305 research outputs found

    Key-recovery attacks on KIDS, a keyed anomaly detection system

    Get PDF
    Most anomaly detection systems rely on machine learning algorithms to derive a model of normality that is later used to detect suspicious events. Some works conducted over the last years have pointed out that such algorithms are generally susceptible to deception, notably in the form of attacks carefully constructed to evade detection. Various learning schemes have been proposed to overcome this weakness. One such system is Keyed IDS (KIDS), introduced at DIMVA "10. KIDS" core idea is akin to the functioning of some cryptographic primitives, namely to introduce a secret element (the key) into the scheme so that some operations are infeasible without knowing it. In KIDS the learned model and the computation of the anomaly score are both key-dependent, a fact which presumably prevents an attacker from creating evasion attacks. In this work we show that recovering the key is extremely simple provided that the attacker can interact with KIDS and get feedback about probing requests. We present realistic attacks for two different adversarial settings and show that recovering the key requires only a small amount of queries, which indicates that KIDS does not meet the claimed security properties. We finally revisit KIDS' central idea and provide heuristic arguments about its suitability and limitations

    Defacement Detection with Passive Adversaries

    Get PDF
    A novel approach to defacement detection is proposed in this paper, addressing explicitly the possible presence of a passive adversary. Defacement detection is an important security measure for Web Sites and Applications, aimed at avoiding unwanted modifications that would result in significant reputational damage. As in many other anomaly detection contexts, the algorithm used to identify possible defacements is obtained via an Adversarial Machine Learning process. We consider an exploratory setting, where the adversary can observe the detector’s alarm-generating behaviour, with the purpose of devising and injecting defacements that will pass undetected. It is then necessary to make to learning process unpredictable, so that the adversary will be unable to replicate it and predict the classifier’s behaviour. We achieve this goal by introducing a secret key—a key that our adversary does not know. The key will influence the learning process in a number of different ways, that are precisely defined in this paper. This includes the subset of examples and features that are actually used, the time of learning and testing, as well as the learning algorithm’s hyper-parameters. This learning methodology is successfully applied in this context, by using the system with both real and artificially modified Web sites. A year-long experimentation is also described, referred to the monitoring of the new Web Site of a major manufacturing company

    Randomized Anagram Revisited

    Get PDF
    When compared to signature-based Intrusion Detection Systems (IDS), anomaly detectors present the potential advantage of detecting previously unseen attacks, which makes them an attractive solution against zero-day exploits and other attacks for which a signature is unavailable. Most anomaly detectors rely on machine learning algorithms to derive a model of normality that is later used to detect suspicious events. Such algorithms, however, are generally susceptible to evasion by means of carefully constructed attacks that are not recognized as anomalous. Different strategies to thwart evasion have been proposed over the last years, including the use of randomization to make somewhat uncertain how each packet will be processed. In this paper we analyze the strength of the randomization strategy suggested for Anagram, a well-known anomaly detector based on n-gram models. We show that an adversary who can interact with the system for a short period of time with inputs of his choosing will be able to recover the secret mask used to process packets. We describe and discuss an efficient algorithm to do this and report our experiences with a prototype implementation. Furthermore, we show that the specific form of randomization suggested for Anagram is a double-edged sword, as knowledge of the mask makes evasion easier than in the non-randomized case. We finally discuss a simple countermeasure to prevent our attacks.Publicad

    A Novel Ensemble Model Using Learning Classifiers to Enhance Malware Detection for Cyber Security Systems

    Get PDF
    In the Internet of Things arena, smart gadgets are employed to offer quick and dependable access to services. IoT technology has the ability to recognize extensive information, provide information reliably, and process that information intelligently. Data networks, controllers, and sensors are increasingly used in industrial systems nowadays. Attacks have increased as a result of the growth in connected systems and the technologies they employ. These attacks may interrupt international business and result in significant financial losses. Utilizing a variety of methods, including deep learning (DL) and machine learning (ML), cyber assaults have been discovered. In this research, we provide an ensemble staking approach to efficiently and quickly detect cyber-attacks in the IoT. The NSL, credit card, and UNSW information bases were the three separate datasets used for the experiments. The suggested novel combinations of ensemble classifiers are done better than the other individual classifiers from the base model. Additionally, based on the test outcomes, it could be concluded that all tree and bagging-based combinations performed admirably and that, especially when their corresponding hyperparameters are set properly, differences in performance across methods are not significant statistically. Additionally, compared to other comparable PE (Portable Executable) malware detectors that were published recently, the suggested tree-based ensemble approaches outperformed them

    Using secure coprocessors to enforce network access policies in enterprise and ad hoc networks

    Get PDF
    Nowadays, network security is critically important. Enterprises rely on networks to improvetheir business. However, network security breaches may cause them loss of millions of dollars.Ad hoc networks, which enable computers to communicate wirelessly without the need forinfrastructure support, have been attracting more and more interests. However, they cannotbe deployed effectively due to security concerns.Studies have shown that the major network security threat is insiders (malicious orcompromised nodes). Enterprises have traditionally employed network security solutions(e.g., firewalls, intrusion detection systems, anti-virus software) and network access controltechnologies (e.g., 802.1x, IPsec/IKE) to protect their networks. However, these approachesdo not prevent malicious or compromised nodes from accessing the network. Many attacksagainst ad hoc networks, including routing, forwarding, and leader-election attacks, requiremalicious nodes joining the attacked network too.This dissertation presents a novel solution to protect both enterprise and ad hoc networksby addressing the above problem. It is a hardware-based solution that protects a networkthrough the attesting of a node's configuration before authorizing the node's access to thenetwork. Attestation is the unforgeable disclosure of a node's configuration to another node,signed by a secure coprocessor known as a Trusted Platform Module (TPM).This dissertation makes following contributions. First, several techniques at operatingsystem level (i.e., TCB prelogging, secure association root tripping, and sealing-free attestation confinement) are developed to support attestation and policy enforcement. Second, two secure attestation protocols at network level (i.e., Bound Keyed Attestation (BKA) andBatched Bound Keyed Attestation (BBKA)) are designed to overcome the risk of a man-inthe-middle (MITM) attack. Third, the above techniques are applied in enterprise networks todifferent network access control technologies to enhance enterprise network security. Fourth,AdHocSec, a novel network security solution for ad hoc networks, is proposed and evaluated. AdHocSec inserts a security layer between the network and data link layer of the networkstack. Several algorithms are designed to facilitate node's attestation in ad hoc networks,including distributed attestation (DA), and attested merger (AM) algorithm

    Attacks against intrusion detection networks: evasion, reverse engineering and optimal countermeasures

    Get PDF
    Intrusion Detection Networks (IDNs) constitute a primary element in current cyberdefense systems. IDNs are composed of different nodes distributed among a network infrastructure, performing functions such as local detection --mostly by Intrusion Detection Systems (IDS) --, information sharing with other nodes in the IDN, and aggregation and correlation of data from different sources. Overall, they are able to detect distributed attacks taking place at large scale or in different parts of the network simultaneously. IDNs have become themselves target of advanced cyberattacks aimed at bypassing the security barrier they offer and thus gaining control of the protected system. In order to guarantee the security and privacy of the systems being protected and the IDN itself, it is required to design resilient architectures for IDNs capable of maintaining a minimum level of functionality even when certain IDN nodes are bypassed, compromised, or rendered unusable. Research in this field has traditionally focused on designing robust detection algorithms for IDS. However, almost no attention has been paid to analyzing the security of the overall IDN and designing robust architectures for them. This Thesis provides various contributions in the research of resilient IDNs grouped into two main blocks. The first two contributions analyze the security of current proposals for IDS nodes against specific attacks, while the third and fourth contributions provide mechanisms to design IDN architectures that remain resilient in the presence of adversaries. In the first contribution, we propose evasion and reverse engineering attacks to anomaly detectors that use classification algorithms at the core of the detection engine. These algorithms have been widely studied in the anomaly detection field, as they generally are claimed to be both effective and efficient. However, such anomaly detectors do not consider potential behaviors incurred by adversaries to decrease the effectiveness and efficiency of the detection process. We demonstrate that using well-known classification algorithms for intrusion detection is vulnerable to reverse engineering and evasion attacks, which makes these algorithms inappropriate for real systems. The second contribution discusses the security of randomization as a countermeasure to evasion attacks against anomaly detectors. Recent works have proposed the use of secret (random) information to hide the detection surface, thus making evasion harder for an adversary. We propose a reverse engineering attack using a query-response analysis showing that randomization does not provide such security. We demonstrate our attack on Anagram, a popular application-layer anomaly detector based on randomized n-gram analysis. We show how an adversary can _rst discover the secret information used by the detector by querying it with carefully constructed payloads and then use this information to evade the detector. The difficulties found to properly address the security of nodes in an IDN motivate our research to protect cyberdefense systems globally, assuming the possibility of attacks against some nodes and devising ways of allocating countermeasures optimally. In order to do so, it is essential to model both IDN nodes and adversarial capabilities. In the third contribution of this Thesis, we provide a conceptual model for IDNs viewed as a network of nodes whose connections and internal components determine the architecture and functionality of the global defense network. Such a model is based on the analysis and abstraction of a number of existing proposals for IDNs. Furthermore, we also develop an adversarial model for IDNs that builds on classical attack capabilities for communication networks and allow to specify complex attacks against IDN nodes. Finally, the fourth contribution of this Thesis presents DEFIDNET, a framework to assess the vulnerabilities of IDNs, the threats to which they are exposed, and optimal countermeasures to minimize risk considering possible economic and operational constraints. The framework uses the system and adversarial models developed earlier in this Thesis, together with a risk rating procedure that evaluates the propagation of attacks against particular nodes throughout the entire IDN and estimates the impacts of such actions according to different attack strategies. This assessment is then used to search for countermeasures that are both optimal in terms of involved cost and amount of mitigated risk. This is done using multi-objective optimization algorithms, thus offering the analyst sets of solutions that could be applied in different operational scenarios. -------------------------------------------------------------Las Redes de Detección de Intrusiones (IDNs, por sus siglas en inglés) constituyen un elemento primordial de los actuales sistemas de ciberdefensa. Una IDN está compuesta por diferentes nodos distribuidos a lo largo de una infraestructura de red que realizan funciones de detección de ataques --fundamentalmente a través de Sistemas de Detección de Intrusiones, o IDS--, intercambio de información con otros nodos de la IDN, y agregación y correlación de eventos procedentes de distintas fuentes. En conjunto, una IDN es capaz de detectar ataques distribuidos y de gran escala que se manifiestan en diferentes partes de la red simultáneamente. Las IDNs se han convertido en objeto de ataques avanzados cuyo fin es evadir las funciones de seguridad que ofrecen y ganar así control sobre los sistemas protegidos. Con objeto de garantizar la seguridad y privacidad de la infraestructura de red y de la IDN, es necesario diseñar arquitecturas resilientes para IDNs que sean capaces de mantener un nivel mínimo de funcionalidad incluso cuando ciertos nodos son evadidos, comprometidos o inutilizados. La investigación en este campo se ha centrado tradicionalmente en el diseño de algoritmos de detección robustos para IDS. Sin embargo, la seguridad global de la IDN ha recibido considerablemente menos atención, lo que ha resultado en una carencia de principios de diseño para arquitecturas de IDN resilientes. Esta Tesis Doctoral proporciona varias contribuciones en la investigación de IDN resilientes. La investigación aquí presentada se agrupa en dos grandes bloques. Por un lado, las dos primeras contribuciones proporcionan técnicas de análisis de la seguridad de nodos IDS contra ataques deliberados. Por otro lado, las contribuciones tres y cuatro presentan mecanismos de diseño de arquitecturas IDS robustas frente a adversarios. En la primera contribución se proponen ataques de evasión e ingeniería inversa sobre detectores de anomalíaas que utilizan algoritmos de clasificación en el motor de detección. Estos algoritmos han sido ampliamente estudiados en el campo de la detección de anomalías y son generalmente considerados efectivos y eficientes. A pesar de esto, los detectores de anomalías no consideran el papel que un adversario puede desempeñar si persigue activamente decrementar la efectividad o la eficiencia del proceso de detección. En esta Tesis se demuestra que el uso de algoritmos de clasificación simples para la detección de anomalías es, en general, vulnerable a ataques de ingeniería inversa y evasión, lo que convierte a estos algoritmos en inapropiados para sistemas reales. La segunda contribución analiza la seguridad de la aleatorización como contramedida frente a los ataques de evasión contra detectores de anomalías. Esta contramedida ha sido propuesta recientemente como mecanismo de ocultación de la superficie de decisión, lo que supuestamente dificulta la tarea del adversario. En esta Tesis se propone un ataque de ingeniería inversa basado en un análisis consulta-respuesta que demuestra que, en general, la aleatorización no proporciona un nivel de seguridad sustancialmente superior. El ataque se demuestra contra Anagram, un detector de anomalías muy popular basado en el análisis de n-gramas que opera en la capa de aplicación. El ataque permite a un adversario descubrir la información secreta utilizada durante la aleatorización mediante la construcción de paquetes cuidadosamente diseñados. Tras la finalización de este proceso, el adversario se encuentra en disposición de lanzar un ataque de evasión. Los trabajos descritos anteriormente motivan la investigación de técnicas que permitan proteger sistemas de ciberdefensa tales como una IDN incluso cuando la seguridad de algunos de sus nodos se ve comprometida, así como soluciones para la asignación óptima de contramedidas. Para ello, resulta esencial disponer de modelos tanto de los nodos de una IDN como de las capacidades del adversario. En la tercera contribución de esta Tesis se proporcionan modelos conceptuales para ambos elementos. El modelo de sistema permite representar una IDN como una red de nodos cuyas conexiones y componentes internos determinan la arquitectura y funcionalidad de la red global de defensa. Este modelo se basa en el análisis y abstracción de diferentes arquitecturas para IDNs propuestas en los últimos años. Asimismo, se desarrolla un modelo de adversario para IDNs basado en las capacidades clásicas de un atacante en redes de comunicaciones que permite especificar ataques complejos contra nodos de una IDN. Finalmente, la cuarta y última contribución de esta Tesis Doctoral describe DEFIDNET, un marco que permite evaluar las vulnerabilidades de una IDN, las amenazas a las que están expuestas y las contramedidas que permiten minimizar el riesgo de manera óptima considerando restricciones de naturaleza económica u operacional. DEFIDNET se basa en los modelos de sistema y adversario desarrollados anteriormente en esta Tesis, junto con un procedimiento de evaluación de riesgos que permite calcular la propagación a lo largo de la IDN de ataques contra nodos individuales y estimar el impacto de acuerdo a diversas estrategias de ataque. El resultado del análisis de riesgos es utilizado para determinar contramedidas óptimas tanto en términos de coste involucrado como de cantidad de riesgo mitigado. Este proceso hace uso de algoritmos de optimización multiobjetivo y ofrece al analista varios conjuntos de soluciones que podrían aplicarse en distintos escenarios operacionales.Programa en Ciencia y Tecnología InformáticaPresidente: Andrés Marín López; Vocal: Sevil Sen; Secretario: David Camacho Fernánde
    corecore