utilizando un modelo

regional de clima (RCM) (pseudorealidad) o un periodo pasado reciente (pseudofuturo).

Por un lado, utilizar un enfoque de pseudorealidad implica utilizar simulaciones del RCM

como observaciones locales, lo que requiere utilizar como predictores los patrones sinópticos

producidos por el GCM al que está anidado 1, ignorando aśı los sesgos del modelo y el

problema de la transferibilidad. De hecho, no se evalúa la validez de la función de enlace

aprendida en conditiones perfectas, es decir, utilizando predictores de reanálisis. Por otra

parte, el enfoque pseudofuturo, que pone a prueba los métodos en periodos objetivo de

interés (véase, por ejemplo, Bettolli et al., 2021 para un estudio centrado en fenómenos de

precipitación extremos) no permite probar plenamente (si es que lo permite) la capacidad

de extrapolación. Por lo tanto, recomendamos tratar de combinar más de uno de estos

enfoques para evaluar la transferibilidad y la capacidad de extrapolación de cualquier

método de SD que se pretenda utilizar en estudios de cambio climático. Otras opciones

incluyen la comparación de las señales producidas por los métodos de SD frente a las

proyectadas por un conjunto de RCM anidados a los mismos GCMs regionalizados, como

en Olmo et al. (2022a). En este caso, como en el enfoque que seguimos, sólo se puede

comprobar si las señales concuerdan de manera general con aquellas producidas por los

modelos dinámicos.

Los exhaustivos análisis realizados en esta tesis nos permiten concluir que los APRFs

son una alternativa prometedora para la regionalización estad́ıstico de proyecciones de

precipitación de cambio climático. Su buen rendimiento predictivo, en ĺınea con las CNNs,

además de su buen rendimiento distribucional y las razonables señales de cambio climático

que producen hacen de esta nueva técnica una alternativa muy interesante, que merecerá la

pena explorar con más detalle en futuros trabajos. Además, los APRF pueden actualizarse

fácilmente para tener en cuenta más aspectos distribucionales más allá de los marginales

aśı como más variables, como se muestra tanto en los caṕıtulos 5 y 6, y como se esboza

1Esto se conoce como un emulador, (véase, por ejemplo, Babaousmail et al., 2021) modelos estad́ısticos
que pretenden simular un RCM a partir del GCM al que está anidado. El propósito de un emulador es
proporcionar simulaciones computacionalmente baratas de pares GCM-RCM.
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Enfoque de Evaluación Ventajas Limitaciones

Como en el Caṕıtulo 6, en
conditions reales.

Pone a prueba los métodos
tal y como están conce-
bidos. Simultáneamente,
aborda su transferibilidad
y capacidad de extrapo-
lación.

La señal verdadera es de-
sconocida y no puede ver-
ificarse, sólo comprobar su
coherencia.

Pseudorealidad: Con-
struyendo la función de
enlace para un RCM (que
desempeña el papel de
las observaciones locales,
ignorando los sesgos) y el
GCM al que está anidado.

El futuro es conocido y las
señales pueden compararse
directamente.

El método de SD no se
evalúa en condiciones de
PP, ignorando el problema
de la transferibilidad.

Pseudofuturo: Utilizando
el pasado reciente obser-
vado como periodo futuro,
posiblemente centrándose
espećıficamente en los peri-
odos más cálidos.

Se comprueba si-
multáneamente la trans-
feribilidad de los métodos
y cierta capacidad de
extrapolación.

La señal, especialmente
para la precipitación, es
comparativamente débil, y
los datos utilizados para en-
trenar los métodos se re-
ducen considerablemente.

Table 9.1: Las diferentes maneras de evaluar la capacidad de extrapolación y trans-
feribilidad de los diferentes métodos de regionalización estad́ıstica bajo el paradigma
de PP, junto con las ventajas y desventajas relativas de cada enfoque.

en el caṕıtulo 10, donde exploramos extensiones multivariables.

Además, una ventaja significativa tanto de los APRF como de las CNN es que pueden

extraer automáticamente la información relevante contenida en los campos predictores,

evitando la necesidad de llevar a cabo un exhaustivo cribado de los predictores de larga

escala y dominio geográfico, una tarea compleja que requiere mucho tiempo y que nor-

malmente se lleva a cabo basándose en la experiencia humana, a menudo implicando una

pérdida de información pertinente y/o la inclusión de ruido estad́ıstico. Además, se ha

demostrado que distintos conjuntos de predictores pueden dar lugar a proyecciones de

precipitaciones sustancialmente diferentes (incluso divergentes) (Manzanas et al., 2020a).

Por lo tanto, es de suma importancia contar con técnicas que realicen de manera eficiente
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una selección automática de predictores, evitando aśı estos problemas.

En general, los resultados del caṕıtulo 6 debeŕıan servir de advertencia a la hora de

aplicar métodos muy complejos para la regionalización estad́ıstica, como los modelos deep

learning generativos desarrollados recientemente. Lo que es un problema bien conocido

en el campo del aprendizaje automático, la robustez y complejidad de los modelos, se

convierte en una cuestión cŕıtica cuando se utilizan métodos SD bajo el paradigma PP,

especialmente porque hemos detectado algunos problemas de transferibilidad y extrapo-

lación para la cola de la distribución, que es muy relevante en la ciencia del clima.
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10
Beyond this Thesis

This thesis constitutes a step forward in distributionally consistent statistical downscaling,

with a focus on the transferability and extrapolation capability of several machine learning

techniques. Still, much work lies ahead. This chapter gives a quick overview of the different

potential lines of work we are and will be working on, stemming from its realization. As

we describe next, future research perspectives include the intercomparison of statistical

and dynamical downscaling, as well as continue working on the complete characterization

of the downscaled distribution and on reliably extrapolating to future, unknown climate

change conditions. To do so, we will explore extensions of the main techniques used during

the thesis as well as new state-of-the-art machine learning methodologies.

10.1 Gridded Continental-Wide and Multi-Model Ensembles Down-
scaling

In this thesis we rely on point-wise (i.e. station data) observational records to calibrate

the different SD methods used, thus obtaining also point-wise downscaled results. One

of the reasons behind this choice is that, compared to gridded observational datasets,

which are subject to some uncertainty (due, among other factors, to potential artifacts

arising from the interpolation process followed), stations data are more reliable, especially

in what refers to spatial and multivariable dependencies. Therefore, and given the overall

good performance of APRFs in terms of distributional performance, transferability and

extrapolation capability described in Chapter 6, a straightforward continuation of this

209



thesis will be to apply APRFs to E-OBS (Cornes et al., 2018) 1 in order to produce a

continental-wide dataset of high-resolution climate change scenarios (we will focus not

only in precipitation, but also in temperature) based on machine learning. Moreover, the

idea is to extend the analysis presented in Chapter 6, which is based on a solely GCM (the

EC-Earth) to several GCMs, providing thus providing a multi-model downscaled ensemble

which allows for examining the spread due to choice of GCM.

This new, comprehensive dataset of high-resolution climate change scenarios for Eu-

rope will be open and publicly available to the users’ community, which would allow for

comparison against DeepESD (Baño-Medina et al., 2022), a similar dataset recently pro-

duced based on deep learning (in particular the CNNs used in Chapter 6). Furthermore,

both DeepESD and the new, equivalent dataset we will produce with APRFs, will allow

for a direct comparison against the RCM simulations available within Euro-CORDEX,

facilitating thus the analysis of the relative strengths and weaknesses of statistical vs dy-

namical downscaling. In addition, another next step will be to apply the APRFs described

in this thesis to other regions of the world; in particular South America, where similar

studies have been already conducted (Olmo et al., 2022a).

10.2 Multivariable Downscaling

On top of the distributional aspects covered in this thesis (marginal, spatial and tempo-

ral), the intervariable consistency is a key feature which must be assured prior to delivering

downscaled scenarios to stakeholders and policy makers. Therefore, this section outlines

how APRFs can be easily adapted to be used for continuous and semicontinuous distri-

butions other than the Bernouilli-Gamma considered in this thesis for precipitation. This

adaptation entails designing an adequate split function for the target variables of interest

and a methodology to characterize the conditional distribution. As opposed to categorical

variables, conditional distributions for continuous variables can be described in an infinite

number of ways, from statistical copulas to more complex regression functions. In prac-

tice, some preliminary work with the Schaake shuffle (Clark et al., 2004) and empirical

copulas has shown to yield very good results. Figure 10.1 illustrates the methodology fol-

1The blended time series from the station network of the European Climate Assessment & Dataset
(ECA&D) project, used as observational reference in this thesis, is used to construct E-OBS, an observa-
tional dataset which provides gridded fields of several meteorological variables over Europe. In its latest
version, v27.0e, E-OBS horizontal resolution has been improved to 0.1◦.
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Schaake Shuffle

FIGURE 10.1: A scheme depicting a proposed bivariate random forest for down-
scaling, jointly, maximum daily temperature (Gaussian distributed) and relative hu-
midity (Beta distributed), taken from Legasa et al. (2023b). Their density functions
are shown illustratively, as a heatmap. The Beta distribution is defined from 0 to 1.

lowed to simultaneously downscale maximum daily temperature and relative humidity. In

addition, recent works (Cevid et al., 2022) have developed multivariate density estimation

methodologies using random forests, which we will also explore.

Some preliminary results from the application of the methodology illustrated in Figure

10.1 are shown in Figure 10.2 for a set of 10 representative ECA&D locations over Europe.

The two target variables addressed, daily maximum temperature (Gaussian distributed)

and relative humidity (Beta distributed) exhibit a high physical dependence, and are

highly relevant in the context of heat stress impacts2 (Koppe et al., 2004). As compared

to independently downscaling each of these two variables, their inter-dependency is better

captured when using the proposed multivariable approach, as reflected by the very low

relative (simulated vs observed) bias attained for the Spearman correlation between the

two variables (left panel) and the 95th percentile of the wet bulb globe temperature (left

2Under very hot and humid conditions, the ability of the human body to regulate the core temperature
and dissipate heat via sweat evaporation is reduced, provoking heat stress.
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panel). Since heat stress is projected to increase (Casanueva et al., 2019), a relevant

question is whether this multivariable method is able to capture the future climate change

signal in this aspect.
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FIGURE 10.2: Results obtained for a multivariable random forest which allows
for simultaneously downscaling maximum daily temperature (Gaussian distributed)
and relative humidity (Beta distributed). The boxplots encompass 10 illustrative
ECA&D stations over Europe and show the relative (simulated vs observed) bias for
the Spearman correlation between the two target variables (left panel) and the 95th
percentile of the wet bulb globe temperature (right panel). The latter is a heat stress
index derived from maximum temperature and relative humidity using the Stull’s
method (Stull, 2011). Figure adapted from Legasa et al. (2023b).

10.3 Multivariable, Temporal and Spatial Downscaling

One of the objectives of this thesis is the generation of distributionally consistent down-

scaled results. This means, ideally, capturing all the relevant aspects besides the marginal

ones (i.e. temporal, spatial and multivariable), including their compound interactions. For

instance, focusing exclusively on precipitation occurrence, we have seen that long multi-

site wet and dry spells (Figure 8 in Chapter 3) can occur (compounding the temporal and

spatial aspects), with the great potential these events have to produce floods and droughts

affecting vast regions. Therefore, a relevant question is if machine learning techniques may

be able to reliably simulate these kind of situations, not only in historical mode but also

for the coming decades.

However, for capturing the full spatial distribution, the extension of the methodology

presented in Chapters 3 and 5 to Bernoulli-Gamma distributed variables is not trivial.

Although precipitation amounts do not present a spatial structure as pronounced as oc-

currence does, there is still some multisite dependence for the continuous event. For some
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applications, it may suffice to include more states of precipitation (e.g., dry, moderate

and severe precipitation, as in Pham et al., 2019), in which case BNICRFs are directly

applicable, something we will do in the future.

Moreover, discrete Bayesian networks have a straightforward extension to Gaussian

distributions, called Gaussian Bayesian networks, which profit from the nice properties of

multivariate Gaussian distributions (namely that their Gaussian conditional and marginal

distributions and zero covariance meaning independence, see Koller et al., 2009). Indeed,

preliminary results with Gaussian BNICRFs shows that the methodology extends nicely

to continuous Gaussian-distributed variables. We show in Figure 10.3 the results for a

Gaussian BNICRF (using a Gaussian BN and linear models to capture the dependence)

against a set of point-wise single-site random forests, in terms of spatial coherence, as

measured by the pairwise correlations. Note that, in this case, the single-site models

work reasonably well. This is due to daily temperature being comparatively much easier

to predict than precipitation (the correlation of the predicted expected values with the

observed series ranges ∼ 0.9 to ∼ 0.95), since it is highly dominated by the temperatures

at different pressure levels.

Differently, the potential gains in precipitation amounts in terms of distributional

performance are much bigger, due to the comparatively low information carried by large-

scale predictors and the more complex dependence structure. This can be seen in Figure

5 in Chapter 5, which shows a much bigger difference between the multi-site and the

single-site methods. Since the BN is just used to inform independence relationships,

Gaussianization of the Gamma distributions may be an interesting approach. Copula

Bayesian networks (Elidan, 2010) are an interesting extension to Bayesian networks which

we will take a close look at, not only for improving the reproduction of the inter-site

dependencies, but also the rest of distributional aspects.

Deep generative models such as generative adversarial networks (Goodfellow et al.,

2014), transformers (Vaswani et al., 2017) and diffusion models3 (Ho et al., 2020; Sohl-

Dickstein et al., 2015) should also be explored. However, these techniques do not provide

an explicit characterization of the local distribution. Moreover, as already argued, it is

crucial to have good transferability and extrapolation capabilities to climate change con-

ditions. However, we have shown in Chapter 6 that a comparatively simple deep learning

3Transformer architectures are behind ChatGPT, and Difussion models are used in DALL-E and Stable
Diffusion. They have achieved impressive results in natural language processing and image generation.
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FIGURE 10.3: Spatial results (for out-of-sample historical data) for mean daily
temperature downscaling for the same set of stations used in Chapter 5. We com-
pare the simulated pairwise correlations against the observed ones, for a continuous
Bayesian network informed conditional random forest (orange) and 11 separate (single-
site, blue) random forests. The continuous Gaussian Bayesian network is built using
Tabu search, and conditional relationships are captured using linear models.
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model like the CNN exhibits some transferability issues. Furthermore, as discussed in the

conclusions (Chapter 8) the TAPRF presented in Chapter 6 results in slightly different

signals (see the different downscaled climate change signals for the wet-to-wet transition

probabilities in Figure 6). Any additional model complexity, then, should also be backed

with a detailed transferability and extrapolation analysis.

10.4 Hybrid Dynamical-Statistical Downscaling

As discussed in Chapter 8, the results presented in Chapter 6 raise a red flag about some

potential incapability of SD methods to produce plausible climate change signals for the

tail of the distribution of precipitation, as measured by the 98th percentile. The limiting

factor here may be that SD methods are trained based on observed records for a historical

period, which may, in some cases, limit to some extent their capability to extrapolate

to future conditions in a climate change context. As explained in Section 2.1 (see also

Table 1.3), this is a well-known issue in statistical downscaling. A potential solution to

this problem would come from a hybrid dynamical-statistical modelling approach, thus

leveraging the relative strengths of each approach, namely the comparatively low bias of

SD methods and the capability of dynamical models to simulate the future climate in a

physical-driven way. Thus, we will explore the development of hybrid dynamic approaches,

using statistical downscaling methods to provide as much local unbiased information as

possible, and complementing this information with the changes projected by either a GCM

or an RCM.
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A. S., and Gutiérrez, J. M. (2022). Downscaling multi-model climate projection ensem-
bles with deep learning (DeepESD): contribution to CORDEX EUR-44. Geoscientific
Model Development 15 (17), pp. 6747–6758. doi: 10.5194/gmd-15-6747-2022.

Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M. (2020). Configuration and intercom-
parison of deep learning neural models for statistical downscaling. Geoscientific Model
Development 13 (4), pp. 2109–2124. doi: 10.5194/gmd-13-2109-2020.

Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M. (2021). On the suitability of deep
convolutional neural networks for continental-wide downscaling of climate change pro-
jections. Climate Dynamics 57 (11), pp. 2941–2951. doi: 10.1007/s00382- 021-

05847-0.

Bedia, J., Baño-Medina, J., Legasa, M. N., Iturbide, M., Manzanas, R., Herrera, S.,
Casanueva, A., San-Mart́ın, D., Cofiño, A. S., and Gutiérrez, J. M. (2020). Statis-
tical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE
intercomparison experiment. Geoscientific Model Development 13 (3), pp. 1711–1735.
doi: 10.5194/gmd-13-1711-2020.

Beersma, J. J. and Buishand, T. A. (2003). Multi-site simulation of daily precipitation
and temperature conditional on the atmospheric circulation. Climate Research 25 (2),
pp. 121–133. doi: 10.3354/cr025121.
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Di Luca, A., Pitman, A. J., and De Eĺıa, R. (2020). Decomposing Temperature Extremes Er-
rors in CMIP5 and CMIP6 Models. Geophysical Research Letters 47 (14), e2020GL088031.
doi: 10.1029/2020GL088031.

Dickinson, R. E., Errico, R. M., Giorgi, F., and Bates, G. T. (1989). A regional climate
model for the western United States. Climatic Change 15 (3), pp. 383–422. doi: 10.
1007/BF00240465.

Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Multiple Classifier Sys-
tems. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 1–15. isbn:
978-3-540-45014-6. doi: 10.1007/3-540-45014-9_1.

Dobson, A. J. and Barnett, A. G. (2018). An Introduction to Generalized Linear Models.
4th ed. Chapman & Hall/CRC Texts in Statistical Science. London: Chapman and
Hall. isbn: 978-1-138-74151-5.
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