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Summary

Sepsis is characterized by a severe systemic inflammatory response to infec-
tion that is associated with high morbidity and mortality despite optimal
care. Invariant natural killer T (iNK T) cells are potent regulatory lympho-
cytes that can produce pro- and/or anti-inflammatory cytokines, thus
shaping the course and nature of immune responses; however, little is known
about their role in sepsis. We demonstrate here that patients with sepsis/
severe sepsis have significantly elevated proportions of iNK T cells in their
peripheral blood (as a percentage of their circulating T cells) compared to
non-septic patients. We therefore investigated the role of iNK T cells in a
mouse model of intra-abdominal sepsis (IAS). Our data show that iNK T
cells are pathogenic in IAS, and that T helper type 2 (Th2) polarization of
iNK T cells using the synthetic glycolipid OCH significantly reduces mortal-
ity from IAS. This reduction in mortality is associated with the systemic
elevation of the anti-inflammatory cytokine interleukin (IL)-13 and reduc-
tion of several proinflammatory cytokines within the spleen, notably inter-
leukin (IL)-17. Finally, we show that treatment of sepsis with OCH in mice is
accompanied by significantly reduced apoptosis of splenic T and B lympho-
cytes and macrophages, but not natural killer cells. We propose that modula-
tion of iNK T cell responses towards a Th2 phenotype may be an effective
therapeutic strategy in early sepsis.
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Introduction

Sepsis is an overwhelming systemic inflammatory response
to infection [1] that remains the leading cause of death
among patients in intensive care units [2,3], with a mortal-
ity rate approaching 35% [4]. Additionally, close to one-
third of mortalities occurs within the first 72 h of admission
[2,5], characterized by an excessive proinflammatory
cytokine response that leads to multiple organ failure and
death [6–8]. Despite a dramatic increase in the incidence of
sepsis over the past 30 years [2], there are no selective thera-
peutic agents available to reduce the morbidity and mortal-
ity of this illness [4,9].

There has been increasing interest in the role of invariant
natural killer T (iNK T) cells in regulating host cytokine
responses [10–14] and bridging the innate and adaptive
immune arms of immunity during sepsis [15–17]. iNK T
cells are an evolutionarily conserved subset of T cells that

are characterized by the expression of an invariant T cell
receptor (TCR)-α chain (Vα24-Jα18 in humans and Vα14-
Jα18 in mice), and reactivity to self- and microbial-derived
glycolipids presented by the monomorphic major histo-
compatibility complex (MHC) class I-like molecule CD1d
[13,18]. Once activated, iNK T cells rapidly secrete pro-
and/or anti-inflammatory cytokines that can subsequently
shape the course and nature of immune responses in a
variety of disease states [13,14,18].

Although a number of studies have established iNK T
cells as potent initiators of an excessive proinflammatory
response that promotes lethality in animal models of sepsis
[19–21], little is known about the role of these cells in the
context of human sepsis. Given their extensive immu-
noregulatory roles, the manipulation of iNK T cells may
provide a potential therapeutic strategy for the treatment of
sepsis [22]. In particular, the availability of glycolipids that
exhibit distinct immunomodulatory properties allows for a
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more comprehensive examination of the function of iNK T
cells, and the consequences of their manipulation in disease
states [11,23–26]. We therefore sought to characterize the
potential of iNK T cell glycolipid agonists to modulate
disease severity in an experimental mouse model of acute
intra-abdominal sepsis (IAS) [27], and to assess the fre-
quency of iNK T cells in patients with sepsis/severe sepsis.

Materials and methods

Patients and clinical samples

Approval of the study protocol for both the scientific and
ethical aspects of this work was obtained from the Western
University Research Ethics Board for Health Sciences
Research Involving Human Subjects (Approval number:
REB103036). This study was conducted in accordance with
the guidelines of the World Medical Association’s Declara-
tion of Helsinki [28].

Patients aged 18 years and older with a diagnosis of
sepsis, severe sepsis or septic shock upon admission to the
Medical–Surgical Intensive Care Unit (MS-ICU) at London
Health Sciences Centre (LHSC) University Hospital and the
Critical Care and Trauma Centre at LHSC Victoria Hospital
were recruited prospectively from 1 July 2012 to 31 Decem-
ber 2012. The first day following ICU admission was con-
sidered day 1 in the analysis. Sepsis, severe sepsis and septic
shock were defined according to established guidelines [29].
Severity of illness was assessed on the Acute Physiology and
Chronic Health Evaluation II (APACHE II) score for the
first 24 h following diagnosis [30,31]. Exclusion criteria
were the presence of immunodeficiency or concomitant
immunosuppressive therapy, pregnancy, Do Not Resuscitate
(DNR) status and cardiac arrest. Informed consent was
obtained directly from each patient or his or her legal repre-
sentative before enrolment.

Standard cultures in biological samples guided by the
presumptive source of the septic insult were performed to
assess the presence of bacterial and fungal infection. Species
identification was conducted by the LHSC Clinical Microbi-
ology Laboratory. Potentially contaminant microorganisms
were not considered. Blood was collected in heparinized
vacuum tubes upon admission of the patient to the
MS-ICU, and peripheral blood mononuclear cells (PBMCs)
were isolated using Ficoll (Invitrogen, Carlsbad, CA, USA)
gradient centrifugation, according to published methods
[32]. PBMCs were subsequently stained for detection of
iNK T cells by flow cytometry.

Animals

All animal experimentation was carried out in strict accord-
ance with the recommendations and guidelines established
by the Canadian Council on Animal Care, as well as institu-
tional regulations. Mouse studies were performed according

to a protocol approved by the Western University Animal
Care and Veterinary Services (Approval number:
2008-034-01).

Female 10–12-week-old mice were used for all experi-
ments. All mice were maintained in a specific pathogen-free
facility at Western University. C57BL/6 (B6) mice were
obtained from Charles River Canada Inc. (St Constant,
Quebec, Canada). Jα18–/– mice, which are on a B6 back-
ground and lack iNK T cells [33], were obtained from Dr
Luc Van Kaer (Vanderbilt University, Nashville, TN, USA).
Green fluorescent protein (GFP)-expressing transgenic mice
are B6 background mice with omnipresent enhanced GFP
expression under the β-actin promoter, and were kindly
provided by Dr Stephen Kerfoot (Western University,
London, ON, Canada).

Murine intra-abdominal sepsis (IAS) model

We utilized a faecal-induced peritonitis model of acute IAS
in mice, as published previously by our group [27]. Briefly,
stool from the caecum of euthanized naive B6 mice was
expressed through an enterotomy, homogenized and sus-
pended in 0·9% normal saline (NS) to produce a faecal
slurry at a final concentration of 90 mg/ml, for use in
experiments on the same day. Mice were injected
intraperitoneally with 500 μl faecal slurry or 0·9% NS
(sham group). The mice were monitored and scored by two
independent investigators – one of whom was blinded to
the treatment – every 2–3 h for the first 12 h, and then every
1–2 h thereafter. A murine sepsis score (MSS) was assigned
to each mouse based on activity, eye movement, response to
exogenous stimuli, breathing rate and pattern and degree of
piloerection [27]. As we have demonstrated previously [27],
the MSS is a reliable and robust scoring system that has
excellent inter-rater reliability (intraclass coefficient = 0·96),
high internal consistency (Cronbach’s α = 0·92) and corre-
lates with levels of certain proinflammatory cytokines such
as interferon (IFN)-γ and interleukin (IL)-1β during the
experimental time-line. Mice were euthanized at 24 h, or
earlier if they were deemed to be in significant distress
based on our scoring model. Euthanasia was carried out as
described above. At the time of euthanasia, intracardiac
blood was drawn into 1·5 ml microcentrifuge tubes (BD
Biosciences, San Jose, CA, USA) and centrifuged for serum
at 1000 g for 15 min at 4°C.

Glycolipids

Lyophilized OCH was generously provided by the National
Institutes of Health (NIH) Tetramer Core Facility (Emory
University, Atlanta, GA, USA). Each vial containing 0·2 mg
of OCH was solubilized in 1 ml of sterile distilled water, and
stored as aliquots at 4°C until use. KRN7000 [α-
galactosylceramide (α-GalCer), C26:0/C18:0)] was pur-
chased from Funakoshi Co. Ltd (Tokyo, Japan), solubilized
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at 1 mg/ml in dimethylsulphoxide (DMSO) and stored as
aliquots at −20°C until use [34]; the control vehicle was 2%
DMSO in phosphate-buffered saline (PBS). C20:2 was syn-
thesized and used as published previously [35,36]. For in
vivo experiments, mice were injected intraperitoneally (i.p.)
with a single dose of glycolipid (4 μg/dose) [35] within
20 min after induction of IAS.

Antibodies

For mouse studies, allophycocyanin (APC)-conjugated
PBS-57-loaded and -unloaded CD1d tetramers for staining
mouse iNK T cells were kindly provided by the NIH
Tetramer Core Facility [35]. Fluorescein isothiocyanate
(FITC)-conjugated anti-TCR-β, APC-conjugated F4/80,
APC-conjugated B220 and phycoerythrin (PE)-conjugated
NK1·1 were purchased from eBiosciences (San Diego, CA,
USA) or BD Biosciences. For human studies, APC-
conjugated PBS-57-loaded and -unloaded CD1d tetramers
for staining human iNK T cells were kindly provided by the
NIH Tetramer Core Facility, while FITC-conjugated anti-
CD3 (SK7), and PE-conjugated anti-CD56 (B159) were
purchased from BD Biosciences.

Determination of microbial growth from tissue
homogenization and peripheral blood

Whole hearts, lungs (left and right), kidneys (left and right),
spleen and liver were removed from euthanized mice and
homogenized in 5 ml of phosphate-buffered saline (PBS).
Homogenates were serially diluted 1:10 in PBS and plated
on brain heart infusion (BHI) agar. Plates were grown aero-
bically at 37°C overnight to determine tissue colony-
forming units (CFU). Intracardiac blood (10 μl) was
collected in a heparinized syringe from the right ventricle,
serially diluted 1:10 with PBS, and plated on BHI agar to
determine blood CFU.

Preparation of murine hepatic, splenic and omental
cell suspensions

To obtain hepatic lymphoid mononuclear cells (MNCs),
mice were euthanized and livers were flushed with sterile
PBS before they were harvested and pressed through a
40-μm nylon mesh. The resulting homogenate was washed
in cold PBS, resuspended in a 33·75% Percoll PLUS solution
(GE Healthcare Bio-Sciences, Pittsburgh, PA, USA) and
spun at 700 g for 12 min at room temperature. The pelleted
cells were then treated with ammonium–chloride–
potassium (ACK) lysis buffer to remove erythrocytes and
washed in cold PBS prior to staining. To obtain omental
lymphoid MNCs, the spleen, pancreas and omentum were
removed en-bloc and suspended in ice-cold PBS. The
omenta floated above the spleen–pancreas complex and
were removed and processed similar to the liver. Spleens

were processed with a tissue homogenizer, and the resulting
homogenate was washed in cold PBS. The pelleted cells
were treated with ACK lysis buffer for 4 min to remove
erythrocytes, and washed in cold PBS prior to staining.

Adoptive transfer of iNK T cells into Jα18–/– mice

Hepatocytes and splenocytes were isolated as described pre-
viously from transgenic GFP mice. CD4+ T cell populations
were obtained using the EasySep® mouse CD4+ T cell
enrichment kit (Stem Cell Technologies, Vancouver, BC,
Canada), as per the manufacturer’s instructions. iNK T cells
were further enriched by sorting with anti-CD3 and anti-
CD1d tetramer on a FACSAriaIII flow cytometric cell sorter
(London Regional Flow Cytometry Facility, London, ON,
Canada). Cell populations were used only when purity was
>95% as determined by flow cytometry. For adoptive trans-
fer experiments, 5 × 105 iNK T cells were transferred intra-
venously (i.v.) into Jα18–/– mice. Eighteen hours after the
transfer, mice were given IAS and monitored as already
described.

Flow cytometry

Mouse hepatic, splenic and omental cells (1 × 106) and
human PBMCs (1 × 106) were washed with cold fluores-
cence activated cell sorter (FACS) buffer [PBS + 2% fetal
bovine serum (FBS) + 0·1% sodium azide] and incubated
with 5 μg/ml anti-mouse CD16/CD32 mAb (clone 2·4G2,
Fc-block; eBiosciences) for 20 min on ice before staining
with fluorescent monoclonal antibodies (mAbs) diluted in
FACS buffer at 4°C for 30–40 min. Cells were then washed
and flow cytometry was performed using FACSCanto II
(BD) with FlowJo software (Treestar, Ashland, OR, USA).
The gating strategy used for the analysis of apoptotic and
necrotic cells is shown in Supporting information, Fig. S1.

Quantitative real-time polymerase chain
reaction (PCR)

Total RNA was isolated from hepatic, splenic and omental
tissues using the TRIzol reagent (Invitrogen) and
resuspended in nuclease-free water (Invitrogen). Quality
control of samples was carried out using a Nanodrop
ND-1000 spectrophotometer. cDNA was prepared using
500 ng of RNA by Superscript III RNase H– reverse
transcriptase with oligo dT priming (Invitrogen). Quantita-
tive real-time PCR reactions were carried out in triplicate
from every transcription reaction using the ABI Prism
7900HT apparatus (Perkin Elmer, Waltham, MA, USA) with
Taqman probes (Invitrogen). The sequences of the primers
and Taqman probes used in this study were as follows:
Vα14: 5′-TGGGAGATACTCAGCAACTCTGG-3′; Jα18:
5′-CAGGTATGACAATCAGCTGAGTCC-3′; and Vα14
probe FAM: 5′-FAM-CACCCTGCTGGATGACACTGC
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CAC-TAMRA-3′. Quantitative analysis was performed by
the comparative ΔΔCt method by using the Taqman
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene
expression assay (Invitrogen) as an internal control.
Minimum Information for Publication of Quantitative
Real-time PCR Experiments (MIQE) guidelines were fol-
lowed [37].

Enzyme-linked immunosorbent assays (ELISA)

Cytokine concentrations were determined by commercially
available specific ELISA assays for IL-4 and IFN-γ (Ready-
Set-Go kits; eBioscience). Optical densities (ODs) were
measured on a Benchmark Microplate Reader (Bio-Rad,
Hercules, CA, USA) at a wavelength of 450 nm for both
cytokines.

Multiplex cytokine quantification assay

Serum was analysed by bead-based multiplex assay for
32 different cytokines, chemokines and growth factors
(Eve Technologies, Calgary, Alberta, Canada), includ-
ing granulocyte–colony stimulating factor (G-CSF),
granulocyte–macrophage colony-stimulating factor (GM-
CSF), IFN-γ, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7,
IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A,
IP-10, keratinocyte chemoattractant (KC), leukaemia
inhibitory factor (LIF), lipopolysaccharide-induced CXC
chemokine (LIX), monocyte chemotactic protein (MCP)-1,
monocyte–colony-stimulating factor (M-CSF), monokine
induced by gamma interferon (MIG), macrophage inflam-
matory protein (MIP)-1α, MIP-1β, MIP-2, regulated on
activation, normal T cell expressed and secreted (RANTES),
tumour necrosis factor (TNF)-α, and vascular endothelial
growth factor (VEGF). Multiplex data was visualized using
a cytokine heat map that was generated using Matrix2png
[38].

Histological analysis and TUNEL staining

Liver, spleen and omentum from sham B6 mice, and
vehicle-, OCH- and KRN7000-treated septic B6 mice were
fixed in 10% neutral buffered formalin, embedded in paraf-
fin, sectioned and stained with haematoxylin and eosin
(H&E) or subjected to terminal deoxynucleotidyl
transferase dUTP nick end labelling (TUNEL) staining
using a commercially available kit (Calbiochem, Billerica,
MA, USA). At least four stained sections per spleen from
four animals per treatment group were examined and
scored for apoptosis by a board-certified veterinary
pathologist (I. W.) who was blinded to the study design.
Apoptosis was defined histologically by the presence of cell
clusters with nuclear shrinkage (karyorrhexis), dark eosino-
philic cytoplasm, intact plasma membrane and relative
paucity of surrounding inflammatory cells within the

splenic follicles on H&E staining [39]. Scores assigned to
each animal were as follows: 0 for complete absence of
apoptosis; 1 for mild presence of apoptosis (0–15% per fol-
licle); 2 for moderate apoptosis (16–30% per follicle); and 3
for severe apoptosis (31–45% per follicle). Photomicro-
graphs were taken using a Nikon DS-Fi1 digital camera
using NIS-elements software.

Statistical analysis

For murine experiments, statistical comparisons were per-
formed using analysis of variance (anova) or Mann-
Whitney U-test (GraphPad Prism). Survival curves were
calculated by the Kaplan–Meier method. For cytokine
analysis, results from multiple experiments were pooled and
analyzed by one-way anova with post-hoc comparisons
using Tukey’s tests.

For human subjects, differences between groups were
assessed using the Mann–Whitney U-test or χ2 test for con-
tinuous and categorical variables, respectively. Survival
curves were calculated by the Kaplan–Meier method and
compared by log-rank test. In all analyses, P < 0·05 was con-
sidered statistically significant.

Results

Peripheral blood iNK T cells are elevated in patients
with sepsis/severe sepsis

We first sought to determine if patients with sepsis had an
altered frequency of iNK T cells in their peripheral blood
compared to non-septic patients. We prospectively evalu-
ated 30 patients who were admitted to LHSC Critical Care
and Trauma Centre for sepsis or non-sepsis-related critical
illness; 23 patients were diagnosed with sepsis/severe sepsis,
while seven patients were non-septic trauma patients
(Table 1). In the non-septic group, three patients (43%) had
sustained traumatic head injuries and four patients (57%)
had emergency surgery for trauma (two liver resections; one
abdominal aortic surgery; one spine stabilization opera-
tion). Groups were similar in age and severity of illness, as
calculated by the APACHE II score [30]. However, the
gender distribution was significantly different between the
two groups, with a preponderance of males in the non-
septic group (P < 0·0001). Most of the patients in the septic
group had intra-abdominal sepsis (44%) or lower respira-
tory tract infections (39%), as confirmed by diagnostic
tests. In 30 and 17% of septic patients, respectively, a single
Gram-positive or Gram-negative pathogen was identified,
while multiple organisms were identified in 30% of the
septic group. In 17% of septic patients, the microbial agent
was not identified, while one patient (4%) had fungal
candidaemia (Table 1).

When lymphocyte subpopulations were assessed by flow
cytometry and compared, the septic group had a higher
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median percentage of T cells among total lymphocytes
(Table 2; Fig. 1a,b). Moreover, the iNK T:T cell ratio was
significantly higher in the septic group (Table 2). Patients in
the septic group stayed in hospital for a significantly longer
time, although in-hospital mortality was similar between
the two groups (Fig. 1c).

iNK T cells are pathogenic in intra-abdominal sepsis

Given our finding of elevated iNK T cell proportions in
human sepsis/severe sepsis, and the studies that have dem-
onstrated the pathogenicity of iNK T cells in animal models
mimicking chronic polymicrobial sepsis [15,22], we studied
iNK T cells in a well-controlled mouse model of acute IAS
[27]. This particular model was chosen for several reasons.

First, it represents a validated model of acute generalized
peritonitis [40], a symptom that affects more than 75% of
patients who are admitted to the hospital with intra-
abdominal sepsis [41]. Secondly, our model results in the
rapid and sustained activation of innate immune response
pathways [27,40], facilitating further study into iNK T cells
and their interaction with the innate and adaptive immune
systems. Because iNK T cells can rapidly produce pro-
and/or anti-inflammatory cytokines in response to stimuli
and shape the subsequent immune responses in various dis-
eases [42,43], we hypothesized that these cells would affect
disease severity and survival in IAS. Compared to B6 mice,
we observed a significant reduction in sepsis severity
(Fig. 2a) and mortality (Fig. 2b) in Jα18–/– mice, which lack
iNK T cells [33]. Whereas an intraperitoneal injection of a

Table 1. Demographics and clinical characteristics of patients with and without sepsis.

Demographic and clinical characteristics Non-septic (n = 7) Septic (n = 23) P-value

Median age (years) 61 59 0·433

Gender, n (%) <0·0001

Male 6 (85) 13 (57)

Female 1 (15) 10 (43)

Mean APACHE II score, n 23 16 0·377

Disease severity on admission, n (%)

Sepsis – 16 (69) –

Severe sepsis – 7 (31) –

Septic shock – 0 (0) –

Source of infection, n (%)

Intra-abdominal – 10 (44) –

Pneumonia – 9 (39) –

Other† – 4 (17) –

Documented microbial agent, n (%)

Gram-positive – 7 (30) –

Gram-negative – 4 (17) –

Fungi – 1 (4) –

Polymicrobial – 7 (30) –

None/unknown – 4 (17) –

†Includes patients with skin and soft-tissue infections (2) and urosepsis (2). APACHE II = Acute Physiology and Chronic Health Evaluation II.

Table 2. Comparison of outcomes among patients with and without sepsis.

Variable Non-septic Septic P-value

Median white blood cell count (×109/l) 10·6 11·5 0·182

Lymphocytes†, % 16·2 17·6 0·252

Lymphocyte subsets‡, %

T cells 36·7 57·8 0·039

NK cells 5·19 12·25 0·274

iNK T cells 0·0041 0·0057 0·138

iNK T:T cell ratio 0·009 0·020 0·047

Mean hospital stay (range), days 12·8 (0–38) 25·2 (4–55) 0·045

In-hospital mortality, n (%) 3 (43) 5 (28) 0·955

Cause of death, n (%) 0·293

Multi-organ failure 1 (14) 4 (17)

Cardiac arrest 1 (14) 0 (0)

Withdrawal of care 1 (14) 1 (4)

†Expressed as a percentage of the total sample analysed on flow cytometry. ‡Expressed as a percentage of lymphocytes. Median populations are pre-

sented. iNK T = invariant natural killer T cells.
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faecal slurry solution (90 mg/ml) in B6 mice resulted in
100% mortality at 24 h (Fig. 2b), the sham B6 and Jα18–/–

groups, which were injected with NS, as well as the septic
Jα18–/– group, remained alive. On necropsy, we observed
discrete abscess collections overlying the intestines and liver
in septic Jα18–/– mice, whereas septic B6 mice developed
intestinal distension and oedema without abscess formation
(unpublished observations). In addition, the adoptive trans-
fer of iNK T cells from GFP transgenic mice into Jα18–/–

mice and subsequent induction of IAS increased disease
severity, in comparison to Jα18–/– mice that did not receive
iNK T cells (Supporting information, Fig. S2a). Together,
these results confirm the pathogenic nature of iNK T cells
in IAS.

Tissue-specific distribution of iNK T cells is altered
in IAS

Previous animal studies using a model of chronic
polymicrobial sepsis found that the frequency of hepatic

iNK T cells declined significantly, whereas splenic iNK T
cells remained unchanged [15]. We sought to determine
whether a similar occurrence would be observed in IAS.
Furthermore, we hypothesized that the omentum, which
has been described as the ‘policeman of the abdomen’ for its
ability to migrate to and mitigate inflammatory reactions
[44], may accommodate increased numbers of iNK T cells
post-sepsis.

Using flow cytometry, we determined the frequencies of
TCRβ+CD1d tetramer– conventional T cells and
TCRβ+CD1d tetramer+ iNK T cells in the spleen, liver and
omentum. In the spleen, the percentages of conventional T
cells and iNK T cells declined significantly post-sepsis
(Fig. 3a), while there was no difference in the distribution of
iNK T or T cells in the liver (Fig. 3a). In the omentum, the
percentages of T cells and iNK T cells increased significantly
post-sepsis (Fig. 3a). In Jα18–/– mice that were adoptively
transferred with iNK T cells from GFP transgenic mice, we
detected the presence of these cells within the omentum
post-sepsis (Supporting information, Fig. S2b).
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Fig. 3. Tissue-specific distribution of invariant natural killer T (iNK T) cells is altered during intra-abdominal sepsis (IAS). (a) The distribution of

CD3+ T and CD3+CD1d tetramer+ iNK T cells in the spleen and omentum is altered significantly in IAS, but remains unchanged in the liver (n = 7,

n = 10 in sham and IAS groups, respectively). Percentages of cell populations are represented as means ± standard errors of the mean. **P < 0·001;

* P < 0·05 by Mann–Whitney U-test (b) Quantitative reverse transcription–polymerase chain reaction (RT–PCR) using custom-designed probes

designed for detecting the invariant T cell receptor (TCR) demonstrates a significantly elevated expression of TCR transcripts within the spleen, liver

and omentum following IAS. Relative fold changes of the expression of the invariant TCR were calculated based on the ΔΔCt method after
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We also sought to quantify the transcriptional expression
of the invariant TCR following IAS, because the surface
receptors of iNK T cells (including TCR and NK1·1) can be
down-regulated upon activation [45,46] and become unde-
tectable by flow cytometry using standard reagents [45].
Using the Taqman assay with custom-designed primers that
overlap the invariant TCR Vα14-Jα18 splice site and
amplify a portion of the TCR [47,48], we observed signifi-
cant increases in the transcriptional expression of the
invariant TCR within the spleen, liver and omentum post-
sepsis (Fig. 3b). Together, these results demonstrate that the
tissue-specific distribution of iNK T cells is altered signifi-
cantly during IAS, and that the transcription of the invari-
ant TCR may be increased post-sepsis.

Th2-polarized iNK T cells reduce disease severity
in IAS

Multiple groups, including ours, have examined the use of
glycolipids to modulate cytokine responses in iNK T cells,
and ameliorate disease severity in autoimmune diseases
such as type 1 diabetes [35,49] and rheumatoid arthritis
[10,12,50]. As the acute phase of intra-abdominal sepsis is
characterized primarily by a marked proinflammatory or
Th1-type response that contributes to mortality [4,51–54],
we hypothesized that administration of a Th2-polarizing
glycolipid would reduce disease severity in sepsis. OCH is
an iNK T cell agonist which results in a Th2-biased cytokine
profile when administered in vivo [43,55]. Similar to previ-
ous studies by our group and others [32,35,43], we demon-
strated that the intraperitoneal injection of OCH into naive
B6 mice results in a rapid peak of serum IL-4 at 2 h, and is
then reduced significantly at 12–24 h (Supporting informa-
tion, Fig. S3a); in contrast, serum levels of the Th1-type
cytokine IFN-γ peaked at 12 h, but were almost undetect-
able at 24 h (Supporting information, Fig. S3a). Administra-
tion of the prototypical iNK T cell agonist KRN7000 [56]
resulted in elevated serum levels of IFN-γ between 12 and
24 h (Supporting information, Fig. S3a). The IL-4:IFN-γ
ratio, calculated based on the peak values of these cytokines,
was higher for OCH compared to KRN7000, indicating that
OCH promotes a Th2-dominant cytokine response in vivo.

Treatment with OCH prolonged survival in septic mice
compared to both vehicle and KRN7000 treatments
(Fig. 4a). Median survival for OCH-treated mice was 28 h
compared to 24 and 22 h for vehicle- and KRN7000-treated
mice, respectively (P < 0·0001 by log-rank test). Mice in the
OCH group survived beyond 24 h, whereas mortality for
vehicle- and KRN7000-treated mice was 100% by 24 h.
OCH-treated mice also had a significantly lower MSS after
24 h compared to vehicle- and KRN7000-treated mice with
IAS (Fig. 4b). However, there were no statistical differences
in MSS between the vehicle and KRN7000 treatments. The
reduced MSS for OCH-treated mice derived from signifi-
cant improvements in respiratory status, an important

clinical predictor of mortality in sepsis [57–60]. Most
vehicle- and KRN7000-treated mice developed respiratory
distress (laboured breathing and reduced respiratory rates)
by 15 h post-sepsis, unlike OCH-treated mice that contin-
ued to have relatively normal respiratory rates even at 24 h.
OCH-treated mice were also more responsive to auditory
and touch stimuli, whereas vehicle- and KRN7000- treated
mice remained non-responsive and slow-moving or station-
ary. In addition, we did not observe any differences in
disease severity between vehicle- and OCH-treated Jα18–/–

mice with IAS (Fig. 4c), consistent with the mechanism for
the beneficial effects of OCH on sepsis severity and mortal-
ity in B6 mice being linked to the specific modulation of
iNK T cells.

Next, we analysed the spleens and livers of septic mice
treated with the glycolipid agonists, but did not detect dif-
ferences in splenic or hepatic T cell distributions (Fig. 4d,e,
respectively). However, we had significantly reduced detec-
tion of iNK T cells in the spleen and liver following
glycolipid treatment (Fig. 4d,e). This reflects the down-
regulation of the surface TCR that occurs with administra-
tion of glycolipid agonists, as shown previously by several
groups, including ours [12,32,43,61] (Fig. 4e and Support-
ing information, Fig. S3b). In particular, we observed a sig-
nificantly lower detection of iNK T cells following
KRN7000 treatment compared to treatment with OCH
(Fig. 4d,4e). The differential degree to which the glycolipids
down-regulate the surface TCR is a reflection of their differ-
ential binding kinetics to iNK T cells. While OCH and
KRN7000 down-regulate the surface TCR within 4–12 h
post-administration, KRN7000 is approximately 10-fold
more potent at down-regulating the TCR after 24 h [61],
leading to the results we observed in Fig. 4d,e.

Anti-inflammatory processes are concomitantly initiated
to mitigate proinflammatory states in sepsis, both systemi-
cally [62–65] and in individual organs [66]. These immu-
nosuppressive mechanisms decrease the responsiveness of
cells of the innate and adaptive immune systems, thereby
increasing susceptibility to opportunistic and additional
infections [67–70]. Importantly, we observed that the use of
OCH, which significantly reduced the production of the
proinflammatory cytokine IFN-γ [12,35,43], did not worsen
the microbial load of septic mice, compared to vehicle and
KRN7000 treatments (Fig. 4f). Therefore, administration of
the Th2-polarizing glycolipid OCH did not result in overt
susceptibility to microbial infection. Additionally, OCH-
treated mice that survived to 48 h demonstrated a signifi-
cantly lower bacterial count in all tested organs, compared
to OCH-treated mice that died at 24 h (data not shown).
Sham mice, as expected, did not demonstrate bacterial
organ counts (data not shown).

Lastly, we tested the effect of a second Th2-polarizing
glycolipid, C20:2, on disease severity in IAS, to confirm
whether the Th2-biased modulation of iNK T cells was
responsible for ameliorating disease severity. C20:2 is a

iNK T cells in intra-abdominal sepsis
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Fig. 4. T helper type 2 (Th2)-polarizing glycolipid OCH reduces disease severity in intra-abdominal sepsis (IAS). C57BL/6 (B6) mice were injected

concomitantly intraperitoneally with faecal slurry (FS; 500 μl of 90 mg/ml solution) to induce intra-abdominal sepsis (IAS), and vehicle, OCH or

KRN7000. (a) OCH-treated mice had prolonged survival significantly compared to vehicle- and KRN7000-treated mice (n = 19, n = 15, n = 8 for

OCH, vehicle and KRN7000 groups, respectively). ***P < 0·001 by log-rank test. (b) OCH-treated mice demonstrated significantly reduced disease

severity compared to vehicle-treated and KRN7000-treated mice (n = 19, n = 15 and n = 8 mice, respectively, for OCH, KRN7000, and vehicle

groups). ***P < 0·001 by two-way analysis of variance (ANOVA) with Bonferroni post-test. (c) iNK T-deficient Jα18–/– mice were given FS (500 μl

of a 90 mg/ml solution) to induce IAS and treated concomitantly with OCH or vehicle. Murine sepsis scores were similar between vehicle and

OCH-treated mice (n = 3 per group). (d,e) Administration of OCH and KRN7000 resulted in significantly reduced detection of CD3+CD1d

tetramer+ invariant natural killer T (iNK T) cells among septic B6 mice compared to vehicle treatments. The percentages of CD3+ T cells remained

unchanged with administration of iNK T-specific glycolipid agonists (n = 6, n = 4, n = 6, and n = 3 for vehicle, OCH, vehicle (KRN7000) and

KRN7000 groups, respectively). *P < 0·05; **P < 0·01 by Mann–Whitney U-test. (f) Bacterial counts in blood and multiple organs were similar

between vehicle-, OCH- and KRN7000-treated mice with sepsis (n = 7–9 per group). Data are representative of at least three independent

experiments.
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potent agonist with a capacity to bind and activate iNK T
cells that is significantly stronger than OCH [35,43]; admin-
istration of C20:2 in naive B6 mice also resulted in a more
pronounced Th2 response at 24 h than OCH [35,43] (Sup-
porting information, Fig. S3a). When septic B6 mice were
treated with C20:2, we observed a significant reduction in
MSS between 20 and 24 h compared to vehicle-treated mice
(Supporting information, Fig. S4a), with improved respira-
tory status at the observed time-points. These results
confirm the novelty of manipulating iNK T cells into a Th2-
biased state for the mitigation of disease severity in IAS.
However, the MSS continued to rise in C20:2-treated mice,
in contrast to OCH, where the MSS reached a plateau
(Fig. 4b). Based on these results, we elected to focus on
OCH and the means by which it improves mortality in
IAS.

The proinflammatory cytokine profile in IAS is
ameliorated by administration of OCH

In order to further understand the impact of the glycolipid
agonists on the septic response, we assessed the concentra-
tions of 32 cytokines and chemokines from the sera and
spleens of vehicle-, OCH- and KRN7000-treated septic
mice, as well as sham-treated mice, at 24 h (Fig. 5a–c). We
focused on this time-point because we have shown previ-
ously that the systemic levels of proinflammatory cytokines
demonstrate the strongest correlation with the MSS at 24 h
[27], whereupon we also observed the largest differences
between glycolipid treatments. In the serum, mean concen-
trations of IL-17 were significantly lower in the OCH-
treated mice compared to KRN7000-treated mice. The
concentration of IL-13 was higher in the sera of OCH-
treated mice compared to KRN7000- and vehicle-treated
mice. In the spleen, IFN-γ, IL-3, IL-4, IL-17 and TNF-α
were elevated significantly in the KRN7000-treated group
compared to the OCH-treated group. Therefore, the admin-
istration of OCH significantly reduced the levels of
proinflammatory cytokines in IAS.

Treatment with OCH reduces splenocyte apoptosis
significantly in IAS

We next sought to elucidate the reason for the improved
survival among septic mice that were treated with OCH.
When we performed histopathological analysis on the
spleen, liver and omentum of septic B6 mice treated with
KRN7000 or OCH (Fig. 6a), we found a significant reduc-
tion of apoptotic cells within the spleens of OCH-treated
mice compared to vehicle- and KRN7000-treated mice. The
presence of karyorrhexic nuclei within clusters of cells with
eosinophilic cytoplasm was observed in the white pulp of
the spleen by H&E staining, and subsequently confirmed as
apoptotic cells by TUNEL staining, particularly in vehicle-
and KRN7000-treated mice. Based on histopathological

scoring, OCH-treated mice had mild apoptosis, whereas
vehicle-treated and KRN7000-treated mice had moderate
and severe apoptosis, respectively (Fig. 6b).

In the omentum of vehicle- and KRN7000-treated mice
we noted a significant increase in lymphocytes, whereas
fewer lymphocytes were observed in the omentum of
OCH-treated mice (Fig. 6a). We did not observe overt dif-
ferences in liver histopathology among vehicle-, OCH- and
KRN-treated mice. When we examined the histology of
C20:2-treated septic mice, we observed a decrease in
apoptosis compared to KRN7000-treated mice. However,
the degree of apoptosis in C20:2-treated mice were higher
than OCH-treated mice with IAS (Supporting informa-
tion, Fig. S4b).

We then performed flow cytometry on spleens harvested
from vehicle-, OCH- and KRN7000-treated mice with IAS
to determine the immune cell populations that had under-
gone apoptosis (Fig. 7). Treatment with OCH reduced the
apoptosis of T and B cells significantly compared to vehicle-
and KRN7000-treated mice. However, there were no differ-
ences in the frequency of apoptotic macrophages between
the KRN7000 and OCH groups, although both treatments
reduced the frequency of apoptosis significantly compared
to vehicle-treated mice. With respect to NK cell apoptosis,
we observed a trend towards reduced apoptosis in
KRN7000-treated mice. Together, these results demonstrate
that different glycolipid agonists of iNK T cells differentially
mitigate the apoptosis of splenic lymphocytes, but not NK
cells and macrophages. Moreover, Th2-polarizing
glycolipids reduce lymphocyte apoptosis significantly
within the spleen, a critical predictor of mortality in severe
sepsis and septic shock [71–73].

Discussion

iNK T cells exert profound and diverse regulatory functions
in health and disease, bridging the innate and adaptive
defence mechanisms in a variety of immune responses
[14,18,74]. Here, we demonstrate that patients with sepsis/
severe sepsis have significantly elevated proportions of
iNK T cells and that OCH, a Th2-polarizing glycolipid
agonist of iNK T cells, profoundly reduces disease severity
in acute IAS, with significantly reduced lymphocyte
apoptosis within the spleen. These findings introduce iNK T
cells as potential therapeutic targets for the treatment of
sepsis.

Glycolipid ligands of iNK T cells have been used success-
fully in experimental models of autoimmune diseases
[12,35,49,50], transplantation [23,25] and malignancy
[33,75]. KRN7000 [56] reduced morbidity and mortality
associated with murine graft-versus-host disease [25,76],
while OCH mitigated disease severity in non-obese diabetic
mice [49], experimental autoimmune encephalomyelitis
[55] and collagen-induced arthritis [10,50]. OCH also pre-
vented disease symptoms in a humanized mouse model of
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citrullinated fibrinogen-induced inflammatory arthritis
[12], and delayed Th1-mediated cardiac allograft rejection
in mice [23].

In our study, we show that the administration of OCH
ameliorated the severe proinflammatory Th1-type response
associated with IAS and reduced mortality. Although
proinflammatory cytokines such as IFN-γ and TNF-α con-
tribute to immune responses against bacterial infections
[77], elevated levels of these cytokines are also associated
with poor outcomes and decreased survival in sepsis
[8,27,78]. Pinsky et al. [8] demonstrated that a significant
proportion of patients who die from sepsis have markedly
elevated levels of proinflammatory cytokines compared to
survivors of sepsis, while Bozza and colleagues [6] corre-
lated elevated levels of proinflammatory cytokines with
early mortality (within 24–48 h of admission). We therefore
elected to utilize an acute, non-resuscitative mouse model
of septic shock characterized by a markedly elevated
proinflammatory cytokine profile [27], in order to mimic
septic patients at significant risk for early mortality. As con-

firmed in this study, the treatment of septic mice with
KRN7000 resulted in a Th1-type response at 24 h [14,43,79]
and did not affect disease severity. In addition, elevated
levels of the Th2 cytokine, IL-13, may be contributing to the
significant improvements in respiratory status and disease
severity that we observed in OCH-treated mice. A potent
anti-inflammatory cytokine [80,81], IL-13, is produced in
large quantities by alveolar macrophages in the lung during
polymicrobial sepsis [80], and has been shown to protect
mice from endotoxic shock when administered in vivo [82].
Because a compromised respiratory status significantly
increases morbidity and mortality in sepsis [57–59], the
selective Th2-biased modulation of iNK T cells may tip the
overall balance of the cytokine response in favour of a
Th2 response and provide a novel strategy to prevent this
complication.

The relative deficiency of proinflammatory cytokines has
also been associated with increased susceptibility to addi-
tional infections. However, we did not observe an increase
in microbial load within the blood and organs of

0

3

2

1

4

Sham

S
ha

m

IAS +
Vehicle

IA
S

 +
 v

eh
ic

le

IAS +
KRN7000

IA
S

 +
 K

R
N

70
00

Treatment

IAS +
OCH

IA
S

 +
 O

C
H

∗∗∗
∗∗∗

Spleen
H&E (20×)

Spleen
TUNEL

Spleen
H&E (4×)

Omentum
H&E

Liver
H&E

(b)

(a)

A
po

pt
os

is
 s

co
re

Fig. 6. Histopathology of septic B6 mice treated

with glycolipid agonists of invariant natural
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significantly reduced apoptosis within the
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KRN7000-treated mice with intra-abdominal
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migration to the omentum is also ameliorated

in OCH-treated mice compared to vehicle- and

KRN7000-treated mice. There were no

histopathological differences in the liver. Images

are representative of four animals per treatment

group (size bar, 50 μm). (b) Histopathological

scoring of the degree of apoptosis observed

within the spleens of sham and septic B6 mice

treated with vehicle, KRN7000 or OCH (n = 4

animals per treatment group). Apoptosis was
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(31–45% per follicle). ***P < 0·0001 by

two-tailed Mann–Whitney U-test.
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OCH-treated mice compared to vehicle-treated mice with
IAS. As OCH is a less potent agonist than KRN7000, with
lower binding affinity for the invariant TCR compared to
the latter [43,61], the administration of a single dose of
OCH may have affected only a portion of iNK T cells,
thereby abrogating rather than eliminating the proinflam-
matory response. In addition, other immune cells which are
not directly affected by glycolipid administration may con-
tinue to participate in bacterial clearance, including NK
cells, which also produce significant amounts of IFN-γ [77].
Any differences in microbial counts between KRN7000- and
vehicle-treated mice may have been masked by the excessive
proinflammatory response that is inherent in our sepsis
model [27]. Lastly, our study also confirms that the

manipulation of iNK T cells alone can dramatically alter
outcomes in sepsis, given that iNK T-deficient mice are
resistant to mortality from sepsis, and disease severity was
unaffected by glycolipid treatment in these animals.

Interestingly, the use of C20:2, another Th2-polarizing
glycolipid that is significantly more potent at inducing a
Th2 bias compared to OCH [35,36,83] and suppresses
downstream NK cell function [43], also mitigated sepsis
severity significantly. Unlike OCH, however, C20:2-treated
mice continued to worsen, while the histopathology of the
spleen demonstrated a higher degree of apoptosis following
treatment with C20:2 compared to OCH; these findings
may be explained by the relatively short half-life of C20:2
compared to OCH [35,43]. Nevertheless, the results of our
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Fig. 7. Analysis of apoptotic cell populations in the spleens of septic B6 mice. Splenocytes from sham and septic B6 mice treated with OCH,

KRN7000 or vehicle were stained for T, B and natural killer (NK) cells and macrophages, and stained further for annexin V (a marker for early

apoptosis) and 7-aminoactinomycin D (7-AAD) viability dye. Early and late apoptotic cells (annexin V+ 7AAD– and annexin V+ 7AAD+ cells,

respectively) were quantified and compared between treatments. OCH treatment significantly reduced apoptosis among T and B cells, as well as

macrophages, but not NK cells (n = 3–6 mice per group). *P < 0·05; **P < 0·01; ***P < 0·001 by one-way analysis of variance with Tukey’s post-hoc

multiple comparison test. Data are representative of three independent experiments.
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study suggest that the Th2-biased manipulation of iNK T
cells may be a viable therapeutic strategy in sepsis, although
optimization of the timing and frequency of glycolipid
usage may be needed to provide the most effective results.

We also show that the tissue-specific distribution of
iNK T cells is altered during IAS, with significant reductions
in the spleen and a concomitant rise in the omentum. The
human omentum has been described as the ‘policeman of
the abdomen’ for its ability to adhere to sites of intra-
abdominal pathology and prevent widespread pathogen
contamination [84,85]. Similarly, the murine omentum has
been shown to facilitate the regeneration of damaged tissues
[44]. These results, as well as the findings of Lynch et al.
who demonstrated that the human omentum contained a
rich reservoir of iNK T cells [86], prompted us to examine
the murine omentum, wherein we observed a significant
increase in iNK T cells post-sepsis. Our observation that the
omentum became enlarged during IAS correlates with find-
ings by Shah et al. [44], and represents a unique feature of
this organ that has not been noted in other secondary lym-
phoid structures such as lymph nodes or spleens. T cells
were also noted to be increased significantly in the
omentum during IAS, corroborating observations made by
Carlow et al. [87] in a caecal ligation and puncture (CLP)
model of polymicrobial sepsis. Our results with respect to
the tissue-specific distribution of iNK T cells post-sepsis
contrast with the findings of Hu et al. [15], who demon-
strated a significant reduction in hepatic iNK T cells but no
changes in the frequency of splenic iNK T cells in the CLP
model. We propose that splenic iNK T cells mobilize more
readily during acute sepsis compared to hepatic iNK T cells,
as a recent study by Barral et al. [17] showed that splenic
iNK T cells patrol the red pulp and marginal zones of the
spleen, rapidly sample blood-borne antigens and display
migratory capabilities. This may explain our observed
changes in splenic iNK T cell frequency post-sepsis, and
additionally suggests that the iNK T cells we detected in the
omentum post-sepsis may have originated from the spleen,
given that the two organs are physically attached to each
other [44]. Interestingly, we observed a contrast between the
surface detection of the invariant TCR and detection of the
invariant TCR transcripts within splenic iNK T cells post-
sepsis. Given that different subsets of iNK T cells (CD4+,
CD4–CD8-, NK1·1+ and NK1·1– populations) differ in their
gene expression [88] and cytokine profiles [89], and may
also differ in their organ distribution, splenic iNK T cells
may be delayed in their surface re-expression of the invari-
ant TCR compared to hepatic and omental iNK T cells, even
though they may be transcriptionally active.

In this study, we also demonstrate that Th2-polarized
iNK T cells reduce apoptosis significantly within the spleen,
particularly among T and B cells as well as macrophages.
iNK T cells can rapidly sense, and are activated by,
apoptotic cell death [90,91]. Wermeling et al. [91] showed
that in B6 mice injected with apoptotic cells, activated

iNK T cells reduce B cell survival. Moreover, the cytokine
profile of these iNK T cells was altered towards a Th2-type
response, albeit in ex-vivo splenocyte cultures rather than in
vivo [91]. Our group has demonstrated previously that
Th2-polarized iNK T cells undergo less apoptosis in a
model of autoimmune diabetes compared to Th1-biased
iNK T cells [36]. No studies to date, however, have exam-
ined the impact of modulating iNK T cell phenotype on
sepsis-induced apoptosis. The latter is an especially impor-
tant phenomenon with significant immunological and
clinical implications. The apoptosis of T and B cells signifi-
cantly impairs the adaptive immune response and, by disa-
bling cross-talk between the adaptive and innate immune
systems, also impairs the latter [9,66,92]. These mechanisms
lead to an immunosuppressive phase in septic patients,
which may result in additional secondary infections that
substantially increase mortality [9,92]. Hotchkiss et al.
observed a striking apoptosis-induced loss of cells of the
innate and adaptive immune systems in the spleen during
sepsis, including CD4+ and CD8+ T cells, B cells and
dendritic cells [51,73]. Additionally, T cells that come into
contact with macrophages and dendritic cells that have
ingested apoptotic cells either become anergic or undergo
apoptosis themselves [93]. Therefore, the significant reduc-
tion in splenic lymphocyte apoptosis following treatment
with OCH may preserve the function and efficacy of
immune cells, prevent anergy and mitigate the immunosup-
pressive phase during sepsis. Interestingly, apoptosis of NK
cells appeared to be reduced by treatment with OCH and
KRN7000, although the trend is more pronounced for the
latter. Because NK cells also produce significant amounts of
IFN-γ [77], their apoptosis in the spleens of vehicle- and
OCH-treated mice may explain the reduced levels of splenic
IFN-γ in these two groups.

We have also demonstrated that the proportion of circu-
lating iNK T cells (as a percentage of circulating T cells) is
elevated early in the septic process for critically ill patients,
corroborating a recently published study by Heffernan et al.
[94]. We elected to present and compare the iNK T:T cell
ratio in our study for two reasons: because of their relative
paucity, small differences in the number of iNK T cells
between populations may not be observed if only their
absolute numbers are considered. In addition, we observed
large variations in the numbers of lymphocytes, T cells and
NK cells among septic patients due to the heterogeneity of
their infections. Accounting for this variation necessitated
the calculation of iNK T cells as a fraction of the overall
circulating T cell repertoire in each patient. Given their pro-
pensity to rapidly produce significant quantities of pro-
and/or anti-inflammatory cytokines, the increased propor-
tion of iNK T cells suggests that these cells may play a
prominent role in promulgating the immune response in
septic patients. Furthermore, the proportion of iNK T cells
is not increased in patients who have sustained significant
inflammatory responses due to trauma, suggesting that
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these cells may be responding specifically to microbial
pathogens in humans. Consequently, the detection of
increased proportions of iNK T cells may also serve as an
important biomarker to differentiate septic from non-septic
patients early in the disease process, thereby facilitating
rapid and targeted interventions for the disease.

Given the failure of many immunotherapeutic drugs in
the treatment of sepsis [95,96], alternative agents have been
sought to combat this disease with some success [97–103].
The results of our study demonstrate that iNK T cells
should be further considered as potential targets for immu-
notherapy in sepsis, and that modulation of the iNK T cell
phenotype towards a Th2 response has a protective effect
during acute infection.
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Additional Supporting information may be found in the
online version of this article at the publisher’s web-site:

Fig. S1. Gating strategy to identify the percentage of
apoptotic and necrotic immune cell populations. CD3-
allophycocyanin (APC) is shown as an example, but the
same strategy was used for macrophages (F480-APC), B
cells (B220-APC) and natural killer (NK) cells [NK1·1-
phycoerythrin (PE)].
Fig. S2. Adoptive transfer of invariant natural killer T
(iNK T) cells into iNK T-deficient Jα18–/– mice. iNK T cells
were isolated and sorted from green fluorescent protein

(GFP)-expressing transgenic mice, and injected intrave-
nously into Jα18–/– mice. After 18 h, mice were administered
a faecal slurry (500 μl of a 90 mg/ml solution)
intraperitoneally to induce intra-abdominal sepsis (IAS)
and monitored for 24 h. (a) Adoptive transfer of iNK T cells
significantly increased the severity of sepsis compared to
Jα18–/– mice that did not receive iNK T cells. (b) Adoptively-
transferred iNK T cells moved into the omentum of Jα18–/–

mice following IAS, as detected by flow cytometry, com-
pared to adoptively transferred iNK T cells in sham Jα18–/–

mice.
Fig. S3. Effect of glycolipid agonists on cytokine expression
in naive B6 mice, and on invariant natural killer T (iNK T)
cells in septic B6 mice. (a) Naive B6 mice were injected
intraperitoneally with 4 μg OCH or KRN7000 or C20:2,
and bled at 2, 12 and 24 h post-injection. Serum samples
were assayed for interleukin (IL)-4 and interferon (IFN)-γ
by enzyme-linked immunosorbent assay (ELISA). Each data
point shows mean (± standard error of the mean) of two or
three mice from one representative experiment. Vehicle-
treated mice had cytokine levels below limits of detection.
(b) B6 mice were given an intraperitoneal injection of faecal
slurry (500 μl of a 90 mg/ml solution) to induce intra-
abdominal sepsis (IAS) and treated concomitantly with 4 μg
of vehicle, OCH or KRN7000. After 24 h, mice were killed
and cell suspensions from the liver and spleen were stained
for the flow cytometric detection of CD1dtetramer + T cell
receptor (TCR)β+ iNK T cells.
Fig. S4. C57BL/6J (B6) mice were injected intraperitoneally
with 500 μl of faecal slurry (FS) (90 mg/ml) to induce intra-
abdominal sepsis (IAS), and injected concomitantly with
4 μg of the glycolipid C20:2 or vehicle solution. (a) Murine
sepsis scores for septic mice treated with C20:2 or vehicle
(n = 5, n = 10 mice for C20:2 and vehicle groups, respec-
tively). ***P < 0·001 by two-way analysis of variance test.
(b) After 24 h, septic B6 mice treated with C20:2 were
killed, and the liver, spleen and omentum were removed
and processed for histopathological analysis. These images
are representative of five septic B6 mice that were treated
with C20:2 (size bar, 25 μm).
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