535 research outputs found

    Synthesis of a Versatile Building Block for the Preparation of 6-N-Derivatized α-Galactosyl Ceramides: Rapid Access to Biologically Active Glycolipids

    Get PDF
    A concise route to the 6-azido-6-deoxy-α-galactosyl-phytosphingosine derivative 9 is reported. Orthogonal protection of the two amino groups allows elaboration of 9 into a range of 6-N-derivatized α-galactosyl ceramides by late-stage introduction of the acyl chain of the ceramide and the 6-N-group in the sugar head-group. Biologically active glycolipids 6 and 8 have been synthesized to illustrate the applicability of the approach

    Synthesis and biological activity of α-glucosyl C24:0 and C20:2 ceramides

    Get PDF
    a-Glucosyl ceramides 4 and 5 have been synthesised and evaluated for their ability to stimulate the activation and expansion of human iNKT cells. The key challenge in the synthesis of both target molecules was the stereoselective synthesis of the a-glycosidic linkage. Of the methods examined, glycosylation using per-TMS-protected glucosyl iodide 16 was completely a-selective and provided gram quantities of amine 11, from which a-glucosyl ceramides 4 and 5 were obtained by N-acylation. a-GlcCer 4, containing a C24 saturated acyl chain, stimulated a marked proliferation and expansion of human circulating iNKT cells in short-term cultures. a-GlcCer 5, which contains a C20 11,14-cis-diene acyl chain (C20:2),induced extremely similar levels of iNKT cell activation and expansion

    Tailored design of NKT-stimulatory glycolipids for polarization of immune responses.

    Get PDF
    Natural killer T (NKT) cell is a distinct population of T lymphocytes that can rapidly release massive amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipids presented by CD1d. The secreted cytokines can promote cell-mediated immunity to kill tumor cells and intracellular pathogens, or suppress autoreactive immune cells in autoimmune diseases. Thus, NKT cell is an attractive target for developing new therapeutics to manipulate immune system. The best-known glycolipid to activate NKT cells is α-galactosylceramide (α-GalCer), which has been used as a prototype for designing new NKT stimulatory glycolipids. Many analogues have been generated by modification of the galactosyl moiety, the acyl chain or the phytosphingosine chain of α-GalCer. Some of the analogues showed greater abilities than α-GalCer in polarizing immune responses toward Th1 or Th2 dominance. Among them, several analogues containing phenyl groups in the lipid tails were more potent in inducing Th1-skewed cytokines and exhibited greater anticancer efficacy than α-GalCer. Analyses of the correlation between structure and activity of various α-GalCer analogues on the activation of iNKT cell revealed that CD1d-glycolipid complexes interacted with the same population of iNKT cell expressing similar T-cell receptor Vβ as α-GalCer. On the other hand, those phenyl glycolipids with propensity for Th1 dominant responses showed greater binding avidity and stability than α-GalCer for iNKT T-cell receptor when complexed with CD1d. Thus, it is the avidity and stability of the ternary complexes of CD1d-glycolipid-iNKT TCR that dictate the polarity and potency of immune responses. These findings provide a key to the rationale design of immune modulating glycolipids with desirable Th1/Th2 polarity for clinical application. In addition, elucidation of α-GalCer-induced anergy, liver damage and accumulation of myeloid derived suppressor cells has offered explanation for its lacklustre anti-cancer activities in clinical trials. On other hand, the lack of such drawbacks in glycolipid analogues containing phenyl groups in the lipid tails of α-GalCer coupled with the greater binding avidity and stability of CD1d-glycolipid complex for iNKT T-cell receptor, account for their superior anti-cancer efficacy in tumor bearing mice. Further clinical development of these phenyl glycolipids is warranted

    Synthesis and biological activity of α-galactosyl ceramide KRN7000 and galactosyl (α1→2) galactosyl ceramide

    Get PDF
    We herein report a faster and less cumbersome synthesis of the biologically attractive, α-galactosyl ceramide (α-GalCer), known as KRN7000, and its analogues. More importantly, the use of a silicon tethered intramolecular glycosylation reaction gave easy access to the diglycosyl ceramide Gal(α1→2)GalCer, which has been shown to require uptake and processing to the biologically active α-GalCer derivative

    Galactosylsphingamides : new α-GalCer analogues to probe the F’-pocket of CD1d

    Get PDF
    Invariant Natural Killer T-cells (iNKT-cells) are an attractive target for immune response modulation, as upon CD1d-mediated stimulation with KRN7000, a synthetic alpha-galactosylceramide, they produce a vast amount of cytokines. Here we present a synthesis that allows swift modification of the phytosphingosine side chain by amidation of an advanced methyl ester precursor. The resulting KRN7000 derivatives, termed alpha-galactosylsphingamides, were evaluated for their capacity to stimulate iNKT-cells. While introduction of the amide-motif in the phytosphingosine chain is tolerated for CD1d binding and TCR recognition, the studied alpha-galactosylsphingamides showed compromised antigenic properties

    T helper type 2-polarized invariant natural killer T cells reduce disease severity in acute intra-abdominal sepsis

    Get PDF
    Summary: Sepsis is characterized by a severe systemic inflammatory response to infection that is associated with high morbidity and mortality despite optimal care. Invariant natural killer T (iNKT) cells are potent regulatory lymphocytes that can produce pro- and/or anti-inflammatory cytokines, thus shaping the course and nature of immune responses; however, little is known about their role in sepsis. We demonstrate here that patients with sepsis/severe sepsis have significantly elevated proportions of iNKT cells in their peripheral blood (as a percentage of their circulating T cells) compared to non-septic patients. We therefore investigated the role of iNKT cells in a mouse model of intra-abdominal sepsis (IAS). Our data show that iNKT cells are pathogenic in IAS, and that T helper type 2 (Th2) polarization of iNKT cells using the synthetic glycolipid OCH significantly reduces mortality from IAS. This reduction in mortality is associated with the systemic elevation of the anti-inflammatory cytokine interleukin (IL)-13 and reduction of several proinflammatory cytokines within the spleen, notably interleukin (IL)-17. Finally, we show that treatment of sepsis with OCH in mice is accompanied by significantly reduced apoptosis of splenic T and B lymphocytes and macrophages, but not natural killer cells. We propose that modulation of iNKT cell responses towards a Th2 phenotype may be an effective therapeutic strategy in early sepsis

    The Total Synthesis of Glycolipids from Streptococcus pneumoniae and a Re-evaluation of Their Immunological Activity**

    Get PDF
    Invariant natural killer (iNK) T cells, Type I iNKTs, are responsible for the production of pro-inflammatory cytokines which induce a systemic immune response. They are distinctive in possessing an semi-invariant T-cell receptor that recognizes glycolipid antigens presented by CD1d, a protein closely related to the class I major histocompatibility complex, conserved across multiple mammalian species in a class of proteins well-renowned for their high degree of polymorphism. This receptor\u27s first potent identified antigen is the α-galactosylceramide, KRN7000, a synthetic glycosphingolipid closely related to those isolated from bacteria that were found on a Japanese marine sponge. A corresponding terrestrial antigen remained unidentified until two specific diacylglycerol-containing glycolipids, reported to activate iNKT cells, were isolated from Streptococcus pneumoniae. We report the total synthesis and immunological re-evaluation of these two glycolipids. The compounds are unable to meaningfully activate iNKT cells. Computational modelling shows that these ligands, while being capable of interacting with the CD1d receptor, create a different surface for the binary complex that makes formation of the ternary complex with the iNKT T-cell receptor difficult. Together these results suggest that the reported activity might have been due to an impurity in the original isolated sample and highlights the importance of taking care when reporting biological activity from isolated natural products

    THE ROLE OF INVARIANT NATURAL KILLER T (iNKT) CELL ANERGY IN GLYCOLIPID-MEDIATED PROTECTION AGAINST TYPE 1 DIABETES (T1D)

    Get PDF
    Type 1 diabetes (T1D) results from the destruction of pancreatic islet P cells by self-reactive T cells. Treatment of non-obese diabetic (NOD) mice with the potent iNKT cell agonist a-galactosylceramide C26:0 (a-GalCer) or its TH2-biasing derivative a- galactosylceramide C20:2 (C20:2) confers protection against T1D. After an initial response to a-GalCer, iNKT cells become anergic, exhibiting a significantly blunted response upon subsequent restimulation. Although anergic iNKT cells are more susceptible to apoptosis, they are also responsible for inducing tolerogenic dendritic cells (DCs) upon restimulation, which play an important role in the protection against T1D. My results demonstrate that C20:2 activated iNKT cells enter and recover from anergy more rapidly than a-GalCer, leading to reduced iNKT cell death and the induction of more tolerogenic DCs after a multi-low dose treatment protocol. I propose that these characteristics of C20:2 may render it a more promising drug candidate for the treatment of T1D than a-GalCer
    corecore