
This is a postprint version of the following published document:

J. E. Tapiador, A. Orfila, A. Ribagorda and B. Ramos,
"Key-Recovery Attacks on KIDS, a Keyed Anomaly
Detection System," in IEEE Transactions on
Dependable and Secure Computing, vol. 12, no. 3, pp.
312-325, May-June 2015.

DOI: 10.1109/TDSC.2013.39

 ©2015 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Universidad
uc3m Carlos Ill

de Madrid
0 -Archivo

https://doi.org/10.1109/TDSC.2013.39

1

Key-recoveryAttacksonKIDS,aKeyed
AnomalyDetectionSystem

JuanE.Tapiador,AgustinOrfla,ArturoRibagorda,BenjaminRamos

Abstract—Mostanomalydetectionsystemsrelyon machinelearningalgorithmstoderivea modelofnormalitythatislaterusedto

detectsuspiciousevents.Someworksconductedoverthelastyearshavepointedoutthatsuchalgorithmsaregenerallysusceptible

todeception,notablyintheformofattackscarefullyconstructedtoevadedetection.Variouslearningschemeshavebeenproposedto

overcomethisweakness.OnesuchsystemisKIDS(KeyedIDS),introducedatDIMVA’10.KIDS’coreideaisakintothefunctioningof

somecryptographicprimitives,namelytointroduceasecretelement(thekey)intotheschemesothatsomeoperationsareinfeasible

withoutknowingit.InKIDSthelearned modelandthecomputationoftheanomalyscorearebothkey-dependent,afact which

presumablypreventsanattackerfromcreatingevasionattacks.Inthisworkweshowthatrecoveringthekeyisextremelysimple

providedthattheattackercaninteractwithKIDSandgetfeedbackaboutprobingrequests. Wepresentrealisticattacksfortwodifferent

adversarialsettingsandshowthatrecoveringthekeyrequiresonlyasmallamountofqueries,whichindicatesthatKIDSdoesnotmeet

theclaimedsecurityproperties. WefnallyrevisitKIDS’centralideaandprovideheuristicargumentsaboutitssuitabilityandlimitations.

IndexTerms—AdversarialClassifcation,AnomalyDetection,IntrusionDetectionSystems,SecureMachineLearning.

✦

1 INTRODUCTION

MANY computersecurityproblemscanbeessen-
tiallyreducedtoseparating maliciousfromnon-

maliciousactivities. Thisis,forexample,thecaseof
spamfiltering,intrusiondetection,ortheidentification
offraudulentbehavior.But,ingeneral,definingina
preciseandcomputationallyuseful way whatisharm-
lessor whatisoffensiveisoftentoocomplex.Toover-
comethesedifficulties, mostsolutionstosuchproblems
havetraditionallyadoptedamachine-learningapproach,
notablythroughtheuseofclassifierstoautomatically
derive modelsof(goodand/orbad)behaviorthatare
later usedtorecognizetheoccurrenceof potentially
dangerousevents.

Recent work(see,e.g.,[1],[2]foranoverview)has
accuratelypointedoutthatsecurityproblemsdifferfrom
otherapplicationdomainsof machinelearningin,at
least,onefundamentalfeature:thepresenceofanad-
versary whocanstrategicallyplayagainstthealgorithm
toaccomplishhisgoals.Thusforexample,one major
objectivefortheattackeristoavoiddetection.Evasion
attacksexploit weaknessesintheunderlyingclassifiers,
whichareoftenunabletoidentifya malicioussample
thathasbeenconveniently modifiedsoastolooknor-
mal. Examplesofsuchattacksabound.Forinstance,
spammersregularlyobfuscatetheiremailsinvarious
waystoavoiddetection,e.g.by modifying wordsthat
are usuallyfoundinspam,orbyincludingalarge
numberof wordsthatdonot(e.g.,[8],[23]).Similarly,

• Theauthorsarewiththe DepartmentofComputerScience, Universidad
CarlosIIIde Madrid,28911Leganes, Madrid,Spain.
E-mail:jestevez@inf.uc3m.es(J.E.Tapiador),adiaz@inf.uc3m.es(A. Or-
fila),arturo@inf.uc3m.es(A.Ribagorda),benja1@inf.uc3m.es(B.Ramos).

malwareandotherpiecesofattackcodecanbecarefully
adaptedsoastoevadeIntrusionDetectionSystems(IDS)
withoutcompromisingthefunctionalityoftheattack
(see,e.g.,[6],[9]).

Afewdetectionschemesproposedoverthelastfew
yearshaveattemptedtoincorporatedefensesagainst
evasionattacks. Onesuchsystemis KIDS(KeyedIn-
trusion DetectionSystem)[12],introducedby Mrdovic
and Drazenovicat DIMVA’10. KIDSisanapplication-
layernetworkanomalydetectionsystemthatextractsa
numberoffeatures(“words”)fromeachpayload.The
systemthenbuildsa modelofnormalitybasedbothon
thefrequencyofobservedfeaturesandtheirrelativepo-
sitionsinthepayload.KIDS’coreideatoimpedeevasion
attacksistoincorporatethenotionofa“key”,thisbeing
asecretelementusedtodeterminehowclassification
featuresareextractedfromthepayload.Thesecurity
argumenthereissimple:eventhoughthelearningand
testingalgorithmsarepublic,anadversary whoisnot
inpossessionofthekey willnotknowexactlyhowa
request willbeprocessedand,consequently, willnotbe
abletodesignattacksthatthwartdetection.

Strictlyspeaking,KIDS’ideaof“learning withase-
cret”is notentirely new: Wangetal.introducedin
[22]Anagram,anotherpayload-basedanomalydetection
systemthataddressestheevasion problemin quite
asimilar manner. We distinguish here betweentwo
broadclassesofclassifiersthatuseakey.Inthefirst
group,that wetermrandomizedclassifiers,theclassifier
isentirelypublic(or,equivalently,istrainedwithpublic
informationonly). However,indetection modesome
parameters(thekey)arerandomlychoseneverytimean
instancehastobeclassified,thus makinguncertainfor
theattackerhowtheinstance willbeprocessed. Note

2

that, in this case, the same instance will be processed
differently every time if the key is randomly chosen.
We emphasize that randomization can also be applied
at training time, although it may only be sufficiently
effective when used during testing, at least as far as
evasion attacks are concerned. KIDS belongs to a second
group, that we call keyed classifiers. In this case, there
is one secret and persistent key that is used during
a period of time, possibly because changing the key
implies retraining the classifier. If Kerckhoffs’ principle
is to be followed, it must be assumed that the security of
the scheme depends solely on the secrecy of the key and
the procedure used to generate it. Anagram can be used
both as randomized or as a keyed classifier, depending
on the variant used. We will further discuss this later in
Section 6.

1.1 Contributions

In this work, we make the following contributions:

1) We argue that any keyed anomaly detection system
(or, more generally, any keyed classifier) must pre-
serve one fundamental property: The impossibility
for an attacker to recover the key under any reason-
able adversarial model. We deliberately choose not
to analyze how difficult is for an attacker to evade
detection if the classifier is keyed. We believe that
this is a related, but different problem.

2) We pose the key-recovery problem as one of adver-
sarial learning. By adapting the adversarial setting
proposed by Lowd and Meek [10] in a related
problem (revese engineering of a classifier), we
introduce the notion of gray- and black-box key-
recovery attacks.

3) We present two instantiations of such attacks for
KIDS, one for each model. Our attacks take the
form of query strategies that make the classifier
leak some information about the key. Both are very
efficient and show that KIDS does not meet the
fundamental security property discussed above.
Furthermore, we have implemented and experi-
mentally confirmed the correctness of our attacks.

4) Building on related work in the broader field of
secure machine learning (e.g., [1], [2], [3], [5], [10],
[13], [14], [15]), we pose some additional questions
and provide constructive discussion about the suit-
ability, limitations, and possible structure of keyed
classifiers.

The remainder of this paper is organized as follows.
In Section 2 we provide a brief overview of related
work in the field of adversarial machine learning. For
completeness, a description of KIDS is given in Section
3. In Section 4 we introduce the adversarial model
adopted, describe and analyze our attacks, and discuss
the results obtained experimentally. KIDS’s core idea is
revisited and further discussed in Section 5, and Section
6 concludes the paper.

2 RELATED WORK
2.1 Classif er Evasion and Adversarial Learning
Dalvi et al. explored in [5] the problem of computing
optimal strategies to modify an attack so that it evades
detection by a Naı̈ve Bayes classifier. They formulate the
problem in game-theoretic terms, where each modifica-
tion made to an instance comes at a price, and successful
detection and evasion have measurable utilities to the
classifier and the adversary, respectively. The authors
study how to detect such optimally modified instances
by adapting the decision surface of the classifier, and
also discuss how the adversary might react to this.

The setting used in [5] assumes an adversary with full
knowledge of the classifier to be evaded. Shortly after,
Lowd and Meek [10] studied how evasion can be done
when such information is unavailable. They formulate
the adversarial classifier reverse engineering problem
(ACRE) as the task of learning sufficient information
about a classifier to construct attacks, instead of looking
for optimal strategies. The authors use a membership
oracle as implicit adversarial model: the attacker is given
the opportunity to query the classifier with any chosen
instance to determine whether it is labeled as malicious
or not. Consequently, a reasonable objective is to find in-
stances that evade detection with an affordable number
of queries. A classifier is said to be ACRE learnable if
there exists an algorithm that finds a minimal-cost in-
stance evading detection using only polynomially-many
queries. Similarly, a classifier is ACRE k-learnable if the
cost is not minimal but bounded by k. Among the results
given in [10], it is proved that linear classifiers with
continuous features are ACRE k-learnable under linear
cost functions. Therefore, these classifiers should not
be used in adversarial environments. Subsequent work
by Nelson et al. [14], [15] generalizes these results to
convex-inducing classifiers, showing that it is generally
not necessary to reverse engineer the decision boundary
to construct undetected instances of near-minimal cost.

For the interested reader, Nelson et al. [13] have
recently surveyed some open problems and challenges
related to the classifier evasion problem. More generally,
some additional works have revisited the role of ma-
chine learning in security applications, with particular
emphasis on anomaly detection [7], [17], [18], [19].

2.2 Strategies to Thwart Evasion
Kolesnikov et al. [9] demonstrate that polymorphic
mimicry worms, based on encryption and data encoding
to obfuscate their content, are able to evade frequency
distribution-based anomaly detectors like PAYL [21].
PAYL models byte-value frequency distributions (i.e., 1-
grams), so detection can be avoided by padding anoma-
lous sequences with an appropriate amount of nor-
mal traffic. In order to counteract polymorphic mimicry
worms, PAYL authors developed Anagram [22], an
anomaly detector that models n-grams observed in nor-
mal traffic. Anagram also introduces a new strategy,

3

called randomization, to hinder evasion. There are two
possible kinds of randomization, namely randomized
modeling and randomized testing. In the former, pack-
ets are split into several substrings using a randomly-
generated bitmask. Substrings coming from the same
packet position are modeled and tested separately. Since
the bitmask is kept secret, an attacker only succeeds
if he manages to craft an attack vector such that the
data is normal with respect to any randomly selected
portion of a packet. This clearly makes evasion harder,
but substantially increases the overhead of the IDS.
Alternatively, randomized testing also partitions packets
randomly into several chunks, but tests each of them
against the same classifier, which does not incur any
substantial overhead.

Randomization and/or using an ensemble of classi-
fiers have also been proposed in the context of spam
detection. For example, Biggio et al. [3] studied how
to introduce randomness in the design of the classifier,
preventing the adversary from having exact knowledge
about one or more system parameters. A similar ap-
proach was presented by Perdisci et al. in [16]. The work
in [3] uses multiple classifiers and randomly chooses
the weights assigned to each classifier in the decision.
The task for the attacker is much harder then, since he
can never guess the detector’s configuration. The main
problem of this strategy is that it can influence negatively
the overall detection performance, particularly increas-
ing the false positive rate.

Zhou et al. [23] presented similar strategies to thwart
good-word attacks on spam filters. Their scheme trans-
forms each email into a bag of multiple segments (in-
stances), and then applies multiple-instance logistic re-
gression to the bags. An email is classified as spam
if at least one instance in the corresponding bag is
spam; otherwise it is marked as legitimate. This bags-
of-words strategy performs better than single-instance
learners such as Support Vector Machines (SVMs) or
Naı̈ve Bayes. A similar approach was explored in [20]
to detect masquerade mimicry attacks.

2.3 Towards Secure Machine Learning
Barreno et al. [1], [2] have pondered on the risks of
applying machine learning algorithms to security do-
mains. They introduce a taxonomy that groups attacks
on machine learning systems into different categories,
depending on whether the adversary influences training
or just analyzes an already trained system; whether the
goal is to force just one misclassification, or else to
generate too many so the system becomes unusable; etc.
The authors also provide useful discussion on potential
countermeasures and enumerate various open problems.

3 KIDS – A KEYED INTRUSION DETECTION
SYSTEM
In 2010, Mrdovic and Drazenovic [12] proposed Keyed
Intrusion Detection System (KIDS), a key dependent net-

work anomaly detector that inspects packet payloads.
The proposal tries to adapt to intrusion detection sys-
tems Kerckhoffs’ principle stating that a cryptosystem
should be secure even if everything about the system,
except the key, is public knowledge.

3.1 Training mode
KIDS divides each payload into words. A word is defined
as a sequence of bytes located between two delimiters,
these being any two special bytes belonging to a secret
set D. A key D consists therefore of a chosen set of
delimiters. Each key produces a unique set of normal
words and, accordingly, a unique classifier.

KIDS is trained using normal (i.e., attack-free) pay-
loads only. Given a key, each payload in the training
set is segmented into words and the frequency of each
word is counted. In addition, the number of occurrences
of pairs of words (called transitions) is also counted. The
model consists of these two lists: one with each observed
word, wi, and its frequency, n(wi); and another with
each observed transition, wi → wj , and its frequency,
n(wi → wj).

3.2 Detection mode
In the detection phase, KIDS assigns an anomaly score,
S(p), to each incoming payload p. Subsequently, p is
labeled as anomalous if S(p) > τ , where τ is a conve-
niently chosen threshold.

The anomaly score is given by the product of two
separate scores. The first, termed the word score and
denoted Sw(p), is computed as:

Sw(p) =
1

k

k∑

i=1

1

n(wi)
(1)

where k is the number of words in p and n(wi) the num-
ber of appearances of wi, as computed during training. If
a word wi that did not appear during training appears in
p (i.e., n(wi) = 0), the corresponding term in the sum is
set to 2 instead of infinity. Thus, every previously unseen
word contributes twice to Sw(p) compared to a word that
was seen once (n(wi) = 1).

The transition score, denoted St(p), is calculated ac-
cording to a similar formula:

St(p) =
1

m

m∑

i=1

1

n(ti)
(2)

where m is the number of transitions in p (i.e., k − 1)
and n(ti) is the frequency of transition ti in the learned
model.

The overall score S(p) assigned to a payload is ob-
tained as:

S(p) = Sw(p) ∗ St(p) (3)

Thus, the appearance of frequent words and transitions
contributes to mantain S(p) low, and vice versa.

4

3.3 Key selection
Keys in KIDS are selected so as to ensure good detection
quality. The ROC (Receiver Operating Characteristic)
curve is chosen in [12] as the method to quantify how
well a particular key performs. The authors employ a
labeled dataset consisting of attack-free HTTP traffic and
tailored attacks generated with Metasploit [11]. An initial
key composed of 20 delimiters (CR, LF, TAB, SPACE, ‘,’,
‘.’, ‘:’, ‘/’, ‘,́ ‘&’, ‘?’, ‘=’, ‘(’, ‘)’, ‘[’, ‘]’, ‘”’, ‘;’, ‘<’, ‘>’) was
first selected using domain-specific knowledge, and the
obtained ROC curve shows the model thus built is quite
effective.

The authors explored next whether similar results can
be obtained using random keys. Different keys of size
15, 20, 25, and 30 were generated by choosing random
delimiters with values between 0 and 255. According to
their experimental results, some of these random keys
yield, in terms of ROC curves, detection results as good
as those obtained with the human-generated key. The
paper suggests to repeat this procedure every time a new
key has to be chosen.

4 KEY-RECOVERY ATTACKS ON KIDS
In this section we describe various attacks on KIDS
aimed at recovering the secret set of delimiters (i.e., the
key). We group these attacks into two broad classes,
depending on what feedback from KIDS the attacker
may have access to. Before presenting our attacks, we
first describe the adversarial model adopted and give
grounds for our main assumptions.

4.1 Adversarial Model and Notation
When assessing the security of systems such as KIDS,
one major problem comes from the absence of widely
accepted adversarial models giving a precise description
of the attacker’s goals and his capabilities. Barreno et
al. [2] have recently introduced one such model for
secure machine learning and discussed various general
attack categories. Our work does not fit well within
Barreno et al.’s model because our main goal is not to
attack the learning algorithm itself, but to recover one
piece of secret information that, subsequently, may be
essential to succesfully launch an evasion attack. In some
respects, our work is far more similar to that of Lowd
and Meek [10], where the focus is on the role of active
experimentation with a classifier. In such a scenario, it
is absolutely essential for the attacker to be able to: (1)
send queries to the classifier; and (2) get some feedback
about properties of the query as processed by the system.
We emphasize that the ability to do this is close to the
bare minimum required to analyze the security of any
scheme. In our case, our central assumption is given
next.

Assumption 1: The attacker can interact with KIDS by
providing some chosen input (i.e., a payload) and ob-
serving the outcome. We distinguish two cases here, de-
pending on what sort of output information from KIDS

the attacker has access to. In a gray-box model, we assume
the anomaly score is observable by the attacker. Alterna-
tively, we refer to a black-box model when the adversary
has access only to the binary label normal/anomalous
given to the input payload.

We believe that both models could be realistic for a
variety of scenarios. Firstly, the ability to feed the IDS
with inputs is available to everyone who can access the
service protected by the IDS. Thus for example, such
queries would be arbitrarily chosen payloads sent to an
HTTP, FTP, SQL, etc. server.

Getting feedback from the IDS seems a priori more
problematic, but it would be unsafe to assume that this
knowledge is unavailable to the attacker. In the case of
the black-box model, one potential scenario involves an
attacker who can determine whether an alarm has been
generated or not. This information could be obtained
by observing the network and checking if an alarm is
sent to the security officer, either directly by observing
the channel or indirectly through some side channels. If
the attacker is an insider, even one with few privileges,
obaining this information may be easier. The gray-box
model is stronger in the sense that getting access to the
anomaly score seems rather unrealistic. Apart from the
merely theoretical interest, we believe that the score may
be also obtained by the attacker if, for example, such a
value is included in the alarm sent to the security officer.
Some real-world IDS do this in order to provide the
decision maker with as much information as possible
about the potential attack. Thus, if such alarms are not
encrypted, an observer could get access to the score.

A related question is that attacking the system in-
volves sending numerous payloads to it, many of which
will generate alarms. This may obviously raise suspi-
cions, so the attacker must be careful, e.g., by spreading
them over a period of time. Alternatively, the attacker
may be given the ability to block the alerts during some
time. This will be enough if the time the attacker needs
to recover the key is sufficiently low, which will depend
on the overall complexity of the attack.

In any case, we subscribe to the generally accepted
philosophy [2]: “While we think that this is the most accurate
assumption for most cases, if we do err, we wish to follow the
common practice in computer security research of erring on
the side of overestimating the attacker’s capabilities rather than
underestimating them.”

For clarity, we summarize in Fig. 1 the notation used
in the remainder of this paper.

4.2 Key-recovery on Gray-box KIDS
In this attack we assume the attacker has access to
the anomaly score assigned to a chosen payload. Fur-
thermore, it is reasonable to assume that some normal
payloads are known too. (Consider, for example, the case
of an IDS analyzing HTTP requests sent to a publicly
accessible web server, where a large number of such
payloads will be known by the attacker.) Let p be

5

Symbol Meaning

wi, ξi Words
wi ‖ wj Concatenation

wi → wj Transition from wi to wj

d, di Delimiters
D = {d1, . . . , d|D|} Secret key (delimiters)

p, q, r, t Payloads
p[i] i-th byte of payload p

n(x) Number of occurences of x
Sw(p) Word score for p
St(p) Transition score for p
S(p) Overall score for p

α St value assigned to a pay-
load with no transitions

β Frequency assigned to a
word/transition unseen dur-
ing training

anom(p) Anomaly label (true or
false) given to p

Fig. 1. Notation used.

one such normal payload. A straightforward strategy
to identify what elements of p belong to the key D
consists of feeding KIDS with the first byte of p, then
with the first two bytes of p, and so on. When the
next-to-the-last byte happens to be a delimiter, KIDS
will detect a transition where the left word is likely to
have been seen during training, whereas the right word
is often unknown (since it is truncated). At this point,
the anomaly score will suffer a slight decrement. By
conveniently repeating the procedure, all the delimiters
present in p can be recovered.

Regardless of the technical details, the main drawback
of the naı̈ve strategy discussed above is that the attacker
will only be able to recover those key elements present
in the normal payloads available, which may well be
just a fraction of all of them. Besides, the complexity of
such an attack is linear in the number of payloads and
their lengths. We next describe a different approach that
obtains all the key elements more efficiently and without
directly relying on normal payloads.

The attack works by constructing a probing payload
as follows. Let p = w1 ‖ d ‖ w2, where:

(i) n(w1) > 0
(ii) n(w2) = 0

(iii) n(w1 ‖ d ‖ w2) = 0

Finding such w1 and w2 is not difficult following the
procedure discussed above. The technical details (i.e.,
how to detect a word by analyzing changes in the
anomaly score) will be clear after this section and are
also provided in Section 4.4.

We now feed KIDS with p and observe the result-
ing anomaly score. There are two cases, depending on
whether d is part of the key D or not:

• Case 1: d /∈ D
In such a case, p is processed as just one word, which

in turn has not been previously seen as n(w1 ‖ d ‖
w2) = 0. Consequently, we have

Sw(p) = β (4)

where β is the value assigned to a previously unseen
word or transition. Even though in KIDS this value
is set to 2, in our analysis we consider the more
general case. Likewise

St(p) = α (5)

where α is the St value given by KIDS to a payload
containing just one word and, therefore, no tran-
sitions. Even though such a case is not discussed
in [12], the intuition dictates that either α = 1
(and therefore the transition score does not have
any influence on the overall score), or else α > 1
(possibly with α = 2, in order to be consistent
with the rationale about β) and it is considered a
“transition” unseen during training. In any case, the
overall anomaly score would be

S(p) = βα (6)

• Case 2: d ∈ D
In this case, p is split into two words, w1 and w2.
Thus we have

Sw(p) =
1

2

(
1

n(w1)
+ β

)

(7)

and
St(p) = β (8)

since, by construction, n(w1) > 0 and n(w2) = 0, so
therefore no transition w1 → w2 could have been
seen during training. Therefore, the overall score
given to p is

S(p) = β

[
1

2

(
1

n(w1)
+ β

)]

(9)

Now expressions (6) and (9) can be used to analyze
S(p) and tell whether d is part of the key or not. Assume
that the attacker repeats the procedure for each possible
value of d. Since α, β and n(w1) are constant values, the
256 possible values of d are split into two sets: those
producing an anomaly score of βα and those for which

the result is β

[

1
2

(

1
n(w1)

+β

)]

. Note that both values will

only be equal if α = 1
2

(

1
n(w1)

+ β

)

, which is extremely

unlikely as w1 is unknown to the defender. Furthermore,
even if the defender chooses α and β so as to force this
equality to hold, it has to be done only for one particular
w1 that, besides, is unknown at the time of the attack.

Obviously, the attacker does not know the concrete
values of (6) and (9). However, he can group together all
the delimiters d that produce the same score, obtaining
the sets D1 and D2. Note that these two sets form a
partition of the set of delimiters, one of them being the
complete key. Determining which one is the key is now

6

Gray-box Key Recovery

Input:
w1, w2 such that n(w1) > 0, n(w2) = 0

Algorithm:
1. D1 ← ∅
2. D2 ← ∅
3. for d = 0 to 255 do
4. p← (w1 ‖ d ‖ w2)

5. if S(p) = S(w1 ‖ d̂ ‖ w2) ∀d̂ ∈ D1 then
6. D1 ← D1 ∪ {d}
7. else
8. D2 ← D2 ∪ {d}
9. end-if

10. end-for
11. q ← w2

12. if S(q) = S(w1 ‖ d̂ ‖ w2) ∀d̂ ∈ D1 then
13. return D2

14. else
15. return D1

Fig. 2. Key-recovery attack on gray-box KIDS.

easy. Assume that the attacker now queries KIDS with a
payload q = w2, which will be assigned the score S(q) =
βα. Now, if the delimiters in D1 were assigned exactly
the same score, i.e., S(q), then the key is the set D2.
Otherwise, the key is D1. We make a final remark on the
impossibility of repairing the scheme by using concrete
values of α and β, as exactly the same attack can be
applied no matter what constants are used.

The overall key-recovery attack is summarized in the
algorithm given in Fig. 2.

4.2.1 Complexity
The attack makes exactly 257 queries to KIDS: 256 with
each tentative key element d, plus one final query to
determine which subset corresponds to the key. It is
worth noting that the attack always takes 257 queries,
regardless of the key size |D|. In other words, the key is
not recovered by checking all the

(
256
|D|

)
= 256!

|D|!(256−|D|)!

possible keys, but rather all the possible constituent
elements one by one.

Later in Section 4.4 we give procedures to get words
w1 and w2 for settings where the attacker does not know
them. Obtaining such words incurs a few additional
queries to KIDS.

4.3 Key-recovery on Black-box KIDS
In this section we present a key-recovery attack when the
only information about a payload an adversary gets from
KIDS is its classification label, i.e., whether it is normal
or anomalous. In some respects, this information is less
fine-grained than the anomaly score, so it is reasonable
to expect that attacks working under this assumption
will be slightly more complex.

The central idea behind our attack is actually quite
simple. We will provide KIDS with a normal payload
concatenated with a carefully constructed tail. Such a
tail contains a large number of unseen words separated
by the candidate delimiter. If the delimiter does not
belong to the key, the entire tail will be processed as
just one word and the anomaly score will be roughly
similar to that of the original payload. If this is the
case, then the payload will be marked as normal with
high probability. Conversely, if the delimiter does belong
to the key, the tail will be fragmented into a large
number of previously unseen words and transitions.
This will negatively impact the anomaly score, invariably
resulting in an anomalous payload. We next provide a
more formal description and analysis of the attack.

Assume a payload q composed of words ξ1, . . . , ξk
separated by delimiters dj1 , . . . , djk−1

, i.e., q = ξ1 ‖ dj1 ‖
ξ2 ‖ dj2 ‖ · · · ‖ djk−1

‖ ξk. Assume too that q is
normal, i.e. anom(q) = false. Let w2 be a word unseen
during training, i.e., n(w2) = 0. We now construct a
probing payload p consisting of payload q followed by
a tail t, where t is formed by the concatenation of ℓ
repetitions of w2 separated by the candidate delimiter
d; i.e., t = d ‖ w2 ‖ d ‖ w2 ‖ d ‖ · · · ‖ d ‖ w2 and p = q ‖ t.

We next analyze the behavior of KIDS when p is
provided as input. Again, there are two cases, depending
on whether d is part of the key D or not:

• Case 1: d /∈ D
In this case, p is split into k words: the first k − 1
original words already present in q plus the tail t
preceded by ξn. Thus, we have

Sw(p) =
1

k

(k−1∑

i=1

1

n(ξi)
+

1

n(ξk ‖ t)

)

=
1

k

(k−1∑

i=1

1

n(ξi)
+ β

) (10)

We also have

Sw(q) =
1

k

k∑

i=1

1

n(ξi)
(11)

Now using (11), expression (10) can be rewritten as

Sw(p) =
1

k

(

kSw(q)−
1

n(ξk)
+ β

)

= Sw(q) +
1

k

(

β −
1

n(ξk)

) (12)

Similarly, for the transition score we have

St(p) =
1

k − 1

(k−2∑

i=1

1

n(ξi → ξi+1)
+

1

n(ξk−1 → (ξk ‖ t))

)

=
1

k − 1

(k−2∑

i=1

1

n(ξi → ξi+1)
+ β

)

(13)

7

Again, (13) can be expressed in terms of St(q) as

St(p) =
1

k − 1

(

(k − 1)St(q)−

1

n(ξk−1 → ξk)
+ β

)

= St(q) +
1

k − 1

(

β −
1

n(ξk−1 → ξk)

)

(14)
Note that, in both (12) and (14), the only difference
with respect to Sw(q) and St(q) is the addition of a
positive term. For convenience, let us call them

∆w =
1

k

(

β −
1

n(ξk)

)

(15)

and

∆t =
1

k − 1

(

β −
1

n(ξk−1 → ξk)

)

(16)

Thus we have Sw(p) = Sw(q) + ∆w and St(p) =
St(q) +∆t. The resulting anomaly score is therefore

S(p) = Sw(p)St(p)
= (Sw(q) + ∆w)(St(q) + ∆t)
= Sw(q)St(q) + Sw(q)∆t + St(q)∆w +∆w∆t

= S(q) + (Sw(q)∆t + St(q)∆w +∆w∆t)
= S(q) + ∆

(17)
The right-hand side term ∆ in (17) depends on
k and q’s anomaly score. An upper bound for its
contribution to p’s anomaly score can be derived as
follows. On the one hand

Sw(q) < β and St(q) < β (18)

Note, however, that q is normal and therefore both
scores will be significantly lower than β. On the
other hand

∆w <
β

k
and ∆t <

β

k − 1
(19)

Thus

∆ = Sw(q)∆t + St(q)∆w +∆w∆t

<
β2

k
+

β2

k − 1
+

β2

k(k − 1)

<
β2

k − 1
+

β2

k − 1
+

β2

k − 1
=

3β2

k − 1

(20)

Recall, that anom(p) = false iff S(p) = S(q)+∆ < τ .
As the increment ∆ in q’s anomaly score can be
upper bounded by (20), the probability of p being
classified as normal essentially depends on the fol-
lowing condiditons:

(i) q is “sufficiently” normal, i.e. S(q) is very low.
(ii) k is “sufficiently” large, i.e. ∆ is very low.

In Fig. 3 we give plots of the upper bound for ∆ in
relation to the detection threshold τ . For example,
if τ = 1.5 and q is tokenized into k = 40 words, ∆
will be at most 21% of τ (i.e., S(p) < S(q) + 0.21τ).
Consequently, this means that p will be classified as
normal if S(q) ≤ 0.79τ .

10 20 30 40 50 60 70 80 90 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

τ = 2.0

τ = 1.0

τ = 1.5

τ = 0.5

3β2

τ (k−1)

Fig. 3. Upper bounds of the anomaly score increment as
a fraction of τ when d /∈ D in the black-box attack (β = 2).

Note that in this scenario the attacker has no control
over the internal structure of q, as the key D is
unknown and, therefore, k is unknown too. Con-
sequently, success is likely but not guaranteed, a
fact which introduces a probabilistic component in
the attack. We will address this point later on when
discussing the overall procedure. Nevertheless, we
suggest to use a payload q as long and frequent
as possible, as this will increase the likelihood of
satisfying at least one of the previous conditions.
Furthermore, the probability of success can be in-
creased by using a q formed by the concatenation
of various normal payloads. This will translate into
a slight increment of the score due to potentially
anomalous transitions in the limits between the
original payloads, but will considerably increase k.

• Case 2: d ∈ D
In this case, p is split into k + ℓ words: the first k
original words already present in q plus ℓ times the
word w2. Thus, we have

Sw(p) =
1

k + ℓ

(k∑

i=1

1

n(ξi)
+

ℓ∑

i=1

1

n(w2)

)

=
1

k + ℓ

(k∑

i=1

1

n(ξi)
+ ℓβ

) (21)

Again, this can be rewritten in terms of Sw(q) as

Sw(p) =
1

k + ℓ
(kSw(q) + ℓβ)

=
k

k + ℓ
Sw(q) +

ℓβ

k + ℓ

(22)

8

Similarly, the transition score is given by

St(p) =
1

k + ℓ− 1

(k−1∑

i=1

1

n(ξi → ξi+1)
+

1

n(ξn → w2)
+

ℓ−1∑

i=1

1

n(w2 → w2)

)

=
1

k + ℓ− 1

(k−1∑

i=1

1

n(ξi → ξi+1)
+ ℓβ

)

(23)
which can be rewritten in terms of St(q) as

St(p) =
1

k + ℓ− 1

(

(k − 1)St(q) + ℓβ

)

=
k − 1

k + ℓ− 1
St(q) +

ℓβ

k + ℓ− 1

(24)

Note that, in both (22) and (24), the terms multiply-
ing Sw(q) and St(q) tend to 0 as ℓ increases, whereas
the right-most terms tend to β. Thus, a sufficiently
large value of ℓ will drive both scores close to their
upper bounds, resulting in an overall anomaly score
S(p) = Sw(p)St(p) ≈ β2. We recall here that β is
the value assigned to words and transitions unseen
during training, and the value recommended in
KIDS is 2. Consequently, a score of β2 will inevitably
fall beyond any reasonable detection threshold, and
hence anom(p) = true.

In summary, such a payload p can be used as a
probabilistic distinguisher to tell whether d is part of the
key or not, since:

• If d ∈ D, then anom(p) = true with probability 1,
given a sufficiently large value of ℓ.

• If d /∈ D, then anom(p) = false with high proba-
bility, although dependent on the “quality” of q as
discussed above.

4.3.1 Complexity
The existence of false positives in our distinguishing
method (i.e., situations when d /∈ D but nevertheless
anom(p) = true) is due to using a q of “poor quality”, as
explained above. Such false positives can be ruled out by
repeating the process with different q’s and determining
D as the intersection of all the resulting keys. Note that,
in doing so, the existence of just one good payload in the
set suffices to recover the correct key. As a consequence,
the complexity of this attack is slightly higher than for
the case of the gray-box setting: Again, each trial makes
exactly 256 queries to KIDS, and several trials should
be attempted to rule out possible false positives. If T is
the number of normal payloads available to the attacker,
then the attack requires T · 256 queries, plus the cost of
computing an intersection. A description of the attack is
given in Fig. 4.

Since the attack succeeds if there is at least one appro-
priate q, the overall probability of correctly recovering
the key after T attempts is

PBB(T) = 1−

(

1− P (qi)

)T

(25)

Black-box Key Recovery

Input:
Set of payloads Q = {qi}Ti=1 s.t. anom(qi) = false,
|qi| is high and S(qi) is low

Word w2 s.t. n(w2) = 0
Parameter ℓ > 1

Algorithm:
1. for each qi ∈ Q do
2. Di ← ∅
3. for d = 0 to 255 do
4. p← (qi ‖ d ‖ w2 ‖ d ‖ · · · ‖ d ‖ w2)
5. if anom(p) = true then
6. Di ← Di ∪ {d}
7. end-if
8. end-for
9. end-for

10. return D =

T⋂

i=1

Di

Fig. 4. Key-recovery attack on black-box KIDS.

where P (qi) = Prob
[
S(qi) + ∆ < τ

]
. The probability

of success increases exponentially with T . For example,
if P (qi) = 0.5, using only T = 4 payloads yields a
probability of success close to 94%, while increasing
the number of payloads to T = 5 and T = 6 gives,
respectively, a probability of 97% and 98%. Additionally,
in scenarios where the attacker does not know a valid w2,
this can be just guessed as described in the next section.
In this case, however, an additional checking must be
carried out at the end of the attack in order to find out
if w2 was correct. If the check fails, then the attack has
to be re-launched with a different candidate word.

4.4 Obtaining words w1 and w2

A crucial assumption in the attacks presented above is
that the adversary knows two words, w1 and w2, such
that n(w1) > 0 and n(w2) = 0. We next describe how
such words can be obtained with additional queries
to KIDS. Our procedure exploits carefully constructed
payloads that certainly are border cases. This forces us
to make some assumptions about how KIDS processes
such payloads, as they are not covered by the discussion
given in the original paper. The first one has been
already mentioned: if a payload p has no transitions,
then St(p) = α and, therefore, S(p) = Sw(p) ·α. This will
be needed when a payload consists of a single word,
or a word followed by a delimiter. We also assume that
the empty word ε is not a valid word. Thus, if several
delimiters appear together in a subsequence of the form
ξi ‖ d ‖ d ‖ · · · ‖ d ‖ ξj , with ξi, ξj words and d ∈ D,
the tokenization process will return only words ξi and
ξj , together with the transition ξi → ξj . Finally, we
assume that words are extracted from a payload through
a tokenization process governed by delimiters and not
by the words themselves. In other words, this means

9

Find w1 (Gray-box Setting)

Input:
Payload p s.t. anom(p) = false

Parameters α and β
Algorithm:

1. q ← ε // Empty payload
2. i← 0
3. do
4. i← i+ 1
5. q ← q ‖ p[i]
6. s = S(q)
7. while (s ≤ β) or (s ≥ β2)
8. w1 ← p[1] ‖ · · · ‖ p[i− 2]
9. d← p[i− 1]

10. return w1 and d

Fig. 5. Algorithm to f nd w1 and the f rst delimiter.

that delimiters are first located, and then every sequence
between two delimiters is considered a word. We finally
remark that these assumptions are not critical for our
attacks, and that variations of the same underlying ideas
can be easily derived for other implementations of KIDS.

The procedures described below make use of the
same adversarial model where they apply. For the gray-
box attack, w1 and w2 are obtained by analyzing the
anomaly score of a sequence of probing payloads. For the
black-box attack, we show how to randomly construct
one such w2 (for w1 is not needed in this attack) and
detect if the choice was correct or not. Furthermore, the
algorithms given below assume that α and β are known.
We believe that this is reasonable, as these are just tuning
parameters and not part of the key. Even if for some
reason they are unknown, our attacks could be easily
modified to work with estimates (which, incidentally,
may be quite accurate given the role that both param-
eters play in KIDS). Due to space reasons, we do not
discuss such modifications here.

4.4.1 Gray-box Setting: Finding w1

Fig. 5 presents a procedure to recover the first word w
of a payload, together with the delimiter d located right
after it. The algorithm takes as input a normal payload
p (i.e., anom(p) = false) that must be of the form: p =
w ‖ d ‖ t, where:

(i) The first word w is such that n(w) > 0.
(ii) d is the first delimiter in p.

(iii) The tail t, possibly composed of several words and
delimiters, is such that n(t[1]) = 0; i.e., the first byte
of t is not a previously seen word.

We suggest to use just a normal p in this algorithm, as
in our experience most of them satisfy these conditions.

The procedure shown in Fig. 5 relies on a simple
intuition to detect the presence of d: if KIDS is fed with
increasingly longer versions of p, the resulting anomaly
score will change once the first transition is incorporated
into the query. Assume that d is located in the k-th byte

of p, i.e., d = p[k] and w = p[1] ‖ · · · ‖ p[k − 1]. Let
q(i) = p[1] ‖ · · · ‖ p[i] be the payload used to query KIDS
at the i-th iteration. There are two possibilities about the
anomaly score of q(i):

(a) i ≤ k.
In this case, q(i) is always either a prefix of w, or
w, or w ‖ d. If q(i) is a prefix of w that was not seen
during training, then

S(q(i)) = βα (26)

In the (k − 1)-th and k-th iterations, q(i) is w and
w ‖ d, respectively. In both cases we have

S(q(i)) =

(
1

n(w)

)

α (27)

It may occur that a prefix of w is also a word seen
during training, so the score given by (27) would
be obtained for some i < k − 1. As it should be
clear later, this does not affect the analysis, as the
algorithm keeps processing p until i = k + 1 and
always returns w.

(b) i = k + 1.
In this case, q(i) = w ‖ d ‖ t[1], which yields an
anomaly score

S(q(i)) =

[
1

2

(
1

n(w)
+ β

)]

β =
1

2
β2 +

1

2n(w)
β (28)

Note that

1

2
β2 +

1

2n(w)
β > β iff β > 2

(

1−
1

2n(w)

)

(29)

which always holds if β ≥ 2, and that

1

2
β2 +

1

2n(w)
β < β2 iff β >

1

n(w)
(30)

which is also true. Consequently, for case (b) we
have that β < S(q(i)) < β2.

The correctness of the algorithm is based on the fact
that the score given by (28), which is always in the open
interval (β, β2), is different from (26) and from (27) with
high probability. However, the particular value chosen
for parameter α is relevant here. As discussed above, it is
reasonable to assume that either α = 1 (so transitions do
not count in payloads without them) or α = β (having
no transitions is considered an anomaly equal to any
other). In either case, both (26) and (27) fall out of (β, β2)
and the algorithm succeeds with probability 1. Thus, the
transition triggered by delimiter d can be recognized by
just checking that the anomaly score falls within (β, β2).

There is one scenario where the algorithm will fail: if α

is exactly 1
2

(

1
n(w) + β

)

, i.e., for the specific w contained

in this payload p, then (26) and (28) coincide. In this
case, the algorithm’s loop (step 7 in Fig. 5) does not
stop after the first delimiter, but after the first word
whose count differs from that involved in the α value.
The overall result is that the word w returned by the
algorithm would actually be composed of two or more

10

words separated by delimiters. Recall, however, that this
particular choice for α prevents the gray-box attack from
succeeding (see discussion at the end of Section 4.2), so
the fact that w is incorrect has little importance. Recall,
too, that this is unlikely to happen as the defender will
not know which particular w the attacker would be using
and, besides, it has to be done only for just one particular
w.

Complexity. The number of queries to KIDS required
to find one valid w1 depends on two factors. On the one
hand, each run of the algorithm makes exactly |w1| + 2
queries (we do not consider here the case when the
algorithm fails because of the choice of α discussed
above). The average word length is, in turn, related to
the key size, with words becoming generally shorter
when the key consists of more delimiters, although this
also depends on the underlying generative model for
payloads (i.e., the probability of observing each byte at
each position). In general, it is expected that |w1| will be
low for payloads associated with usual network traffic
(e.g. HTTP or FTP services). On the other hand, the algo-
rithm fails if p does not satisfy the requirements assumed
above, i.e., having a first word with positive count and
the first byte of the second with zero count. Let pw1

be
the probability of a payload satisfying these conditions.
In our experience, this occurs extremely often, since the
first portion of the payload generally transports protocol
signaling (e.g., service/resource names) very common
among payloads, making pw1

close to 1.
In summary, each run of the algorithm can be seen as

an experiment that makes |w1|+2 queries and succeeds
with probability pw1

. Thus, the probability of generating
at least one valid w1 after n trials of the algorithm
(assuming independent trials) is

P1(n) = 1− (1− pw1
)n (31)

Note that the probability of success increments exponen-
tially with n, but only requires a linear (|w1|+2) number
of additional queries to KIDS. For example, assuming
that pw1

= 0.9, the probability of finding w1 with two
n = 2 runs of the algorithm (i.e., 2|w1| + 4 queries) is
equal to 0.99, whereas for pw1

= 0.75 it takes n = 3 runs
(3|w1|+ 6 queries) to reach a similar probability.

4.4.2 Gray-box Setting: Finding w2

In the gray-box setting, finding w2 such that n(w2) = 0
is straightforward given that w1 and a delimiter d have
been previously obtained. Assume that b 6= d is a ran-
domly chosen byte and that w2 consists of λ repetitions
of b. Consider now the payload q = w2 ‖ d ‖ w1:

(i) If n(w2) = 0, then

S(q) =

[
1

2

(

β +
1

n(w1)

)]

β (32)

with S(q) > β, as discussed above in (29).
(ii) If n(w2) > 0, then

S(q) =

[
1

2

(
1

n(w2)
+

1

n(w1)

)]
1

n(w2 → w1)
(33)

Find w2 (Gray-box Setting)

Input:
Payload p s.t. anom(p) = false

Parameters α, β, and m
Algorithm:
1. (w1, d)← find w1(p, α, β)
2. do
3. b ǫR [0, 255]

4. w2 ←

λ
︷ ︸︸ ︷

b ‖ · · · ‖ b
5. q ← w2 ‖ d ‖ w1

6. s = S(q)
7. while (s < β)
8. return w2

Fig. 6. Algorithm to f nd w2.

with S(q) < β.
(ii) Finally, if b ∈ D, then S(q) = S(w1) < β.

Thus, a suitable w2 can be found by trying different
values of b while the anomaly score of q falls below β.
The overall procedure is summarized in Fig. 6.

Complexity. The number of queries to KIDS required
to find w2 is related to the probability of randomly
choosing one b /∈ D and the probability pw2

of the
resulting w2 being a word unseen during training. If
we assume that key elements are drawn randomly and
independently, then the probability of generating at least
one valid w2 after m queries to KIDS is

P2(m) = 1−

[

1−

(
256− |D|

256

)

pw2

]m

(34)

which, again, increments exponentially with m. For key
sizes ranging from 15 to 30, as suggested in [12], the
probability of finding a valid w2 with just 1 query falls
between 0.92 · pw2

and 0.94 · pw2
. Using some domain-

specific knowledge may help the attacker in selecting
candidate words so that pw2

is close to 1. For the pur-
poses of this paper, we have chosen words consisting of
λ repetitions of the same byte b. This has proven to be
adequate for payloads of most application protocols, as
such strings are not generally found in them, particularly
for values of λ sufficiently high (say, λ > 10). Thus,
assuming that pw2

≈ 1, the probability of finding w2 with
just one query to KIDS is greater than 0.9. Using similar
reasoning, it is straightforward to see that P2(2) > 0.99.

4.4.3 Black-box Setting: Finding w2

The procedure given above to find w2 cannot be applied
to the black-box setting since it requires access to the
anomaly score of the probing payloads. In this case, we
suggest to use the attack described in Section 4.3 with
a word w2 generated as in the previous algorithm, i.e.,
composed of a randomly chosen byte b repeated λ times.
The analysis is then equivalent to the one given in the
complexity analysis of Section 4.4.2: If (i) b /∈ D; and
(ii) the resulting w2 is a word unseen during training,

11

TABLE 1
Summary of the attacks presented in this paper with their complexity and the probability of success.

Setting Procedure Number of queries to KIDS Probability of success

Gray box Finding w1 n · (|w1|+ 2) P1(n) = 1− (1− pw1
)n

Finding w2 m (assuming w1 is known) P2(m) = 1−

[

1−

(

256−|D|
256

)

pw2

]

m

Key recovery 257 1
Total n · (|w1|+ 2) +m+ 257 P1(n) · P2(m)

Black box Finding w2 0 P2(m)

Key recovery T · 256 PBB(T) = 1−

(

1− P (qi)

)

T

Total m · T · 256 P2(m) · PBB(T)

then the attack succeeds with probability P2(m)·PBB(T).
However, if the chosen byte b turns out to be a delimiter

(i.e., b ∈ D, with occurs with probability |D|
256), the algo-

rithm behaves differently. Recall that the attack iterates
over all possible delimiters d (line 3 in Fig. 4). Now:

• Case 1: d ∈ D
In this case, the tail t = d ‖ w2 ‖ d ‖ w2 ‖ d ‖ · · · ‖ d ‖
w2 used in the payload p = q ‖ t will be discarded by
the tokenization process as it contains no words. As
S(p) = S(q), the payload will inevitably be labeled
as normal and the attack will not take the delimiter
d as belonging to the key. The overall result is that
all true delimiters d ∈ D will not be identified. This
happens with probability 1.

• Case 2: d /∈ D
In this case, the tail t is split into ℓ words. Note,
however, that now w2 (in particular, just one b)
plays the role of the delimiter and d is considered a
word. The result depends on whether n(d) is strictly
greater than zero or not:

(a) n(d) = 0
This situation is equivalent to case 2 in Section
4.3: p is split into k + ℓ words, with a tail full
of previously unseen words and transitions. In
this case, anom(p) = true and the algorithm
incorrectly takes d as a true delimiter.

(b) n(d) > 0
In this case, the result depends on whether
transitions of the form d → d have or have
not a positive count. If n(d → d) = 0, then
the transition score St of the tail will be very
high, possibly making the overall score of p
anomalous. The details are similar to those
discussed for case 2 in Section 4.3, although
only applying to St(p). As in the case above,
the result is that d is incorrectly taken as a true
delimiter. However, if n(d → d) > 0, the result
in unpredictable as it depends on the final score
of p. Therefore, d might be discarded or not.

In summary, we have:

• If b /∈ D and the chosen word w2 is good, the attack
succeeds with the aforementioned probability.

• If b ∈ D, the roles of words and delimiters are

swapped. In this case, the output of the algorithm
is a subset of DC (the complement of D). In partic-
ular, it consists of at least all individual bytes e /∈ D
such that n(e) = 0 or n(e→ e) = 0.

The second case occurs with probability |D|
256 . As key sizes

suggested in [12] are relatively small (from 15 to 30), this
knowledge could be used to tell whether the returned
key is the true key or not by simply inspecting its size.
Furthermore, even if the obtained D is too large to be the
true key, knowing that it is a subset of DC is still quite
valuable, as the true key can be estimated by just taking
the complement. A corollary of this result is that the size
of D should be kept secret too. However, in the case
of KIDS there may be some fundamental limitation, as
keys composed of too few or too many delimiters might
not produce useful detection models. This needs to be
further investigated.

4.4.4 Attack Complexity Revisited
To conclude this section, in Table 1 we summarize the
overall complexity of the attacks presented in this pa-
per, including the procedures used to find w1 and w2

discussed above.

4.5 Experimental Results
We have experimentally validated our attacks with an
implementation of KIDS written in C. The system was
trained with 2000 HTTP payloads captured in a univer-
sity network. The dataset does not include attacks, as
they are not necessary to recover the key. Following the
design principles given in [12], our experiments have
been conducted with key sizes ranging from 15 to 30,
even though this parameter has little influence on the
results. In all cases, the delimiters are randomly gen-
erated avoiding repetitions, and the detection threshold
is chosen to guarantee that at least 99% of the training
set falls below it. We note that this way of selecting
a key does not coincide with the procedure given in
[12], where the authors suggest a method involving both
normal and attack traffic. This, however, is irrelevant to
our attacks, as they work on an already trained system
regardless of how the key has been chosen.

In the case of the gray-box attacks, words w1 and w2

are automatically extracted from one normal payload by

12

following the procedures described in Section 4.4. Ac-
cording to our practical experience, the values of n, |w1|,
and m (see Table 1) remain very low for the scenarios
tested. For example, w1 is consistently recovered from
just one payload (i.e., n = 1 and the algorithm never
fails) and these words rarely have more than |w1| = 15
bytes. This conforms to the intuition given above, but
it is reinforced by the fact that we used HTTP traffic
where the first bytes of every payload refer to websites
and resources already present during training. As for w2,
we used λ = 16 and systematically obtained a valid w2

in less than m = 3 attempts. We ran the attack multiple
times with randomly generated keys and, in all cases,
we correctly recovere all the delimiters as expected.

For the black-box attacks, we used a subset of T
randomly chosen payloads and made them available
to the attacker. Different combinations of T and the
paramenter ℓ were tried. As anticipated, the probability
of correctly recovering all the key elements increases
both with T and, especially, with ℓ. In fact, a low value
of T suffices if it contains “good” payloads, as defined in
Section 4.3, whereas the success probability dramatically
decreases for low values of ℓ. In our case, values T ≈ 5
and ℓ > 10 proved enough to correctly recover the key.
Nevertheless, we emphasize that such parameters will
generally be very dependent on the specific dataset used
to train the system.

In practice, an important issue is the overall time
required by the attacker to recover the key, particularly
when access to the system is given for a short period of
time. In general, such time is:

tattack = Nq(tpre + ts + tq + tr + tpost) + tloc (35)

where

• Nq is the number of queries to KIDS involved in the
attack.

• tpre is the time required to prepare the query.
• ts is the time taken by the payload to reach KIDS.
• tq is the time taken by KIDS to process the payload.
• tr is the time taken for the result to reach the

attacker.
• tpost is the time required to process the result.
• tloc is the time taken by the local computations made

by the key-recovery algorithm

In our experiments, tpre, tpost and tloc are negligible.
The average time to process a payload (tq) is given
in Table 2. Even though this time actually depends on
the payload length, we have found that the variation is
negligible for the values involved in our attacks. Finally,
both ts and tr strongly depend on the attack setting.
Thus, if the attack is carried out remotely, their sum
will roughly be equal to the average network latency,
measured by the Round Trip Time (RTT). Finally, the
number of queries depends on the specific attack, with
Nq = 257 for the gray-box model and Nq = T ∗ 256 for
the black-box model.

Tables 3 and 4 show the total key-recovery time in
two different settings. In the first one, the RTT between

TABLE 2
Average time taken by our KIDS implementation to

process a payload

Key size 15 20 25 30
Time (ms) 0.093 ms 0.169 ms 0.289 ms 0.382 ms

TABLE 3
Experimental average time (in seconds) to recover the

key by the gray-box attack

Key size Low latency network High latency network

15 11.27 s 49.15 s
20 12.98 s 49.62 s
25 13.03 s 50.06 s
30 13.29 s 50.73 s

TABLE 4
Experimental average time (in seconds) to recover the

key by the black-box attack

T Key size Low latency High latency

4

15 50.78 s 198.11 s
20 50.98 s 199.86 s
25 51.26 s 199.92 s
30 52.03 s 201.31 s

5

15 62.12 s 245.12 s
20 62.47 s 246.48 s
25 62.55 s 247.78 s
30 63.98 s 248.62 s

6

15 75.46 s 291.31 s
20 76.08 s 291.68 s
25 76.84 s 293.83 s
30 77.93 s 294.06 s

the attacker and KIDS was around 50 ms (low latency),
whereas in the second it was around 195 ms (high
latency). In both cases, the results were averaged over 50
executions, each one with a different randomly chosen
key. For the gray-box attacks, recovering the key takes
around 13 s for the low-latency scenario and around
50 s for the high-latency network. Each one of the T
iterations of the black-box attack takes a similar time, so
the key can be recovered in approximately one minute
for a low-latency network, and in around 5 minutes
for the high-latency setting. As a final note, It must be
emphasized that, in practice, the dominant factor in the
attack efficiency is the sum ts + tr, i.e., the time taken to
send each query and get the result.

5 DISCUSSION: KEYED ANOMALY DETEC-
TION AND ADVERSARIAL MODELS REVISITED
We conclude this paper by revisiting the idea of keyed
anomaly detection (or, more generally, keyed classifica-
tion) and further discussing what realistic adversarial
models should be used to assess their security.

Perhaps the first obvious question is whether it makes
sense at all to introduce some secret material into a

13

learning algorithm so as to make evasion harder. To the
best of our knowledge, all the approaches explored so far
to counteract evasion fall into one of the two strategies
discussed in Section 2, namely randomizing the classi-
fication process (e.g., [3], [20]) or optimally adapting it
from a cost-sensitive perspective (e.g., [5]). Anagram [22]
is a special case, since it explicitly possesses the notion
of a “key” (bitmasks used to choose what parts of the
payload will be analyzed). Unfortunately, we are not
aware of any work studying the strength of Anagram
against key-recovery attacks.

All in all, we believe that the idea of learning a
classifier with a key is worth exploring. However, we
suggest two fundamental properties that any such keyed
scheme must explicitly address:

1) The designers must prove, or at least give sound
heuristic arguments, that evasion is computation-
ally infeasible1 without knowing the key.

2) It must be proved that recovering the key is compu-
tationally infeasible under reasonable adversarial
models, e.g., it cannot be done with polynomially-
many queries.

Some recent works have raised similar questions when
discussing models and challenges for the classifier eva-
sion problem. For instance, Nelson et al. explictly men-
tion in [13] that it may be interesting to consider adver-
sarial models beyond the membership oracle. Thus, if
a classifier is defined as f(x) = I{g(x) > 0} for some
function g, what if the attacker receives g(x) for every
query rather than just f(x), i.e., the ’+’/’-’ label? Note
that this is precisely the case we have explored under
our gray-box model. In our case, such information has
proven to be essential to reduce the attack complexity.

Closely related to the points discussed above is the
need to establish clearly defined and motivated adver-
sarial models for secure machine learning algorithms.
The assumptions made about the attacker’s capabili-
ties are critical to properly analyze the security of any
scheme, but some of them may well be unrealistic for
many applications. One debatable issue is whether the
attacker can really get feedback from the system for
instances he chooses. This bears some analogies with
Chosen-Plaintext Attacks (CPA) in cryptography. This
assumption has been made by many works in secure ma-
chine learning, including ours. In our opinion, it would
be unsafe to assume that the attacker does not have such
an ability, even if we cannot figure out how he would do
in practice. Furthermore, this is not incompatible with
analyzing the security of a scheme against a weaker
model where interactions are more restricted.

According to the attack model introduced by Barreno
et al. [2], the class of attacks discussed here are ex-
ploratory, as they attempt to discover information once
the classifier has been learned. However, it seems worth

1. We adopt here the standard notion of computational security
common in many branches of cryptography. Informally speaking, this
means that breaking the system reduces to solving a hard problem.

exploring the resilience of a keyed classifier against
causative attacks, i.e., scenarios where the adversary
strategically participates in the training process by pro-
viding carefully constructed samples. Some recent works
have started to look into this matter (e.g., [4]). However,
it is unclear to us what protection against such attacks
a keyed classifier might provide. For example, does the
fact that a secret key is used prevent the attacker from
forcing the training process into learning an undesirable
concept (e.g., one that includes attacks)? A priori, this
seems unlikely. If that is the case, then the very notion of
a keyed classifier will provide protection against evasion
attacks only, and assuming that the attacker has no
control whatsoever over the training process.

Finally, given that KIDS does not meet the security
requirements discussed above, one natural question is:
Where to put the key then? The intuition dictates that
a keyed classifier must learn a key-dependent and secret
concept, meaning that an adversary must not be able
to guess it (entirely or approximately) without knowing
the key. But, simultaneously, the classifier must clas-
sify well, which introduces one apparently fundamental
limitation: If the adversary has access to the training
data distribution, nothing stops him from building his
own classifier, keyed or not, which will necessarily be a
fairly good approximation (in terms of the classification
boundary) of the one to be attacked. Consequently, in
a keyed classifier the focus may not be on hiding the
classification boundary, but on introducing, from an
attacker’s perspective, sufficient uncertainty about how
samples are processed. This is the core idea behind the
use of randomized classifiers. The challenge is whether
the same can be done in a key-dependent way.

6 CONCLUSIONS
In this paper we have analyzed the strength of KIDS
against key-recovery attacks. In doing so, we have
adapted to the anomaly detection context an adversarial
model borrowed from the related field of adversarial
learning. We have presented key-recovery attacks ac-
cording to two adversarial settings, depending on the
feedback given by KIDS to probing queries.

To the best of our knowledge, our work is the first to
demonstrate key-recovery attacks on a keyed classifier.
Surprisingly, our attacks are extremely efficient, showing
that it is reasonably easy for an attacker to recover the
key in any of the two settings discussed. We believe
that such a lack of security reveals that schemes like
KIDS were simply not designed to prevent key-recovery
attacks. However, in this paper we have argued that re-
sistance against such attacks is essential to any classifier
that attempts to impede evasion by relying on a secret
piece of information. We have provided discussion on
this and other open questions in the hope of stimulating
further research in this area.

The attacks here presented could be prevented by
introducing a number of ad hoc countermeasures to

14

the system, such as limiting the maximum length of
words and payloads, or including such quantities as
classification features. We suspect, however, that these
variants may still be vulnerable to other attacks. Thus,
our recommendation for future designs is to base deci-
sions on robust principles rather than particular fixes.

Going beyond KIDS, it remains to be seen whether
similar schemes (e.g., Anagram [22]) are secure against
key-recovery attacks. As discussed in Section 1, our
attacks (or variants of them) are focused on keyed
classifiers, and we believe that they will not carry over
randomized classifiers. We note that, in its present form,
KIDS cannot be easily randomized, as choosing a new
key implies training the classifier again, which is clearly
impractical in real-world scenarios. In the case of Ana-
gram, the authors discuss one mode of operation where
one key (a secret but fixed bitmask) is used to split
the packet in various portions so that each of them is
checked against a different Bloom filter. This scheme
bears numerous resemblances to KIDS and the key may
be recovered with attacks similar to those presented in
this paper. Nevertheless, this needs further investigation
and will be addressed in future work.

Our focus in this work has been on recovering the
key through efficient procedures, demonstrating that the
classification process leaks information about it that can
be leveraged by an attacker. However, the ultimate goal
is to evade the system, and we have just assumed that
knowing the key is essential to craft an attack that evades
detection or, at least, that significantly facilitates the
process. It remains to be seen whether a keyed classifier
such as KIDS can be just evaded without explicitly
recovering the key. If the answer is in the affirmative,
then the key does not ensure resistance against evasion.

REFERENCES
[1] M. Barreno, B. Nelson, R. Sears, A.D. Joseph, and J.D. Tygar. “Can

Machine Learning Be Secure?” In ASIACCS 2006, pp. 16–25, 2006.
[2] M. Barreno, B. Nelson, A.D. Joseph, and J.D. Tygar. “The security

of machine learning.” In Machine Learning, 81(2):121–148, 2010.
[3] B. Biggio, G. Fumera, and F. Roli. “Adversarial Pattern Classifica-

tion Using Multiple Classifiers and Randomisation.” In Proc. 2008
IAPR Intl. Workshop on Structural, Syntactic, and Statistical Pattern
Recognition, pp. 500–509. Springer-Verlag, 2008.

[4] B. Biggio, B. Nelson, P. Laskov. “Support Vector Machines Under
Adversarial Label Noise.” In Journal of Machine Learning Research
- Proceedings Track, Vol. 20, pp. 97–112, 2011.

[5] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma.
“Adversarial classification.” In KDD 2004, pp. 99–108, 2004.

[6] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee.
“Polymorphic blending attacks.” In USENIX Security Symp., 2006.

[7] C. Gates and C. Taylo. “Challenging the anomaly detection
paradigm: A provocative discussion.” In New Security Paradigms
Workshop (NSPW), pp. 21–29, 2006

[8] A. Kolcz and C.H. Teo. “Feature weighting for improved classifier
robustness.” In CEAS 2009 - 6th Conf. on Email and Anti-spam, 2009.

[9] O. Kolesnikov, D. Dagon, and W. Lee. “Advanced polymorphic
worms: Evading IDS by blending in with normal traffic.” In
USENIX Security Symposium, 2005.

[10] D. Lowd and C. Meek. “Adversarial learning.” In KDD 2005, pp.
641–647, 2005.

[11] Metasploit Framework. Available at: www.metasploit.com.
[12] S. Mrdovic and B. Drazenovic. “KIDS - Keyed Intrusion Detection

System.” In DIMVA 2010, LNCS 6201, pp. 173–182, 2010.

[13] B. Nelson, B.I.P. Rubinstein, L. Huang, A.D. Joseph, and J.D.
Tygar. “Classifier evasion: models and open problems.” In PSDML
2010, pp. 92–98. Springer-Verlag, 2011.

[14] B. Nelson, A.D. Joseph, S.J. Lee, and S. Rao. “Near-Optimal
Evasion of Convex-Inducing Classifiers.” In Journal of Machine
Learning Research - Proceedings Track, Vol. 9, pp. 549–556, 2010.

[15] B. Nelson, B.I.P. Rubinstein, L. Huang, A.D. Joseph, S.J. Lee,
S. Rao, and J.D. Tygar. “Query Strategies for Evading Convex-
Inducing Classifiers.” In Journal of Machine Learning Research, Vol.
13 (May), pp. 1293–1332, MIT Press, 2012

[16] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee. “McPAD:
A multiple classifier system for accurate payload-based anomaly
detection.” In Computer Networks, Vol. 5, No. 6, pp. 864–881, 2009

[17] K. Rieck. “Computer Security and Machine Learning: Worst En-
emies or Best Friends?” In DIMVA Workshop on Systems Security
(SYSSEC), 2011.

[18] R. Sommer and V. Paxson. “Outside the closed world: On using
machine learning for network intrusion detection.” In IEEE Sym-
posium on Security and Privacy, pp. 305–316, 2010.

[19] Y. Song, M. Locasto, A. Stavrou, A.D. Keromytis, and S.J. Stolfo.
“On the infeasibility of modeling polymorphic shellcode: Re-
thinking the role of learning in intrusion detection systems.” In
Machine Learning, Vol. 81, No. 2, pp. 179–205, 2010.

[20] J.E. Tapiador and J.A. Clark. “Masquerade mimicry attack detec-
tion: A randomised approach.” In Computers & Security 30(5):297–
310. Elsevier Ltd., 2011.

[21] K. Wang, G. Cretu, and S. Stolfo. “Anomalous Payload-Based
Worm Detection and Signature Generation.” In RAID 2005, pp.
227–246. Springer-Verlag, 2005.

[22] K. Wang, J. Parekh, and S. Stolfo. “Anagram: A content anomaly
detector resistant to mimicry attack.” In RAID 2006, pp. 226–248.
Springer-Verlag, 2006.

[23] Y. Zhou, Z. Jorgensen, and M. Inge. “Combating good word
attacks on statistical spam filters with multiple instance learning.”
In ICTAI 2007, pp. 298–305, 2007.

Juan E. Tapiador is Associate Professor of Computer Science at
Universidad Carlos III de Madrid, Spain. Prior to joining UC3M, he was
Research Associate at the University of York, UK. His main research
interests are in applied cryptography and network security. He holds
a M.Sc. in Computer Science from the University of Granada (2000),
where he obtained the Best Student Academic Award, and a Ph.D. in
Computer Science (2004) from the same university.

Agustin Orf la is Associate Professor in the Computer Science Depart-
ment at Universidad Carlos III de Madrid. He has a B.Sc. in Physics
from Universidad Complutense de Madrid and a Ph.D. in Computer
Science from Universidad Carlos III de Madrid. His main interests lie
in the f eld of network and computer security, particularly in Intrusion
Detection Systems and RFID Systems.

Arturo Ribagorda is Professor at Universidad Carlos III de Madrid,
where he also serves as Head of the Computer Security Lab in the
Computer Science Department. He has a M.Sc. in Telecommunications
Engineering and a Ph.D. in Computer Science. He has more than 25
years of R&D experience in computer and information security, and has
authored 4 books and more than 100 articles in these areas. He also
serves as program committee member for several conferences related
to cryptography and information security.

Benjamin Ramos is Associate Professor in the Computer Science
Department at Universidad Carlos III de Madrid. He has a B.Sc. in
Mathematics and a Ph.D. in Computer Science from Universidad Carlos
III de Madrid. His main interests lie in the f eld of computer security.

