85,991 research outputs found

    Improved parameters of seven Kepler giant companions characterized with SOPHIE and HARPS-N

    Get PDF
    Radial-velocity observations of Kepler candidates obtained with the SOPHIE and HARPS-N spectrographs have permitted unveiling the nature of the five giant planets Kepler-41b, Kepler-43b, Kepler-44b, Kepler-74b, and Kepler-75b, the massive companion Kepler-39b, and the brown dwarf KOI-205b. These companions were previously characterized with long-cadence (LC) Kepler data. Here we aim at refining the parameters of these transiting systems by i) modelling the published radial velocities (RV) and Kepler short-cadence (SC) data that provide a much better sampling of the transits, ii) performing new spectral analyses of the SOPHIE and ESPaDOnS spectra, and iii) improving stellar rotation periods hence stellar age estimates through gyrochronology, when possible. Posterior distributions of the system parameters were derived with a differential evolution Markov chain Monte Carlo approach. Our main results are as follows: a) Kepler-41b is significantly larger and less dense than previously found because a lower orbital inclination is favoured by SC data. This also affects the determination of the geometric albedo that is lower than previously derived: Ag < 0.135; b) Kepler-44b is moderately smaller and denser than reported in the discovery paper; c) good agreement was achieved with published Kepler-43, Kepler-75, and KOI-205 system parameters, although the host stars Kepler-75 and KOI-205 were found to be slightly richer in metals and hotter, respectively; d) the previously reported non-zero eccentricities of Kepler-39b and Kepler-74b might be spurious. If their orbits were circular, the two companions would be smaller and denser than in the eccentric case. The radius of Kepler-39b is still larger than predicted by theoretical isochrones. Its parent star is hotter and richer in metals than previously determined. [ABRIDGED]Comment: 17 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    Kepler-20: A Sun-like Star with Three Sub-Neptune Exoplanets and Two Earth-size Candidates

    Get PDF
    We present the discovery of the Kepler-20 planetary system, which we initially identified through the detection of five distinct periodic transit signals in the Kepler light curve of the host star 2MASSJ19104752+4220194. We find a stellar effective temperature Teff=5455+-100K, a metallicity of [Fe/H]=0.01+-0.04, and a surface gravity of log(g)=4.4+-0.1. Combined with an estimate of the stellar density from the transit light curves we deduce a stellar mass of Mstar=0.912+-0.034 Msun and a stellar radius of Rstar=0.944^{+0.060}_{-0.095} Rsun. For three of the transit signals, our results strongly disfavor the possibility that these result from astrophysical false positives. We conclude that the planetary scenario is more likely than that of an astrophysical false positive by a factor of 2e5 (Kepler-20b), 1e5 (Kepler-20c), and 1.1e3 (Kepler-20d), sufficient to validate these objects as planetary companions. For Kepler-20c and Kepler-20d, the blend scenario is independently disfavored by the achromaticity of the transit: From Spitzer data gathered at 4.5um, we infer a ratio of the planetary to stellar radii of 0.075+-0.015 (Kepler-20c) and 0.065+-0.011 (Kepler-20d), consistent with each of the depths measured in the Kepler optical bandpass. We determine the orbital periods and physical radii of the three confirmed planets to be 3.70d and 1.91^{+0.12}_{-0.21} Rearth for Kepler-20b, 10.85 d and 3.07^{+0.20}_{-0.31} Rearth for Kepelr-20c, and 77.61 d and 2.75^{+0.17}_{-0.30} Rearth for Kepler-20d. From multi-epoch radial velocities, we determine the masses of Kepler-20b and Kepler-20c to be 8.7\+-2.2 Mearth and 16.1+-3.5 Mearth, respectively, and we place an upper limit on the mass of Kepler-20d of 20.1 Mearth (2 sigma).Comment: accepted by ApJ, 58 pages, 12 figures revised Jan 2012 to correct table 2 and clarify planet parameter extractio

    Kepler-445, Kepler-446 And The Occurrence Of Compact Multiples Orbiting Mid-M Dwarf Stars

    Get PDF
    We confirm and characterize the exoplanetary systems Kepler-445 and Kepler-446: two mid-M dwarf stars, each with multiple, small, short-period transiting planets. Kepler-445 is a metal-rich ([ Fe/H] = + 0.25 0.10) M4 dwarf with three transiting planets, and Kepler-446 is a metal-poor ([ Fe/H] = -0.30 0.10) M4 dwarf also with three transiting planets. Kepler-445c is similar toGJ 1214b: both in planetary radius and the properties of the host star. The Kepler-446 system is similar to the Kepler-42 system: both are metal-poor with large galactic space velocities and three short-period, likely rocky transiting planets that were initially assigned erroneously large planet-to-star radius ratios. We independently determined stellar parameters from spectroscopy and searched for and fitted the transit light curves for the planets, imposing a strict prior on stellar density in order to remove correlations between the fitted impact parameter and planet-to-star radius ratio for short-duration transits. Combining Kepler-445, Kepler-446, and Kepler-42, and isolating all mid-M dwarf stars observed by Kepler with the precision necessary to detect similar systems, we calculate that 21+ 7 -5 % of mid-M dwarf stars host compact multiples ( multiple planets with periods of less than 10 days) for a wide range of metallicities. We suggest that the inferred planet masses for these systems support highly efficient accretion of protoplanetary disk metals by mid-M dwarf protoplanets.NSF DGE1144152, AST-1005313NASA NAS5-26555NASA Office of Space Science NNX13AC07GAstronom

    Lorentz Group and Oriented MICZ-Kepler Orbits

    Full text link
    The MICZ-Kepler orbits are the non-colliding orbits of the MICZ Kepler problems (the magnetized versions of the Kepler problem). The oriented MICZ-Kepler orbits can be parametrized by the canonical angular momentum L\mathbf L and the Lenz vector A\mathbf A, with the parameter space consisting of the pairs of 3D vectors (A,L)(\mathbf A, \mathbf L) with LL>(LA)2{\mathbf L}\cdot {\mathbf L} > (\mathbf L\cdot \mathbf A)^2. The recent 4D perspective of the Kepler problem yields a new parametrization, with the parameter space consisting of the pairs of Minkowski vectors (a,l)(a,l) with ll=1l\cdot l =-1, al=0a\cdot l =0, a0>0a_0>0. This new parametrization of orbits implies that the MICZ-Kepler orbits of different magnetic charges are related to each other by symmetries: \emph{SO+(1,3)×R+{\mathrm {SO}}^+(1,3)\times {\mathbb R}_+ acts transitively on both the set of oriented elliptic MICZ-Kepler orbits and the set of oriented parabolic MICZ-Kepler orbits}. This action extends to O+(1,3)×R+{\mathrm {O}}^+(1,3)\times {\mathbb R}_+, the \emph{structure group} for the rank-two Euclidean Jordan algebra whose underlying Lorentz space is the Minkowski space.Comment: 7 page

    The atmospheres of the hot-Jupiters Kepler-5b and Kepler-6b observed during occultations with Warm-Spitzer and Kepler

    Get PDF
    This paper reports the detection and the measurements of occultations of the two transiting hot giant exoplanets Kepler-5b and Kepler-6b by their parent stars. The observations are obtained in the near infrared with Spitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of constraining the eccentricities of these systems and of obtaining broad band emergent spectra for individual planets. For both targets, the occultations are detected at 3 sigma level at each wavelength with mid-occultation times consistent with circular orbits. The brightness temperatures of these planets are deduced from the infrared observations and reach T=1930+/-100K and T=1660+/-120K for Kepler-5b and Kepler-6b respectively. We measure optical geometric albedos A_g in the Kepler bandpass and find A_g=0.12+/-0.04 for Kepler-5b and A_g=0.11+/-0.04 for Kepler-6b leading to an upper limit for the Bond albedo of A_B < 0.17 in both cases. The observations for both planets are best described by models for which most of the incident energy is redistributed on the dayside, with only less than 10% of the absorbed stellar flux redistributed to the night side of these planets. The data for Kepler-5b favor a model without a temperature inversion, whereas for Kepler-6b they do not allow distinguishing between models with and without inversion.Comment: 26 pages, 18 figures, 3 tables, submitted to Ap

    The third transit of snow-line exoplanet Kepler-421b

    Full text link
    The Kepler Mission has uncovered a handful of long-period transiting exoplanets that orbit from the cold outer reaches of their systems, despite their low transit probabilities. The atmospheres of these cold gas giant exoplanets are amenable to transit transmission spectroscopy enabling tests of planetary formation and evolution theories. Of particular scientific interest is Kepler-421b, a Neptune-sized exoplanet with a 704-day orbital period residing near the snow-line. Since the Kepler Spacecraft only observed two transits of Kepler-421b, the transit ephemeris is relatively uncertain. We observed Kepler-421 during the anticipated third transit of Kepler-421b in order to constrain the existence and extent of transit timing variations (TTVs). Barring significant TTVs, our visible light, time-series observations from the 4.3-meter Discovery Channel Telescope (DCT) were designed to capture pre-transit baseline and the partial transit of Kepler-421b. We find strong evidence in favor of transit models with no TTVs, suggesting that Kepler-421b is either alone in its system or is only experiencing minor dynamic interactions with an unseen companion. With the combined Kepler and DCT observations, we calculate the timing of future transits and discuss the unique opportunity to characterize the atmosphere of this cold, long-period exoplanet via transmission spectroscopy.http://adsabs.harvard.edu/abs/2016DPS....4812208DPublished versio

    Studying atmosphere-dominated hot Jupiter Kepler phase curves: Evidence that inhomogeneous atmospheric reflection is common

    Get PDF
    (abridged) We identify 3 Kepler transiting planets, Kepler-7b, Kepler-12b, and Kepler-41b, whose orbital phase-folded light curves are dominated by planetary atmospheric processes including thermal emission and reflected light, while the impact of non-atmospheric (i.e. gravitational) processes, including beaming (Doppler boosting) and tidal ellipsoidal distortion, is negligible. Therefore, those systems allow a direct view of their atmospheres without being hampered by the approximations used in the inclusion of both atmospheric and non-atmospheric processes when modeling the phase curve shape. Here we analyze Kepler-12b and Kepler-41b atmosphere based on their Kepler phase curve, while the analysis of Kepler-7b was presented elsewhere. The model we used efficiently computes reflection and thermal emission contributions to the phase curve, including inhomogeneous atmospheric reflection due to longitudinally varying cloud coverage. We confirm Kepler-12b and Kepler-41b show a westward phase shift between the brightest region on the planetary surface and the substellar point, similar to Kepler-7b. We find that reflective clouds located on the west side of the substellar point can explain the phase shift. The existence of inhomogeneous atmospheric reflection in all 3 of our targets, selected due to their atmosphere-dominated Kepler phase curve, suggests this phenomenon is common. Therefore it is likely to be present also in planetary phase curves that do not allow a direct view of the planetary atmosphere as they contain additional orbital processes. We discuss the implications of a bright-spot shift on the analysis of phase curves where both atmospheric and gravitational processes appear. We also discuss the potential detection of non-transiting but otherwise similar planets, whose mass is too small to show a gravitational photometric signal but their atmospheric signal is detectable.Comment: V2: Replaced with accepted version, Appendix B Figures 1 and 2 are in decreased resolutio
    corecore