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Vocal: Prof. Sevil Şen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Secretario: Prof. David Camacho Fernández . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calificación: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Leganés, . . . . . . . . . . de . . . . . . . . . . . . . . . . . . . . de 2014.





To my family and friends.





Agradecimientos

Son muchas las personas a las que debo mostrar mi gratitud por su apoyo y por la

ayuda prestada durante el desarrollo de esta Tesis. Lo primero, y como no pod́ıa

ser de otra manera, a mis directores y compañeros Juan y Agust́ın, de quienes he
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cuñada y que espero que lo sea por mucho tiempo. A Marisol, Alfonso, Nerea y

Cristian, quienes pronto pasarán a ser oficialmente mi familia, aunque para mi lleváis
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conseguir habŕıa sido posible sin ti. Por hacer que los momentos malos sean buenos,

y que los buenos sean mejores. De corazón, gracias por seguir ah́ı.
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Abstract

Intrusion Detection Networks (IDNs) constitute a primary element in current cyberde-

fense systems. IDNs are composed of different nodes distributed among a network

infrastructure, performing functions such as local detection–mostly by Intrusion

Detection Systems (IDS)–, information sharing with other nodes in the IDN, and

aggregation and correlation of data from different sources. Overall, they are able

to detect distributed attacks taking place at large scale or in different parts of the

network simultaneously.

IDNs have become themselves target of advanced cyberattacks aimed at bypassing

the security barrier they offer and thus gaining control of the protected system. In

order to guarantee the security and privacy of the systems being protected and

the IDN itself, it is required to design resilient architectures for IDNs capable of

maintaining a minimum level of functionality even when certain IDN nodes are

bypassed, compromised, or rendered unusable. Research in this field has traditionally

focused on designing robust detection algorithms for IDS. However, almost no

attention has been paid to analyzing the security of the overall IDN and designing

robust architectures for them.

This Thesis provides various contributions in the research of resilient IDNs

grouped into two main blocks. The first two contributions analyze the security of

current proposals for IDS nodes against specific attacks, while the third and fourth

contributions provide mechanisms to design IDN architectures that remain resilient

in the presence of adversaries.

In the first contribution, we propose evasion and reverse engineering attacks to

anomaly detectors that use classification algorithms at the core of the detection

engine. These algorithms have been widely studied in the anomaly detection field, as

they generally are claimed to be both effective and efficient. However, such anomaly

detectors do not consider potential behaviors incurred by adversaries to decrease

the effectiveness and efficiency of the detection process. We demonstrate that using

well-known classification algorithms for intrusion detection is vulnerable to reverse



engineering and evasion attacks, which makes these algorithms inappropriate for real

systems.

The second contribution discusses the security of randomization as a counter-

measure to evasion attacks against anomaly detectors. Recent works have proposed

the use of secret (random) information to hide the detection surface, thus making

evasion harder for an adversary. We propose a reverse engineering attack using a

query-response analysis showing that randomization does not provide such security.

We demonstrate our attack on Anagram, a popular application-layer anomaly de-

tector based on randomized n-gram analysis. We show how an adversary can first

discover the secret information used by the detector by querying it with carefully

constructed payloads and then use this information to evade the detector.

The difficulties found to properly address the security of nodes in an IDN motivate

our research to protect cyberdefense systems globally, assuming the possibility of

attacks against some nodes and devising ways of allocating countermeasures optimally.

In order to do so, it is essential to model both IDN nodes and adversarial capabilities.

In the third contribution of this Thesis, we provide a conceptual model for IDNs

viewed as a network of nodes whose connections and internal components determine

the architecture and functionality of the global defense network. Such a model is

based on the analysis and abstraction of a number of existing proposals for IDNs.

Furthermore, we also develop an adversarial model for IDNs that builds on classical

attack capabilities for communication networks and allow to specify complex attacks

against IDN nodes.

Finally, the fourth contribution of this Thesis presents DEFIDNET, a frame-

work to assess the vulnerabilities of IDNs, the threats to which they are exposed,

and optimal countermeasures to minimize risk considering possible economic and

operational constraints. The framework uses the system and adversarial models

developed earlier in this Thesis, together with a risk rating procedure that evaluates

the propagation of attacks against particular nodes throughout the entire IDN and

estimates the impacts of such actions according to different attack strategies. This

assessment is then used to search for countermeasures that are both optimal in terms

of involved cost and amount of mitigated risk. This is done using multi-objective

optimization algorithms, thus offering the analyst sets of solutions that could be

applied in different operational scenarios.



Resumen

Las Redes de Detección de Intrusiones (IDNs, por sus siglas en inglés) constituyen un

elemento primordial de los actuales sistemas de ciberdefensa. Una IDN está compuesta

por diferentes nodos distribuidos a lo largo de una infraestructura de red que

realizan funciones de detección de ataques–fundamentalmente a través de Sistemas

de Detección de Intrusiones, o IDS–, intercambio de información con otros nodos de

la IDN, y agregación y correlación de eventos procedentes de distintas fuentes. En

conjunto, una IDN es capaz de detectar ataques distribuidos y de gran escala que se

manifiestan en diferentes partes de la red simultáneamente.

Las IDNs se han convertido en objeto de ataques avanzados cuyo fin es evadir las

funciones de seguridad que ofrecen y ganar aśı control sobre los sistemas protegidos.

Con objeto de garantizar la seguridad y privacidad de la infraestructura de red y de

la IDN, es necesario diseñar arquitecturas resilientes para IDNs que sean capaces

de mantener un nivel mı́nimo de funcionalidad incluso cuando ciertos nodos son

evadidos, comprometidos o inutilizados. La investigación en este campo se ha centrado

tradicionalmente en el diseño de algoritmos de detección robustos para IDS. Sin

embargo, la seguridad global de la IDN ha recibido considerablemente menos atención,

lo que ha resultado en una carencia de principios de diseño para arquitecturas de

IDN resilientes.

Esta Tesis Doctoral proporciona varias contribuciones en la investigación de IDN

resilientes. La investigación aqúı presentada se agrupa en dos grandes bloques. Por

un lado, las dos primeras contribuciones proporcionan técnicas de análisis de la

seguridad de nodos IDS contra ataques deliberados. Por otro lado, las contribuciones

tres y cuatro presentan mecanismos de diseño de arquitecturas IDS robustas frente a

adversarios.

En la primera contribución se proponen ataques de evasión e ingenieŕıa inversa

sobre detectores de anomaĺıas que utilizan algoritmos de clasificación en el motor

de detección. Estos algoritmos han sido ampliamente estudiados en el campo de la

detección de anomaĺıas y son generalmente considerados efectivos y eficientes. A



viii Resumen

pesar de esto, los detectores de anomaĺıas no consideran el papel que un adversario

puede desempeñar si persigue activamente decrementar la efectividad o la eficiencia

del proceso de detección. En esta Tesis se demuestra que el uso de algoritmos

de clasificación simples para la detección de anomaĺıas es, en general, vulnerable

a ataques de ingenieŕıa inversa y evasión, lo que convierte a estos algoritmos en

inapropiados para sistemas reales.

La segunda contribución analiza la seguridad de la aleatorización como con-

tramedida frente a los ataques de evasión contra detectores de anomaĺıas. Esta

contramedida ha sido propuesta recientemente como mecanismo de ocultación de

la superficie de decisión, lo que supuestamente dificulta la tarea del adversario. En

esta Tesis se propone un ataque de ingenieŕıa inversa basado en un análisis consulta-

respuesta que demuestra que, en general, la aleatorización no proporciona un nivel

de seguridad sustancialmente superior. El ataque se demuestra contra Anagram, un

detector de anomaĺıas muy popular basado en el análisis de n-gramas que opera en

la capa de aplicación. El ataque permite a un adversario descubrir la información

secreta utilizada durante la aleatorización mediante la construcción de paquetes

cuidadosamente diseñados. Tras la finalización de este proceso, el adversario se

encuentra en disposición de lanzar un ataque de evasión.

Los trabajos descritos anteriormente motivan la investigación de técnicas que

permitan proteger sistemas de ciberdefensa tales como una IDN incluso cuando

la seguridad de algunos de sus nodos se ve comprometida, aśı como soluciones

para la asignación óptima de contramedidas. Para ello, resulta esencial disponer de

modelos tanto de los nodos de una IDN como de las capacidades del adversario. En la

tercera contribución de esta Tesis se proporcionan modelos conceptuales para ambos

elementos. El modelo de sistema permite representar una IDN como una red de nodos

cuyas conexiones y componentes internos determinan la arquitectura y funcionalidad

de la red global de defensa. Este modelo se basa en el análisis y abstracción de

diferentes arquitecturas para IDNs propuestas en los últimos años. Asimismo, se

desarrolla un modelo de adversario para IDNs basado en las capacidades clásicas de

un atacante en redes de comunicaciones que permite especificar ataques complejos

contra nodos de una IDN.

Finalmente, la cuarta y última contribución de esta Tesis Doctoral describe

DEFIDNET, un marco que permite evaluar las vulnerabilidades de una IDN, las

amenazas a las que están expuestas y las contramedidas que permiten minimizar



el riesgo de manera óptima considerando restricciones de naturaleza económica u

operacional. DEFIDNET se basa en los modelos de sistema y adversario desarrollados

anteriormente en esta Tesis, junto con un procedimiento de evaluación de riesgos que

permite calcular la propagación a lo largo de la IDN de ataques contra nodos indivi-

duales y estimar el impacto de acuerdo a diversas estrategias de ataque. El resultado

del análisis de riesgos es utilizado para determinar contramedidas óptimas tanto en

términos de coste involucrado como de cantidad de riesgo mitigado. Este proceso

hace uso de algoritmos de optimización multiobjetivo y ofrece al analista varios

conjuntos de soluciones que podŕıan aplicarse en distintos escenarios operacionales.
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1

Introduction

1.1 Context

According to the C.I.A. World Factbook [C.I.A., 2010], more than 2.1 billion people

in the world (29.6% of the estimated world population) are connected to Internet, and

almost 6 billion people use mobile phones (84% of the world population). Cyberspace

plays a key role in modern societies and economies [Patel et al., 2013]. Over the last

decade, Internet has changed the way we interact with Public Administrations, has

given rise to new business and entertainment models, and has influenced the way we

communicate. However, as acknowledged by the Spanish National Security Strategy,

cyberspace is nowadays an open and uncontrolled environment. The complexity

and globalization of cyberattacks has increased very significantly in the last years,

causing an important breach between the capabilities of attackers and defenders.

Internet is rapidly evolving to embrace new computing and communication

paradigms, such as cloud computing, wireless networks, and smart mobile platforms.

Cloud computing services allow users to externalize computing resources (e.g., net-

works, servers, storage, applications, and services) to a remotely located site and

use them on-demand [Mell and Grance, 2011]. Wireless networks have also gained

much popularity in the last decade, particularly those based in the 802.11 (Wi-Fi)

family [Crow et al., 1997] both for home access and in urban spaces [Ylipulli et al.,

2013]. While this has contributed very significantly to facilitating Internet access

from almost everywhere by using mobile devices, it has also created many new

vulnerabilities.

Apart from personal users, companies and governments have become highly

dependent on the cyberspace for their daily activities. Critical tasks such as commu-

nication activities, business and financial transactions, and even the control of critical
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infrastructures now depend on the Internet. Until very recently, most of these tasks

were carried out in confined and –in many cases– carefully secured platforms. Threats

such as espionage and data loss were certainly a concern, but since such systems

were rarely accessible from the outside, the spectrum of potential attack avenues

was limited. In contrast, most current organizations have their systems permanently

connected to Internet, and many of them are offloading parts of their infrastructures

to the cloud. This has resulted in a substantial increase of the threats they are

exposed to [Santora, 2013], and has given rise to terms such as “cyber-espionage”,

“cyber-warfare”, or “cyber-terrorism”.

The profile, intentions, and capabilities of attackers have also changed extraor-

dinarily. Until very recently, they were considered “socially isolated young men”

[Jordan and Taylor, 1998] driven by motivations such as gaining notoriety in the

hacking underground scene or by cyberactivism campaigns. Although most of them

were technically very skilled, they did not have substantial economic resources to

develop sophisticated attacks. Nowadays, however, both the sophistication of attacks

and the motivations of the adversaries have evolved. For instance, the so-called Ad-

vanced Persistent Threats (APTs) [Tankard, 2011] combine sophisticated techniques

and exploitation vectors to bypass security mechanisms and remain undetected for

prolonged periods of time in attacked systems. Moreover, rather than “isolated

obsessed young men”, attackers have turned into organized teams with economical

or political motivations, targeting high valued infrastructures from governments

and big companies. Such teams are often hired or sponsored by rival companies or

governments. Stuxnet [Falliere et al., 2011], for example, is an APT—and one of

the first cyberweapons—that targeted Industrial Control Systems (ICSs) and was

used to attack uranium enrichment plants in Iran. Because of its sophistication

and the amount of resources estimated for its development, it is believed that some

government was behind it.

The situation discussed above demands more intelligent countermeasures to

protect the networks and critical systems. According to the well-known Common

Criteria for ICT systems evaluation [Common-Criteria, 2012], properly protecting

the assets of an organization requires that countermeasures fulfill two main properties

(see Figure 1.1). First, countermeasures should be sufficient, i.e., if the countermea-

sures do what they claim to do, the threats to the assets are countered. Second,

countermeasures must be correct, i.e., they must do what they claim to do.
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Figure 1.1: Evaluation concepts and relationships established by the Common Criteria.

1.1.1 Cyberdefense Systems

Intrusion Detection Systems (IDS) constitute a primary component for securing

computing infrastructures. An IDS monitors activity and seeks to identify evidence

of ongoing attacks, intrusion attempts, or violations of the security policies [Scarfone

and Mell, 2007]. IDSs have evolved since the first model proposed in the late 1980s

[Denning, 1987], and the current threat landscape makes the classical approach for

intrusion detection no longer valid. Moreover, intrusion detection must also deal with

emerging paradigms in computing and communications. For example, performing

detection in wireless nodes such as smartphones [Suarez-Tangil et al., 2013] or

wearable sensing devices [Al Ameen et al., 2012], requires lightweight procedures

that do not consume much resources like energy or memory.

Detection paradigms and architectures have also evolved to cope with the re-

quirements of complex network infrastructures. Rather than stand-alone components

strategically placed to protect a complete network or system, the current trend is to

rely on a distributed network of detection nodes. Intrusion Detection Networks (IDN)

are composed of different IDS nodes distributed among a network performing local

detection and sharing information with other nodes in the IDN. One of the major

advantages of IDNs is that, because the detection functions are distributed across

different network locations, so is the workload required for each function. Classical
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intrusion detection components such as Snort [Roesch, 1999] must be implemented

in a single device. Therefore, this host is in charge of gathering the data (monitor

the network), pre-process it, running detection algorithms, and generating responses

accordingly. This approach is inappropriate both for resource-constrained scenarios

and for large networks. The problem becomes even harder if the worst-case scenario

for detection is forced by an adversary [Crosby and Wallach, 2003; Smith et al.,

2006].

IDNs attempt to solve this problem by distributing the tasks among different

nodes. Depending on their role in the network, some nodes gather local data and

send it to another node, probably with more resources, who correlates the data and

performs actual detection. This separation of duties makes IDNs a suitable solution

for distributed systems, including mobile ad hoc networks (MANETs), where there

are no central nodes and every host must collaborate to ensure a proper network

behavior [Pastrana et al., 2012]. IDNs are also used in networks geographically

separated to allow different entities to collaborate and mitigate large scale attacks

[Bye et al., 2010]. Current attacks are capable of infecting simultaneously various

networks or incorporating evasion techniques to pass undetected [Fogla and Lee,

2006]. Moreover, many zero-day attacks target simultaneously a huge number of

systems worldwide [Shin and Gu, 2010], leaving little time to patch other networks.

Thus, to prevent threats from propagating through different domains, collaboration

between different IDNs is essential.

Since they are key elements of most organizations’ cyberdefense systems, IDSs

often become themselves the target of attacks aimed at undermining their detection

capabilities. This may result in the degradation of the second property evaluated by

the Common Criteria, which states that countermeasures must be correct. Actually,

when attacking a system, the adversary’s first goal is to degrade the effectiveness

of the cyberdefenses, thus making the countermeasures inappropriate. In the case

of IDNs, attackers may use common attacks for networks to degrade the efficacy

of the detection accuracy. Most of the research in this area has focused on attacks

against stand-alone IDS boxes and the design of robust detection algorithms [Biggio

et al., 2013; Fogla et al., 2006; Kolesnikov and Lee, 2005; Ptacek and Newsham,

1998; Wagner and Soto, 2002]. However, almost no attention has been paid to robust

architectures for IDNs, and only a few works have very recently begun to consider

attacks against IDNs [Bye et al., 2010; Fung, 2011].
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1.1.2 Machine Learning Based Detection

One of the major problems that IDSs must face is adapting to continuous changes

both in the networks they defend and the capabilities of the adversaries. The use

of Machine Learning (ML) algorithms in the detection process has been extensively

studied as a potential solution to this problem. Concretely, classification algorithms

are often used to automatically build classifiers that map events as normal or intrusive.

This approach has resulted successful in many scenarios. However, the use of ML has

been recently questioned because its design does not consider adversaries [Barreno

et al., 2006; Biggio et al., 2013; Sommer and Paxson, 2010] and, therefore the

resulting detectors can be potentially manipulated. One of the proposed methods

to counteract attacks and make resilient ML algorithms is the use of secret or

random components [Huang et al., 2011; Mrdovic and Drazenovic, 2010; Wang et al.,

2006]. While randomization is extremely useful in many security applications such

as cryptography, it is unclear whether it is robust enough in the field of intrusion

detection.

Similar to ML algorithms, Evolutionary Computation (EC) is a branch of Artificial

Intelligence widely used in the research of intrusion detection. EC involves global

optimization methods to solve the problem at stake. In the case of intrusion detection,

the problem being solved is the detection of anomalous or intrusive events. One of

the key advantages of EC is that resulting detectors are easy to understand and

process [Orfila et al., 2009], which is a desired property for IDS. Another advantage

of EC methods is that they result rather efficient in challenging scenarios, like Mobile

Ad Hoc Networks (MANETs) [Sen and Clark, 2011], where the adversarial model

rapidly changes and obtaining responses in real time is critical.

1.2 Motivation and Objectives

IDSs, both working as isolated components or as part of a larger IDN, are designed

to provide attack detection capabilities to a protected network. These systems are

generally placed in the network perimeter and, consequently, are among the first

security barriers that an adversary encounters. Advanced adversaries are increasingly

developing attack techniques against IDS nodes with the aim of counteracting

their detection capabilities. The Common Criteria [Common-Criteria, 2012] also
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establishes that “owners of assets [...] may choose to increase their confidence in the

sufficiency and correctness of some or all of their countermeasures by ordering an

evaluation of these countermeasures”. Accordingly, it is critical to provide methods

to facilitate such evaluation for IDSs and IDNs.

This Thesis considers the problem of attacks and defenses against IDNs, providing

specific attacks to machine learning based anomaly detectors and optimal solutions

to make the detection resilient. We next describe the main motivation and objectives

of this work. Firstly, we state that the traditional use of classification algorithms for

intrusion detection is prone to attacks, and we question the use of randomization as

a measure to secure such algorithms. Secondly, we establish the need of systematic

approaches for evaluating the security of IDNs in adversarial environments.

1.2.1 Motivation

Problem 1: Vulnerabilities of intrusion detection algorithms based on

machine learning

The design of machine learning based algorithms for intrusion detection, particularly

for anomaly-based detection, should consider the presence of adversaries that will

attack the detection function itself. Unfortunately, classical machine learning algo-

rithms are not designed with this assumption in mind. Attacks against the detector

can aim at reverse engineering its inner workings, i.e., learning how the algorithm

decides whether an instance belongs to one class or another. This is generally used

to devise strategies to evade detection, where the main goal is to carefully modify an

instance that would be classified as anomalous so that it becomes normal and still

achieves the attacker’s goals. Both reverse engineering and evasion attacks deal with

one fundamental limitation of classical classification algorithms: they do not attempt

to hide the decision surface. In an intrusion detection setting, the adversary has the

ability to interact with the algorithm, obtain the classification labels for instances of

his choice, and use the knowledge gained about how detection works to create, for

example, attacks that will pass undetected (false negatives) or normal instances that

will raise an alarm (false positives). Such undesirable, induced behaviors—along

with some others that will be described in the next chapter— will undermine the

confidence put on the detectors.
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Some advanced detectors (e.g., KIDS [Mrdovic and Drazenovic, 2010] or Anagram

[Wang et al., 2006]) have suggested that randomization of the decision surface will

make reverse engineering and evasion harder for an attacker. The central idea of

such algorithms consists of introducing a random, but controlled, component into

the classification process. This is often implemented as a secret key, in such a

way that an adversary who is not in possession of the key will not know exactly

how the traffic will be processed and, consequently, will not be able to design

attacks that thwart detection. The security of randomized classifiers has not been

proved yet, and it remains unclear whether it suffices to prevent reverse engineering

and evasion attacks, or it just makes them more difficult but still possible and realistic.

Problem 2: Resilient intrusion detection networks

Current cyberdefense systems are composed of a collection of networked components

that include data collectors, filters, aggregators, correlators, etc. Detection is thus

a complex distributed function that depends on information collected, processed,

and exchanged by different subsystems. So far, security analysis about cyberdefense

systems has focused almost exclusively on individual detection nodes, neglecting

both the threats the overall IDN is exposed to, and robust design principles to make

them resilient against them. For instance, many current IDNs follow a hierarchical

architecture where security-related events flow from distributed detectors up to

aggregation and correlation components located on the top tiers. In this scenario,

it is not properly understood the impact that attacks on a subset of all the IDN

components would have on the overall detection function, nor what elements (e.g., the

roles of the attacked subsystems and how their outputs are processed by subsequent

components) are relevant for the attack to succeed. Conversely, it is also unknown

how to design architectures that resist, at least to some extent, certain types of

deliberate attempts to evade detection or, more generally, subvert the protection

offered by the IDN.

1.2.2 Objectives

The main goal of this Thesis is to improve the security of intrusion detection

systems and networks operating in adversarial settings by developing
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techniques to analyze their vulnerabilities and countermeasures to in-

crease their resiliency. In particular, we will focus on the following three general

objectives:

• O1. Study techniques to reverse engineer and evade IDSs based on machine

learning algorithms that could be used to assess the security of current detection

approaches and to devise countermeasures that make them resistant against

adversarial manipulations.

• O2. Develop a suitable model for (a) IDNs in adversarial environments that

integrates the key features of individual components and existing architec-

tural options; and (b) goals, tactics, and capabilities of adversaries aiming at

disrupting the IDN operation.

• O3. Based upon a model such as that described in the point above, study

techniques to explore the vulnerabilities of IDNs, the threats to which they are

exposed, and optimal countermeasures to minimize risk considering possible

economic and operational constraints.

1.3 Contributions and Organization

This Thesis provides several contributions in the field of resilient IDNs along the

lines discussed in the main objectives above. These contributions are grouped in the

following four points:

1. A general technique to explore reverse engineering and evasion attacks

against machine learning based IDS. Chapter 3 describes these attacks

and provides experimental results against IDS using detectors based on classi-

fiers.

2. A reverse engineering attack against randomized classifiers. One of

the mechanisms proposed to increase the security of anomaly detectors is the

use of randomization to hide the decision surface from adversaries. Chapter 4

analyzes this solution and provides a sophisticated attack against Anagram,

a popular randomized anomaly detector. It is also proved that discovering
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the secret key makes evasion easier than in the non-randomized setting, as it

provides further capabilities to an adversary.

3. A model for IDNs and adversarial capabilities. Chapter 5 provides

a general model for IDNs operating in adversarial settings. The model is

illustrated with two common scenarios for IDNs, providing examples of such

adversarial capabilities.

4. A framework for the optimal allocation of countermeasures in IDNs.

Chapter 6 presents a framework that allows to automatically determine the

overall risk an IDN is subject to as a consequence of potential attacks against

individual components. Furthermore, the chapter discusses the application of

multi-objective optimization algorithms to search for countermeasures that are

optimal both in terms of risk and cost.

Finally, Chapter 7 presents the main conclusions, analyzes the contributions of

this Thesis and the published results, and discusses open research problems and

future work.
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Intrusion Detection Networks in

Adversarial Environments

This chapter analyzes the state of the art in the area of attacks against intrusion

detection solutions, including stand-alone IDSs and IDNs. First, Section 2.1 presents

an overview of IDNs, including common detection approaches and classical IDSs.

Then, Section 2.2 reviews the state of the art of attacks against IDSs and IDNs

and presents a recent taxonomy for attacks which is adopted in this Thesis. Finally,

Section 2.3 summarizes the chapter and discusses the main problems in the field.

2.1 Intrusion Detection Networks

Intrusion detection is the process of identifying and/or blocking any attempt to bypass

the security of a system [Bace and Mell, 2001]. Due to the continuous evolution of

Information and Communication Technology (ICT), intrusion detection is an open

and volatile research field. The seminal work of Denning in 1987 [Denning, 1987]

proposed a general model for intrusion detection which is independent of specific

technologies or implementations. Denning stated that “exploitation of a system’s

vulnerabilities involves abnormal use of the system; therefore, security violations

could be detected from abnormal patterns of system usage”. Nowadays, almost 30

years after the work of Denning, this statement is still valid. However, as the

complexity of network and information systems increase, so does the capabilities of

adversaries, which continuously forces the intrusion detection research to adapt to

new adversaries.

Intrusion Detection Systems have evolved since the work of Denning. Due to

the increasingly sophisticated threat of current attackers, the classical approach for
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intrusion detection is no longer valid. Moreover, intrusion detection must also face

the challenge posed by new paradigms in computing and communications, including

cloud computing and the new generation of wireless technologies.

This section first reviews the classical approach of IDS which work stand-alone, i.e.,

without sharing information with other IDSs. Then, the main detection approaches

are presented, with special emphasis in the machine learning algorithms which have

been widely used for anomaly detection and are subject of study in parts of this

Thesis. Finally, we discuss the need of IDNs to address the deficiencies of classical

IDSs.

2.1.1 Intrusion Detection Systems

An IDS is a system that analyzes data to detect malicious activity, reporting an alert

if such an activity is found. IDSs are normally formed from several components. In

the most classical architecture, IDSs consists of 4 components [Corona et al., 2013]

(see Figure 2.1), namely the decoder, the preprocessor (or set of preprocessors), the

detection engine and the alert module. The way in which these components work is

described next:

1. The decoder receives pieces of raw audit data from the audit data collectors

and transforms each of these pieces into data that the preprocessor can handle.

2. The preprocessor extracts features from the raw data. It receives the pieces

of data transformed by the decoder, analyzes them to determine which pieces

depend on each other and treats dependent pieces in such a way that they

can be later scrutinized by the detection engine. A typical preprocessor

widely used in network-based IDSs is the TCP preprocessor, whose main task

is to compose session flows from a given set of TCP segments (reordering

fragments, assembling them, etc). Currently, sophisticated preprocessors are

able to perform detection tasks supplementing those performed by the detection

engine.

3. The detection engine receives the data treated by the preprocessor and

examines it searching for intrusions. If an intrusion is found, the detection

engine requests the alert module to raise an alert.
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Figure 2.1: Architecture of a classical IDS.

4. The alert module is in charge of raising the alerts requested by the detection

engine. Raising an alert can range from logging the alert in a local file to

emailing the alert to the system administrator.

There exist many different taxonomies to classify IDSs, depending on the corre-

sponding component of the IDS [Patel et al., 2013]:

1. Regarding the source of the audit data, an IDS can be network based or host

based:

(a) Network IDSs (NIDSs): they analyze network traffic. The level of

detection may vary from one NIDS to another, but most of them have

modules in charge of analyzing traffic from the network, transport, and

application layers in the OSI model. For instance, Snort [Roesch, 1999],

one of the most used open source IDSs, has a preprocessor specialized

in HTTP data, another one for TCP data and the same for the other

protocols and layers in the OSI model. NIDSs are normally placed outside

the system being monitored but in the same network segment, thus

enabling them to monitor a complete LAN.
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(b) Host IDSs (HIDSs): they analyze local data of the devices. Most of

them analyze the sequence of system calls of the programs running in

the device. Within these sequences, optimal HIDS analyze system call

arguments, memory registers, stack states, system logs, user behaviors,

etc.

2. Regarding the model used to detect malicious activity, an IDS can be misuse-

based, anomaly-based or hybrid. In next section we analyze in detail these

approaches.

3. Regarding the type of action triggered when a malicious behavior is detected,

an IDS can be active or passive:

(a) Passive IDS: when a malicious behavior is detected, an alert is raised

and no further action is taken.

(b) Active IDS: apart from raising an alert, the IDS tries to neutralize the

malicious data by executing a predefined action. Some authors refer to

active IDSs as Intrusion Prevention System (IPS).

There are many other possible classifications. For example, in [Amer and Hamil-

ton, 2010], a taxonomy based on the following characteristics is presented:

1. Regarding the technology, IDSs may be wired or wireless. Furthermore,

wireless IDSs can be further classified as fixed or mobile.

2. Regarding the data processing method and the arrangement of its compo-

nents, IDSs can be centralized or distributed.

3. Regarding the timing of the detection process, IDSs can be real time or

non-real time.

4. Regarding the detection technique, IDSs can be state-based or transition-based.

In order to evaluate the effectiveness of IDSs, two important measures are mainly

used: the hit rate and the false positive rate. The hit rate (denoted H or true

positive rate) measures the effectiveness of an IDS by indicating the percentage of

intrusions that it detects (see Equation 2.1). The false positive rate (denoted F )
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Table 2.1: Contingency matrix for binary classification problems: true negatives (TN), false positives
(FP), false negatives (FN) and true positives (TP).

Detection
Negative Positive

Real
Negative TN FP
Positive FN TP

measures the accuracy of an IDS by indicating the percentage of false alarms that

it raises (see Equation 2.2). In order to calculate these two statistics, the following

four values are necessary (see contingency matrix in Table 2.1): the number of real

intrusions detected (true positives or TP), the number of real intrusions undetected

(false negatives or FN), the number of alarms raised without any real intrusion taking

place (false positives or FP), and the number of normal events considered normal

(true negatives or TN). As a binary classification problem, IDSs are often evaluated

using metrics from the information retrieval field such as the precision and recall.

Considering an intrusion as the relevant information to be retrieved from the data,

the recall indicates the fraction of relevant instances retrieved, i.e., it coincides with

the hit rate. The precision indicates the fraction of retrieved instances that are

relevant; i.e., given an alarm by the IDS, the precision indicates the likelihood that

this alarm actually represents and intrusion (see Equation 2.3).

H =
TP

TP + FN
(2.1)

F =
FP

FP + TN
(2.2)

Precision =
TP

FP + TP
(2.3)

Another important statistic that has recently become relatively popular in the

field of IDSs evaluation is the Intrusion Detection Capability index [Gu et al., 2006]

(denoted CID). CID is the ratio of the reduction of uncertainty of the IDS input,

given the IDS output. It is formally defined as:

CID =
I(X;Y )

H(X)
(2.4)
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Where I(X;Y ) is the mutual information between the set of inputs to the IDS

(X) and their corresponding outputs (Y ); and H(X) is the entropy of the input data.

The higher the CID is, the better capacity the IDS has to classify the input properly.

Besides the hit rate (H) and the false positive rate (F ), the CID takes into account

the prevalence B of attacks in the dataset, defined as:

B =
FN + TP

TP + FP + TN + FN
(2.5)

Since not all systems have the same probability of being attacked, the CID index

provides a more accurate measure than the hit rate and the false positive rate.

Moreover, evaluating an IDS using H and F is somehow difficult, as various points of

operation (i.e., pair H, F) are considered, and it must be defined an optimal tradeoff

between the two measures. As the CID considers the two measures along with the

prevalence of attacks, it can be used as a single scalar measure to evaluate the IDS.

Using the metrics H, F and B, extracted from the contingency matrix (Table 2.1),

the CID can be computed as shown in Equation 2.6. Further details about this

measure can be found in [Gu et al., 2006].

CID = −BH log
BH

BH +HF
−

−B(1−H) log
B(1−H)

B(1−H) + (1−B)(1− F )
−

− (1−B)(1− F ) log
(1−B)(1− F )

(1−B)(1− F ) +B(1−H)
−

− (1−B)F log
(1−B)F

(1−B)F +BH

(2.6)

2.1.2 Detection Approaches

There are many approaches proposed in the literature to detect intrusions. They can

be classified in three main categories: misuse, anomaly, or hybrid detection. Each of

these detection approaches, together with the machine learning techniques used for

anomaly detection, are next presented.
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2.1.2.1 Misuse Detection

Misuse detection looks for intrusive evidence in the monitored events using previous

knowledge from known attacks and malicious activity. The most common approach

for misuse detection is to compare the monitored events with intrusive patterns stored

in a database. These stored patterns are called signatures, and misuse detection is

often called signature-based detection. For example, Snort [Roesch, 1999] is a NIDS

which contains a huge number of publicly available signatures. The signatures follow

a specific format, and allow for a deep inspection of the network packets at network

(IP protocol), transport (TCP and UDP protocols) and application layer (protocols

such as HTTP, FTP, SMTP, etc.).

Although signature-based is the most common approach for misuse detection,

there are additional methods to represent knowledge of known attacks.Attack path

analysis [Chen et al., 2007; Guzzo et al., 2014], for example, models the actions

provoked by a potential attack in the system using several attack paths. If a monitored

event follows any attack path from the beginning to the end, then it is considered

intrusive.

Misuse detection works well for known vulnerabilities and attacks. Indeed, they

have low false positive rates because if an activity matches a signature or follows a

known attack path, then it is very likely that this activity actually has malicious

intentions. However, misuse detection is not able to detect zero-day attacks. These

attacks do not have an associated signature in the IDS, either because they have been

discovered recently and the signatures have not been published yet [Gascon et al.,

2011], or because the IDS have not been updated with the new required signatures.

For example, Snort offers a set of signatures for free, but these signatures are at least

one month old. Thus, free versions of Snort do not protect against potential threats

appearing in the last month.

2.1.2.2 Anomaly Detection

Anomaly detectors compare monitored activity with a predefined model of normality

to detect intrusions. These systems compute the model of normality by a learning pro-

cess that is usually done off-line, i.e., before deployment, although recent approaches

suggest the use of online training to update the model as new normal activity is
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observed [Lee et al., 2011]. The monitored activity can be either network flows,

service requests, packet headers, data payloads, etc. During the learning process, the

system analyzes a set of normal data and computes the normal model. Afterwards,

any activity that does not fit in the normal model is considered a potential intrusion.

Several approaches have been proposed so far to compute the model from network

data [Liao et al., 2013].

• Statistic-based approaches [Ariu et al., 2011] define the normal model as the

probabilities of appearance of certain patterns in the training data, using

thresholds and basic statistical operators such as the standard deviation, mean,

co-variance, etc. In detection time, any activity that considerably differs from

the learned probabilities is considered malicious. Here, the term “considerably”

depends on the thresholds established, which also determines the tradeoff

between false positive and detection rates.

• Specification-based approaches are built by experts who know how the system

monitored should behave. Any activity that does not fit this behavior is

considered anomalous. For example, Sekar et al. [Sekar et al., 2002] uses

state-machine specifications of network protocols. The anomalies are detected

whenever the state-machine does not ends the execution in a valid final state.

• Heuristic-based approaches automatically generate the model of normal behavior

using different approaches such as machine learning algorithms [Pastrana et al.,

2012], evolutionary systems [Aziz et al., 2012] or other artificial intelligence

methods [Kumar et al., 2010]. This approach is probably the most extended

in the research community because it provides lightweight solutions offering

good results [Pastrana et al., 2012]. A more detailed explanation of machine

learning for intrusion detection is given below.

• Payload-based detectors analyze application layer data to look for attacks

[Perdisci et al., 2009; Wang, 2007]. One of the problems of using anomaly-

detection for detecting malicious payloads is the difficulty of deriving features

from the monitored data. A common approach is to extract n-grams from

payloads to compute the model and detect anomalies [Wang et al., 2006]. An n-

gram is a sequence of n consecutive bytes obtained from a longer string. The use

of n-grams has been widely explored in the intrusion detection area, although
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it presents some limitations too [Hadziosmanovic et al., 2012]. Moreover, the

size of the vectors increases exponentially with n, which makes this method

useless in some restricted scenarios.

One potential problem of anomaly-based IDSs is the need to periodically re-train

the model as network traffic evolves. Online training solves this problem, but also

opens the door to new threats as we discuss later. Another problem is that they still

present some limitations that make them useless in real world scenarios [Sommer

and Paxson, 2010], including the huge amount of false positives they produce or the

difficulty to faithfully compute a model of normality. As a consequence of this, few

commercial systems actually use anomaly-based approaches.

2.1.2.3 Hybrid Detection

Anomaly based detectors produce a huge amount of false positives if the model of

normality is not generic enough. The alternative are misuse-based detectors, which

however are unable to detect zero-day attacks and are vulnerable to polymorphism

[Song et al., 2007]. In order to properly detect real-world intrusions, a combination

of both techniques is necessary. Hybrid IDSs combines both misuse detection and

anomaly detection. For example, in Snort [Roesch, 1999], the data preprocessors

performs anomaly-based detection while decoding and generating the events, and

the detection engine performs the signature matching.

2.1.2.4 Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) looks for methods and procedures to provide computers

with human-like intelligence. In the case of intrusion detection, because of the huge

amount of data being processed in the cyberspace, it is required to use automatic

tools that detect intrusions without little human intervention.

Machine Learning (ML) is a branch of AI which provides such methods. ML

algorithms automatically build detection engines from a set of events performing a

training process. These models are then used to detect intrusions in real time. There

are two classical approaches to train the system: supervised and unsupervised. In a

supervised setting, the training dataset is labeled, and the learning algorithm knows

to which class each trace belongs to. Examples of supervised learning algorithms are
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Decision Trees, Artificial Neural Networks (ANNs) and Support Vector Machines

(SVM). An unsupervised algorithm obtains a program that is able to separate

traces from different classes without knowing which the exact class of each trace

is. Clustering and Correlation-based algorithms are good examples of unsupervised

ML. ML techniques offer the benefit that they can detect novel differences in traffic

(which presumably represent attacks) by being trained on normal (known good) and

attack (known bad) traffic [Huang and Lee, 2004].

Classification algorithms build classifiers from a training data set that are used to

classify events in detection time. Given a set of n samples X = X1, ..., Xn where each

sample Xi is composed of j features (F1, ..., Fj), a classification algorithm generates

a classifier that, for each new trace provided, returns its estimated class Ci from the

set of classes C = C1, ..., Ck.

Nowadays, many intrusion detection techniques proposed by the research commu-

nity use ML and classification algorithms to discern between normal and intrusive

data [Tsai et al., 2009]. For example, [Pastrana et al., 2012] presents a comparison of

six different classification algorithms for intrusion detection in the domain of Mobile

Ad-hoc Networks (MANETs). The experiments are performed using simulated net-

work traffic, under different scenarios and conditions. Results showed that Support

Vector Machines along with Genetic Programming achieve better detection accuracy

than the remaining algorithms studied (Näıve Bayes, Multi-layer perceptron, Linear

model and Gaussian Mixture Model).

The use of Evolutionary Algorithms (EAs) in intrusion detection aims at automat-

ically evolving solutions that will be applied in the detection process [Sen and Clark,

2011]. EAs maintain a population of individuals, where each individual is a particular

solution to the given problem. The population evolves during various generations

following various procedures inspired by the laws of natural selection. Concretely,

the evolution selects the best individuals to reproduce and compose subsequent

generations. The selection is done regarding a fitness function, which measures

how well each individual in the population performs. The selected individuals are

crossed over or mutated to provide variability in the offspring individuals. After

a given number of generations, or else when an optimal solution is achieved, the

algorithm stops and the best individual of the last generation is given as solution.

A particular case of EA is Genetic Programming (GP) [Koza, 1992] , where the

individuals are programs with a tree-like shape, and the output of these programs is
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used to determine the fitness function of the individuals.

In intrusion detection, whenever an alert is raised it is important to understand

which event has triggered such alarm. Thus, it is easier for a security operator to

determine the impact of the intrusion or to decide if it is a false alarm. Anomaly

detection systems face the challenge of transferring alarms into understandable reports

for the security operator [Sommer and Paxson, 2010]. Regarding this challenge, one

of the main advantages of GP against other classical ML algorithms is that the

programs evolved could be easy to understand and readable [Orfila et al., 2009].

Accordingly, it is easier to know how the detection is done.

2.1.3 Networks and Architectures

A large-scale coordinated attack targets or utilizes a large number of hosts that

are distributed over different administrative domains, and probably in different

geographical areas [Zhou et al., 2010]. These attacks have the property of targeting

multiple networks or sites simultaneously, and may use evasion techniques to stealthy

compromise each single network. For example, an attacker may slow down the scan

in one single host by increasing the frequency of packets sent to this host. Meanwhile,

it can use the time between packets to scan hosts from other networks. The main

characteristic of large-scale attacks is that they usually target multiple hosts from

either a single host or from many hosts. That is, the attack is distributed among

various hosts.

IDNs are used in many scenarios, from collaborative domains, where different

entities share information to detect global attacks [Zhou et al., 2010], to local wireless

network composed by a network of sensors, like for example Mobile Ad-hoc Network

(MANET) [Xenakis et al., 2011]. In both cases, the IDN is composed of multiple

nodes distributed over the network where each node communicates with one or many

other nodes [Patel et al., 2013]. Depending on how nodes are connected, and which

are their responsibilities or roles within the network, the architecture of an IDN can

be either centralized, hierarchical, or distributed. We next explain such architectures.

Figure 2.2 shows an scheme of such architectures, and Table 2.2 summarizes the

description of each architecture and provides examples from the literature.

In a centralized architecture, there is a central node gathering data from the

remaining nodes in the network [Snapp et al., 1991]. The central node correlates
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Figure 2.2: IDN architectures.

the data and emit responses. The main problem of this approach is that the

central node becomes a critical point, and if it falls down (for example, due to an

attack or bandwidth bottlenecks), the entire IDN falls. Moreover, the central node

requires much more processing and communication capabilities, which makes this

architecture useless for constrained networks like MANETs. DShield [Ullrich, 2000] is

a cooperative, web-based project, where a central server receives data from multiple

sources and generates security reports, such as the most trending attacks or recently

discovered vulnerabilities. These reports are accessible through Internet. DShield

works in a client-server model, and users can upload their logs using a web interface.

In a hierarchical architecture the network is organized into different levels of

detection and nodes have different roles depending on their responsibilities within
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the hierarchy. Each level of the hierarchy is divided into zones or clusters. In each

cluster, cluster-members gather local data and provide these data to the cluster-head,

and this aggregated data is then transmitted to a higher level node, who correlates.

This way, a tree-based hierarchical architecture is established to cover all the network.

For example, DSOC [Karim-Ganame et al., 2008] is a hierarchical IDN for protecting

different networks through the Internet. DSOC considers four roles of IDN nodes:

data collectors, remote correlators, local analyzers and global analyzer.

In a distributed architecture, the nodes share responsibilities and there are no

central, critical nodes. Nodes have two main functions. First, they detect intrusions

locally using monitored events within their sites. Second, nodes share data with other

nodes to correlate with their local detection and thus obtain a global awareness of the

network. Information sharing can be done in different ways, following a Peer-to-Peer

model [Ghosh and Sen, 2005], a subscribe-publish behavior [Fung and Boutaba, 2013],

etc. DOMINO [Yegneswaran et al., 2004] is a complex cooperative network that

connects nodes through Internet. The nodes are connected following a distributed

architecture, although each of them performs detection in local networks using local

hierarchies.

There are many works in the research literature facing the problems of trust

in IDNs [Gil-Pérez et al., 2013], correlation methods, detection algorithms, etc.

According to a recent survey by Patel et al. [Patel et al., 2013], most of the

distributed detection approaches are proposed for wireless networks such as MANETs,

and few works address the problem of collaboration among entities from different

administrative domains. However, this is nowadays a hot research topic which is

gaining interest by the research community [Fung and Boutaba, 2013; Gil-Pérez

et al., 2014; Patel et al., 2013].

2.1.3.1 Intrusion Detection Networks in MANETS

A Mobile Ad-hoc Network (MANET) is a network of mobile wireless nodes. Nodes

can communicate with every other node located within a specific distance, called

transmission range. When a node wants to send a packet to another node that does

not belong in its one-hop neighborhood then it has to rely to intermediate nodes

to forward the packets to the final destination. Thus, efficient routing protocols

are required in order to optimize the communication paths. MANETs do not use a
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Architecture Characteristics Examples from the literature

Centralized • Several nodes are connected to
a central node.

• External nodes collect data,
and the central node aggre-
gates and correlates it.

• The collectors send informa-
tion to the central node.

• The central node makes the
final decision and emit re-
sponses, if needed.

• DShield [Ullrich, 2000]

• DIDS [Snapp et al., 1991]

Hierarchical • The nodes in the IDN are clus-
tered in different levels.

• Nodes in the lowest levels col-
lect data.

• Intermediate levels aggregate
data from lower levels.

• The highest level contains a
single node who correlates
data from lower levels and
makes the final decision.

• DSOC [Karim-Ganame et al.,
2008]

• Hierarchical IDN for MANETs
[Huang and Lee, 2004]

• Zone-based IDN for MANETs
[Sun et al., 2006]

Distributed • Each node in the IDN is con-
nected to one or various nodes.

• There is not a single node mak-
ing decisions, i.e., the detec-
tion is distributed.

• There are different approaches
to share information: P2P,
publish-subscribe, etc.

• Peer-to-Peer model [Ghosh
and Sen, 2005]

• DOMINO [Yegneswaran et al.,
2004]

• Distributed IDN for MANETs
[Zhang et al., 2009]

Table 2.2: Description of the architectures of IDNs and proposed works.

fixed infrastructure and all the nodes belonging to the network may be mobile. In

MANETs there is no central node acting as an access point, and mobile nodes share

the responsibility of the proper functionality of the network, since a collaborative

behavior is required.

Several IDNs have been proposed to be used in mobile networks. Marti et al.
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[Marti et al., 2000] presented in 2000 an IDS approach for MANETs that implements

two techniques, named Watchdog and Pathrater. These are used to detect and

prevent nodes performing packet dropping in the routing protocol. Every node in

the network is provided with an IDN node to perform local detection and response.

Watchdog nodes monitor their neighbors to identify malicious behavior: if the node

sends a packet to a neighbor which is addressed to another node, Watchdog is used

to observe whether the neighbor actually forwards the packet. It manages a table

of failure scores for each of its neighbors, and when it observes that a packet is not

forwarded by a neighbor, the score is increased. When the score of some neighbor

exceeds a certain threshold, then it is considered malicious. Afterwards, whenever

a new route has to be selected to send a packet to any destination, Pathrater uses

the information from Watchdog to avoid routes with malicious nodes. Though the

proposal of Marti et al. does not consider cooperation nor distributed detection

(i.e., each node detects intrusions locally), we include it in our analysis since many

distributed approaches implement Watchdog as basic detection function in nodes.

Zhang et al., initially in 2000 [Zhang and Lee, 2000], and later in 2003 [Zhang

et al., 2003], proposed a distributed and collaborative detection architecture. Every

node in the network monitors their local neighbors, locally and independently, to

detect any sign of intrusion. The key idea is that they may share information to

perform this search for intrusion. Each IDN node is structured in several pieces or

modules. Initially, a data collection module gathers audit traces and activity logs.

Then, a local detection engine analyzes the data to look for local anomalies. Two

modules are responsible for performing the response actions: the local and global

response modules. To share information, an extra secure communication module

is used to provide trusted communications. In these approaches Zhang et al. use

classifiers to detect anomalies. They use entropy and conditional entropy to describe

the characteristics of “normal” traffic and classification algorithms to build models

of “normal” behavior. Therefore, classifiers are trained using “normal” data, to

predict what is normally the next event given the previous n events. If a detector

node monitors an event which is not what the classifier has predicted, an alarm is

triggered.

Huang and Lee [Huang and Lee, 2003] presented a cluster-based IDN, in order to

combat the resource constraints of MANETs. The authors use a set of statistical

features obtained from routing tables and apply a decision tree algorithm, C4.5, in
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order to discriminate “anomalous” and “normal” traffic. This approach allows the

identification of the source of the attack, if the attack occurs within one-hop. Later,

in 2004 [Huang and Lee, 2004] they proposed a hybrid system where they use both

specification-based and anomaly-based detection, by using a taxonomy of anomalous

activities and a finite state machine, which represents the correct behavior of the

Ad-hoc On Demand Distance Vector (AODV) [Perkins, 2003] protocol.

In 2003, Karchirski and Guha [Kachirski and Guha, 2003] proposed the use

of multiple collaborative sensors, where each sensor acts as a lightweight mobile

IDN node. Each node has a different role: network monitoring, host monitoring,

decision-making and action-taking. The nodes are divided into clusters, and each

cluster has a head node which monitors packets. Nodes vote to select their cluster

head, based on the connectivity data received after a broadcast step. Karchirski and

Guha focus on minimizing the use of resources by the IDN nodes. However, they do

not give details about how the detection process is performed.

Sun et al. [Sun et al., 2003] presented a model for IDN nodes in 2003. The model

is used in a collaborative approach, due to the Global Aggregation and Correlation

(GACE) component. GACE components are responsible for the communication

to share detection events between IDN nodes. Later, Sun et al. [Sun et al., 2006]

have also dealt with the problem of cooperativeness between nodes and presented

a non-overlapping zone-based IDN. In their approach, the nodes of the IDN are

grouped into zones, such that some of the internal nodes of a zone act as gateways to

other zones. The nodes use Markov Chains to detect intrusions and they send alarms

to their corresponding gateway when they detect some abnormal activity, using the

proposed MANET Intrusion Detection Message Exchange Format (MIDMEF).

Kurosawa et al. proposed in [Kurosawa et al., 2007] an approach for intrusion

detection for the AODV routing protocol. Each IDN node monitors its neighbors

using a vector of 3 features: the number of RREQ and RREP messages sent and

received, respectively, and the average of the variations of the destination sequence

numbers between each RREQ with its corresponding RREP packets. They use an

adaptive anomaly-detection approach. First, the average of all vectors of a training

set is computed, which constitutes the normal model. Each input sample is compared

with this average using an euclidean distance. If this distance exceeds a certain

threshold, the packet is considered malicious; otherwise, the sample is included in

the training dataset to recompute the average (normal model) in a next slot. Thus,
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in each slot the detection is adapted to possible changes in the topology. In this

work, no response action is described.

Authors in [Zhang et al., 2009] propose a method where every node in the IDN

cooperate to detect Black Hole attacks in the route discovery phase of the AODV

protocol. The main idea is to compare the Sequence Number (SN) of the response

with the SN originally posted by the receiver to detect nodes attempting a Black Hole

attack. For such a purpose, they define a new packet, the SREQ, which queries for

the destination of the SN original. This way, the sender can compare the SN original

with the SN of the RREP received. If it does not coincide, then the intermediate

node sending the fake RREP is considered malicious. The intermediate node is

responsible for asking the destination for the SN, sending an SREQ packet. Due to

its malicious behavior, it may not cooperate in this step to avoid being detected, by

not sending the SREQ or by modifying the response. Therefore, cooperativeness

between IDN nodes is needed, because neighbors of the malicious node can detect if

the attacker has forged the SREP or if it has dropped the SREQ.

Sen et al. [Sen and Clark, 2009] presented different evolutive approaches to detect

intrusions. More precisely, the authors use simulated networks to obtain the data

they use to evolve the programs, implementing different attacks. First, in [Sen and

Clark, 2009] a grammatical approach is used to detect Packet Dropping, Flooding,

and Route Disruption attacks. They achieve good detection rates for the three types

of attacks, but with a rather high false positive rate in the Packet Dropping and

Flooding attack. They argue that this is due to packet losses that usually occur

in these networks, and differentiating packet losses from malicious droppings is not

an easy task. Secondly, in [Sen et al., 2010] they use Genetic Programming with a

multiobjective approach to obtain programs that maximize the detection rate and

minimize both the false positive rate and the energy consumption, which is one

of the main constraints in MANETs. They evaluate their approach for two types

of attacks, the Flooding attack and the Route Disruption attack. In both works,

different intrusion detection approaches are employed for each kind of attack and,

again, almost all the attacks are detected.

In 2011, Su [Su, 2011] proposed a IDN where IDN nodes monitor their neighbors

in order to detect packets that are suspicious of being part of a Black Hole attack in

the AODV protocol. If an IDN node observes that a node is responding (i.e., sending

a RREP) to a RREQ which it has not previously forwarded, then its malicious score
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is increased by 1. When this score exceeds a predefined threshold, a block message

(response) is broadcast to the nodes in the neighborhood, and the malicious node

is blocked by these nodes. This block message is firstly authenticated with the ID

of the detector node, and carries information indicating that the packets sent by

the malicious node should be ignored. Thus, authors assume that there is some

authentication mechanisms to ensure that the ID of a node cannot be forged and

that block messages cannot be modified or counterfeited.

Li et al. [Li et al., 2012] recently proposed a cooperative scheme where IDN

nodes share their observations with their neighbors. It uses a reputation scheme.

Every node in the network runs an IDN node which manages a local view of its

neighborhood implemented as a list of trustworthiness about each neighbor. Agents

perform local detection to observe misbehaving neighbors (for example, using the

Watchdog technique from [Marti et al., 2000]). Then, detection events are exchanged

between neighbors, and based on the received data from other IDN nodes, the

local views of of the nodes are updated. Only information received from trusted

nodes is considered. The main innovative idea from other similar approaches is

that authors propose a multidimensional level of trust. Instead of a single value,

the trust in neighboring nodes depends on three values: the collaboration trust,

which measures how collaborative is a peer; the behavioral trust, obtained from

the observed anomalous behavior; and the reference trust, which depends on the

correctness of the reports given by the neighbor.

2.2 Intrusion Detection in Adversarial Settings

In this section, we first review the main proposals to attack IDSs. Second, we make

a special emphasis on attacks focused on specific ML algorithms, as they have been

widely used in the literature for intrusion detection. Finally, we review the most

relevant proposals that address attacks to IDNs.

2.2.1 Early Attacks to Intrusion Detection Systems

The research on attacks against IDSs gained research attention in the late nineties,

when IDSs were so sophisticated that adversaries were forced to consider them while

targeting the endpoints.
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Figure 2.3: Packet insertion attack. A packet is processed by the NIDS, whereas it is not actually
reaching the endpoint being monitored.

2.2.1.1 Packet Insertion and Evasion

Evasions against NIDS were first proposed by Ptacek and Newsham in 1998 [Ptacek

and Newsham, 1998]. In this seminal paper, the authors highlighted the existence

of some ambiguities in the TCP and IP protocols that allow different systems to

implement the protocols differently. An evasion succeeds when the NIDS ignores

packets which are going to be processed on the endpoints (packet evasion) or when it

accepts and processes a packet which is not processed by the endpoint system (packet

insertion). Packet insertion and evasion lead to different data being processed at the

endpoints and NIDS, which can be used by an adversary, for example, to evade a

signature matching as shown in Figure 2.3. In [Pastrana et al., 2013] we provided a

detailed description of the methods that the adversary may use to evade a NIDS

using these protocol ambiguities as well as the solutions proposed to mitigate the

problem. These solutions mainly rely on normalizing the traffic before it reaches

the NIDS [Antichi et al., 2009; Varghese et al., 2006; Vutukuru et al., 2008; Watson

et al., 2004], or to configure the NIDS specifically for each endpoint operating system

[Shankar, 2003] (the last solution is implemented in the popular IDS Snort [Roesch,

1999]). These solutions solve the problem of ambiguous traffic, and are rather efficient

in current networks. Thus, research on attacks to IDS have turned to higher layers

of the detection.

2.2.1.2 Polymorphic Worms and Mutant Exploits

The most explored technique to evade IDS is probably the modification of intrusion

patterns to avoid signature matching. The first approach considered was implemented

by polymorphic worms. The main characteristic of a worm is the self-replicating

capability among different victims. A polymorphic worm changes its appearance
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each time it propagates from one infected host to another. Indeed, many automated

tools are publicly available, such as CLET, a polymorphic shellcode engine published

in Phrack (a hacking community journal) [Detristan et al., 2003]; or ADMutate

[Macaulay, 2007]. These polymorphic worms can effectively evade detection by

signature-based IDSs [Perdisci et al., 2006]. However, polymorphic worms still

contain invariant and structural similarities between different instantiations. This

invariant parts are used by automatic signature generators like Paragraph [Newsome

et al., 2005]. Moreover, statistical analysis of the mutated worms also allows for its

identification [Kruegel et al., 2006].

In 2004, Vigna et al. presented a method to evaluate the response of different

signature-based NIDSs against evasion attacks [Vigna et al., 2004]. The authors

proposed an automated mechanism to generate variations of a given exploit by

applying mutant operators to a predefined exploit template. As the modifications

could make the exploit to become ineffective, they proposed the use of a system (an

oracle, according to the authors) to monitor the quality of the exploit. Figure 2.4

shows the schema of the proposed framework. Using a series of mutation mechanisms

and a set of exploit templates, the framework combines both sets to deterministically

generate a set of mutant exploits. Then, these mutant exploits are analyzed by the

external oracle in order to verify that the changes are valid (such a verification was

made by checking that the application of the exploits to the target applications were

successful). Moreover, the mutant exploits are presented to the analyzed NIDSs

(authors experiment with Snort and RealSecure), to verify whether the mutant

exploits could actually evade the detection or not.

Regarding the set of mutation mechanisms included, they used transport layer

mechanisms, application layer mechanisms, and mutation layer mechanisms. Regard-

ing the transport layer, they used some of the techniques presented by Ptacek and

Newsham in 1998, like IP fragmentation, along with new ones, like using IPv6 instead

of IPv4. They also proposed application layer mutations. Concretely, they modify

FTP traffic, by inserting telnet commands in the FTP flow; HTTP traffic, generating

malformed headers; and SSH traffic, inserting NULL records in the negotiation of the

master key. Finally, as part of the so-called mutation layer, they used polymorphic

shellcode and alternate encodings to directly modify the semantics of the exploits.

As for the results, they were quite promising, as 6 out of 10 exploits were evaded in

Snort and 9 out of 10 were evaded in RealSecure.
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Figure 2.4: Framework for creating and testing mutant exploits [Vigna et al., 2004]

2.2.1.3 Mimicry and Blending Attacks

A polymorphic worm changes its appearance every time it is instantiated. These

types of worms can effectively evade the detection of signature-based NIDS, as it is not

feasible for a NIDS to manage all the different signatures of all the possible instances

of a worm, even with automatic signature generators, because the complexity of

these detectors is rather high. However, polymorphic worms are not classified as

normal behavior, and therefore, they cannot evade anomaly-based NIDS. Next, we

present the mimicry and polymorphic blending attacks, which are attacks whose aim

is to appear as normal events. These attacks have been designed to evade both HIDS

and NIDS.

In 2002, Tan et al. presented a novel idea to evade anomaly-based HIDS that do

not take into account the arguments of system calls [Tan et al., 2002]. In particular,

they showed how to evade the Stide HIDS [Forrest et al., 1996]. Authors realized

that Stide looked for anomalies using a detection window size, i.e., it only detected

anomalies if the number of involved system calls was smaller than the window size.

Since Stide uses a detection window size, if the attacks are modified so that the

abnormal sequence of system calls is larger that the window size, the attacks may

succeed and still remain undetected. Authors proposed to automatically look for all

the allowed sequences that, if correctly tuned, do nothing to the system and make

malicious sequences larger.

Wagner et al. presented a study in 2002 to evade anomaly-based HIDSs [Wagner

and Soto, 2002]. All the methods studied were related to the fact that many host-



32 2. Intrusion Detection Networks in Adversarial Environments

based anomaly detectors in 2002 monitored systems call sequences. Thus, an attack

can remain undetected if no system calls are made, although the damage that such an

attack can cause is quite limited. Moreover, just changing the parameters of a valid

system call may allow an attack to be executed undetected. This situation happened

because most HIDS in 2002 did not examine these parameters when searching for

anomalies.

In 2005, anomaly-based HIDSs were improved in such a way that they no

longer examined only the sequence of system calls of a program, but also additional

information such as the values stored in the stack, the origin of the system calls, the

information about the call stack, etc. Kruegel et al. [Kruegel et al., 2005] showed that

if a legitimate program containing malicious code is able to modify some memory

segments, it can manage to control the flow of the program and execute pieces of the

malicious code at memory locations where detection can be evaded. In particular,

the authors claimed that such an operation can be achieved by directly modifying

the register, the stack and the heap areas. In order for an attacker to be able to

launch the aforementioned attack, she must first find a vulnerability in the code of

the program to be infected (e.g., using symbolic execution) and then, find a sequence

of system calls that can be executed in the program without raising suspicion. In

their research, Kruegel et al. focused on the Intel X86 architecture and managed

to infect a vulnerable program written in C as well to bypass the detection of two

different HIDSs.

In 2005, Kolesnikov et al. [Kolesnikov and Lee, 2005] extended the idea of

polymorphic worms and proposed the use of Polymorphic Blending Attacks (PBAs)

against NIDS, which was later refined by Fogla et al. in [Fogla et al., 2006]. A PBA

is a technique that aims to change the appearance of an attack in such a way that it

blends in with the normal behavior of a network. It is therefore aimed to evade both

signature-based and anomaly-based NIDS. A PBA is composed of three parts (see

Figure 2.5):

• The attack vector, used to exploit a vulnerability of the target system success-

fully and thus penetrate in the target host.

• The attack body, which represents the core of the attack performing the malicious

actions inside the victim, for example, a shellcode. It is encrypted with some

simple reversible substitution algorithm using as key the substitution table.
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Figure 2.5: General structure of a Polymorphic Blending Attack (PBA).

• The polymorphic decryptor, which has the substitution table to decrypt the

attack body and then transfers the control to it

The main steps involved in the generation of a PBA are described next.

1. Learning the normal profile of the NIDS : the authors assume that the attacker

has complete knowledge of the anomaly-based NIDS to be evaded. With such

knowledge, the adversary can use the NIDS learning algorithm and a set of

normal traffic in order to construct a statistical normal profile similar to the

one used by the NIDS.

2. Encrypting the attack body : in order to generate polymorphic instances of an

attack vector, the attack body (i.e., the malicious code) is encrypted using a

simple reversible substitution algorithm, where each character in the attack

body is substituted according to a particular substitution table. The objective

of such a substitution is to masquerade the attack body as normal behavior,

guaranteeing that the statistical properties specified in the normal profile are

satisfied (note that finding an optimal substitution table is a very complex

task).

3. Generating the polymorphic decryptor : when the PBA reaches the victim

host, the attack body must be decrypted and executed. In order to do that, a
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polymorphic decryptor is required. Such a decryptor consists of three parts: the

code implementing the decryption algorithm, the substitution table necessary

to perform the decryption process and the code in charge of transferring the

control to the attack body.

In [Fogla and Lee, 2006], the authors extended their work and proposed a formal

framework to automatically generate PBAs against any statistical anomaly-based

NIDS. They stated (and proved) that such NIDSs could be represented as a Finite

State Automata (FSA), either deterministic (FSA) or stochastic (sFSA). As a

consequence, the problem of finding a PBA for a NIDS became equivalent to finding

a PBA for an sFSA. However, finding such a PBA was, as proved by the authors,

an NP-complete problem. For this reason, they proposed a method to reduce the

NP-complete problem to a satisfiability (SAT) problem (if the NIDS had been

represented as an FSA) or Integer Linear Programming (ILP) problem (if the NIDS

had been represented as an sFSA), two types of problems for which polynomial-time

algorithms already existed.

In 2011, Kayacik et al. proposed a method to generate exploit mutations with

which to evade any anomaly-based HIDS capable of outputting anomaly and delay

rates [Kayacik et al., 2011]. In order to generate such mutations, Genetic Program-

ming (GP) was used. GP individuals were represented by ordered sets of system calls

with their arguments (if any) and evolved according to a fitness function with three ob-

jectives: increasing the attack success, minimizing the anomaly rate and minimizing

the delay. Concretely, they studied an attack composed of a sequence of 3 defined sys-

tem calls and arguments: open(’/etc/passwd’), write(’toor::0:0:root:/root:/bin/bash’)

and close(’/etc/passwd’). If this sequence was found in the set of system calls of the

individual, its fitness was increased.

They compared two approaches, a “black-box” approach, where the attacker only

knows the outputs that the IDS produces from a particular set of inputs, and a

“white-box” approach, where the attacker has knowledge of the internal behavior of

the IDS. The results of such a comparison show that, although using the white-box

approach produces exploits with lower anomaly score, the black-box technique may

achieve similar rates if the exploit length is increased, even being a more difficult

problem. Therefore, they concluded that in certain cases no internal knowledge of

an IDS is necessary to evade it. A complementary study made in that work was to
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determine the effectiveness of the approach when generating exploit mutations for a

particular IDS and using the resulting mutations in another IDS. This could be the

case where an attacker possesses an IDS but wants to evade another one.

2.2.2 Machine Learning Algorithms in the Presence of Ad-

versaries

ML algorithms build classifiers from a training data set and are used to classify

events in detection time. Nowadays, many intrusion detection techniques in the

research community use ML and classification algorithms to discern between normal

and intrusive data [Lee et al., 1999; Rieck et al., 2011; Tsai et al., 2009].

The benefits of ML are manifold. First, they are relatively easy to use and do not

require much understanding about what the insights of the algorithms are. Tools

such as Rapid Miner [Land and Fischer, 2012] and WEKA [Hall et al., 2009] permit

users to set-up the algorithms in a black-box fashion by just providing the input

dataset. Second, ML are fast and provide good results in terms of efficiency. The

detection is often very efficient and consumes little amount of resources. This is

a rather important aspect to detect intrusions in real time, mostly in constrained

scenarios such as MANETs. Third, ML algorithms have been widely studied in the

field of intrusion detection, and provide good results in terms of detection and false

positive rates. At a first sight, these strengths makes ML a suitable and helpful

solution for intrusion detection. However, as we discuss below, the use of ML for

intrusion detection has been recently criticized by the research community and several

problems regarding its use have arisen.

Dalvi et al. in 2004 [Dalvi et al., 2004] stated for the first time the problem of

using ML algorithms in adversarial environments. The authors stated that the design

of robust classifiers requires continuous ad-hoc reconfiguration in order to face the

adversarial actions. This problem can be viewed as a “game” between the adversary

and the classifier design, and thus, authors proposed a mathematical model in terms

of the optimal strategy used by the adversary. Dalvi et al. assumed that an adversary

has perfect knowledge about the classifier, which is a strong assumption. Lowd

and Meek in 2005 [Lowd and Meek, 2005] presented a reverse engineering attack to

quantify the maximal cost required by the adversary to gain enough information

about the classifier in order to evade it.
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A classification of attacks against ML was first proposed by Barreno et al. [Barreno

et al., 2006] in 2006 and later updated by Huang et al. [Huang et al., 2011] in 2011.

This taxonomy classifies the attacks regarding three aspects: the Influence, the

Specificity, and the Security Violation.

1. Influence. Depending on the process of ML that the attack affects, it can be

either causative, if they have influence over the training data, or exploratory,

if it can just interact with the classifier in detection time. Causative attacks

are mostly efficient if they target ML using online learning, where the classifier

adapts to changing conditions through continuously retraining in detection

time. For example, Biggio et al. [Biggio et al., 2012] have proposed a poisoning

attack against the SVM algorithm by injecting data in the training set of an

incremental solution.

2. Specificity. The attack can be targeted if it focuses on particular, small set

of points, or indiscriminate if the adversary seeks to disturb any point from

the distribution.

3. Security Violation. Depending on the result of attacks, these can be either

integrity attacks, which results in false negatives (i.e., attacks which evade the

classifier), or availability attacks, aiming to generate so many false positives

that the classifier becomes unusable. Huang et al. in 2011 [Huang et al., 2011]

proposed a new Security Violation class which is the privacy attacks. In these

attacks, the adversary aims to reveal any information related to the classifier,

such as the ML algorithm used, the data distribution, etc.

In 2010, Sommer and Paxon presented a paper where they discussed the use of

ML in the field of anomaly detection of network intrusions [Sommer and Paxson,

2010]. They claimed that detecting real-world attacks in real scenarios is such a

complex task that cannot be performed automatically with ML algorithms. They also

stated that using ML for intrusion detection should be done carefully, as there are

several differences with some other ML applications, like product recommendation,

spam detection or natural language translation. Authors analyze five main problems

that system designers must take into account:

1. Outlier detection, i.e., the lack of “intrusive” examples in the training phase.

Training a system with ML requires data with high representation of all classes.
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2. High cost of errors, i.e., the need of achieving a high detection rate while

having a low false alarm rate. In other areas, an error may comprise an spam

arriving to the client email account or missing a potential client. However, a

successful attack in a system may have tragic effects.

3. Semantic gap, i.e., the problem of providing security administrators with a

good understanding of the alarms. ML algorithms are able to discern between

classes. However, classical algorithms cannot explain why a given instance

has been classified as its related class. Thus, a system administrator who

wants to know what happened when analyzing an alert should not have extra

information, which is usually needed.

4. Diversity of network traffic, i.e., the problem of faithfully representing the

real world in the training phase. Due to the complexity and variety of current

networks, even with a huge training dataset it is not possible to assure that

the system has dealt with all the possible scenarios.

5. Difficulties with evaluation, i.e., the lack of publicly available datasets

to experiment. System designers often use simulated traffic which do not

correspond with real scenarios. Additionally, using real data recorded in some

institution or network can reveal sensitive data, leading to privacy concerns.

In 2011, Nelson et al. quantified the effort required for an adversary to find

near-optimal evasions [Nelson et al., 2011]. A near-optimal evasion is the attack

performed by the adversary against an ML algorithm which require the lowest number

of queries. The quantification of such near-optimal evasion provides the complexity

required by an adversary to evade a classifier, which can be used to design robust

classifiers.

Recently, Biggio et al. [Biggio et al., 2013] have proposed a framework for

empirical assessment of the robustness of classifiers to attacks. The framework

requires the definition of four different components:

1. Adversarial model. It defines the goals, capabilities and strategies assumed

for the adversary. The goal is defined in terms of the taxonomy proposed

in [Barreno et al., 2006; Huang et al., 2011]. These capabilities include the

attacker knowledge about the classifier -concretely about the training data-
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the feature set, the learning algorithm, the decision function, and the feedback

from the classifier. The capabilities also include the skills of the adversary, i.e.,

the control that it has over the training and test datasets. Finally, the attack

strategy refers to quantification of the optimal evasions, e.g. how features are

modified from the vector space, how many samples are modified, etc.

2. Data model. Depending on the assumptions given for the adversary, the

distribution of the data may change differently. The data model establishes the

degree of change in the distribution of both the training and detection data

used by the classifier due to the adversarial activity.

3. Generation of training and testing sets. This component proposes an

algorithm to generate training and testing datasets that uses the data distribu-

tion derived from the previous component. These datasets are then used to

train and test the classifier to perform the evaluation under attack.

Regarding the countermeasures to attacks against ML algorithms, Barreno et

al. [Barreno et al., 2006] provided three mechanisms that could be used to coun-

teract adversaries. First, regularization allows to train classifiers that have some

prior knowledge, thus reducing the complexity of the classifiers and encode expert

knowledge which may be useful for the detection. Second, disinformation and infor-

mation hiding prevents the adversary to deducing which the decision boundary of

the classifier is. For example, by do not providing feedback about the result of the

detection, the learner prevents from probing attacks. Third, randomization of some

components of the detection also makes harder the task for adversaries, as it does

not know which the exact boundaries of the detection are.

Another method proposed to harden the task to adversaries is the use of multiple

classifiers [Biggio et al., 2010; Giacinto et al., 2003]. The main idea is to combine

several classifiers for the detection, even applied to different set of features. The

combination can be done in several ways. For example, the IDS McPAD [Perdisci

et al., 2009] uses different classifiers based on Support Vector Machines but which

construct features differently. McPAD combines the classifiers randomly choosing

a subset of them. Given the output of these selected subset, authors propose four

different combination methods to get a final anomaly threshold: calculating the

average, calculating the product, choosing the maximum or choosing the minimum.
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The analysis of the state of the art in the adversarial machine learning turns into

the following conclusions:

• The use of ML for intrusion detection must consider the adversarial setting

where IDS are placed. Indeed, IDS normally are the first barrier that attackers

find, and thus it is likely that they will try to attack them.

• The classical design of ML algorithms has focused on efficiency and efficacy of

the results, and it has considered a common data distribution in both training

and testing phases. However, this is clearly erroneous in the case of intrusion

detection.

• The taxonomy of attacks presented in [Barreno et al., 2006; Huang et al., 2011]

and the framework to evaluate classifiers presented in [Biggio et al., 2013] open

new research horizons in the field of robust design of ML algorithms, that can

be generalized to the intrusion detection area.

• It is rather impossible to consider a perfect classifier providing good detection

performance while being robust against attacks. Thus, it is necessary to

understand the adversarial model and consider what, how and where the

attacks are being happening in order to set additional countermeasures and

maintain a certain level of security in the protected systems.

2.2.3 Attacks to Intrusion Detection Networks

IDNs are complex defense mechanisms that detect and counteract distributed, so-

phisticated attacks against distributed organizations or entities. This makes them

an attractive target for attackers. Thus, besides performance requirements such

as accuracy and efficiency, features such as resilience against attacks are becoming

increasingly critical in order to maintain an acceptable level of security even in

the presence of adversaries. Few works have dealt with the problem of adversarial

capabilities in IDNs.

As stated by Bye et al. [Bye et al., 2010], research on IDNs can be divided into

two main components: the detection aspect and the framework aspect. The first

includes the internal procedures implemented in the nodes to process the data, such

as detection functions, correlation algorithms, data aggregation, trust management,
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etc. The attacks presented in the previous section for IDS are applicable to the

detection aspect stated by Bye et al., though little attention has been paid to the

framework aspect. Bye et al. define five building blocks that must be considered for

the framework of IDNs:

1. Communication Scheme. It indicates how nodes communicates between

them. This scheme defines the architecture of the network.

2. Group Formation. How nodes are aggregated in the network. Depending

on the network, creating “teams” intended to accomplish specific missions is

useful to divide tasks.

3. Organizational Structure. It determines whether the nodes have the same

responsibility, or if there are nodes having more competences than others.

4. Information Sharing. It defines the format and contents of messages inter-

changed. Nodes may exchange local data collected by sensors or knowledge

about intrusion events detected.

5. System Security. This block considers the security of the IDN itself. Con-

cretely, three factors are considered: trust management, which is defined to

deal with malicious insiders; access control (P2P, publish/subscribe, central

authorities, etc.); and availability, to define continuity plans even in presence

of attacks such as distributed denial of service (DDoS).

From the five blocks above, only the last considers robustness of the network

itself against adversaries. In their work, Bye et al. define an adversarial model with

adversaries only capable of performing query/response analysis. This is a rather

useful attack for an adversary, as it is used to gain information about the functions

(as the attack presented in Chapter 4) and locations of the nodes. Accordingly,

authors propose a robust design for resilient IDNs dealing with privacy localization

attacks. However, authors do not consider other adversarial capabilities, such as

modification of data or packet insertion. Thus, the adversarial model presented in

[Bye et al., 2010] is incomplete.

In 2011, Fung [Fung, 2011] defined a set of “insider attacks”, i.e., attacks where

the adversary has gained access into the IDN. Fung introduces four attacks. First,
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the sybil attack, where the adversary uses fake identities to make false reports and

gain influence in the IDN. Second, the newcomer attack, where the adversary changes

its identification information once it is detected. Third, the betrayal attack, where a

benign node turns into malicious and sends false information attacking other nodes.

Four, the collusion attack, where different malicious nodes collaborate to attack

the IDN. Regarding these attacks, Fung provides a review of the main proposals

for IDNs, analyzing the robustness of each proposal against the presented attacks.

The work by Fung provides an overview of specific attacks, and the likelihood of

happening in the architectures proposed in the literature. However, it does not take

into account general adversarial capabilities.

Xenakis et al. [Xenakis et al., 2011] surveyed the weaknesses of IDNs architectures

for Mobile Ad Hoc Networks (MANETs). The main purpose of authors is to point

out flaws in the design of architectures in many aspects, including the ratio of false

positives, communication overhead incurred in the network, processing requirements

for the nodes performing detection, etc. However, they do not expose weaknesses

derived from specific attacks targeted against the different proposals.

2.2.4 Taxonomy of Attacks

A recent survey by Corona et al. [Corona et al., 2013] identifies six general categories

of attacks against classical IDS (see Table 2.3). In this Thesis we consider this

taxonomy to categorize the attacks. The attacks are classified regarding the goal of

the adversary, which results in different consequences:

1. Evasion, where an attack is carefully modified so that the IDS would not be

able to detect it. These are the most common attacks studied in the literature.

For example, blending and mimicry techniques are examples of evasion.

2. Overstimulation, where the IDS is fed with a large number of attack patterns

to overwhelm analysts and security operators. For example, Mucus is an IDS

stimulation tool by Mutz et al. [Mutz et al., 2003] that generates packets that

purposely matches the signatures of Snort [Roesch, 1999] to generate a large

number of detection alerts.

3. Poisoning, where misleading patterns are injected in the data used to train

or construct the detection function. This attack is applicable to IDS that use
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retraining, i.e., that modify the detection function in detection time [Rubinstein

et al., 2009]. An example of such attacks are the Allergy Attacks [Chung

and Mok, 2006, 2007], which targets automatic signature generators such as

Polygraph [Newsome et al., 2005]. These attacks insert noisy data into the

generation process to generate signatures in the IDS that filter out normal

requests.

4. Denial-of-Service (DoS), where the detection function is disabled or severely

damaged. Algorithmic complexity attacks [Crosby and Wallach, 2003] are

examples of such attacks. These attacks force the IDS to perform the worst

case scenario, for example by generating packets that make the signature

matching to generate the highest number of matches [Smith et al., 2006].

5. Response Hijacking, where carefully constructed patterns produce incorrect

alerts so as to induce a desired response. This attack directly targets the

response module of a system. For example, in a MANET, several colluding

malicious nodes may send false reports indicating bad behavior of a benign

node [Fung and Boutaba, 2013]. An IDN node then may block or ban such

benign node from the network.

6. Reverse Engineering, where an adversary gathers information about the

internals of the IDS by stimulating it with chosen input patterns and observing

the response. The common approach is to perform query-response analysis, for

example to discover signatures used by IDS [Mutz et al., 2005]. As part of the

contributions of this Thesis are the reverse engineering attacks presented in

Chapters 3 and 4.

Corona et al. focus their work on IDS working in a stand-alone fashion, i.e.,

without communicating with other systems. These systems have a common structure,

depicted in Figure 2.1, i.e., decoders, preprocessors, detection engine, and response

module. However, the taxonomy does not provide general mechanisms an adversary

can use to achieve her goals. Moreover, the survey focuses on stand-alone IDS, not

considering specific attacks to IDNs. Typically, these specific attacks are focused on

the communications between nodes and the propagation of the information in the

network.
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Attack Goal Examples from the literature

Evasion To bypass the detection of the IDS • Polymorphic Blending Attacks
[Fogla et al., 2006; Kolesnikov
and Lee, 2005]

• Packet Insertion [Ptacek and
Newsham, 1998]

• Mutant Exploits [Vigna et al.,
2004]

Overstimulation To stimulate the IDS and force it to
generate a huge amount of alarms

• IDS stimulator [Mutz et al.,
2003]

Poisoning To modify the detection function or
any component in the IDS

• Attacks to signature genera-
tors [Newsome et al., 2006;
Perdisci et al., 2006; Rubin-
stein et al., 2008]

• Allergy Attacks [Chung and
Mok, 2006, 2007]

Denial of
Service

To make the IDS unavailable or use-
less

• Algorithmic complexity
attacks [Crosby and Wallach,
2003; Smith et al., 2006]

Response
Hijacking

To force the IDS to generate specific
responses useful for the adversary

• IDS stimulator [Mutz et al.,
2003]

• Sybil and Betrayal attacks
[Fung, 2011]

Reverse
Engineering

To obtain information about the func-
tioning or internal components of the
IDS

• Reverse Engineering of Net-
work Signatures [Mutz et al.,
2005]

• Traffic analysis [Bye et al.,
2010]

• Query-response analysis [Pas-
trana et al., 2014]

Table 2.3: Taxonomy of attacks proposed in [Corona et al., 2013].
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2.3 Discussion

In this chapter, we have analyzed the state of the art in the area of attacks against

intrusion detection solutions, including stand-alone IDSs and IDNs. Misuse detection

has proven inappropriate to detect sophisticated threats such as polymorphic attacks,

which are included in many existing APTs and other malware distribution mechanisms.

Research in the IDS field has been trying to move towards anomaly detection

approaches for more than a decade. However, anomaly detection has also many

drawbacks, including the difficulty to generate appropriate models of normal behavior.

Machine learning is currently the best available technique to face this problem, and

a very significant number of works have explored the use of many machine learning

algorithms for intrusion detection.

The research community has recently questioned the security of machine learning

algorithms when adversarial environments are considered. The design of resilient

machine learning algorithms is an active research topic in which little progress

has been made over the last few years. One key limitation is that most proposals

are discussed using artificial datasets, and it is unclear that they will work in real

scenarios. A recent framework by Biggio et al. [Biggio et al., 2013] suggests that,

in order to test the resilience of classifiers against attacks, the artificial datasets

used for training and testing should include potential modifications performed by

an adversary. Still, there is a substantial lack of experimental work exploring the

problems derived from an attacker who can modify instances at will to subvert the

detection function.

In order to secure IDSs against attacks, many state of the art solutions have

proposed using secret random components in the detection process [Wang et al.,

2006][Perdisci et al., 2009][Huang et al., 2011]. For example, Anagram [Wang et al.,

2006] randomly partitions each incoming payload into a number of non-overlapping

subsets using a random mask. Thus, the authors state that a potential adversary

could not know which parts of the payloads are being processed and, therefore, will

be unable to perform the attack. Despite such claims, it is still unclear whether

these solutions improve the security against current attacks.

More generally, a prudent practice in security engineering is to design systems

that remain secure—or, at least, whose security degrades smoothly—even if some

integrating parts are compromised. IDNs are key components of current cyberdefenses
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and should be designed according to this principle. Thus, even if components such as

local sensors (IDSs) are attacked, the overall detection network should still perform

well. While strong analysis models for attacks on individual IDN nodes have been

explored, almost no research works have focused on the study of resilient IDNs in

the face of adversaries.
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3

Attacks on Machine Learning Based

IDSs

3.1 Introduction

Machine Learning (ML) algorithms have been largely used in the intrusion detection

field [Pastrana et al., 2012; Song et al., 2013; Tsai et al., 2009], particularly for

anomaly-based detectors. Basically, these algorithms learn a model from a training

set composed of attack-free samples. The obtained model is later used during the

detection process to classify activities as normal or malicious.

Most ML algorithms require a representation of the data in the form of a vector of

nominal or numerical features. In network intrusion detection, feature construction is

the process that converts raw traffic data into feature vectors. Feature construction

at the network layer may use session attributes (e.g., number of packets sent and

received, duration of the session, etc.) or fields extracted from packet headers

(e.g. sequence numbers, windows sizes, etc.). Moreover, feature construction at

application layer can be also performed using session attributes. For example, a

recent work by Goseva et al. [Goseva-Popstojanova et al., 2014] use session-based

features to characterize web traffic. Authors compare C4.5, CART and SVM to

distinguish between vulnerability scans and actual attacks to web servers. However,

when applying ML to detect malicious payloads at the application layer, the feature

construction process is not trivial. A common approach is to use text processing

methods, like n-grams [Torrano-Gimenez et al., 2012; Wang et al., 2006; Wang and

Stolfo, 2004], which obtains all the words of size n from the payload. To reduce

the dimensionality of the data space and obtain more lightweight classifiers, some

proposals set n to 1.
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ML algorithms consider a similar distribution of the training and test datasets.

Most frequently, the main goal for IDSs is to maximize the detection rate while

minimizing the false positive rate. Accordingly, in intrusion detection ML algorithms

have been applied with the main purpose of optimizing these rates, and not much

attention has been paid to actually protecting these systems against adversaries

interested in manipulating the classification process. Only recently, the research

community has focused on designing robust ML algorithms [Biggio et al., 2013;

Huang et al., 2011] for adversarial environments, but still many current proposals

do not consider such settings. However, since the deployment of IDS is done in

adversarial scenarios, when designing an IDS it is critical to evaluate not only its

effectiveness, but also the security and robustness of the detection. Sommer and

Paxson discussed the appropriateness of using ML for IDS [Sommer and Paxson,

2010]. One of the problems there stated is that network traffic exhibits a great

variability even within a single network, which is wider at the application layer where

the payloads are encapsulated. Thus, it is unfeasible to get a dataset that properly

represents all the network data space to train the IDS.

In this chapter we discuss and analyze the use of four classical ML algorithms for

malicious payload detection in the presence of adversaries. We provide experimental

results that confirm the problem of using an artificial dataset for training an IDS,

and show that ML-based IDS that are trained with non-representative datasets are

vulnerable to attacks. Specifically, it is shown that the models learned work well for

the specific distribution of the training dataset (i.e., the IDS is efficient). However,

they may also learn specific rules or pattern of this distribution. An adversary who

infers these irregularities will be able to attack the system by properly modifying

some features (i.e., the IDS is not robust).

Even when the adversary gets feature vectors that evade the system, she still

has to build raw payloads from these vectors to obtain real world evasions. This

requires to invert the feature construction process, which is only possible if the

feature construction has an inverse function. This challenge has been recently stated

by Huang et al. [Huang et al., 2011], who questioned “how the feature mapping can

be inverted to design real world instances”. In this work, we show that if the feature

construction is simple and lightweight, then it is easy for an adversary to obtain its

inverse function. Thus, the process of finding real world evasions from the feature

space is easier. For example, if the construction from payloads uses 1-grams, the
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adversary only needs to include or remove single bytes wherever she chooses into the

payload.

The experiments discussed in this chapter were conducted using the CSIC 2010

Dataset [Torrano-Gimenez et al., 2010], which is composed of real HTTP traffic

data with both normal and anomalous requests. A reverse engineering attack

is first presented, where the adversary discovers the main features used in the

detection process and how they are used. The attack uses Genetic Programming

[Koza, 1992] (GP) to generate models over the traffic distribution that resemble the

behavior of IDS classifiers built from training datasets following a similar distribution.

Subsequent analysis of the obtained models suggests mechanisms to evade these

IDSs. The process is illustrated with four representative IDSs implementing different

classification algorithms, concretely two decision trees (C4.5 and CART), Support

Vector Machines (SVM) and Multilayer Perceptron (MLP). These algorithms have

been widely used in the field of intrusion detection (see, e.g., [Goseva-Popstojanova

et al., 2014; Pastrana et al., 2012; Torrano-Gimenez et al., 2012; Tsai et al., 2009]).

The remaining of this chapter is organized as follows. Section 3.2 describes the

adversarial model assumed for the attacks presented in this chapter. In Section 3.3

we present the experimental framework used to demonstrate the attacks, which are

then described in Section 3.4. The main experimental results are analyzed in Section

3.5, and Section 3.6 discusses potential countermeasures and open problems. Finally,

Section 3.7 concludes the chapter.

3.2 Adversarial Model

In the analysis of attacks and countermeasures against a system, it is important

to establish the capabilities assumed for an adversary. Indeed, depending on these

capabilities, different procedures are established in the design of countermeasures,

which is critical in order to avoid spending unnecessary resources. Since intrusion

detection systems have only been analyzed in adversarial environments very recently,

there is a lack of widely accepted adversarial models. Despite this, most works in this

area assume an adversary with, at least, the capabilities described next [Biggio et al.,

2013]. The attacks presented in this work assume that the adversary has knowledge

about the following information:
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1. The distribution of the training data used by the IDS. This does not mean

that the adversary has the same training dataset, but she must know the

distribution and characteristics like the protocol used, type of traffic, normal

contents, common patterns, etc.

2. The Feature Construction method (FC). We assume that the adversary knows

the algorithm used to generate feature vectors from the raw payloads. Thus,

the adversary knows how the payloads are mapped into the classifier’s feature

space.

Both the distribution and feature construction method may be kept secret in many

cases. In this work we do not consider the problem of how to get this information.

However, from the security point of view, this possibility cannot be underestimated,

and the security of the system should not reside in the obscurity of its implementation.

Indeed, many authors have assumed that this information is known by an adversary

[Biggio et al., 2013]. In fact, in [Huang et al., 2011] authors stated that “specialized

features constructed for a specific learning problem [...] may not be known or inferable

by the adversary” but “knowledge about the training and evaluation data used by the

algorithm [...] may be available to the adversary because of actions the adversary

makes outside the system [...] or because the adversary is an insider”. Moreover,

recent works (see, e.g., [Ateniese et al., 2013]) have proposed reverse engineering

attacks that disclose statistical properties and information about the training set of

a classifier.

3.3 Experimental Setup and Base Classifiers

This section describes the setup and assumptions made in our experimental work.

First, Section 3.3.1 explains the data used, its content, and the feature construction

method used. Next, Section 3.3.2 details the classification algorithms studied, how

we have constructed the experimental IDSs and measured their performance in terms

of detection and false alarm rates.
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3.3.1 Dataset

A major issue in intrusion detection is the selection of an adequate dataset to

evaluate proposals. For example, the DARPA dataset [Lippmann et al., 2000] has

been widely used for intrusion detection. However, it has been criticized by the

research community [McHugh, 2000], mainly because it is outdated and does not

include many of the current attacks, what makes it inappropriate for the detection of

web attacks. In this work, we use the CSIC 2010 HTTP dataset [Torrano-Gimenez

et al., 2010]. This dataset has been successfully used for web detection in previous

works, such as for example [Nguyen et al., 2013; Torrano-Gimenez et al., 2009].

The dataset contains traffic targeted to a realistic web application developed

for this purpose. It consists of an e-commerce web application running on Apache

Tomcat, and it is composed of several web pages that allow users to do actions such

as buying items with a shopping cart or registering by providing their personal data.

Some of the web pages require certain parameters, for example the user name and

address for the registration process or the name of the product that the user wants

to buy.

The traffic contained in the dataset was automatically generated and contains

normal and anomalous requests targeted to all the web pages of the application, using

different values for those web pages that accept different parameters. In total, 36,000

normal requests and more than 25,000 anomalous requests are included in the dataset.

All the requests are labeled either as normal or as anomalous. The dataset includes

modern web attacks such as SQL injection, buffer overflow, information gathering,

CRLF injection, Cross Site Scripting (XSS), server side include and parameter

tampering. Further details about the dataset can be found in [Torrano-Gimenez

et al., 2010].

The complete dataset is composed of 61,065 traces. We randomly divide it into

three subsets. The first subset is used to train and build the classifier at the core

of the IDS using the corresponding algorithm (details of the construction process

are given below). The second subset is used to test each IDS and to train the GP

models as part of the reverse engineering attack. These are independent processes

and therefore we use the same subset. Finally, the third subset is used to test the

GP models.

The dataset uses two FC methods: 1-grams and expert knowledge. Although
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Table 3.1: The 89 non-null 1-grams from the HTTP dataset CSIC 2010.
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the dataset uses these two FC methods, the evasion attacks studied here focus on

the features extracted with the 1-grams method, in order to show its weaknesses.

Torrano et al. [Torrano-Gimenez et al., 2012] show that using a combination of these

two methods increases the effectiveness of the detection. However, in this work we

study if this combination improves the robustness of the IDS against adversarial

attacks.

The FC method based on the 1-gram method for intrusion detection works as

follows: every HTTP request p is associated with a feature vector

xp = (x1, x2, . . . , x256)

where xi contains the number of occurrences of the i-th 1-gram in the method, path,

and arguments of p.

An analysis of the 1-grams extracted from the dataset indicates that from the

256 possible features (i.e., the total number of ASCII characters), only 89 (34.77%)

appear one or more times in the HTTP requests. These 89 characters are listed in

Table 3.1.

The FC process based on expert knowledge considers 28 features relevant for
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Table 3.2: The 28 features constructed using expert knowledge from the HTTP dataset CSIC 2010.

Features extracted with expert knowledge
Length of the request Length of the path

Length of the arguments Length of the header “Accept”
Length of the header “Accept-Encoding” Length of the header “Accept-

Charset”
Length of the header “Accept-Language” Length of the header “Cookie”
Length of the header “Content-Length” Length of the header “Content-

Type”
Length of the Host Length of the header “Referer”

Length of the header “User-Agent” Method identifier
Number of arguments Number of letters in the arguments

Number of digits in the arguments Number of ’special’ char in the argu-
ments

Number of other char in the arguments Number of letters char in the path
Number of digits in the path Number of ’special’ char in the path
Number of other char in path Number of cookies

Number of distinct bytes Entropy
Number of keywords in the path Number of keywords in the argu-

ments

the detection process. These are listed in Table 3.2. Some of these 28 features refer

to the length of different parts of the request, as length is important for detecting

attacks such as buffer overflows. Non-alphanumeric characters are present in many

injection attacks. Therefore, four types of characters are considered: letters, digits,

non-alphanumeric characters that have a special meaning in a set of programming

languages (referred in Table 3.2 as “special” char), and other characters. Several

features are created by analyzing their occurrences in both the path and the argument

values. Another feature is built by studying the entropy of the bytes in the request.

Additionally, the construction by expert knowledge also considers keywords of several

programming languages that are often used in injection attacks, and count the

number of occurrences in the path and the arguments of the request.

Overall, the 89 features obtained from the 1-gram method and the 28 features

from the expert knowledge are combined for each payload, resulting in vectors with

117 features. Since in this work our aim is to analyze the weaknesses of the 1-gram

construction process, the evasion attack focuses only on the 89 features constructed

using 1-grams, although the reverse engineering attack focuses on the overall set of
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Figure 3.1: Structure of the IDS studied. It is composed of a FC module and the classification algorithm
at the core of the detection engine.

features. We explain these attacks in detail in Sections 3.4.1 and 3.4.2.

3.3.2 Classification Algorithms

Figure 3.1 shows the structure of the IDS built to demonstrate our attacks. First,

the HTTP traffic is preprocessed as explained in the previous section in order to

extract a feature vector for each HTTP payload. Four classification algorithms are

used as detection engines: C4.5 and CART decision trees, SVM, and MLP. The

IDS is trained to classify HTTP packets using labeled data with both normal and

intrusive packets, using the first part of the dataset.

Each classification algorithm is tested with the second part of the dataset. As

output of the testing process, the classification algorithm indicates for each test

request whether it has been correctly classified by the detector or not. In order to

evaluate the effectiveness of the IDS, we first define the measures used. On the one

hand, a real attack can be detected, obtaining a True Positive (TP), or not detected,

being a False Negative (FN). On the other hand, a normal event (non-malicious)

can be signaled as normal by the detector, being a True Negative (TN), or can be

classified as an attack, resulting in a False Positive (FP). Given these definitions,

several metrics are defined, as explained in Chapter 2:

• Hit rate (H). It is the ratio of attacks that are properly detected by the system.
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Table 3.3: Detection rate (H), false alarm rate (F) and CID index of the classification algorithms
studied.

C4.5 CART SVM MLP
H 0.96 0.97 0.95 0.96
F 0.04 0.07 0.06 0.12

Cid 0.73 0.72 0.67 0.62

It should be maximized.

• False positive rate (F ). It is the ratio of normal events wrongly classified as

intrusions. It should be minimized.

• CID index [Gu et al., 2006]. As explained in Chapter 2, the CID measures the

amount of uncertainty of the input resolved once the IDS output is obtained,

and provides a single scalar to assess the efficacy of the IDSs.

Table 3.3 shows the effectiveness of the different IDS classification algorithms studied

over test data. In the table, bigger H and CID values and lower F value means better

effectiveness of the classifier. As it can be observed, the best classifier is the C4.5,

with a 96% of Detection Rate (H) and a 4% of False Positives Rate (F ). In general,

it can be observed that the classifiers obtain high detection rates with acceptable

false alarm rates.

3.4 Attacks

This section first describes a general technique to conduct reverse engineering attacks

against IDS based on classifiers such as those described above. The scheme is based

on the idea of obtaining an approximation of the inner workings of the classifier (i.e.,

of its decision surface). Such an approximation is then used to search for strategies

that evade it, which are then mapped into real world payloads.

Figure 3.2 shows the overall process of the attacks. The top of the image

corresponds to the behavior of the IDS. First, the IDS gets some training data with

a given data distribution. The feature construction (FC) obtains the feature vectors

from the raw data, which are then used to train the classifier using the corresponding

ML algorithm. The classifier is used in detection mode to evaluate new events and

outputs a response (normal or intrusion).
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Figure 3.2: Illustration of the attack performed by an adversary to evade IDS that use an invertible FC
method and ML algorithms.

The bottom part of Figure 3.2 represents the actions performed by the adversary

in each attack. Given an attack payload, the adversary first performs a reverse

engineering attack (bottom-left part of the figure), which obtains a GP model. Then,

this model is processed to search for evasion strategies (bottom-right part of the

figure). In the following sections we detail the reverse engineering and the evasion

attacks .

3.4.1 Reverse Engineering Attack

We next present an attack aimed at reverse engineering the inner workings of the

classifier at the core of the IDS. This is done using the data distribution used for

training the IDS that, as explained before, is known by the adversary. Recall that

we also assume that the adversary knows the feature construction algorithm used by

the IDS. Our main hypothesis is that, under these circumstances, the adversary can

generate training samples and build another classifier that is a good approximation,
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in terms of the decision surface, to the actual IDS classifier; that is, the model built

by the adversary classifies instances similarly to how the IDS does it. Such a model is

subsequently used to perform evasion attacks. We conduct our experiments over the

IDS created using 1-grams with the four different classification algorithms explained

above (C4.5, CART, SVM and MLP). This attack is represented in the bottom-left

part of Figure 3.2.

In this work, we use Genetic Programming (GP) [Koza, 1992] to obtain an

approximation of the decision surface of the actual detection model at the core of

the IDS. We choose GP because it outputs tree-based expressions that can be simply

evaluated with a recursive function. Moreover, these models are easy to understand

and readable [Orfila et al., 2009]. However, the presented reverse engineering attack

works with any algorithm whose output is readable and could be processed by a

posterior searching algorithm.

Given a search problem over a large solution space, GP performs a heuristic

search to obtain a locally optimal solution. GP is a technique that keeps a set of

programs (also called the population of individuals), randomly initialized, which are

evolved according to various procedures inspired by the laws of natural selection. In

our scheme, each program (individual) has a tree-like structure where the root and

intermediate nodes are mathematical and logic functions, and the leaves are terminal

features (see the example in Figure 3.3). Each generation is obtained by selecting

the best individuals from the previous one. Some individuals are mutated (changing

an internal subtree by another) or subject to crossover (exchanging subtrees from

two different individuals), according to a set of parameters. After a given number of

generations, or else when an optimal solution is achieved, the algorithm stops and

the best individual of the last generation is given as solution. Table 3.4 shows the

values used for the GP parameters in our experimentation. These values have been

obtained using 10-fold cross-validation and using the combination of parameters that

performs best in terms of accuracy.

The operators used in the GP algorithm are shown in Table 3.5. Most of them

output a binary value. Therefore, the final output of each individual is binary,

indicating whether the input trace is considered an attack or not. If the final output

is not binary (i.e., the root of the tree is a non-binary function), then an output value

different from zero is interpreted as an attack as well. The fitness function is the

operator measuring how well each individual in the population performs. We use the
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Table 3.4: GP parameters used in the experiments.

Name Value
Number of generations 300
Maximal tree depth [2-10]
Population size 1000
Tournament size 8
Crossover rate 90%
Mutation rate 10%

fitness shown in Equation (3.1), which considers both the classification error, defined

as the number of incorrectly classified events divided by the total events, and the CID.

The greater the CID, the better. Because the algorithm we use aims at minimizing

the fitness, we use (1− CID) in the calculation. The values α and β are the weight

given for each metric, and they must add up to one. In our experiments, we use 0.5

for both values (i.e., the CID and the classification error have equal weight).

fitness = α · E class+ β · (1− CID) (3.1)

A critical parameter here is the maximum tree depth. Since one goal of our

reverse engineering attack is to generate an understandable model of the classification

algorithm, it is important to avoid the bloating of the individuals when crossing and

mutating the trees. The value of the maximum tree depth avoids bloating. On the

one hand, setting a bigger value causes the GP algorithm to evolve more complex

programs, which are likely to be difficult to understand. On the other hand, simpler

models generally obtain worse results efficacy-wise, but they facilitate analysis for

the evasion attack, which is the actual goal of the adversary. In Section 3.5.1, we

provide an analysis of the impact of this parameter in the efficacy and effectiveness

of the attacks.

Figure 3.3 shows an example of a model obtained by following this procedure.

This program applies the operators to the features in the leafs following a tree-based

scheme. In the example, we can observe that the model outputs 1 (anomaly) if both

the left side (OR operator) and the right side (ADD operator) are true (i.e., non-zero

values). The goal is that the programs evolve in such a way that they classify each

instance properly, in a supervised setting using the second part of the dataset as

training instances. Finally, programs are tested using the last part of the dataset to
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Figure 3.3: A sample of a GP model.

Table 3.5: List of operators used by GP.

Name Description
ADD Addition of two numbers

MULT Multiplication of two numbers
DIV Division between two numbers. Returns 0 if the denominator is 0
AND Boolean ’and’ operator between two numbers
OR Boolean ’or’ operator between 2 numbers

NOT Boolean ’not’ operator between 2 numbers
GREATER Returns 1 if the first argument is greater than the second, and 0

otherwise
LEAST Returns 1 if the first argument is lower than the second, and 0

otherwise
MAX Returns the maximum of two values
MIN Returns the minimum of two values

measure the effectiveness of the evolved models in terms of classification.

The training and testing phases are repeated several times in order to obtain a

statistically significant measure that does not depend on the initial random seed.

Using different random seeds covers a larger portion of the search space. We then

take the results obtained with the best individual, i.e., the one that has produced

the best test results, to perform the evasion attack.

Finally, it can be observed that in this setting the reverse engineering attack does

not require the adversary to interact with the IDS, because it only uses a dataset

with a similar distribution to the one used during the IDS training.
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3.4.2 Evasion Attack

The reverse engineering attack explained above provides the adversary with a model

of the way the IDS works that facilitates the construction of evasion attacks. Recall

that the main idea of an evasion is to transform a instance that would be classified

as a true positive by the IDS into one that would result in a false negative, i.e.,

performing attacks without generating alarms. The bottom-left part of Figure 3.2

shows a graphical explanation of this evasion attack.

Key information about how to find such evasions can be extracted from the

evolved models using a search algorithm. In our experiments, the models are GP

programs that have a tree shape, with a root node, several internal nodes distributed

in different levels, and a final level with the leaves. The root and each internal node

in a model is an operator and the leaves represent features extracted from the input

data. These are the features that an IDS trained with a similar data distribution

may use in the detection. Therefore, the evasion search is done by analyzing these

features and operators from the models to look for potential vectors that evade the

classifier. Then, these vectors are mapped into real payloads to evade the system

using the inverse of the feature construction (FC−1).

We perform the evasion search by using a special top-down tree-traversal searching

algorithm over each candidate model. The final goal is to make the root node change

the output (from 1, meaning attack, to 0, meaning normal). To this end, we allow

the search to modify the value of its children nodes as follows. On the one hand,

if any of the children is a leaf node, the corresponding feature is set to zero. On

the other hand, if both children are intermediate nodes (operators), the algorithm

requests them being zero, and the process is recursively repeated. In Section 3.5.2

we provide an example of how this search is done over a model.

The search over the tree models provides the adversary with a set of evasion

strategies, which indicate which features should be modified in order to evade the

classifier. The adversary generates a new dataset by implementing the modifications

of the features suggested by the search. Accordingly, the adversary obtains a set of

modified vectors from the input data that cause evasions. This modified dataset is

given as input to the studied classifier to check whether new false negative appears.

Each modified attack that is not detected by the IDS is considered as an evasion

candidate. We use the term “candidate” because, as mentioned above, before
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Figure 3.4: A candidate evasion strategy which modifies the feature F68 to evade detection.

considering it as a real world evasion we have to check that two requirements are

met:

1. The payload obtained after the modification must represent valid HTTP

payload. For example, the word GET cannot be removed from a HTTP

request.

2. The attack still works after the modification. For example, removing the word

INSERT in an SQL Injection translates into a useless payload for the adversary.

Figure 3.4 shows an example of a candidate evasion strategy. The row shows

the 117 features constructed from the payload along with its label (L), indicating

whether is a normal (i.e., L = 0) or an intrusive (i.e., L = 1) instance, and the output

given by the IDS (O). The figure shows an attack trace where, when modifying the

feature 68 from 13 to 0, the output (O) of the IDS changes from 1 (intrusion) to 0

(normal).

For each modified vector that potentially evades the IDS, it is required to get

the corresponding payload to perform real world evasions. This is done by inverting

the feature construction algorithm (FC−1). In the concrete example of 1-grams,

each feature in the vector specifies the number of 1-grams in the payload (see Table

3.1). Accordingly, the adversary only has to remove or insert 1-grams (bytes) in the

payload to get the desired numbers as indicated by the features of the candidate

vectors.

3.5 Results

This section presents the results obtained when attacking the four IDSs created using

C4.5, CART, SVM and MLP. First, in Section 3.5.1 we present the models obtained
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Figure 3.5: Efficacy vs Complexity of models.

through the reverse engineering procedure described above. Since the models are

built using a dataset with a similar traffic distribution than the training dataset used

by the classifiers, the results of the reverse engineering attack are generic for the

four IDSs. Then, in Section 3.5.2 we explain how these models are used to conduct

an evasion search and discuss one example of a malicious payload which is properly

modified to evade the four IDSs studied.

3.5.1 Reverse Engineering

As explained in Section 3.4.1, we have experimented with different values of the

parameter “maximum tree depth”. Figure 3.5 shows the effectiveness in terms of H,

F and CID of the best individuals obtained for each value of the parameter. Recall

that bigger H and CID values and lower F values mean a better effectiveness of

the classifier. It can be observed that, as the maximum allowed depth increases,

so does the accuracy of the obtained models. However, bigger models are more

complex and require bigger efforts to perform the evasion attack. Though the false

positive rate of the models is rather high (above 10% in all the cases), we do not care

about improving this because the final goal is to perform evasion. Accordingly, it is

preferable that the models detect the attacks properly (i.e. getting a high detection

rate), because this provides further information to perform the evasion search.

Figure 3.6 shows the best individual obtained with a maximum depth of 4. In the

next section, we use this individual to illustrate how the search of evasion attacks is
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Figure 3.6: GP model obtained with the reverse engineering attack.

done. In this individual, the relevant features appearing in the leaves of the tree are:

• F96: Number of ’l’

• F89: Number of ’d’

• F86: Number of ’A’

• F67: Number of ’-’

• F17: Number of special characters in the arguments

• F104: Number of ’U’

• F31: Number of ’1’1

It can be observed that, with the exception of the feature F17, all the features

are extracted with 1-grams. Modifying such features to get real world evasions is

straightforward. Thus, the model presented provides the adversary with high chances

to look for evasions. In the next section, we explain how this is carried out.

3.5.2 Evasion

In order to explain how the tree-traversal algorithm works, next we describe the

search over the model shown in Figure 3.6. In order to succeed in evading the IDS,

the output of the tree must be zero. The root is a MAX operator, which requires

that its two children are zero. In what follows we describe how the algorithm works

in each subtree to accomplish this goal:

1Feature 96 is the lower-case of L while Feature 31 is the character of the number one
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Table 3.6: Example of a rule suggested after performing the evasion attack

[F89=0 OR F96=0 OR (F86=0 AND F67=0)] AND (F17=0 OR F104=0 OR F31=0)

1. The left child is a MIN operator, and requires one of its two children being

zero.

(a) The left child is a MIN, and it is zero if either the feature F89 (number of

’d’) or the feature F96 (number of ’l’) are zero.

(b) The right child is an ADD, and requires setting to zero both the feature

F86 (number of ’A’) and the feature F67 (number of ’-’).

2. The second child of the root is an OR operator. It requires that either the

feature F17 (number of special characters in the arguments) is zero or the right

child is zero.

(a) The right child is a DIV operator. It is zero if either the feature F104

(number of ’U’) or the feature F31 (number of ’1’) is zero (in order to

avoid inconsistent operations, if the divisor is zero, the operator DIV

returns zero).

This search suggests various possible modifications of features according to the

analysis above. The modifications are given in the form of rules. Table 3.6 shows an

example of a rule obtained from analyzing the model shown in Figure 3.6. This rule

shows that, for example, if the features F89 and F17 are set to zero, it is possible

evade the tree model. However, performing such modifications to get real world

evasions is not an easy task for an adversary. Indeed, F17 is the “Number of special

characters in the argument’s values”, and in many attacks it cannot be set to zero

because some special characters are required (like, for example, the ’>’ symbol for an

XSS attack). Thus, this modification may not be useful in real attacks. In general,

when evaluating the evasion attack the adversary should focus on modifications that

are semantically valid, as explained in Section 3.4.2. As we show below, focusing

on the features extracted by 1- grams simplifies the search of real world evasions,

because inverting the FC is straightforward for the adversary.

We have analyzed the models generated with different tree depths and obtained

all the output rules. Without loss of generality, we provide an example of how an
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Figure 3.7: Original (above) and modified (below) malicious payloads, classified as intrusion and normal
respectively by the four IDSs studied.

evasion could succeed by following this procedure. One of the modifications suggested

in these rules is to set the number of ’i’ characters to zero. Accordingly, we replace

the character ’i’ by its upper-case representation (’I’) in all the attack instances

initially detected by each classifier, thus generating a payload free of ’i’ characters.

Figure 3.7 shows an example of such a payload, which originally was detected by

all the IDSs studied, i.e., using the C4.5, CART, SVM and MLP classification

algorithms. Then, when such a modification is carried out, it evades detection of the

IDSs. This payload is a typical example of an SQL Injection attack against the web

server. It can be observed that it is a real world evasion because the HTTP protocol

is not case-sensitive, so replacing a capital letter by its corresponding lower-case

letter maintains the functionality of the protocol and thus the attack still succeeds.

However, from the ML perspective, this small change in a feature suffices to alter

the classification output. A prior normalization of the traffic exposed to the IDS,

though, would counteract this evasion.

Another evasion strategy suggested by the rules consists of removing the hyphens

(’-’) characters from the arguments in the URLs. This could be done by changing these

characters by the underscore(’ ’) in the names or surnames of people. For example,

in Figure 3.7, the argument “email” has the value “jperez@fighting-machines.log”. If

the domain of this email is changed to “fighting machines.log”, the evasion succeeds.

However, the HTTP request has a different semantic, i.e., the domain of the email

may not exist, and the response to this request may lead to some error message,

like “invalid email”. Nonetheless, the evasion attack is harder to counteract by the

IDSs, as it is not enough to normalize the traffic, but also it would be required to

remove invalid email domains (which in turn requires to manage a whitelist of these

domains).
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The aforementioned evasion attack may seem simple, as we are only changing a

lower-case letter by its corresponding upper-case character, or hyphen by underscore

characters. It can be observed that an adversary can easily compose a malicious

payload that evades the IDSs. Somehow during training, the classifiers learn that

the presence or absence of these characters can be used to tell apart normal from

anomalous payloads. As shown in Table 3.3, the detectors obtain a rather good

performance in terms of effectiveness. This happens because the ML algorithms are

capable of processing a training dataset and, when a similar testing data is presented,

they classify these data properly. However, ML algorithms do not have the domain-

specific intelligence required to know whether the classification makes sense from

the application at hand –intrusion detection in this case. Accordingly, as we have

demonstrated, they are weak and vulnerable to specific targeted modifications. Once

the adversary discovers this vulnerability through the reverse engineering attack, she

just have to take care of setting properly the number of characters (1-grams) in the

attack payload and thus the IDS will be evaded.

3.5.3 Additional Experimentation

The attacks discussed above were also tested against network-based detectors [Pas-

trana et al., 2010, 2011]. In this case, we used the LBNL dataset [Nechaev et al.,

2010], which provides both normal traffic and traffic corresponding to a port-scanning

attack, and the well-known KDD Dataset, derived from raw traffic captured during

MIT/LL 1998 evaluation [Lippmann et al., 2000]. Different from the work presented

in this chapter, in our previous works we only experimented with the C4.5 algorithm.

At a first sight, the results demonstrated that an adversary could evade a C4.5-based

NIDS with SYN flooding attack and port scanning attacks. However, we found that

obtaining real world evasions in those cases were highly difficult for the adversary,

because inverting the FC used in that works is not easy.

The GP models obtained in [Pastrana et al., 2010, 2011] are showed in Figure 3.8.

As it can be observed, these models are rather simple and easy to understand, which

was one of the objectives proposed for that works. This implies that the reverse

engineering attacks succeeded. Regarding the evasion attack, though, the suggested

evasion strategy from the models forces the attacker to perform hard modifications.

Concretely, the strategy requires to modify either a TCP header field (the window
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LBNL dataset KDD dataset

Figure 3.8: GP models obtained in previous experimentation with network traffic.

size) in the case of the LBNL dataset (left figure), or the “destination bytes” field

of the KDD (right figure), which is the number of data bytes from destination to

source. Consequently, obtaining real world evasions in this case is not easy, or even

impossible in the case of the destination bytes, since it depends on the destination

(victim) and thus the source (attacker) has not control over the field.

3.6 Discussion

We identify three main points that lead to the success of the attacks presented in

this chapter. We next analyze them and discuss possible countermeasures.

1. IDSs are trained with a dataset that does not represent properly the complete

space of HTTP payloads. This is one of the major problems in the application

of machine learning to intrusion detection [Sommer and Paxson, 2010], and the

situation is even worse in the case of payload-based detection. A solution would

be to constantly retrain the detector, in the hope that feeding the classifier

with newly observed payloads will result in more representativeness. However,

these solutions entails new problems. For example, it must be ensured that

the new payloads are attack-free, as otherwise the detector would incorporate

malicious behaviors into its notion of normality. Moreover, the re-training

solution must deal with poisoning attacks, in which the adversary carefully

inserts data in order to progressively move the detection surface to a desired

point. This attack is further explained in a paper by Biggio et al. [Biggio et al.,

2012] with Support Vector Machines.



68 3. Attacks on Machine Learning Based IDSs

2. The feature construction method is simple and it is easy to invert the process

to get real world evasions. The use of 1-grams to extract features is useful

for efficiency purposes, but it allows an adversary to easily find real world

evasions. Ideally, in adversarial environments, the feature construction should

be a one-way function, i.e., whose invert function was computationally hard to

perform. Thus, regarding the feature construction by 1-grams, it is required to

use higher-order n-grams. For example, using values of n greater than 2, the

Anagram IDS solves the problems identified in PAYL. In the next chapter, we

provide further details about this.

3. The adversary knows the distribution of the training dataset and the feature

construction algorithm. A näıve solution to hide this information to the

adversary would be not publish the dataset used for training by the IDS.

However, a query-response analysis would allow to obtain such information,

as proposed by Ateniese et al. [Ateniese et al., 2013]. In general, securing

a system by hiding its functionality is against the Kerckhoff principle which

states that “the security of the system must depend solely on the key material,

and not on the design of the system”. Another solution, adopted by others IDS

like KIDS [Mrdovic and Drazenovic, 2010] or Anagram [Wang et al., 2006] is to

use secret information in the detection function, much in the way encryption

functions use secret keys. However, the secrecy of KIDS has been broken in

[Estévez-Tapiador et al., 2013]. Regarding the solution proposed by Anagram,

in the next chapter we show that the secrecy of the detection is broken using

a sophisticated reverse engineering attack. Indeed, as we discuss in the next

chapter, randomization of IDS does not necessarily increment the security of

the detection. However, this is still an active research area with more open

problems than solutions.

3.7 Conclusions

In this chapter we have presented reverse engineering and evasion attacks against

payload-based intrusion detection systems based on conventional machine learning

classifiers. The attack is conducted in two phases. First, a reverse engineering on the

IDS aims to discover which properties have the detectors learned from the training
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dataset. Second, by analyzing these properties, the payload is carefully modified to

get an evasion attack. Furthermore, when such IDS rely on weak feature construction

algorithms, the evasion strategies suggested from analyzing the reverse engineered

models are easy to translate into usable real world payloads. The reverse engineering

process suggested here relies on Genetic Programming to derive tree-based models.

The analysis of these models allows the adversary to find evasions over the IDS, by

carefully modifying the payloads. Our experiments show that an adversary can find

evasions in well-known classification algorithms such as C4.5, CART, SVM and MLP.

We have shown how an adversary can evade the detection if the training process

makes the IDS to learn models that are specific to the training dataset used. In

such a case, an adversary can infer such models (or approximations to them) and

use them to evade the system. The premises for the attack are realistic, as both the

traffic distribution of the protected network and the feature construction method are

generally either public or easy to infer. In particular, the weaknesses of 1-grams are

related to the fact that they are easily manipulable by an adversary, which in turn

makes it easy to get real world evasions. This is a fundamental difference with other

works focused on IDS analyzing network level traffic. For these, obtaining such real

evasions requires additional capabilities for the adversary, such as for example being

able to modify connection parameters.

In our approach, the adversary do not require to know the training algorithm, nor

has to query the detector to build models that behave somehow similar to the target

IDS. This avoids dealing with the near-optimal evasion problem stated in [Nelson

et al., 2011], where authors discuss the complexity of a query-response analysis in

terms of the number of queries required by an adversary.
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4

Reverse Engineering Attacks on

Randomized Classifiers: The Case of

Anagram

4.1 Introduction

Reverse engineering attacks often seek to acquire knowledge that is essential to

subsequently attain other attack goals. One clear example is evasion, as the attacker

generally does not possess full details about the detection function and, therefore,

potential ways of evading it. For example, in anomaly-based IDS the detection

function is commonly built from a set of “normal” (and attack-free) events, such as

network traffic or service requests, using machine learning algorithms [Hu and Shen,

2012; Pastrana et al., 2012; Satpute et al., 2013; Song et al., 2013]. The resulting

model is then used to spot anomalous activities, assuming that anything deviating

from normality is suspicious. A direct consequence of this operation principle is

that any network packet that fits the normality model will not raise any alarm. An

advanced attacker could try to modify his original attack payload so that it blends

in with the normal behaviour of a network, thus evading detection. These strategies

were termed Polymorphic Blending Attacks (PBA) by Fogla et al. in [Fogla et al.,

2006], and were also demonstrated by Kolesnikov et al. [Kolesnikov and Lee, 2005] to

evade PAYL [Wang and Stolfo, 2004], an anomaly detector based on n-grams (with

n = 1 or n = 2).

The threat posed by evasion attacks such as those discussed in the previous

chapter has forced some schemes to incorporate defenses to thwart them. Nearly

all schemes proposed so far rely on the idea of depriving the adversary of some
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critical knowledge about how the payload will be processed. This can be achieved

in a number of ways. For example, McPAD [Perdisci et al., 2009] generates various

different models of normality, each one based on a distinct set of features, and uses

all (or some) of them to seek anomalies. In doing so, it forces the adversary to craft a

payload that looks normal to all models. A similar idea was explored by Biggio et al.

in [Biggio et al., 2010] by using multiple classifiers and randomly assigning weights

to each of them in the final decision. Other detectors such as KIDS [Mrdovic and

Drazenovic, 2010] draw some inspiration from cryptography and propose a scheme

where the normality model depends upon some secret material (the key). In KIDS the

key determines how the classification features are extracted from the payload. The

security argument here is simple: even though the learning and detection algorithms

are public, an adversary who is not in possession of the key will not know exactly

how a request will be processed and, consequently, will not be able to design attacks

that thwart detection.

While most such schemes successfully provide a rationale of their strength against

evasion, almost none of them include in their security analysis arguments about

an adversary who first reverse engineers the detection function and then uses the

acquired knowledge to evade detection. Thus, for example, in PAYL an adversary

can try to infer, either completely or approximately, which specific n-grams are

not recognized as anomalous and then modify the attack (e.g., by adding carefully

constructed padding as in [Kolesnikov and Lee, 2005]) so that it matches one of those

n-grams. One debatable issue about reverse engineering attacks is precisely their

viability and/or practical relevance. To begin with, it is assumed that the attacker

can somehow observe the responses induced by inputs of his choosing, and also that

he can query the IDS with a potentially large number of payloads. Shedding doubts

about the feasibility of doing this is reasonable, but from a security perspective it

would be unsafe to assume that it is not possible, even if it seems hard to figure out

realistic scenarios where the attacker has such a capability at his disposal.

In this chapter we discuss reverse engineering attacks against randomized classi-

fiers. We focus on Anagram [Wang et al., 2006], a well-known anomaly detector that

models n-grams (with n > 1) observed in normal and attack traffic. Anagram, which

can be seen as an evolution of PAYL [Wang and Stolfo, 2004] to resist evasion by

polymorphic mimicry attacks, also introduces a new strategy to hinder evasion called

randomization. Roughly speaking, each detector uses a secret and random mask
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(the key) to partition packets into several (and possibly interleaved) chunks. These

chunks are reordered according to the secret random mask to produce new inputs to

the same normality model; the maximum anomaly score among them is assigned

to the packet. Thus, in randomized Anagram the secrecy of the mask prevents an

attacker from knowing where and how to modify the original attack so as each chunk

will look normal.

We analyze the strength of randomized strategies such as that incorporated into

Anagram against key-recovery attacks and the security consequences of an adversary

being able to recover the secret mask. In particular:

• We discuss adversarial settings where an attacker is given the opportunity to

interact with the detector by providing carefully chosen payloads and analyzing

the binary response (normal/anomalous).

• We provide an efficient algorithm to recover the secret mask using a bounded

amount of queries to Anagram and discuss the experimental results obtained

with a prototype implementation.

• We show that knowledge of such a secret mask, even if it is just approximate,

could actually make the randomized version of Anagram weaker than the

non-randomized one against evasion attacks. We present an example of how an

adversary may use it to carefully distribute the attack code along the payload

to bypass detection.

The rest of this chapter is organized as follows. Section 4.2 describes the evasion

problem present in PAYL and the design of Anagram, including the randomized vari-

ants. Subsequently in Section 4.3 we introduce an algorithm to recover the key used

in randomized Anagram together with the associated adversarial model. In Section

4.4 we discuss the experimental results obtained with a prototype implementation,

including an example of cross-site scripting (XSS) attack appropriately modified to

evade detection. Finally, in Section 4.5 we summarize the main contributions of this

chapter and draw conclusions.
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4.2 The Anagram Detector

Anagram is a network IDS (NIDS) proposed by Wang et al. in 2006 [Wang et al.,

2006]. It improves PAYL, a former version presented two years before by the same

authors [Wang and Stolfo, 2004]. In 2005, Kolesnikov et al. [Kolesnikov and Lee,

2005] showed a method to evade PAYL using Polymorphic Blending Attacks [Fogla

et al., 2006]. This section analyzes this evasion method and presents the mechanisms

present in Anagram to counteract it.

4.2.1 Evasion Attacks on PAYL

In 2004, Wang et al. presented an anomaly-based NIDS called PAYL (Payload

Anomaly Detection) [Wang and Stolfo, 2004]. For each payload length observed in

the training data, PAYL obtains a normality model by storing every n-gram (with

n = 1 or n = 2) from all available attack-free payloads. In detection mode, PAYL

first extracts the n-grams of the packet being analyzed. Each n-gram that is not

present in the normal model increments the anomaly score of the packet. If the

final anomaly score exceeds a predefined threshold, then the packet is tagged as

anomalous. Kolesnikov et al. described an efficient method to evade PAYL using

Polymorphic Blending Attacks (PBAs) [Kolesnikov and Lee, 2005]. See Chapter 2

for a detailed description of PBAs.

In order to generate a PBA against a NIDS, the attacker first learns the normality

model used by the NIDS, which in the case of PAYL consists of guessing the

distribution of 1-grams (bytes) that normal payloads follow. The attacker then

encrypts the attack body using a simple reversible substitution algorithm, where each

unaccepted byte in the attack body (i.e., one that is not included in the normal model)

is substituted with an accepted byte according to a particular substitution table.

The objective of such a substitution is to masquerade the attack body as normal

behavior, guaranteeing that it statistically fits the normal profile. However, as the

attack body is sent within the polymorphic decryptor, an optimal substitution table

should itself satisfy the normal model as well. Finding such an optimal substitution

table turns out to be an NP-complete problem. In [Fogla and Lee, 2006], Fogla and

Lee reduced the problem to a Satisfiability or an ILP (Integer Linear Programming)

problem, which can be efficiently solved for the problem sizes involved. Finally, the
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polymorphic decryptor is generated. As the anomaly score of PAYL is the percentage

of previously unseen n-grams, the PBA adds some extra normal bytes as padding to

make the score lower. The attack is spread over different packets, according to the

Maximum Transmission Unit (MTU) of the system, in order to make it easier for

the attack to pass undetected.

4.2.2 Anagram

In 2006, Wang et al. proposed Anagram [Wang et al., 2006] to overcome PAYL’s

vulnerability to PBA. Anagram uses a more complex model, and also randomizes

the detection process. We next provide a brief overview of its functioning.

4.2.2.1 Higher Order n-grams

Anagram builds a model of normal behavior by considering all the n-grams (for

a given, fixed value of n) that appear in normal traffic payloads. Unlike PAYL,

Anagram uses higher order n-grams (i.e, n > 2), so instead of recording single bytes

or pairs of consecutive bytes, it records strings of size n. This obviously increments

the complexity of the normal model and, therefore, requires more computational

resources. Anagram uses Bloom Filters [Bloom, 1970] to reduce the memory needed

to store the model and the time to process packets. Anagram also uses a model

of bad content consisting of n-grams obtained from a set of Snort signatures and

a pool of virus payloads. This procedure is called by the authors semi-supervised

learning. In detection mode, each n-gram that does not appear in the normal profile

increments the anomaly score by 1, except if such an n-gram is also present in the

bad content model, in which case the anomaly score is incremented by 5. The final

anomaly score of a packet is obtained by dividing the final count by the total number

of n-grams processed. Note that the use of bad-content models makes it possible

for the anomaly scores to be greater than 1. With this semi-supervised procedure,

the already known attacks are taken into account, making Anagram more efficient.

More details about the implementation and how Anagram works can be found in

[Wang et al., 2006].

Evading PAYL requires to learn the normal profile used by the detector. This

can be done stealthily by sniffing traffic destined to the victim’s network from an
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external system. To be successful, the PBA needs to add normal n-grams (with

n = 1 or n = 2) in order to decrease the relative frequency of unseen n-grams in

the payload [Wang et al., 2006]. However, by using higher order n-grams, Anagram

makes it harder to effectively reduce this frequency. The attacker has to prepare and

execute the complex task of spreading the entire attack among multiple packets so

as to reduce the number of unseen n-grams in each packet. However, this does not

completely prevents Anagram from being evaded. In fact, the problem of finding

a PBA against Anagram can be reduced using the techniques presented by Fogla

and Lee in [Fogla and Lee, 2006]. For this reason, Anagram does not only focus on

higher order n-grams but also introduces the concept of randomized testing.

4.2.2.2 Randomized Anagram

A PBA always contains some number q of n-grams that cannot be encrypted, such as

the attack vector or the polymorphic decryptor. Therefore, to achieve a statistically

significant percentage of valid n-grams, the attacker must add an extra amount p

of padding, with p >> q. In [Wang et al., 2006], a technique called randomized

testing that aims at thwarting PBA against Anagram is described. By using such a

randomization, the attacker will not know exactly how each packet will be processed

and, therefore, where to put the padding to guarantee that evasion is successful.

Figure 4.1 graphically shows how randomized testing works, assuming that a

random mask with 3 sets is used. In this case, incoming packets are partitioned

into 3 chunks by applying a randomly generated mask. Such a mask consists of

contiguous strings of 0s, 1s or 2s. Anagram establishes that each string must be at

least 10 bytes long in order to keep the n-gram structure of the packets (see [Wang

et al., 2006] for a detailed description of the random mask generation). The mask is

applied to the payload of a packet to assign each block to one of the three possible

sets. Each resulting set is considered by Anagram as an independent packet formed

by the concatenation of individual blocks, and are tested separately, thus obtaining

different anomaly scores. The higher of these scores is the one given as anomaly

score of the original packet. If such an anomaly score exceeds a predefined threshold

T, then the packet is tagged as “anomalous”; otherwise it is considered “normal”.

The random mask applied in the detection process is kept secret. Consequently,

an attacker does not know how the different parts of a packet will be processed in
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Figure 4.1: Computation of the anomaly score in randomized Anagram.

the detection process and, therefore, does not know where normal padding should be

added in order to achieve an acceptable ratio of unseen n-grams. Thus, the first goal

of an attacker pursuing to evade Anagram should be to find out the random mask

used. Once this is achieved, the techniques presented in [Fogla and Lee, 2006] to

perform an ordinary PBA could be applied. Moreover, if the adversary is able to

estimate the random mask used in Anagram, this can be used to easily evade the

system it other ways. We describe this in detail and present an example in Section

4.4.4. Next section describes our algorithm to reveal the secret random mask of

Anagram along with the adversarial model that we consider.

4.3 Reverse Engineering Attacks on Randomized

Anagram

In this section, we describe a reverse engineering attack against randomized Anagram.

We first introduce the adversarial model required for this attack to work, including

what capabilities the attacker must possess. We subsequently discuss the algorithm

to recover the random mask. For simplicity, full details about the attack are provided

in Appendix A.
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4.3.1 Adversarial Model

In a reverse engineering attack, the attacker must possess the ability to interact with

the system being attacked, often in ways that differ quite significantly from what may

be regarded as normal (e.g., by providing malformed inputs or an unusually large

number of them). In some cases, the ability to do so is close to the bare minimum

required to learn something useful about the system’s inner workings.

In the field of Secure Machine Learning, in particular when assessing the security

of systems such as Anagram, one major problem comes from the absence of widely ac-

cepted adversarial models giving a precise and motivated description of the attacker’s

capabilities. Barreno et al. [Barreno et al., 2010, 2006] have recently introduced

one such adversarial model and discussed various general attack categories. Our

work does not fit well within this model because our main goal is not force the

algorithm to misclassify an instance, but to recover one piece of secret information

used during operation. Our reverse-engineering scenario is far more similar to that

of Lowd and Meek [Lowd and Meek, 2005], where the focus is on the role of active

experimentation with a classifier. In this case, as emphasized in [Lowd and Meek,

2005] it is absolutely essential for the attacker to be able to: (1) send queries to the

classifier; and (2) get some feedback about properties of the query as processed by

the system.

In this work, we use the adversarial model introduced in [Lowd and Meek, 2005]

to analyze the security of Anagram against reverse engineering attacks. In particular,

we assume that the adversary can query Anagram with specific inputs of his choosing

and analyze the corresponding responses, i.e., the adversary can:

1. Prepare a payload p.

2. Query Anagram with p.

3. Obtain the classification of p as normal or anomalous.

Our emphasis in this work is on what can be attained by assuming an attacker

with such capabilities. Consequently, we do not make any claims about the feasibility

of the proposed attacks in real-world scenarios. However, in practical terms we

identify two different settings where this adversarial model might materialize:
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• Offline setting. In this case, the attacker is given full access to a trained but

non-operational Anagram for a limited period of time. The attacker can freely

query the system and observe the outputs at will and without raising suspicions.

For example, this situation may occur during an outsourced system auditing,

in which the consultant may ask the security administrator to take full control

of the NIDS for a short period of time in order to carry out some stress testing.

Among the battery of tests used, he might include those queries required by

the attack.

• Online setting. Even if the NIDS is operational, it is reasonable to assume

that an attacker can send queries to the NIDS, as the ability to feed the NIDS

with inputs is available to everyone who can access the service being protected.

Thus for example, such queries would be arbitrarily chosen payloads sent to

an HTTP, FTP, SQL, etc. server. Two difficulties arise here. First, getting

feedback from the NIDS (point 3 above) seems more problematic. In order

for the attacker to determine whether an alarm has been generated or not,

he would need to exploit an already compromised internal resource, such as

for example an employee or device that provides him with this information.

Alternatively, side channels may also be a source of valuable information (in

particular, timing channels [Brumley and Boneh, 2005; Chen et al., 2010]),

for example if it takes a different amount of time to classify a normal and an

anomalous request, and this can be remotely determined. The second difficulty

has to do with the fact that during the attack Anagram receives a large amount

of queries, many of which will be tagged as anomalous. As this might certainly

raise some suspicions, the attacker could spread them over a much larger period

of time.

4.3.2 Mask Recovering Algorithm

We next describe an algorithm that recovers the secret mask applied by randomized

Anagram. For reasons that will be clearer later, in some cases our attack could fail

to locate exactly the borders between sets. Fortunately, such errors can only occur

in the proximity of the borders and, therefore, the majority of the recovered mask

is correct. Furthermore, the masks thus recovered are still extremely useful for an

adversary to launch an evasion attack, as they point out which parts of the payload
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Figure 4.2: Input-Output view of the mask recovering attack.

will be grouped together for analysis, even if there is some uncertainty about a few

bytes at the beginning and end of each block.

For readability, in this section we present a high-level description of the attack.

The pseudo-code of all involved procedures along with a detailed explanation can be

found in Appendix A.

As described above, Anagram’s masks are formed by concatenating runs of length

at least 10 of natural numbers from the set [0, K]. As shown in Figure 4.2, our

attack requires two inputs: (1) the maximum estimated size of the mask; and (2)

the maximum estimated number K of sets. The attack would be successful if both

parameters are greater than or equal to the actual ones in the mask. However, these

inputs have a direct influence on the execution time of the attack, in such a way

that a more conservative (or resourceful) adversary could just use sufficiently high

values to guarantee that the recovered mask is correct. Alternatively, it is possible

to launch several attack instances, each one with a progressively higher value, until

the result does not change.

The attack returns a vector with the estimated random mask, each position

indicating the estimated set number. We will use the term delimiter to designate

those mask positions where the mask changes from one set to another; in particular, if

mimi · · ·mimjmj · · ·mj are two consecutive blocks in the mask, with mi,mj ∈ [0, K]

and mi 6= mj, then the delimiter is the first mj.

The algorithm is iterative. At each iteration, it identifies a new set Scurrent. The

attack stops either when all the mask positions are filled with a set number, or when

the maximum number of sets is reached. Each iteration of the algorithm is composed

of two phases, which are explained in next sections. Each phase uses as input an

initial starting point (Is), which corresponds to the first position of the delimiter in

Scurrent. In the first iteration, Is is set to 1. In subsequent iterations, Is is the first

delimiter found in the previous iteration such that no set has yet been assigned to it.
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Figure 4.3: Phase I of the attack: obtaining an “nearly anomalous” payload.

4.3.2.1 Phase I

The main goal of this phase is to construct a payload that is “nearly anomalous”. Such

a payload is one that is classified as normal by Anagram, but such that if one single

byte is replaced by an “anomalous” one µ (which causes changes in n consecutive

n-grams), forces Anagram to classify it as anomalous1. The key observation here is

that such a substitution will cause the payload to become anomalous if and only if µ

is put in a position that belongs to the set with the maximum anomaly score (Smax

for convenience), and that is not close to the border with the next set so that most

affected n-grams fall in Smax.

The payload is built up as represented in Figure 4.3. The algorithm starts with

a normal payload and Is is set to 1. Then, µ is inserted into the 10 positions that

follow Is (red cells in Figure 4.3). Next, the algorithm checks whether the payload

becomes anomalous (i.e. whether Scurrent, which is set 1 in Figure 4.3, is Smax). If so,

the algorithm removes one by one the µ bytes starting at the end (steps 2 and 3 in

Figure 4.3), until the payload becomes normal again (step 3 in the Figure 4.3). The

resulting payload is such that, while it is classified as normal, a single addition of µ

in any of the positions associated with Smax would cause it to become anomalous.

Note that after Phase I, we guarantee that Scurrent = Smax.

4.3.2.2 Phase II

By using the payload obtained in Phase I, Phase II exploits the fact that the addition

of a single µ into the sets of Smax would cause the entire payload to become anomalous,

whereas if it is inserted in any other set the payload remains normal. Phase I obtains

1In our experiments, we have used as µ a byte with very low probability of occurrence in normal payloads,
such as for example control characters (low ASCII numbers) or letters belonging to an alphabet different
from the one used in the service being protected by the NIDS (e.g., ñ, accents, etc. if the system serves
English web pages).
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Figure 4.4: Phase II of the attack to discover the delimiters of the random mask.

The anomalous character µ is moved throughout the payload to detect changes in Anagram’s output.
Each change corresponds to a delimiter of the set being processed. In the figure, the algorithm would
detect the delimiters of Set 1, located at positions 13, 23 and 36.

payloads such that Scurrent is Smax. Now Phase II moves one µ over the entire packet,

as shown in Figure 4.4. Whenever such a moving µ is inserted within the limits of

Smax, the payload becomes anomalous; otherwise it remains normal. This allows us

to identify all those positions of set Scurrent in the mask. In addition, any position

where the output changes from normal to anomalous, or vice versa, is considered a

delimiter between set Scurrent and any other set. Thus, the next starting point Is

will be the first delimiter belonging to a set that has not yet been assigned.

There are some border cases where the procedure described above may fail. These

are next discussed, together with a simple but effective countermeasure consisting of

running Phase II multiple times and carrying out a majority voting step.

4.3.2.3 Majority Voting

In the description of Phase II above it was assumed that the set obtained in Phase I,

Scurrent, is Smax. Thus, µ is moved throughout the entire payload to detect where the

output changes, therefore detecting the delimiters of the current set. However, the
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algorithm fails if the positions close to the delimiters contain an already anomalous n-

gram. The problem is that the payloads obtained in Phase I are “nearly anomalous”,

meaning that one single µ within the limits of Smax usually induces a change in the

output. The anomaly score, as explained in Section 4.2.2.2, is obtained by dividing

the number of unseen n-grams by the total number of n-grams. Consequently, the

output changes when the number of unseen n-grams increases. However, during

Phase II, if µ is inserted within an already unseen n-gram, then the number of unseen

n-grams remains constant, the output does not change and, therefore, the delimiter

is not detected. This situation, which decreases the effectiveness of the algorithm,

can also be exploited to evade Anagram, as we discuss in Section 4.4.4.

In order to increase the robustness of our attack, we introduce a majority voting

scheme. Instead of simply recording the results for a single payload obtained in

Phase I, we use several of them. The algorithm records all the positions indicated by

each payload (votes) and, if some position has at least one half of the votes, then it

is considered a delimiter. Even in those cases where it is unclear where the delimiter

is, an analysis of the number of votes on each position will allow the adversary to

estimate zones where the delimiters are supposed to be, which is enough to evade

the system. We show this fact in Sections 4.4.2 and 4.4.4.

4.4 Experimental Setup and Results

We have implemented Anagram using the pseudo-code available in [Wang, 2007]. Both

our attack and Anagram’s implementation have been written in Java. Experiments

have been run in a dual-core machine with 4GB of RAM. We have trained and tested

Anagram using the same HTTP datasets used by McPAD [Perdisci et al., 2009],

another application-layer anomaly detector, which are freely available2. A summary

of the number of payloads and the partition into training, validation and test sets

is given in Table 4.1. To generate the bad-content model, we use the web-based

signatures of Snort [Roesch, 1999], as done originally in Anagram3. Furthermore, to

avoid inserting normal n-grams into the bad-content model, we filter out the data

using the validation set from the McPAD dataset and a list of known words of the

2See http://roberto.perdisci.com/projects/mcpad
3We do not use any virus signatures, as Anagram’s authors do not provide information about what kind

of virus database they used.

http://roberto.perdisci.com/projects/mcpad
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Table 4.1: Description of the dataset

Training Validation Test Total
Normal payloads 102157 1521 1050 104728
Attack payloads – – 1050 1050

Total 102157 1521 2100 105778

HTTP protocol.

We performed the experiments using 3 different n-gram sizes: n = 5, n = 6 and

n = 7. Both in the original Anagram paper and in our experiments these values

translate into the best detection quality. The experimental results presented next are

grouped into three sections. In Section 4.4.1 we assess the performance of randomized

Anagram as suggested in the original paper and discuss its limitations in terms of

detection quality. Subsequently, in Sections 4.4.2 and 4.4.3 we report on the accuracy

and efficiency (in terms of queries and CPU time) of the attack, respectively.

4.4.1 Detection Accuracy

In this first experiment, we assess the detection accuracy of randomized Anagram

and compare it with the non-randomized version of the detector. Wang et al. [Wang

et al., 2006] reported results on randomized Anagram using a binary mask (i.e.,

with just 2 sets). As our attack is designed to estimate random masks composed

of any number of sets, we also explored the performance of randomized Anagram

using a number of sets greater than 2, with different mask lengths. Specifically, we

have experimented with 2, 3, 4, 5, 6 and 7 sets, and mask lengths of 128, 160, 200

and 256 bytes. In this section, we first present a ROC analysis of the randomized

detectors. We next analyze the effect of introducing randomization on the anomaly

score distribution, showing that the anomaly threshold in the case of randomized

detection has to be increased in order to maintain a low false alarm rate.

4.4.1.1 ROC Analysis

Figure 4.5 shows the ROC curves of the detectors using n-grams of size 5, 6 and 7.

Each plot contains a ROC curve for different number of sets, which has been obtained

by averaging the results of different mask lengths. These curves are similar to those
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originally presented by Wang et al. in [Wang et al., 2006]. It can be observed that

for any value of n, as the number of sets increases, so it does the false alarm rate.

However, all detectors achieve a 100% of detection rate with a false alarm rate lower

than 1%. A false alarm rate greater than 1% has traditionally being considered

unmanageable for a human operator at a large installation [Champion and Durst,

1999]. Accordingly, a typical design goal is to develop NIDS that can operate at

points with a false alarm rate under 1%.

4.4.1.2 Anomaly Score Analysis

Figure 4.6 shows the distribution of anomaly scores obtained during test using

various n-gram sizes for attack-free packets (FREE, in red) and packets containing

Polymorphic Blending Attack (PBA, in blue). Each plot shows the anomaly score in

the x-axis and the number of payloads having such an anomaly score in the y-axis.

Dotted lines represent the results of the randomized detector using a mask of 128

bytes with 2 sets, while solid lines show the results using a normal, non-randomized

version of Anagram.

As it can be observed, the randomized detector considerably increases the anomaly

scores for both FREE and PBA packets. In our experience, this increment is even

greater for attack-free packets. Although both distributions remain reasonably dis-

tinguishable, the detection threshold in the case of randomized testing is significantly

higher. As we explain in Section 4.4.4, this property makes Anagram less robust

against an adversary who has discovered the random mask.

4.4.2 Effectiveness of the Attack

Figure 4.7 shows an example of the execution of the attack using 3 sets and masks of

160 bytes. The figure is partitioned into three vertical blocks that should be viewed

as concatenated. The actual mask content is shown in the first row (with the tag M).

We run the attack using a maximum number of 8 sets and a maximum random mask

length of 300 bytes. Each set is represented with a different color. The state of the

estimated random mask after each iteration is shown in a different line. Thus, the

second row corresponds to the initial state, where all the positions are set to -1 (in

red). In the first iteration of the attack, the algorithm estimates the positions of the
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Figure 4.5: ROC curves obtained by randomized Anagram for different number of sets and different
n-gram sizes.



4.4. Experimental Setup and Results 87

Figure 4.6: Distribution of the anomaly scores using 5-, 6- and 7-grams in non-randomized (plain lines)
and randomized (dotted lines) Anagram.
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Figure 4.7: Evolution of the estimated random mask through consecutive iterations of the attack.

The first line shows the actual mask with 3 different sets. The second line shows the initial state with
all the positions set to -1, while each remaining line corresponds to an iteration of the algorithm.

first set (0, in yellow). In the second iteration, the positions of set 1 are estimated

(light green in the figure), while in the third step the algorithm finds the positions

of set 2 (dark green). After step 3, there is a positive value in every position of the

estimated random mask, so the algorithm stops and returns the estimated mask

which, in this case, perfectly matches the original.

In the case shown in Figure 4.7, the attack recovers exactly the random mask

used. However, due to the situation explained in Section 4.3.2.3, in some cases the

algorithm fails to correctly identify some sets. In order to evaluate such errors, we

calculated the distance between the mask estimated by the attack and the actual one,

measured as the number of incorrectly guessed sets divided by the total number of

sets to normalize the results. We repeated each experiment 10 times with randomly

generated masks for different Anagram configurations (i.e., varying the size of the

n-grams, the mask size, and the number of sets in each mask) and computed the

average distance between the recovered and the actual mask.

The number of packets to be used in the voting process depends on the desired

accuracy. Figure 4.8 shows the error obtained when varying the number of voting

packets for three different Anagram configurations. For the configurations used in

this chapter, it was experimentally determined that no significant error reduction is

achieved with more than 30-40 votes. For example, in the case of random masks of

128 bytes with 2 sets, only 15 packets would be enough to reveal the mask perfectly.

Accordingly, for a mask of 200 bytes and 4 sets, using 20 packets would reveal it

as well. Even in the case of a more complex configuration, such as the one with
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Figure 4.8: Decrease of the average distance between recovered and actual mask as the number of
voting packets increase.

a random mask of 256 bytes and 7 sets, 40 packets correctly recover 82% of the

mask (i.e. an error of 18%). As we discuss later, this percentage provides enough

information to accomplish an evasion attack against Anagram.

In summary, the expected error depends both on the number of sets and the

size of the random mask. Table 4.2 shows the experimental results for two different

attack configurations using 10 and 40 votes, respectively. Several conclusions can be

drawn:

• Binary masks are very easy to recover, no matter the size of the n-grams and,

to an extent, the number of voting packets.

• The attack’s probability of error increases with the number of sets and the

mask length. The size of the n-grams seems to have no significant influence.

• Error decreases as the number of voting packets increases. For example, while

in the case of 10 packets the average error falls between 0.08 and 0.68, it is

reduced to less than 0.07 when 40 packets are used.

An interesting property of our mask recovery process is that, even if it does not

estimate the mask exactly, an adversary can figure out approximately where the

delimiters of the mask are by just looking at the votes, as shown in Figure 4.9. This
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Table 4.2: Average distance between estimated and actual masks. Each row corresponds to a different
number of sets (K), while each column determines the mask length and the size N of the n-grams.

10 voting packets
N=5 N=6 N=7

Average
K 128 160 200 256 128 160 200 256 128 160 200 256

2 0.18 0.02 0.02 0.02 0.05 0.02 0.00 0.02 0.26 0.02 0.20 0.13 0.08
3 0.42 0.49 0.54 0.58 0.40 0.48 0.53 0.55 0.54 0.56 0.47 0.50 0.51
4 0.39 0.51 0.62 0.70 0.37 0.57 0.60 0.65 0.42 0.56 0.57 0.70 0.56
5 0.50 0.59 0.64 0.71 0.53 0.70 0.63 0.69 0.48 0.60 0.62 0.70 0.62
6 0.53 0.64 0.63 0.75 0.56 0.68 0.64 0.71 0.58 0.65 0.69 0.65 0.64
7 0.61 0.60 0.75 0.75 0.55 0.65 0.77 0.76 0.65 0.64 0.71 0.75 0.68

40 voting packets
N=5 N=6 N=7

Average
K 128 160 200 256 128 160 200 256 128 160 200 256

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.06 0.06 0.12 0.05 0.00 0.00 0.04 0.00 0.00 0.11 0.00 0.04
6 0.00 0.00 0.00 0.02 0.08 0.00 0.03 0.16 0.16 0.00 0.04 0.42 0.08
7 0.03 0.00 0.00 0.05 0.11 0.03 0.03 0.11 0.16 0.09 0.12 0.18 0.07

plot represents the number of votes obtained for a random mask of length 128 and 3

sets using 7-grams. The x-axis shows the mask positions, while the y-axis shows the

number of votes (i.e., packets indicating that there is a delimiter in this position).

Take for example position 74, which is an actual delimiter. The number of votes

after iterations 2 and 3 are not enough, as the final count does not reach half of the

votes, so the majority voting scheme does not determine that there is a delimiter

there. As a consequence, the algorithm fails and the remaining sets may or may not

be properly estimated. This limitation can be detected either by a graphical analysis

of the voting results or, alternatively, by adjusting the number of votes required to

achieve majority. This would allow the adversary to determine which zones of the

payload are very likely to contain no delimiters. Thus, even if the exact mask is not

recovered, this information may suffice to perform an evasion attack, as we later

illustrate in Section 4.4.4.

4.4.3 Efficiency of the Attack

In the previous section we have shown that the proposed attack succeeds in recovering

the random mask or, at least, gives enough information about its structure. However,

when trying to evade any security system, it is critical to do so spending as few
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Figure 4.9: Votes obtained when estimating the mask of 3 sets and 128 bytes length

computational resources as possible. Figure 4.10 shows the number of queries to

Anagram and the CPU time (in seconds) required by the algorithm for different

number of sets. In general, the time required by the attack directly depends on

the number of queries made to Anagram. In turn, the number of queries strongly

depends on Phase I of the attack, where a “nearly-anomalous” payload is obtained,

hence that the data range (size of each box) is relatively large. For example, using 40

voting packets, the attack requires between 40 seconds (for binary masks) and 120

seconds (for masks composed of 7 sets), with the average number of queries ranging

between 100 and 6000.

4.4.4 Exploiting Randomization to Evade Detection

Figure 4.6 shows that the anomaly score using randomized testing is typically larger

than using normal testing, both for attack-free and PBA payloads. This happens

because those payload bytes that are placed in positions around a mask delimiter

are partitioned and concatenated with other chunks of data. In this process, several

unseen n-grams may appear, even with bytes of normal data. Therefore, in order to

achieve a good detection rate while minimizing the false positive rate, the anomaly

threshold must be increased.

If an adversary is able to obtain the random mask being applied, then he can

use the randomized testing process to evade the system. As mentioned above, when

using randomization the threshold should be increased, thus tolerating the presence

of more malicious bytes in the payload. Such malicious bytes are supposed to be in

the positions of the mask delimiters, so an adversary can generate a packet where

the malicious content is placed exactly in these positions, padding the remaining

parts of the payload with normal bytes. Moreover, if the adversary suspects that
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Figure 4.10: Queries and CPU time required to estimate the random masks with different number of
sets.
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parts of the malicious payload appear in the bad-content model of Anagram, then

he can distribute this content around the delimiters too, in such a way that it will

be split and will no longer match this bad-content model.

Figure 4.11 exemplifies this idea with a simple instance of an XSS attack using

javascript. The attack actually just launches a pop-up window in the client side.

The first payload only contains the code needed to perform the attack. In the second

payload, padding is added to reduce the percentage of unseen n-grams. Assume that

“image/” is a string that appears in the normal model. In such a case, padding is

inserted as comments of the language (after the characters // and between /* and

*/).

The third payload in Figure 4.11 refers to the same attack, but is especially

crafted to evade detection by using the estimated mask. We assume that the string

“<script>” is in the bad-content model, as it is a frequent word in XSS attacks.

Therefore, when preparing the payload, this word should be placed around some

delimiter in order to have it split. Afterwards, the attacker places the desired amount

of padding bytes in proper places to benefit from the randomization process. Figure

4.12 shows an example of such a payload prepared for a random mask of 2 sets. It

can be seen that when using randomized testing, the word “<script>” will be divided

into the 5-gram “<scr*/” and tested as part of the set 1, and the 5-gram “ipt>/”,

tested as part of the set 0. Table 4.3 shows the anomaly scores obtained for each case.

For the original payload (first row), both anomaly scores (for normal and randomized

testing) are very large, which means that the payload is undoubtedly considered as an

anomaly. For the modified payload with normal padding (second row) the anomaly

score is 0.45, exceeding the threshold established and therefore being considered

anomalous again. However, when using randomized testing and preparing the rogue

payload with padding inserted in the proper positions (third row), the anomaly score

obtained is even lower than the one of the normal test. Moreover, as discussed in

Section 4.4.1, the anomaly threshold is higher when using randomization than when

using normal testing. In fact, in this case the anomaly threshold is 0.55, so the

attack payload will be classified as normal, and thus evasion would succeed. This

example illustrates that the randomized testing is a double-edged sword, since if the

adversary is able to guess the mask, then he can use it against the detection system.
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Figure 4.11: Examples of attack payloads used to evade Anagram.

Payload 1 is the original without padding. Payload 2 adds normal padding. Payload 3 is crafted to
evade Anagram once the random mask has been estimated.

Figure 4.12: Example of how an adversary can set up an attack using the estimated random mask to
evade Anagram.

Table 4.3: Anomaly scores obtained with the original payload, the payload with normal padding, and
the payload prepared to evade the system using the estimated random mask.

Normal testing Random testing
1) Original payload 1.50 2.00
2) Payload with padding 0.45 0.53
3) Payload with prepared padding 0.60 0.38
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4.5 Conclusions

In this chapter, we have analyzed the strength of randomized Anagram against mask

recovery attacks. Even though the use of randomization certainly makes evasion

harder, we have shown that an adversary who manages to find out such a mask could

actually take advantage of the randomized detection process to evade Anagram,

thus turning a security measure into an undesirable feature. We have proposed and

evaluated a procedure to recover the secret mask by querying Anagram with carefully

constructed payloads and observing the results. Our attack is quite efficient in terms

of the number of queries employed, requiring no more than 2 minutes to recover the

mask in the worst scenario for the range of the suggested parameters. As discussed

above, we do not make any claims about the feasibility of the proposed attack in

real-world scenarios, as this strongly depends on the adversary having the ability to

interact with Anagram in the ways detailed in Section 4.3.1.

A possible countermeasure to the proposed attack is to randomize the choosing of

random mask itself. Thus, each analyzed packet should be tested against a different

random mask, possibly with different parameters too. While this would certainly

stop our attacks from being effective, we have not assessed the potential impact of

such a double randomization from the detection point of view.

While the attacks presented in this chapter are not directly applicable to other

randomized anomaly detectors, the underlying ideas are general and can be used to

reverse engineer other schemes based on similar constructions.
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5

A Model for Intrusion Detection

Networks and Adversarial Attacks

5.1 Introduction

In the previous chapters, we have discussed that hardening IDN nodes against evasion

attacks is not a straightforward task. A possible countermeasure to obscure the way

the detection is performed is the use of randomization mechanisms. However, these

mechanism have not been proven robust. Specifically, in Chapter 4 we detailed how

to successfully evade the randomization scheme proposed for defending Anagram

against adversaries. Indeed, we showed that, rather than improving its security,

randomization makes Anagram more vulnerable once the secret mask has been

guessed with a reverse engineering attack. The key problem behind randomization

techniques to defend IDN nodes is the need to make them compatible with an

accurate detection, which are somehow contradictory goals.

The difficulties found to properly defend the nodes of Intrusion Detection Net-

works against adversaries motivate our research to protect IDNs globally, assuming

the possibility of attacks against some nodes and devising ways of allocating coun-

termeasures optimally. In order to do so, it is essential to model IDNs and the

adversarial capabilities against them.

In this chapter, we address the problem of establishing an adversarial model for

Intrusion Detection Networks. In Chapter 2 we briefly reviewed the question in related

works, and showed the importance of understanding the adversarial capabilities in

order to implement proper countermeasures. Concretely, in this chapter we present

three main contributions:
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1. We provide a conceptual model for IDNs, viewed as a network of nodes

whose connections and roles determine the architecture of the network. We

present a system model that considers a node as a logical entity with four

functional modules and four information channels. Depending on the respon-

sibilities of the nodes, they may play different roles. We define these roles

in terms of the system model and describe various architectures in terms of

these roles. Accordingly, the proposed model focuses on the structure of IDNs

[Bye et al., 2010] and it does not depend on specific detection or correlation

functions implemented in the nodes.

2. We present an adversarial model for IDNs. The state of the art discussed

in Chapter 2 shows that most of the research on attacks against cyberdefense

systems focuses on independent entities, i.e., the IDN nodes. In this work,

we focus on adversarial capabilities that affect the communication between

nodes. Concretely, these capabilities are the well known basic threats in

network security: interception, blocking, fabrication, and modification. Then,

using these capabilities, we provide attack strategies that adversaries may use

depending on the objective of the attack.

3. We provide studies of the adversarial capabilities in two common

scenarios for IDNs. The first scenario is a Mobile Ad-hoc Network (MANET),

where several nodes are connected using wireless channels without relying on

any central management (all nodes must participate for the proper behavior of

the network). We provide examples of attacks against different IDNs proposed

in the literature to defend MANETs, which were presented in Chapter 2. The

second scenario is a Collaborative IDN (CIDN), where different corporations

share resources and information to detect distributed attacks. Concretely, we

propose a multi-step attack against one specific CIDN: the Distributed Security

Operation Center (DSOC) presented by Karim et al. in [Karim-Ganame et al.,

2008].

The remaining of this chapter is structured as follows. Section 5.2 presents the

system model for nodes in IDNs. Then, Section 5.3 describes the adversarial model

proposed for IDNs, which consider single threats to communications. Section 5.4

provides conceptual attacks on two specific scenarios. Finally, we conclude the

chapter in Section 5.5.
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5.2 System model

Intrusion Detection Networks (IDNs) include a huge variety of approaches. On

the one hand, different entities located in different places and sharing information

through the Internet form a Collaborative Intrusion Detection Network (CIDN)

[Karim-Ganame et al., 2008; Yegneswaran et al., 2004; Zhou et al., 2010]. On the

other hand, different wireless sensors monitoring a Mobile Ad-Hoc Network (MANET)

[Li et al., 2012; Zhang et al., 2009] also constitute an IDN. Despite their differences

in processing and communication capabilities, both approaches detect distributed

intrusions by interconnecting detection nodes, and therefore share common functional

modules and information channels.

In this section, we define a conceptual model for nodes in an IDN. The main

purpose is to establish common building blocks and thus define common threats,

in order to define a generic adversarial model (which is provided in next section).

Accordingly, we first present a general, functional overview of these nodes in terms of

their logical components, functions, and channels. Then, we define the roles of these

nodes in the network architecture, according to their responsibilities. Finally, we

present the architectures proposed in the literature for IDNs in terms of the system

model and the roles presented.

Every node participating in an IDN contains some basic components, depicted in

Figure 5.1. We identify four channels of information and four functional modules.

Depending on the role of the node in the network, these components may be activated

or not, as we discuss later in section 5.2.3. Finally, nodes are connected to other

nodes to share information. Depending on how the nodes are connected and their

roles, the network may have different architectures.

5.2.1 Channels

We define a communication channel as any input or output interface used by a node

to receive or send information. We consider these channels logically, and do not

focus on the physical implementation of the channel. Nodes manage three different

types of messages:

1. Intrusion Detection Messages (IDMsg). It comprises any exchanged

message containing information related to the detection of attacks. The format
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Figure 5.1: Functional view of an IDN node.

of these messages vary for each IDN. For example, the nodes may implement

the IDMEF format [Gil-Pérez et al., 2013], which is an RFC standard [Debar

et al., 2007] that defines a format for IDS alerts.

2. Local Events (LE). This is the data monitored by sensors locally. It includes

both host data (system logs, audit trails, etc.) and network traffic (TCP

headers, HTTP payloads, connections, etc.).

3. Response Actions (RA). A response action is triggered whenever a intrusion

is detected. This includes activities such as logging alerts in a file, blocking IP

addresses or turning devices off, to name a few.

We define four possible channels for nodes, two input channels and two output

channels: the Input Intrusion Detection Messages (IIDM) to receive IDMsgs from

other IDN nodes; the Local Events (LE) channel, to gather data locally; the Output

Intrusion Detection Messages (OIDM), to send IDMsgs to other nodes in the IDN;

and the Response Actions (RA) channel, from which active responses are triggered.

5.2.2 Functions

Distributed IDN nodes communicate with other nodes to share IDMsgs which may

be relevant to detect or block distributed attacks. Every node may run up to four
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functions in the detection process. The inputs and outputs of these functions are

provided by the channels defined above:

1. Event Sharing Function (ESF). This function manages the communication

between nodes in the IDN. Its responsibility in the node is twofold. First, it

processes and formats incoming IDMsgs received through the IIDM channel,

and provides these data to the Distributed Detection Function (DDF). Second,

it processes and formats the output of the DDF and the Local Detection

Function (LDF) to send these messages to other nodes through the OIDM

channel.

2. Distributed Detection Function (DDF). It aggregates and correlates data

from both the LDF and the ESF. Then, the correlated data is sent to the

Response Function (RF) if some response is needed, or to the ESF in the case

that this data is being shared with other nodes.

3. Response Function (RF). The RF is activated whenever a response action

is needed. Among the activities involved in this function are updating blacklists

with suspicious IPs, sending remote commands to shut down compromised

systems, logging alerts, etc.

4. Local Detection Function (LDF). The LDF uses local data, which may

include both host and local network data, to perform local detection. As

in the case of the DDF, it may use any of the classical detection techniques

employed by IDS, like signature matching, anomaly detection, specification

based detection, etc. The output of this function is provided as an input to

the other three functions: to the RF if some response action is needed; to the

DDF to correlate and aggregate local detection with other IDMsgs; and to the

ESF to share the information with other nodes in the IDN.

5.2.3 Node Roles

We define six roles for IDN nodes, which are explained below. Based on these roles,

each node activates some or all of the channels and functions, as shown in Figure 5.2:



102 5. A Model for Intrusion Detection Networks and Adversarial Attacks

(a) LD role (b) LDA role (c) PC role

(d) RC role (e) RCD role (f) DC role

Figure 5.2: Logical schemes of roles for IDN nodes

1. Local Detection (LD). The node detects intrusions based on local events only.

It gathers local data using the LDF, which includes both network traffic from

its LAN and host-based data. Because alerts are neither shared nor received

from other nodes, the RF must be enabled to generate the corresponding

response action whenever a local intrusion is observed. Figure 5.2-a) shows the

schematic view of this role. Classical IDS working independently, like Snort

[Roesch, 1999] or Bro [Paxson, 1999], have this role. In IDNs, there are no

nodes with this role, because they can neither send nor receive data from other

nodes. However, we include them in our study for the sake of completeness.

2. Local Detection and Alert Sharing (LDA). This is the most complex role

as it uses all the channels and runs all the functions, as shown in Figure 5.2-b).

Nodes perform detection using as input both the local events and the IDMsgs

received from other nodes. First, the LDF processes the local data, which are

then aggregated and correlated in the DDF with external IDMsgs, after being

processed by the ESF. Whenever an intrusion is detected, the RF generates

the corresponding response action. Moreover, nodes with this role must share

IDMsgs (using the OIDM channel and the ESF) with other nodes in the IDN.

3. Pure Correlation (PC). The node correlates IDMsgs received from other

nodes using its IIDM channel and the ESF. It then makes a decision using the

DDF and, if needed, generates a response through the RF. Nodes with this
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role do not use local data and thus the LE channel is inactive. Well-known

SIEM systems [Miller and Pearson, 2011] have this role. Figure 5.2-c) shows

the schematic view of this role.

4. Remote Correlation (RC). The nodes receives multiple IDMsgs from other

nodes through the IIDM channel and preprocesses them in the ESF. Then, it

aggregates and correlates them using the DDF, and share the aggregated data

and results from the correlation to other nodes through the OIDM channel. It

does not generate any response. Figure 5.2-d) shows the schematic view of this

role.

5. Remote Correlation and Detection (RCD). The node performs local

detection based on data gathered locally through the LE channel and the

IDMsgs received from other nodes through the IIDM channel. Then, it shares

the aggregated IDMsgs with other nodes using the OIDM channel, but it does

not generate responses (the role is similar to the LDA, but without emitting

responses). Figure 5.2-e) shows the schematic view of this role.

6. Data collection (DC). The node is in charge of gathering local events through

the LE channel. Then, it processes it with basic filters or routines in the LDF

and provides other nodes with the corresponding IDMsgs, using the ESF and

the OIDM channel. Figure 5.2-f) shows the schematic view of this role. For

example, in a wireless sensor network, different sensors gather data and send it

to a central sink for further processing. These sensors may have the DC role,

while the sink node would have the PC role.

5.2.4 Node Connections

The system model considers nodes regarding their corresponding functions and

channels. Nodes use the ESF, either for sending data (through the OIDM) to other

nodes or to receive data (through the IIDM) from other nodes. The nodes are thus

connected between them. This connection is unidirectional, i.e., if node Ai sends

data to node Aj, then the OIDM channel of Ai is directly connected to the IIDM

channel of Aj and the information flows in one direction, from Ai to Aj. In general,

we refer to the set of n nodes connected to one node Ai as Ci = {A1, . . . , Aj, . . . , An},
with j 6= i.
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When considering the information received externally, nodes may either believe

this information or they may question its correctness. Accordingly, many approaches

in the literature of IDNs propose the concept of trust in the information received by

one node [Gil-Pérez et al., 2014; Li et al., 2012]. In our system model, this trust is

represented by an influence factor which takes values between 0 and 1. Consequently,

each connection is weighted by this influence factor.

For each node, the sum of the influences received from the connected nodes must

add up to 1. Concretely, for each node Ai of the IDN, let Iij be the influence from

node Aj to node Ai, with j 6= i. Thus:

∑
∀Aj∈Ci

Iij = 1 (5.1)

5.2.5 IDN Architectures

In this section. we review the architectures defined for Intrusion Detection Networks

in the literature and analyze them in terms of the proposed system model. A rather

complete survey of such architectures can be found in [Zhou et al., 2010].

Centralized

In a centralized architecture, several nodes gather local information and perform

local detection. Detection results are sent to a central node. This central node

receives multiples IDMsgs, aggregates and correlates them, and performs distributed

detection. Figure 5.3 shows the scheme of a centralized architecture with six detection

nodes and a central correlation node. Each detection node has the DC role, as they

just gather local data, process these data (this may include any routine to obtain a

local view from different local sources of data) and send the data with the IDMsg

format (using the OIDM channel) to the central node, which has the PC role. This

central node, upon the reception of new IDMsgs (using the IIDM channel) performs

correlation and aggregation, and activates a response if needed.

Hierarchical

In a hierarchical architecture, the IDN is divided into levels. Nodes in each level

gather data received from lower levels or gathered locally, and send aggregated data

to the upper level for correlation. In the top level, a global node performs the final
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Figure 5.3: Centralized architecture of IDN.

correlation and emits responses if needed. Figure 5.4 shows a hierarchical architecture

with three levels. The lowest level is comprised of nodes with the DC role that locally

gather and process local events. They send these data in the IDMsgs format to some

node in the upper level of the hierarchy, who aggregates and correlates the received

IDMsgs. This node, may have the RC role, if it only uses external IDMsgs in the

correlation, or the role RCD, if it also includes local data. The correlated data is

sent to the upper level, if any, or it is used to emit responses if there are no more

levels. Thus, the highest level in the hierarchy contains a single node with the PC

role. The response module of PC nodes should command response actions to the

lower level nodes through IDMsgs. Thus, the detection events are propagated in a

bottom-up design, while the the responses are emitted in a top-down design.

Distributed

Figure 5.5 shows a distributed architecture with five nodes. All nodes have

an LDA role. The detection process in the nodes combines local and distributed

detection, as it uses both data gathered locally and IDMsgs received from other nodes.

Thus, unlike other architectures, in the distributed architecture there are no critical,

central nodes with higher responsibilities and all nodes are equally responsible of

the cyberdefense. However, because of the large number of connections, attacks to a

single node are rapidly propagated to the entire IDN.
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Figure 5.4: Hierarchical architecture of IDN.

Figure 5.5: Fully-distributed architecture of IDN.
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5.3 Adversarial Model

An adversarial model defines the capabilities assumed for an adversary. Though the

attack scenario is application-specific and may differ from one IDN to another, it is

possible to establish general guidelines to define the adversarial model [Biggio et al.,

2013]. Indeed, the abstraction provided by the system model presented above allows

us to specify an adversarial model. This section describes the capabilities, in terms

of the system model defined in the previous section.

There are two different types of adversaries: external and internal attackers. On

the one hand, external adversaries have control of the channels and communications

between nodes but are not part of the IDN. Thus, if security protocols are used to

provide confidentiality and integrity mechanisms, they may not be able to inject or

intercept packets. On the other hand, internal attackers are adversaries who have

gained access and have control of, at least, one node within the IDN. They may

possess cryptographic keys (if any).

Defending the network from external adversaries can be done using traditional

security mechanisms, such as cryptographic protocols and Public Key Infrastructure

[Fung, 2011] (PKI) . However, these techniques cannot be afforded in many scenarios.

For example, in the Internet the use of a PKI between peers from different institutions

may entail administrative conflicts. Actually, when one node receives external

information (IDMsgs), it usually cannot determine whether the information is real

or it has been forged by the source (i.e., an internal attacker) or manipulated during

the communication through the network (by an external attacker). Knowing how

much trust can be placed in the received information is one of the key challenges in

the design of IDNs [Gil-Pérez et al., 2014]. In the model presented above, this trust

is modelled with the use of influence values in the connections between nodes.

In this section, we first describe four basic types of intrusive actions against

networks: blocking, modification, interception, and fabrication [Chen et al., 2013].

Then, we provide a description of attack strategies considering the system model

presented in Section 5.2.
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5.3.1 Basic Intrusive Actions

Nodes in an IDN send and receive data using communication channels, as presented

in Section 5.2. The communication consists of the exchange of packets of information

using some network protocol and the specific format of the IDMsg. Accordingly, we

consider that adversaries in IDNs may perform any of the following intrusive actions:

1. Interception. This is a passive attack which compromises the confidentiality

of the information. The adversary eavesdrop the contents of the messages

transmitted in the channels. For example, a malicious node in a MANET which

promiscuously monitors its neighbors, performs interception. This attack is

hard to detect, but can be counteracted by cryptographic techniques.

2. Fabrication. Fabrication attacks compromise the authenticity of the data.

The adversary generates fake data and sends it to the victim. For example,

using spoofed addresses, the attacker may fabricate packets that match the

signatures of an IDS in order to overstimulate it [Mutz et al., 2003].

3. Modification. This attack targets the integrity of the data. The adversary

intercepts data, modify its content and forwards it to the actual destination.

For example, the adversary may modify the content of an attack to evade the

signatures matching process from IDSs [Wagner and Soto, 2002].

4. Blocking. This attack targets the integrity and availability of the data.

The adversary interrupts the communication or makes it unavailable. Packet

Dropping attacks [Li et al., 2012] in MANETs are an example of blocking attacks,

where a malicious node drops packets that are supposed to be forwarded.

In the following, we refer to these attacks as intrusive actions, in order to

distinguish them from more sophisticated attacks, which are described in the next

section.

5.3.2 Attack Taxonomy Against IDNs

In this section, we classify the attacks against IDNs in terms of the four functions,

four channels, and four intrusive actions presented above. For each function, we
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differentiate attacks according to the classification of adversarial attacks against IDS

in wired networks proposed by Corona et al. [Corona et al., 2013]. This taxonomy

classifies the attacks depending on the adversarial goal (see Chapter 2 for further

details). Next we categorize them considering the intrusive actions explained above.

Later, in Section 5.4, we apply this taxonomy to different example scenarios.

• Evasion. The adversary causes the node to misbehave and stealthily attacks

the IDN. It only affects detection functions, i.e., the LDF and DDF, as the

objective is to force the actual detection to malfunction. This can be done by

means of one of these three intrusive actions:

1. Blocking. In some approaches, the detection process starts when some

suspicious packet or message is received, like anomalous routing data in

MANETs [Su, 2011]. The attacker may perform the attack blocking these

packets in the IDN node to avoid detection.

2. Modification. The attacker carefully modifies the data to hide the intrusion

evidence the IDN node is looking for. This way, the adversary can avoid

signature matching [Vigna et al., 2004], or it can mimic the statistical

properties of a normal model [Fogla and Lee, 2006].

3. Fabrication. The IDN node may be waiting for specific IDMsgs or packets

to see whether a node is correctly forwarding packets or not. In such a

case, the adversary can generate this packet specifically for the IDN node.

• Overstimulation. A set of well-crafted packets are sent to the node to make

it trigger a huge amount of responses. Because the objective is to stimulate the

system to make it impractical, it can be applied to every function of the nodes.

Overstimulation is always performed using fabrication, namely, the adversary

should generate some specific packet that provokes the node reaction. For

example, by fabricating packets that match the signatures of the targeted node

[Mutz et al., 2003], the adversary can overwhelm security analysts or overload

the IDS resources.

• Poisoning. The adversary looks for nodes that update their detection function

in real time with new data. The goal is to inject some noise forcing the detection

function to learn wrong patterns. Similarly to the evasion goal, this objective

is only applicable to the LDF and DDF. Since the objective of the adversary is
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to inject specific information in the node, it needs modification (of data sent

by other nodes in the IDN) or fabrication (of new data) attacks. For example,

two colluding nodes can report good behavior from each other. This way, their

reputation in other IDN nodes would be increased.

• Denial of Service. The adversary overloads the resources of the nodes to

attack their availability. It may affect the LDF, DDF and ESF, which are the

functions receiving external data. To force those functions to stop working, the

adversary may either flood them to overload its resources, using fabrication,

or it can block traffic to prevent the node from receiving the required data to

work.

• Response Hijacking. The adversary sends selected intrusive data to the

node, forcing it to generate a specific response. The responses in the nodes are

generated in the RF, so this is the only function affected by these attacks. To

provoke a specific response in the node, the adversary has to use one of the

following techniques:

1. Blocking. As explained above with the evasion, the IDN node may be

waiting for specific IDMsgs or packets to confirm that a peer is not

malicious. If the adversary blocks this critical data sent by a third peer,

the node may erroneously believe that this third peer is malicious.

2. Modification. The adversary may modify reports or IDMsgs to indicate

that a third node is malicious.

3. Fabrication. As with the modification, the adversary can generate false

reports about a third node to force the detector to trigger an erroneous

response.

• Reverse Engineering. The adversary gains information about the behavior

of the node (architecture, detection function, set of measurements, etc.). It

is applicable to every function in the nodes. This could be done using the

same techniques employed for an overstimulation attack, but in addition the

node must intercept traffic to monitor both the inputs and outputs to the node

and make the analysis. A paradigmatic reverse engineering attack in IDNs

occurs when the adversary performs traffic analysis of the network in order

to locate IDN nodes and responsibilities (for example, to know which nodes
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are performing correlation in a hierarchical architecture). Additionally, the

attack presented in Chapter 4 shows a query response analysis that allows the

adversary to infer secret information used internally by nodes [Pastrana et al.,

2014].

In our analysis, we define an Attack Strategy (AS) as a set of techniques that

the adversary may use to reach a specific objective. We identify seven different AS:

• AS-1. B ∨ M ∨ F (Blocking or Modify or Fabricate).

• AS-2. F (Fabricate).

• AS-3. M ∨ F (Modify or Fabricate).

• AS-4. (M ∨ F) ∧ I (Modify or Fabricate and Intercept).

• AS-5. I (Intercept).

• AS-6. B ∨ F (Blocking or Fabricate).

• AS-7. B (Blocking).

Table 5.1 shows which AS should be applied on each channel to target each

function. It is important to observe in Figure 5.1 the relationships between functions

and channels. For example, for a node with the role LDA, which performs both local

and distributed detection, the output of the LDF is given as input to the remaining

functions. Thus, attacks targeted against the LDF will affect the other functions as

well.

5.4 Attack Scenarios

In Section 5.3 we have proposed a taxonomy of attacks against generic IDNs, indicat-

ing for each attack which intrusive actions the adversary can use in each channel. In

this section, we provide specific examples of how these attacks could be implemented

in two different scenarios: a MANET and a cooperative IDN. In the following, the

term attack refers to malicious activity against the IDN, and the term intrusion to

attacks detected by the IDN (e.g., black hole, packet dropping, etc.).
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Table 5.1: Taxonomy of attacks. The table shows which attack strategy (AS) should be performed on
each channel (LE, IIDM, OIDM and RA) to target each of the functions (LDF, DDF, ESF and RF),
depending on the adversarial goal.

4 functions Objective [Corona et al., 2013]
4 Channels

LE IIDM OIDM RA

LDF

Evasion AS-1 – – –
Overstimulation AS-2 – – –

Poisoning AS-3 – – –
Denial of Service AS-6 – – –

Reverse Engineering AS-4 – AS-5 AS-5

DDF

Evasion AS-1 AS-1 – –
Overstimulation AS-2 AS-2 – –

Poisoning AS-3 AS-3 – –
Denial of Service AS-6 AS-6 – –

Reverse Engineering AS-4 AS-4 AS-5 AS-5

ESF
Overstimulation AS-2 AS-2 AS-3 –
Denial of Service AS-6 AS-6 AS-7 –

Reverse Engineering AS-3 AS-3 AS-5 –

RF
Overstimulation AS-2 AS-2 – AS-2

Reverse Engineering AS-4 AS-4 – AS-5
Response Hijacking AS-1 AS-1 – AS-1

5.4.1 Scenario 1: IDNs in MANET

In MANETs, the detection is distributed among different nodes in the IDN. In this

section, we first present the technical capabilities assumed for the adversary as well

as some notation used to explain the attacks. Next, using these technical capabilities,

we present methods to perform each of the four intrusive actions against the channels

presented above. Finally, we present specific attacks targeted against IDNs proposed

in the literature for MANETs.

5.4.1.1 Technical Assumptions and Notation

Nodes in MANETs use an antenna that emits radio waves to transmit data in

the wireless medium. Data is usually sent uniformly in all directions with an

omnidirectional antenna. A sender node has a transmission range that depends on

the power of the signal and the noise in the channel. Once the data is transmitted,

every node located within the transmission range of the sender is able to receive it.

We assume that the adversary is able to send information in one preferred

direction and with a specific, chosen transmission range. As done in [Johnston and

Narula-Tam, 2012], we consider that a node knows exactly the position of every node
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within its transmission range, and thus it can choose the receivers of the packets

transmitted. We present two techniques an adversary can use for this purpose:

1. Using a directional antenna [Takai et al., 2002]. A directional antenna emits

radio waves just in one direction. For example, nodes can use a metallic panel

oriented to reflect all the radio waves to the desired destination. This situation

is shown in Figure 5.6.

2. Controlling the signal power. The adversary can modify the signal power to

cover a specific transmission range. For example, if two nodes A and B are

at distance DA and DB from M , respectively, with DA ≤ DB, the adversary

may set the communication range of M to a value C such that DA ≤ C ≤ DB.

This way, the information sent from M will arrive at A but not at B. This

situation is shown in Figure 5.7.

Figure 5.6: Unidirectional antenna in node M .

Figure 5.7: Transmission control by node M .

Values DA and DB are, respectively, the distances from A and B to M , and C is the communication
range of M .

According to the assumptions made above, nodes are able to either send data in

every direction of the antenna (SEND) or just in one direction (directional send,

DSEND), with a specific transmission range. They are also able to receive data

specifically sent to them or to promiscuously monitor data in the neighborhood. We

next describe the notation used:
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• SEND(A,B, P ). Node A sends the packet P to node B. P arrives to every

node within the transmission range of A.

• DSEND(A,B, P ). Node A sends the packet P only in the direction of node B,

within a specific transmission range. Neighbors located in any other direction

or within a distance farther than B do not receive P .

• RCV (A,B, P ). Node A receives the packet P from node B.

• MONITOR(A,B,C, P ). Node A monitors the packet P , sent from node B

to node C.

• COLLISION(B,P1, P2). There is a collision in node B because of the si-

multaneous reception of packets P1 and P2. A collision occurs when a node

receives a signal from different sources in the same channel. This situation

is shown in Figure 5.8. Node B receives at the same time the packets sent

from nodes C and A. In this case, B is not able to process and obtain the

information received. In the absence of adversaries all nodes are cooperative,

and whenever a collision is detected, the sender node sends the data again.

However, this assumption is no longer valid in the presence of adversaries that

provoke collisions.

5.4.1.2 Intrusive Actions in MANETs

In this subsection, we describe how general attack techniques are performed in

MANETs according to the channels affected.

Interception

Due to the mobility of nodes in a MANET, a malicious node M can be placed

in the middle of two nodes A and B. Because data is transmitted over a wireless

medium, M can easily intercept the communication by monitoring the traffic between

A and B. Cryptography is not typically used in MANETs due to resource constraints.

Interception is hard to detect, because it is passive and malicious nodes behave

according to the routing protocol. Therefore, the adversary can monitor both the

input channels (LE and IIDM) and output channels (OIDM and RA) of the nodes.
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(a) Graph view of the network.

(b) Slot-time diagram. Each line corresponds to the medium view of the nodes.

Figure 5.8: Example of a collision.

In time T1, node A sends P1 to B, and in time T2 node C sends packet P2 to B. If T2 − T1 ≤ TP ,
TP being the time spent for a the packet P1 to reach B from A, then a collision is produced.

Fabrication

A fabrication attack occurs when the adversary generates data that in normal

conditions would not exist. A common technique for such a purpose is to perform

spoofing attacks, where the adversary counterfeits the source address when sending

data to its victim. Typically, authentication is used to counteract against spoofing.

However, in MANETs there are further methods to perform fabrication. Let us

suppose that a malicious node M sends a packet P directly to a victim node V ,

i.e., DSEND(M,V, P ), using one of the techniques explained in Section 5.4.1.1. If

the packet P has a destination address different from V (for instance, C), and V

monitors the packet, i.e., MONITOR(V,M,C, P ), V would think that the packet

is being sent to C.

Even if M does not have a directional antenna, it can prevent node C from

receiving P by interrupting its own packet after sending it, as we explain below

for the blocking case. This is a case of fabrication in the input channels of V (LE

and IIDM). Moreover, if the ESF is active in the victim node, the fabrication of

well-crafted LE and IIDM will induce the node to fabricate the corresponding OIDM

and RA. We call this a cross-channel fabrication.
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Modification

To perform a modification attack, the adversary first needs to intercept the

communication. Afterwards, the adversary modifies the content of the intercepted

data and forwards it to the actual destination. Again, defending the IDN nodes from

these actions is done using cryptographic mechanisms. However, these mechanisms

are often unsuitable because they consume resources. The channel affected by the

attack depends on the data being modified. For example, if the adversary modifies a

report of good behavior, it is targeting the IIDM channel. Similarly, if the adversary

modifies the sequence number of a routing packet, it is targeting the LE channel of

the victim.

Blocking

Blocking occurs when the adversary interrupts the information sent to its victim

by any other node. The simplest way to implement a blocking attack in MANETs is

by dropping packets. There are several approaches to detect packet dropping attacks

[Djenouri et al., 2007], and thus the adversary should stealthy perform this attack.

In Section 5.4, we present some evasion attacks for this purpose.

A more sophisticated way to perform blocking is to provoke collisions in the

victim node C. If C is receiving the packet P from other node, a malicious node M

may send a second packet P ′ and provoke a collision, i.e., COLLISION(C,P, P ′).

The overall effect is a blocking of packets sent by a third node to the victim C. In

some cases, the malicious node M may want to block its own packets in the victim

C. In this case, M can wait until it monitors a third node sending a packet to C.

Once it observes that the channel is busy, M starts sending the information. This

situation is shown in Figure 5.9 and described in Algorithm 1. As mentioned above,

this entails a fabrication in A, because M induces A to monitor the packet P while

it is not actually reaching C. In the next section we use these methods to describe

evasion attacks for the packet dropping scenario.

5.4.1.3 Attacks on MANETs

IDNs in MANETs provide security against a large variety of attacks [Xenakis et al.,

2011], reporting good results in terms of efficacy and performance. However, they

have been designed to defend against an adversary interested in the assets of the

MANET, while not taking into account the possibility of being attacked themselves.
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In this section, we provide examples of attacks against IDNs using the actions

presented in Section 5.4.1.2.

Evasion

An evasion attack succeeds when a IDN node is not able to detect a misbehaving

node. As shown in Table 5.1, evasion is possible in the LDF and DDF using the

Attack Strategy 1 (AS-1), in which the adversary should either block, modify, or

fabricate data in the LE and IIDM channels of the nodes. Next, we provide examples

of evasion against some of the state of the art proposals for IDNs in MANETs

presented in Chapter 2:

1. [Marti et al., 2000]. Suppose that an IDN node A is monitoring a malicious

node M to detect whether it forwards a packet P to a third node C or not

(Watchdog). To evade detection, the adversary has two options:

• Blocking packet P in C. The malicious node M causes a collision of

packet P in the receiver node C, just by waiting for a third node B to

use the wireless channel, as represented in Figure 5.9 and described in

Algorithm 1. We call this attack receiver collision(M,A,C,P). The victim

node A actually monitors the packet P being sent from node B to node C.

However, due to the collision, the packet P never reaches the destination

(node C), so it can be considered that M fabricates the packet P to A.

• Fabrication. M can send the packet P in such a way that it reaches A

but not C, i.e., DSEND(M,A, P ). This way, A would believe that P is

forwarded from M to C, i.e., MONITOR(A,M,C, P ), while packet P is

actually not reaching C.

2. [Kurosawa et al., 2007]. In this work, an IDN node looks for either an anomalous

number of route request (RREQ) and route reply (RREP) packets sent or

anomalous Sequence Numbers (SN) in these packets. Evasion can be done

using some of the following techniques:

• Blocking. If the adversary blocks RREQ and RREP packets sent to the

victim nodes, then the number of packets observed by the IDN nodes

would be lower than the actual number of packets sent by the adversary.
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Algorithm 1 receiver collision(M,A,C, P )

M → The malicious node
A→ Node running an IDN node to monitor M
C → The victim node (receiver)
P → Packet routed from A to C (must be forwarded by M)

T1 : SEND(A,M,P )
T2 : RCV (M,A, P )
[M waits...]
T3 : SEND(B,C, P ′)
T4 : SEND(M,C, P )
T5 : COLLISION(C,P, P ′)→ RCV (C,M,P ) +RCV (C,B, P ′)
T6 : MONITOR(A,M,C, P )

(a) Graph view. A dotted line represent that a node is monitoring the

communication and solid lines represent actual communications between nodes

(b) Slot-time diagram. Each line corresponds with the medium view of the nodes.

Figure 5.9: Receiver collision

• Modification. The adversary may change the SN in such a way that it

does not exceed the anomaly threshold. This requires that the adversary

knows such a threshold, which can be obtaining using a reverse engineering

attack.

3. [Su, 2011]. In this approach, the detection process of node A starts when it

monitors a RREP packet from a monitored node B. Then, A checks whether
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B has previously forwarded the corresponding RREQ, checking the sequence

number and source IP of the packet stored in a table. If the check fails, A

considers B as malicious. Therefore, an adversary in B can perform evasion

using the following techniques:

• Blocking. Interrupting RREP in node A to prevent the process from

starting.

• Modification. Varying the SN to modify the internal table and thus avoid

detection. This is actually a poisoning attack because the detection data

is specifically modified, as we explain below. However, if the poisoning is

repeated for a while, then it may turn into an evasion.

• Fabrication. Generating RREQ packets in the node A in order to insert

an RREQ packet with a SN that the adversary uses in a posterior RREP

when performing a black hole attack. This way, when node A monitors

this RREP packet, it may check its table and it will see a corresponding

RREQ with the same SN.

4. [Huang and Lee, 2003]. The authors propose a hierarchical approach where the

network is divided into clusters. Each cluster head aggregates data received

from nodes within its cluster and correlates it with data received from other

cluster heads. First, it performs anomaly detection and, if anomalies are

detected, a second rule-based process identifies the attack and the malicious

nodes. If the adversary is able to evade the anomaly detection phase, it may

not be detected. The evasion attack targets the IIDM channel of the cluster

heads. Accordingly, it is needed a preliminary reverse engineering attack to

identify which nodes act as cluster heads.

• Blocking. By continuously interrupting the data sent to the cluster head,

the adversary can isolate it and thus it may not be able to perform

correlation.

• Fabrication. If the adversary has compromised a cluster head, it can use

it to inject false information to other cluster heads. This is a poisoning

attack that can be used for evasion purposes.

• Modification. In a scenario where a malicious node has been detected by

a cluster head, the adversary can modify the corresponding IDMsg sent to
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others cluster heads and remove its malicious behavior from the reports.

5. [Zhang et al., 2009]. The authors propose a fully distributed architecture where

IDN nodes share data to detect black hole intrusions. In their paper, authors

state that collaboration between IDN nodes can detect intrusions even in the

presence of various colluding malicious nodes.

• Blocking. The adversary must interrupt the IDMsgs exchanged between

IDN nodes. The authors assume that nodes cannot use a directional

antenna and they all have the same transmission power, which is not a

realistic assumption. However, even with these assumptions, the adversary

is able to evade this scheme with two colluding nodes by provoking colli-

sions deliberately. Normally, when a malicious node sends a forged SREP

to the IDN node (victim), a collaborative node within the neighborhood

notices that the SREP has been changed, because it monitors both the

original and the forged SREPs. As shown in Figure 5.10, the adversary

can produce a collision using two colluding malicious nodes by means of a

new packet which performs the blocking attack (collision). First, in the

precise moment that M2 sends the original SREP, M1 sends a packet to

A to provoke the collision (represented with a red arrow in Figure 5.10a).

Then, when A receives the forged SREP from M2 (Figure 5.10b), it is

not able to compare both SREP numbers and will not notice the change.

• Fabrication. If we do not consider the assumptions from [Zhang et al.,

2009], M1 can use a DSEND to prevent A from monitoring the forged

SREP.

Overstimulation

The goal in an overstimulation attack is to induce the victim to initiate response

actions (RA). The adversary may use a malicious node to perform fabrication against

the IDN node, and induce it to generate responses. Then, it can use these responses

in a variety of ways. For example, the adversary can intercept the responses and

infer the anomaly thresholds used by means of a reverse engineering attack.

By overstimulating a victim node, the adversary can force it to modify the

packet routes with some purpose. In some schemes detecting packet dropping, like
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Figure 5.10: Modification of the scheme of [Zhang et al., 2009] to cause a collision and evade the
cooperative detection.

Pathrater, explained in [Marti et al., 2000], or Modified AODV (MAODV), from

[Su, 2011], the response action consists of modifying the routing protocol to avoid

routes containing malicious nodes. An adversary can get information about the IDN

topology and architecture using a preliminary reverse engineering attack. Then,

she can overstimulate the victim node provoking that certain routes are modified,

as shown in Figure 5.11. In this figure, node M overstimulates A to avoid the

optimal route (represented in dashed line), because it includes node M which is

blocked. Thus, in order to communicate with C, node A uses the alternative path

B1 → B2 → B3 → C. The benefits for the adversary depend on its goal. For example,

it will increase the overall bandwidth of the network or force a specific node in the

MANET to process extra packets, thus causing a DoS against it (like B1 in Figure

5.11), as we explain later.

Figure 5.11: Overstimulation attack to make a route selection.

IDN node A is overstimulated to avoid the optimal route (represented in dashed line), because it
includes node M , which is blocked.

If the overstimulation is applied to the LDF, then it just affects a single node. In
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cooperative architectures, IDMsgs are exchanged between nodes through the network,

which increments the communication overhead of the network. The adversary can

exploit this using fabrication and overstimulate the ESF of a single node. Because

the propagation of information in IDNs, the effect would spread over the entire

network. Figure 5.12 shows this situation. Nodes with a double circle represent IDN

nodes, and M is the malicious node performing the overstimulation attack. The

overstimulation of the node in the left by M provokes an IDMsg to be shared with

other IDN nodes in the network. If this situation is continuously repeated, then the

network may become overloaded.

Figure 5.12: Distributed overstimulation attack.

The overstimulation of the node in the left by M provokes an IDMsg to be shared with other nodes in
the network.

Poisoning

Poisoning attacks comprise any action produced by the adversary to intentionally

modify the detection function or the data used in the detection. In MANETs, IDN

nodes store information monitored from nodes in its neighborhoods, like the local view

of neighbors and scores of good behaviors [Li et al., 2012]; or the number of RREQ

and RREP monitored [Kurosawa et al., 2007]. This information is modified according

to the activity monitored in the LE channel and the information received from other

nodes by the IIDM channel. An adversary can use fabrication to inject noise into the

IDN node, forcing it to store specific, well-crafted information. Afterwards, it can

take advantage of this and perform a more severe attack. For example, as explained

in Section 5.4.1.3, in the work of Su et al. [Su, 2011] the fabrication of RREQ packets

or the modification of sequence numbers allows the adversary to inject noise in the

nodes and subsequently evade the detection of black hole intrusions when sending

the corresponding RREP packet. In cooperative schemes, where IDN nodes exchange
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information about malicious nodes, the adversary may fabricate false reports or

modify reports from other nodes. For example, in the scheme of Zhang et al. [Zhang

et al., 2009], the adversary can fabricate IDMsgs declaring bad behavior of a benign

node, thus decreasing its reputation value. Moreover, a more powerful adversary

controlling two or more nodes can collude to talk well about each other.

Poisoning attacks are also useful in adaptive approaches where the detection

adapts to the activity of the network. For example, in the approach of Kurosawa et

al. [Kurosawa et al., 2007], IDN nodes periodically recalculate the model of normal

behavior. This model of normality is the average of the normal events recorded

during a previous period, considering “normal” any activity that is measured below

a given threshold. The adversary can fabricate packets with high anomaly score but

which are below the threshold (again, a preliminary reverse engineering is needed to

know which the threshold is). By doing so, the threshold will be increased in the

next update. Therefore, step by step the adversary is able to smoothly increase the

accepted level of anomaly values.

Denial of Service

A Denial of Service (DoS) attack prevents the victim node from performing

detection. In MANETs it is straightforward to perform a DoS attack by forcing the

IDN node to consume its battery power. For instance, by continuously performing

fabrication against the victim, the adversary causes this node to consume its battery

power or resources (flooding attacks [Yi et al., 2006]). Moreover, due to cooperation

and routing in MANETs, it is not necessary that the adversary itself sends the data

to overload the IDN node. For example, the adversary can use an overstimulation

attack to redirect several routes to a victim IDN node, forcing this node to process

more packets (see Figure 5.11).

Additionally, some approaches use internal data structures to track the monitored

data. A DoS occurs if the adversary is able to overload these structures. For example,

in [Su, 2011], IDN nodes use a table with the monitored RREQ and RREP packets

from each neighbor. Each time that a new tuple [src node, dst node, sequence number]

is observed, a new entry in the table is added. The adversary can continuously

fabricate packets with different sequence numbers to fill it up and overload this table.

Another specific DoS occurs in a packet dropping detection if the adversary

interferes with an IDN node monitoring a nodeB. Let us consider thatA is monitoring



124 5. A Model for Intrusion Detection Networks and Adversarial Attacks

B to watch whether it forwards packets appropriately. If a malicious node M

continuously interrupts packets in A that B is actually forwarding, the node A cannot

determine whether B forwarded the packet or not. A monitor collision(M,A,B, P )

attack is shown in Figure 5.13 and described in Algorithm 2. In time T3, node

B sends the packet P to node C, which actually receives the packet in time T7.

However, due to the collision provoked by M in time T6, A is not able to monitor

this communication and thus cannot determine whether B forwarded the packet or

not.

Algorithm 2 monitor collision(M,A,B, P )

M → Malicious node.
A→ Victim node; it runs an IDN node to monitor B.
B → Monitored node.
P → Packet sent from A to B to be forwarded to C.
P ′ → Packet fabricated by M to provoke a collision in A.

T1 : SEND(A,B, P )
T2 : RCV (B,A, P )
T3 : SEND(B,C, P )
T4 : MONITOR(M,B,C, P )
T5 : DSEND(M,A, P ′)
T6 : COLLISION(A,P, P ′)→ RCV (A,M,P ′) +MONITOR(A,B,C, P )
T7 : RCV (C,B, P )

(a) Graph view. A dotted line represents a node is monitoring the corresponding

communication and solid lines represent actual communications between nodes.

(b) Slot-time diagram. Each row corresponds to a node channel view.

Figure 5.13: Monitor collision attack.
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The adversary can cause a DoS attack to the ESF by continuously blocking IDMsgs

destined to the victim node. Thus, the victim is isolated from the network, as shown

in Figure 5.14. If the isolated IDN node requires some IDMsg acknowledgement

to detect any of the malicious nodes (M), it would never receive such an IDMsg.

Another DoS against IDN nodes occurs if the adversary overloads the IDN through

an overstimulation attack, as explained above. In this case, the entire MANET would

suffer from a DoS, and no IDMsgs could be shared.

Figure 5.14: Denial of Service attack by means of isolation.

Response Hijacking

In a response hijacking attack, the adversary induces the RF of the IDN nodes

to generate false response actions which may affect itself or a third victim node.

The severity of this attack depends on the type of response action performed by

the IDN node. A malicious node can block packets and prevent the IDN node from

monitoring some required information. For instance, if packet dropping detection

is performed by A in the scenario shown in Figure 5.13, node A monitors node B

to see whether it forwards the packet P to C. Node M can block the packet P to

prevent A from observing the packet forwarded by B. As explained above, A is

victim of a DoS. However, after sending several packets and waiting for B to forward

them, node A may decide that B has dropped all the packets and thus consider

it malicious. In such a case the DoS attack turns into a response hijacking attack.

Similarly, in the black hole detection scheme presented in [Su, 2011], the attacker

may block RREQ packets in A each time that a benign node (say, B) forwards these

RREQ packets. Due to the working procedure of [Su, 2011], when B forwards an

RREP packet, A does not notice any RREQ previously forwarded by B (due to the

blocking action), and therefore the intrusion score of B would be increased. This is a
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case of poisoning attack, because only the reputation score in the table is increased.

However, when this score exceeds a threshold, node B would be considered malicious,

and an erroneous response would trigger a response hijacking attack.

When IDN nodes share IDMsgs containing reports of bad behavior, like in [Zhang

et al., 2009], the adversary can poison the view of an IDN node by continuously

fabricating false IDMsg packets about a benign node (victim). After the fabrication

of several fake reports, the IDN node may classify the victim node as malicious.

Reverse Engineering

A reverse engineering attack allows the adversary to gather information about

the detection procedure or architecture used by the IDN in the MANET. We identify

two possibilities:

1. Localization of the dominating set. Using traffic analysis attacks, the adversary

can discover the roles and localization of IDN nodes. This is rather useful

information to perform more serious attacks.

2. Interception. In MANETs, detection is performed by monitoring suspicious

activity from other nodes. Thus, it is quite difficult to detect intruders that

apparently behave according to the routing protocol, but are actually performing

passive attacks. This gives advantage to an adversary to mislead the IDN.

By promiscuously monitoring IDN nodes, the adversary can perform a query-

response analysis to obtain information about the internal detection function.

This way, the adversary may be able to find out the thresholds used in the

detection process or the role and responsibilities of the nodes in the IDN.

Moreover, due to cooperative nature of the IDN, each time an IDN node

observes a malicious behavior, it may fabricate IDMsgs to inform other IDN

nodes. Therefore, it is easy for an adversary to query the node and force it to

output alerts. Then, using interception, the adversary can obtain the responses,

analyze them, and gain information about the detection process. Indeed, in

Chapters 3 and 4 we have presented two reverse engineering attacks against

IDS that exploit this technique.
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5.4.2 Scenario 2: Distributed Security Operation Center

(DSOC)

In this scenario we provide two ways to attack a cooperative IDN, namely DSOC,

presented by Karim et al. in [Karim-Ganame et al., 2008]. DSOC is a hierarchical

approach composed of different node roles. In the lower level, nodes called CBoxes

are responsible of gathering local data from local systems and networks in a specific

site, which can be either a LAN, a WAN, or a big corporate network geographically

distributed. These CBoxes format the data according to some standard (correspond-

ing to the IDMsg in our system model) and send it to a Local Intrusion Database

(LIDB), located in the same site. In each site, an LA node reads the logs from the

LIDB and performs correlation, sending the alerts to a Global Intrusion Database

(GIDB) located in a different site (using a SSL tunnel). Finally, a Global Analyzer

(GA) analyzes alerts from the GIDB, correlates them, and performs distributed

detection. There are also special CBoxes that gather data from critical sensors. The

special CBoxes send their data to a Local Analyzer (LA) situated in a different site,

using an SSL tunnel through the Internet. These Cboxes are called Remote Cboxes

(R-Cbox).

Next, we explain how the DSOC architecture fits within the system model

presented in Section 5.2. The Cboxes have the role of Data Collection (DC). They

only use the LE channel to gather local information and the OIDM channel to

transmit the data to the LIDB. LA nodes have the role of Remote Correlation (RC),

which takes logs from the LIDB using the IIDM channel, performs correlation, and

send alerts to the GA using the OIDM channel. Additionally, if a system runs both

an LA node and a CBox node, its role would be Remote Correlation and Detection

(RCD). Finally, the GA node has the role of Pure Correlation (PC), since it only

retrieves data from the GIDB (through the IIDM channel), performs distributed

detection, and generates responses through the RA channel. It can be observed

that the architecture of DSOC [Karim-Ganame et al., 2008] matches perfectly with

our representation of a hierarchical architecture shown in Figure 5.4. In DSOC,

the communications between the middle and top layers are encrypted, as well as

some of the communications from the lower to the middle layers (i.e., the ones that

correspond to R-CBoxes). Accordingly, below we provide a set of attacks against

hierarchical architectures, giving specific instances of how these attacks could be
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implemented against DSOC.

First, we explain which specific intrusive actions from the adversarial model

presented in Section 5.3 are required to perform different attacks against DSOC,

which are then used to perform a combined attack.

1. Fabrication (1). The adversary is capable of sending malicious data to every

node located in its LAN.

2. Fabrication (2). The adversary can spoof the source address of the transmitted

data in the site or modify its identity (IP or MAC address) at will.

3. Interception. The site traffic is non-encrypted and, thus, the adversary can

perform man-in-the-middle attacks to intercept the traffic sent by any node in

the site to the Internet. Even though the data is encrypted the addresses are

sent in cleartext, and thus the adversary is still able to know the identities of

the sender and the receiver nodes.

4. Blocking. Same as in the case above, the adversary can use a man-in-the-middle

attack to drop packets sent to Internet.

Using these actions, a combined attack is presented that isolates a site from the

rest of the hierarchical architecture and thwarts alert sharing. Thus, the goal is to

produce a denial of service targeting the ESF function. The attack is composed of

three correlative sub-attacks with different goals. These sub-attacks are depicted in

Figure 5.15, which has been obtained from [Karim-Ganame et al., 2008] and modified

to incorporate our attack:

1. Overstimulation attack on the ESF of the DC nodes in the site (the CBoxes

in DSOC). As a consequence of this attack, the DC nodes will produce several

IDMsgs which are sent via the OIDM channel to the RC node (in DSOC, it

is implemented by storing logs in the LIDB). For such a purpose, according

to Table 5.1 the adversary should use the Attack Strategy AS-2 on the LE

channel, which requires fabrication of traffic to stimulate the IDN. In DSOC,

the adversary may fabricate malicious data to some of the systems connected

to the site (there is no need of targeting all of them), in order to stimulate the

CBoxes.
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2. Reverse Engineering attack to know which systems implement IDN nodes

with the RC role. The goal is to discover what nodes running the ESF share

alerts with the PC node in the top of the hierarchy (in DSOC, this means

discovering which systems runs the LA and R-CBoxes). The adversary should

implement the Attack Strategy AS-5, which means intercepting the OIDM

channel to discover who is responding to the previous overstimulation attack.

In DSOC, the adversary should perform a man-in-the-middle attack to the

Internet access point (router) of the site under attack and perform traffic

analysis of the systems sending information to Internet.

3. Denial of Service attack against the ESF of these RC nodes. Once an

adversary discovers which are the RC nodes, she may try to deny the service

of the ESF in order to isolate the site from the rest of the IDN. It uses the

Attack Strategy AS-7 on the OIDM (see Table 5.1), which in DSOC means

that the alerts sent from the LA and R-CBox to other sites through Internet

are blocked. Once the denial of service attack succeeds, the RC nodes are

blocked and the site is isolated from the IDN.

Figure 5.15: Isolation attack of a site on the DSOC architecture [Karim-Ganame et al., 2008].
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5.5 Conclusions

Intrusion Detection Networks constitute a key component of current cyberdefense

infrastructures to detect distributed attacks. They facilitate different entities to share

information about attacks detected within their local networks. This make IDN an

effective countermeasure for detecting complex intrusion scenarios like distributed

DoS or multi-step attacks. IDNs are composed of different nodes interconnected,

and thus they offer various entry points for potential adversaries.

Research on IDNs typically considers the way that detection is performed, i.e.,

how data is correlated, detection functions, trustworthiness algorithms, etc. However,

it is also required to assess the security from the structural point of view. Indeed, it

is unclear how the attacks targeting nodes placed in one part of the IDN would affect

nodes located in other areas or performing different functions. This may depend on

several factors, like the IDN architecture and the adversarial model considered.

In this chapter, we have presented a system model for IDNs. The model considers

common building blocks that we have observed in the works proposed in the literature.

The abstraction of the IDN allows for the definition of common threats. Concretely,

we consider four basic threats in network communications: blocking, modification,

interception and fabrication. The likelihood of these threats to materialize depends

on the adversarial model considered. The strongest adversary may be able to perform

any of these intrusive actions in every node, while a weaker adversary may be only

capable of intercepting data in certain network locations.

By means of the system model and the basic intrusive actions defined, we have

provided a comprehensive set of attacks to IDNs, following the taxonomy presented

by Corona et al. [Corona et al., 2013]. We have provided examples of such attacks

for two different scenarios. The first includes a review of different defense systems

proposed for IDNs in Mobile Ad Hoc Networks (MANETs), and the second is a

collaborative IDN where different entities collaborate to detect distributed attacks

[Karim-Ganame et al., 2008].

Both the system model and the attack description presented in this chapter allows

for further investigation of IDNs. For example, given a common adversarial model,

it could be studied which architectures are more robust, or which are the settings

that make the IDN more secure. Additionally, when deciding where to implement

countermeasures in the IDN, the system model also allows to perform quantitative
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studies in terms of cost and risk. The next chapter addresses some of these problems

and presents a framework that leverages the system model presented in this chapter

to facilitate the design of resilient IDNs.
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6

Optimal Allocation of

Countermeasures in Intrusion

Detection Networks

6.1 Introduction

In this chapter we present DEFIDNET, a framework to evaluate the risk of IDNs and

to optimally set countermeasures to mitigate it. Due to the connectivity of nodes in

IDNs, threats affecting one node may propagate and affect the entire network. To

completely mitigate such threats, it is required the protection of every single node

which is at risk. In many scenarios this is not possible due to resource constraints (in

terms of time, human and financial costs, etc.) and the problem turns into investing

in security measures optimally to minimize the residual risk. Similarly, given an

acceptable level of the residual risk, the budget spent can be minimized.

In this sense, the placement of countermeasures in IDNs plays an important role.

Deciding what has to be protected, i.e., where to allocate countermeasures, is a

complex task. This decision depends on many factors, such as the adversarial model,

the impact of the attacks, or the cost of implementing the countermeasures. These

factors vary considerably even within the same network. For example, the cost in

terms of time and energy of implementing cryptography mechanisms for wireless

communications is different depending on the operating system and the software

used [Almenares et al., 2013]. Similarly, the impact of a denial of service attack on

a Security Operations Center (SOC) is typically higher than that of an anti-virus

solution for a personal computer.



134 6. Optimal Allocation of Countermeasures in Intrusion Detection Networks

Due to the wide variety and complexity of IDNs proposed in the literature, the

risk-rating of these networks is typically done in an ad-hoc manner, what makes it

expensive and error prone. Thus, in this chapter we develop a generic risk rating

framework, called DEFIDNET. This framework uses the system model presented in

Chapter 5 and tailors it to specific IDNs, by means of the customization of different

factors of the network and the adversarial model. Then, it incorporates procedures to

asses the risk of the IDN. Concretely, considering that some nodes may be targeted,

the framework evaluates the propagation of intrusive actions through the network

considering the influences between nodes. It then estimates the impacts of these

actions regarding different attack strategies. Accordingly, the risk of the network is

calculated considering the impacts and likelihood of attacks. Finally, the framework

provides the set of optimal countermeasures in terms of cost and mitigated risk. To

show the benefits of DEFIDNET, we provide experimental results using different

network architectures and a case study using a complex cooperative network.

The chapter is organized as follows. In Section 6.2 we describe the framework

in detail, including the threat, risk-rating and allocation modules. We provide the

experimental results in Section 6.3, and in Section 6.4 we present a case study.

Finally, Section 6.5 concludes the chapter summarizing the main contributions.

6.2 Description of the Framework

In this section, we describe DEFIDNET, a framework for risk-rating and optimal

allocation of countermeasures in IDNs. The framework uses the system model

presented in Chapter 5, which allows for the abstraction of nodes composing the

IDN. The framework is divided into three modules, depicted in Figure 6.1: the threat

module, the risk-rating module, and the allocation module. We next describe each

module in detail.

6.2.1 Threat Module

This module is used to define the threats to which IDN nodes are exposed and

the propagation of the intrusive actions throughout the network. It receives an

specification of the IDN based on the system model introduced in Section 5.2. For



6.2. Description of the Framework 135

Figure 6.1: Modules of the framework DEFIDNET.

It uses as input a network abstraction and applies the different modules to the network. The output is
a set of optimal solutions (the choice of a specific allocation depends on the particular objective)

.

every IDN node, this specification defines four channels: input of local events (LE),

input of IDMsg (IIDM), output of IDMsg (OIDM), and output of response actions

(RA). Each channel is exposed to four different intrusive actions: blocking (B),

modification (M), interception (I), and fabrication (F).

We consider an adversary who targets a certain number of nodes at a time,

performing one or more intrusive actions. The threat module is applied in to steps.

First, it receives the probabilities of each intrusive action being performed for every
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channel and every IDN node. These probabilities are manually entered. Then, the

threat-module automatically propagates these initial probabilities throughout the

network. We next explain these two steps of the module.

6.2.1.1 Attack Probabilities in Node Channels

The threat module receives as input the system model and the probabilities of

intrusive actions for each channel of every node. If the nodes uses the same physical

channel for input and/or output of data, then the probabilities would be the same.

For example, if a computer uses the same network interface to monitor local traffic

and to receive messages from other computers, then blocking the data in that network

interface may block the LE and IIDM channels of the node. Additionally, in many

adversarial scenarios, the probabilities of the intrusive actions are similar. For

example, if the adversary is able to perform modification, it is probable that she

may perform fabrication too. In any case, we do not consider in our framework how

these probabilities are established, because it may strongly depend on the adversarial

model and the network specifications. They are just defined manually, as shown in

Figure 6.1.

This step of the threat module provides information about which nodes have been

targeted initially. Thus, the threat module indicates where countermeasures should

be allocated to protect nodes against the intrusive actions. However, it does not

specify where it is better to place these countermeasures if the resources are limited,

because it depends on the damage of each action and the cost of implementing the

associated countermeasures. Moreover, as explained in the next step, the probabilities

of intrusive actions are propagated throughout the nodes, and thus the damage may

vary depending on the architecture of the IDN. These issues are dealt with by the

the allocation and the risk-rating modules, respectively, which are described later in

this chapter.

6.2.1.2 Propagation of Probabilities Throughout the IDN

Nodes in an IDN share information using IDMsg. Accordingly, the intrusive actions

that affect one node are propagated throughout the connected nodes. The degree

of propagation depends on the influences of the nodes connected. Consequently, a
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single intrusive action in a channel of a node may not increase considerably the risk

of the network. However, due to propagation, an adversary who wisely select its

victims or combines several actions can provoke a serious damage in the network.

For example, suppose that a node A with the role DC is connected to a node B

with the role PC. A provides data to B, who correlates this data and emits responses,

if needed. Suppose that the adversary modifies the data in the LE channel of A.

This intrusive action affects the OIDM channel of A as well, because the LE and

the OIDM channels are internally connected through the event sharing function

(ESF). Moreover, the OIDM channel of A is connected to the IIDM channel of B,

and thus the modification would affect B as well. The degree of damage caused in B

depends on the influence of A in B. The lower the influence, the lower the damage

propagated from A to B.

The initial probabilities are manually entered for each node, and define the nodes

that are vulnerable to external attacks. Then, the probabilities are propagated

throughout the network as follows. First, the nodes propagate the probabilities

internally. Depending on the role and the functions enabled in each node, the IIDM

and LE channels may be connected to the RA and/or OIDM. Thus, the probabilities

of every action affecting the input channels are propagated to the output channels in

each node. Second, the probabilities of the OIDM channels are propagated to the

IIDM channels of the connected nodes, weighted by the influence of the connection.

Equation 6.1 indicates the propagation between connected nodes. In this expression,

Ci represents the set of nodes connected to Ai, and Iij is the influence from the node

Aj to node Ai, with j 6= i. If one node previously had a probability in the IIDM

channel (PIIDM) greater than zero, then the new probability after propagation is

the maximum between the previous probability and the sum of the probabilities

propagated from connected nodes.

PIIDM(Ai) = max{PIIDM(Ai),
∑
∀Aj∈Ci

POIDM(Aj) ∗ Iij} (6.1)

Figure 6.2 shows an example of the propagation effect in a network with three

nodes. The boxes in each node correspond with the probabilities of the four intrusive

actions (B, M, I, and F) in each channel of the node. The nodes with role DC (Slave1

and Slave2 ) are connected to a node with role PC (Global). In the initial state, only
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Slave1 and Slave2 are targeted, but after the propagation effect, the probabilities of

the node Global are updated following Equation 6.1, and thus it becomes at risk.

Initial state State after propagation

Figure 6.2: Effect of propagation of the probabilities of attack in an IDN with three nodes.

The channels are represented as in Figure 5.1, i.e., the LE is on the bottom, the IIDM is on the left
side, the OIDM is on top, and the RA is on the right side. Each box corresponds to the probabilities of
the four intrusive actions (B, M, I, and F) in each channel of the node. The influence is represented a
weight associated to each with arrow.

6.2.2 Risk-Rating Module

Risk in ICT systems is calculated as the product of the damage caused by attacks

to the system times the likelihood (i.e., probability) of these attacks happening

[Stoneburner et al., 2002]. As explained in the previous section, the threat module

outputs the probability of each intrusive action in each channel of every node. The

risk-rating module first receives the impact of the attacks, and then calculates the

risk using the probabilities of these attacks happening. Next, we explain how the

impacts and likelihood are defined, and how the risk is calculated from these metrics.

6.2.2.1 Attack Impacts

The adversarial model of IDNs is rather different to other ICT networks, where

the main objective of attackers is to compromise the information confidentiality,

integrity, or availability of data. In IDNs, though, attacks may have different goals.

We adopt the taxonomy proposed by Corona et al. in [Corona et al., 2013], which
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classifies attacks to Intrusion Detection Systems. This taxonomy is further explained

in Chapter 2.

The impacts of attacks in each node depends on its consequences and it may be

different depending on the adversarial model, the architectures, etc. For example, a

DoS attack on a node with role DC may have higher impact in a distributed network

than in a centralized network. Thus, in DEFIDNET the impacts are defined for

each node and each attack (i.e., evasion, overstimulation, DoS, poisoning, reverse

engineering, and response hijacking), by manually entering a damage value.

6.2.2.2 Attack Likelihoods

When targeting IDNs, adversaries may use different attack strategies. To assess the

risk, each possible attack strategy should be considered. For example, a DoS could

be performed by blocking the IDMsgs sent to the node, or by flooding the node

with local events. Table 6.1 summarizes the intrusive actions required depending

on the attack goal. In Chapter 5, we provide details of each specific strategy and

examples of how they are actually implemented in real scenarios. We next provide

three examples of attacks using these strategies.

1. Evasion with modification in LE. An evasion occur if the adversary modifies

the data to blend with statistical properties of a normal model [Fogla and Lee,

2006]. This implies the adversary acting on the LE channel of the attacked

node.

2. DoS with fabrication in LE. Some approaches use internal data structures

to track the monitored data, like observed anomalous behavior of nodes in

MANETs [Su, 2011]. A DoS occurs if the adversary is able to overload these

structures by fabricating specific packets, which implies acting in the LE

channel.

3. Reverse engineering with fabrication in LE and interception in OIDM. By

performing query-response analysis, the adversary can infer information used

internally by the nodes [Pastrana et al., 2014]. Moreover, if the goal of the

adversary is to discover the roles of nodes in an IDN, it can perform a traffic

analysis attack. For example, by injecting intrusive packets in the IDN (LE
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channels of nodes) and observing who is responding (OIDM channel) and the

destination of the IDMsg, the adversary can determine who is gathering data

to perform correlation.

Accordingly, using the probabilities of intrusive actions to node channels estab-

lished in the threat module, and the attack strategies showed in Table 6.1, the

likelihood of each attack is calculated as the maximum probability of actions that

conduct to it. For example, consider the Global node in Figure 6.2 after the propa-

gation. The probabilities of intrusive actions in the IIDM channel (left side of the

node) are 0.75 for blocking, 0.6 for modification, 0.25 for interception, and 0.35 for

fabrication. As shown in Table 6.1, evasion in the node Global can be done by either

blocking, modifying or fabricating in the channel IIDM. The most probable action is

blocking (0.75).

Table 6.1: Taxonomy of attacks showing which intrusive actions may use the adversary on each channel
to achieve different goals.

Adversarial attack
intrusive actions on channels

LE IIDM OIDM RA

Evasion B ∨ M ∨ F B ∨ M ∨ F – –
Overstimulation F F M ∨ F –

Poisoning M ∨ F M ∨ F – –
Denial of Service B ∨ F B ∨ F B –

Reverse Engineering (M ∨ F) ∧ I (M ∨ F) ∧ I I I
Response Hijacking B ∨ M ∨ F B ∨ M ∨ F – B ∨ M ∨ F

6.2.2.3 Calculation of the Risk

Once the impact of attacks are entered, and the likelihood of these attacks happening

is calculated, the risk-rating module calculates the risk of one attack as the product

of the likelihood of this attack multiplied by its impact on the node. Assuming that

the impact of evasion in the Global node from Figure 6.2 is 100 and the likelihood of

evasion is 0.75, then the risk of the Global node being evaded would be 0.75∗100 = 75.

The risk-rating module outputs the total risk of the IDN, and for each node, the

risks for each attack and its aggregated risk (sum of all the attack risks). The total

risk of the IDN is the sum of the risks of all the individual nodes. This information

together with the information about which nodes have been targeted (given by the

threat module), is given to the allocation module described in the next section.
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6.2.3 Allocation Module

DEFIDNET is a framework to optimally allocate countermeasures in an IDN. In

this section, we consider the problem of reducing the estimated risk using the lowest

possible quantity of resources. The allocation module first receives the cost of the

countermeasures, and then calculates optimal allocation of these countermeasures to

reduce the risk. We next explain the two steps involved in this module.

6.2.3.1 Cost of Countermeasures

We define the cost of a countermeasure as the quantity of resources required to protect

a single channel for one node against a specific intrusive action. We consider this

cost as a single value, and we do not consider neither what exactly it is (money, time,

energy, etc.) nor how it is measured. For example, to protect against interception,

it can be used cryptographic mechanisms to encrypt the communications. These

mechanisms may require the use of secret keys or a PKI. Depending on the network

and the scenario of application, this may be more or less costly. Moreover, the cost

of protecting against interception is not the same in different nodes and channels.

For example, encrypting the communication in a MANET is usually more costly

than encrypting a wired link. Similarly to the probabilities, DEFIDNET uses as

input the cost to protect each intrusive action on each channel of the nodes.

In the following, we consider a solution as a set of countermeasures to be applied

to the IDN. On the one hand, when a countermeasure is applied to one channel to

counter an intrusive action, the probability of this action happening in this channel

becomes zero. However, since not all the channels are protected, after applying the

countermeasures of a solution, some residual risk is left behind in the IDN. On the

other hand, each countermeasure has an individual cost, and thus, applying a set of

countermeasures has a total cost calculated as the sum of each individual cost.

6.2.3.2 Optimization of the Cost-Risk Tradeoff

For each solution, the more risk is mitigated, the higher the cost. Ideally, optimal

solutions should minimize both the risk and the cost. However, these are mutually

conflicting objectives, and there is not a single optimal solution. Thus, a tradeoff

between risk and cost must be considered. Accordingly, we use Multi-Objective
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Optimization (MOO) to obtain the set of optimal solutions that conform the pareto

set. In MOO with two objectives, a solution from the pareto set is called non-

dominated if there is not any other solution that improves one of the objectives

without degrading the other objective. The set of non-dominated solutions is called

the pareto front.

There are several algorithms to obtain the pareto front. In our experiments,

we use an evolutionary MOO algorithm known as SPEA2 [Zitzler et al., 2001] (an

optimization of the Strength Pareto Evolutionary Algorithm). SPEA2 is one of the

most popular MOO evolutionary algorithms and has been successfully applied in the

intrusion detection domain [Sen and Clark, 2011; Sen et al., 2010]. Indeed, it is one

of the two MOO algorithms implemented in the ECJ framework [Luke, 2010], which

we use in our experiments. The other algorithm implemented in ECJ is NSGA2

(Non-dominated Sorting Genetic Algorithm) [Deb et al., 2000]. While both of them

are valid algorithms, SPEA2 obtains further optimization in the central points of

the pareto front than NSGA2, which is more convenient to obtain solutions in the

boundaries of the pareto front. In our particular domain, solutions that are very

costly or that reduce very low risk are generally not recommended. Accordingly,

the main purpose is to optimize the points where it is unclear the tradeoff between

cost and risk, which are the central points of the pareto front. For these reasons, we

choose SPEA2 in our experiments.

As explained in Chapter 2, evolutionary algorithms perform heuristic search to

explore a solution space. The algorithm manages a population of “individuals”,

which in our case are the different solutions to allocate countermeasures expressed

as a binary mask (1 means that the concrete countermeasure is applied, 0 that

it is not applied). Figure 6.3 shows an schematic view of an individual. Each

position of the mask indicates which actions (i.e, blocking, modification, interception,

and/or fabrication), for each channel, and for every IDN node, are counteracted

by the solution represented. The evolution applies various genetic operators to the

individuals to obtain each new generation. We next explain such operators:

• Crossover. Given two individuals, (i.e., binary masks), the crossover breeds

a new individual by mixing certain genes from the individuals (i.e., chunks

from the masks). Concretely, in our experimentation, the crossover randomly

divides the masks of both individuals in 5 chunks, which are swapped between
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them uniformly.

• Mutation. Given one individual, the mutation operator flips a 10% of the

bits from its mask. These bits are randomly chosen.

• Selection. This operator selects individuals from one generation to compose

the next generation. We use the tournament selection, which creates several

“tournaments” randomly choosing a number k of individuals from the population.

Then, the best individual in each “tournament” is selected.

Figure 6.3: Representation of a SPEA2 solution to allocate countermeasure as a binary mask.

Each position in the mask indicates whether a countermeasure to each intrusive action must be applied
(1) or not (0) in the corresponding channel of every IDN node.

.

The population evolves during several generations, increasing the “fitness” of

individuals. The fitness is a value associated with each individual, which indicates

how good it is. Concretely, the individuals are evaluated as follows. First, the

countermeasures indicated by the mask are applied (i.e., the corresponding probabil-

ities are set to zero) and its corresponding cost is calculated. Then, the remaining

probabilities of intrusive actions in the IDN nodes (i.e., these whose action have not

been counteracted) are propagated, and the risk is re-calculated. Finally, the pair

“cost-risk” is given to the algorithm to calculate the fitness. In the case of SPEA2,

the fitness of each solution considers the number of points that are dominated by

the pareto points in the solution.

When it is required to reduce the risk completely or when there are unlimited

resources, then all the nodes are protected completely (i.e, all the risk is mitigated).

However, when the cost is limited or the IDN tolerates some risk, the pareto front

indicates which are the optimal solutions. These solutions indicate which are the

countermeasures to be applied in order to solve one of the two following problems:
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1. Given a tolerable risk, the problem is “selecting the cheapest set of counter-

measures that mitigates the risk below a tolerable level of risk”.

2. Given an available budget, the problem is “selecting the set of countermeasures

that reduce the risk the most while spending less resources than the given

budget”.

If the budget is limited, the allocation solution must reduce the risk the most. If

there is a tolerable risk, the allocation solution must be the cheapest that decreases

the risk below the tolerated level. In some situations, though, neither the cost nor

the risk are limited. In these cases, it is helpful to know whether it is worth to spend

more resources to reduce the risk or not. When defending an IDN, one may think

that the more resources are spent, the more risk is mitigated. However, this is not

always the case. In the following section, we show experimental results that confirm

this intuition.

6.3 Experimental Work and Discussion

As it has been discussed in the previous section, the main advantage of DEFIDNET is

that it allows to model IDNs through the definition of architectural parameters (size

of the IDN, role of the nodes, connections, and influences) and per node parameters

(probabilities of intrusive actions, impact of attacks, and cost of countermeasures).

In this section, we provide analytic results using DEFIDNET. Concretely, we

model two IDNs with different architectures: a hierarchical network and a centralized

network. First, we explain how the networks are modeled and the parameters

established. Second, we analyze and discuss the tradeoff between cost and risk on

each IDN, which helps to decide the placement of countermeasures and whether it

is worth or not to spend resources, depending on the mitigated risk. Finally, we

discuss the use of DEFIDNET in the modeling of IDNs and how it provides optimal

alternatives to allocate the countermeasures depending on the resources available or

the tolerable risk.
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6.3.1 Network Modeling

We have conducted experiments using two IDNs, each of them with 101 nodes, but

distributed with different architectures: a centralized network and a hierarchical

network. We next describe the use of DEFIDNET applied to each of these networks.

6.3.2 IDN Definition

For each IDN, we first define the system model, which is composed of the number of

nodes, the role of each node, and the connections between them. Depending on the

role of each node, some of their functions and channels are activated, as explained in

Chapter 5.

In a centralized network, a central node correlates the information received from

several nodes and generates responses. We use a network with 100 nodes that collect

data and send it to a central correlation node. In a hierarchical IDN, the network

is divided into levels. We have established 3 levels in the network. In the top level

there is one global node (with role PC). In the middle level, there are 10 nodes (with

role RC) connected to the global node. Finally, in the bottom level, 10 nodes nodes

are connected to each of RC nodes in the middle level. The nodes in the bottom

level have the role DC.

The influences between nodes determine how the intrusive actions that affect one

node are propagated to the connected nodes. In our experimental work, we establish

different values for these influences, according to different data distributions. In the

following sections, we retake this and detail how the influences are established.

6.3.3 Adversarial Model

Once the system is modeled, we establish the attack probabilities on each node and

their impacts. We consider a powerful adversary who targets all the DC nodes that

collect data locally, with a probability equal to 1. These DC nodes only send data to

a correlation node and do not emit responses. Thus, the impact of the attacks in

DC nodes is low, as opposite to the impact in the correlation nodes, which is one

hundred times greater. Since the impact is greater in the correlation nodes, and
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because only the DC nodes are targeted, the risk of the entire IDN depends on how

the risk propagation within the IDN affects other systems.

6.3.4 Allocation Module

The allocation module requires as input the cost of the countermeasures and the

output of the threat module, i.e., the definition of which nodes are at risk and

which countermeasures should be taken. Optimal allocation of countermeasures

depends on two factors, the residual risk of the network after the countermeasures

are implemented, and the cost of these countermeasures. On the one hand, the risk

of the network is affected by the propagation of attacks, which in turn depends on

the influences between nodes. On the other hand, the cost of the countermeasures

varies from one node to another.

We conduct experiments using different values for the influences and costs of the

countermeasures. Concretely, these values are established following four different

data distributions (in the following, we refer to the value of influence or cost given

to each node as quantity):

1. Exponential (E). This distribution is shown in Figure 6.4-(a). With this

distribution, the lower the quantity is, the fewer the number of nodes receive

this quantity. Thus, the highest quantity is given to many nodes.

2. Fractional (F). As shown in Figure 6.4-(b), with this distribution the highest

value is given to a single node, and then the lower the quantity is, the more

the number of nodes that receive it.

3. Gaussian (G). The assignment follows a normal distribution. The majority

of the nodes receive a medium quantity, while some few nodes receive low

quantities and some few nodes receive high quantities. Figure 6.4-(c) shows

this distribution.

4. Uniform (U). All the nodes receives the same quantity.

In all the experiments, the total cost of the network distributed among the nodes

is 100. This means that, if we consider a network with 100 nodes and an uniform

distribution, the cost to defend each node is one.
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Figure 6.4: Data distributions used. The plots show the percentage of cost or influence (quantity)
assigned to each node in a network of 100 nodes.

For each distribution of influences and each distribution of cost, we use DE-

FIDNET to analyze the tradeoff between the cost of the countermeasures and the

mitigated risk. Thus, for each IDN we conduct sixteen experiments.
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6.3.5 Analysis of the Obtained Results

We have run 16 experiments, using four distributions of influence, and for each of

them, four distributions of cost. Each experiment can be viewed as an alternative to

distribute the influences and costs over the same IDN. The analysis provides insights

on which of these alternatives is optimal in different situations.

We provide the results both as a numerical analysis, showing the actual percent-

ages of risk mitigated and associated cost by the solutions, and a graphical analysis,

plotting the pareto fronts and analyzing their trend lines.

6.3.5.1 Numerical Analysis

Table 6.2 shows the quartiles of the amount of risk mitigated. Each quartile indicates

the percentage of the cost required to mitigate the 25% (Q1), 50% (Q2), 75%

(Q3), and 100% (Q4) of the risk. The total cost is calculated by applying all the

countermeasures in the network, i.e., spending all the resources.

The symbols F, E, G and U corresponds to fractional, exponential, gaussian and

uniform distributions respectively. We have highlighted the lowest values for each

quartile, which indicates which are the cheapest alternatives. These values indicate

the situations where some distributions of cost and influence are better than other.

For example, in the centralized network, to reduce the risk 25%, the best alternative

would be the fractional distribution of influences and exponential distribution of

costs (referred as IF-CE). This alternative only requires 14.6% of the cost. The

alternative with exponential influence and gausssian cost (referred as IE-CG) would

require more than the double of the cost (31.6%) to mitigate the same risk. However,

the table shows that to reduce 75% of the risk, the best alternative is precisely this

IE-CG, which barely requires 69% of the cost.

The comparison between the alternatives IF-CE and IE-CG shows that the

election of one alternative or another depends on the goal. On the one hand, for

the centralized network, the IF-CE alternative must be selected if, 1) its required to

completely mitigate the risk, or 2) reducing 25% of the risk is enough. On the other

hand, if the goal is to mitigate the risk substantially (75%), the best alternative to

use is the IE-CG.
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A similar analysis can be done with the hierarchical network. In this case, the

IU-CF alternative reduces 25% of the risk spending only 9.8% of the cost, while the

IG-CG alternative requires three times more cost (30.5%). However, the IG-CG

alternative is the best choice to mitigate the risk completely. A general observation

is that the percentage of risk to be mitigated determines which alternative is better

to save resources.

Table 6.2: Percentage of the cost required to mitigate 25% (Q1), 50% (Q2), 75% (Q3), and 100% (Q4)
of the risk in centralized and hierarchical IDNs.

Distributions Centralized architecture Hierarchical architecture
Influence Cost Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

F

F 20.7 54.8 88.0 96.7 21.7 44.9 83.5 96.2
E 14.6 39.2 71.0 89.4 20.8 42.3 76.7 94.6
G 31.1 43.7 70.6 92.4 28.4 45.0 73.0 93.9
U 32.1 43.2 69.2 91.5 25.1 46.0 73.8 94.8

E

F 18.7 29.7 81.8 94.0 17.6 40.7 77.7 96.4
E 26.9 54.6 87.3 95.1 19.0 49.3 85.3 94.0
G 31.6 45.8 69.0 91.4 34.9 50.2 68.3 93.5
U 29.5 48.7 71.1 92.2 21.8 48.1 77.6 95.3

G

F 14.7 39.5 80.9 94.9 10.8 37.8 85.1 94.7
E 20.6 45.3 80.0 92.8 13.1 43.8 81.5 91.6
G 29.2 52.3 75.9 93.2 30.5 51.9 72.0 91.0
U 27.6 53.0 73.6 92.8 17.5 49.5 80.9 94.3

U

F 18.8 38.4 86.5 95.0 9.8 42.4 87.9 95.0
E 15.7 50.3 83.8 95.7 14.8 46.3 85.3 92.3
G 27.1 52.9 74.5 90.5 25.4 53.4 72.4 91.7
U 25.5 52.7 75.3 94.1 22.1 51.6 78.4 92.5

6.3.5.2 Graphical Analysis

Figures 6.5 and 6.6 shows the solutions of the pareto fronts obtained for the centralized

and hierarchical networks, respectively. For the sake of illustration, we have grouped

the pareto fronts in 4 plots, each one corresponding to an influence distribution.

Each plot shows the percentage of residual risk (y-axis) and the percentage of cost

(x-axis) associated with the solutions. A 100% of risk means that no countermeasures

are applied (i.e., 0% of the cost spent), while a 100% of the cost means that all the

required countermeasures to protect the network are applied.
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Figure 6.5: Cost-risk tradeoff in the centralized IDN.

Each plot shows the pareto front obtained for each cost distribution and one influence distribution.

Assume that, in a given time, some countermeasures have been applied in the

IDN, and thus the risk has been reduced partially. At this point, is it better to spend

more resources to further reduce the risk, or is it better to do nothing, thus saving

resources? The analysis of the trend line of the obtained pareto front helps to answer

these questions. We next provide two examples:

• Example 1. In the centralized IDN, consider the pareto front of the IE-CF

alternative depicted in the red lines in Figure 6.5-(c). The trend line indicates

that spending half of the cost (Q2) reduces almost the same risk than spending

75% of the cost (Q3). Thus, supposing that the IDN risk has been reduced up
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Figure 6.6: Cost-risk tradeoff in the hierarchical architecture.

Each plot shows the pareto front obtained for each cost distribution and one influence distribution.

to 30% (using half of the budget), the next reduction of risk would require to

spend 30% more cost. In this case, if there are no restrictions about the risk,

an intelligent decision would be to save resources and do not implement more

countermeasures.

• Example 2. In the hierarchical IDN, consider the IF-CG alternative depicted in

green line of Figure 6.6-(b). In this case, with 28% of the cost, the risk is only

reduced to a 80%. However, analyzing the trend line, it can be observed that

with only some more cost (around 12% more) the risk is drastically reduced

to less than 50%. Thus, contrarily to Example 1 above, it is worth spending
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some more resources because it reduces a significant amount of risk.

Similarly to the numerical analysis, the trend line of the pareto fronts can be

used to compare between different alternatives. In this case, the decision of what

alternative to choose is done by analyzing the lines: the line “arriving” first to the

desired quartile is the best alternative. In the centralized network, for example, with

fractional influence (IF), the blue line (CE) is the first to reach the first quartile (Q1)

of the risk. Accordingly, the IF-CE alternative is the best choice to reduce a 25%

of the risk. This result matches with the numerical analysis done in the previous

section.

6.3.6 Discussion

In this section we have discussed how DEFIDNET helps to decide when it is better

to spend more resources to reduce the risk, and where. In many IDNs, establishing

countermeasures in a indiscriminate manner may reduce the risk proportionally to

the cost, i.e., spending more resources involves reducing more the risk. Graphically,

the trend line of the pareto front of this approach would have a constant decrement,

like the black line of Figures 6.5-(a) and 6.6-(a). However, the analysis performed in

this section shows that in some IDNs, the previous effect is not true, and increasing

the cost does not always translates into a risk reduction. In this case, the trend

line of the pareto front would have substantial leaps, like the lines analyzed in this

section.

In order to save resources, it is useful to know when it is convenient to allocate

new countermeasures, and where should they be placed. The decision depends on

several parameters, like the architecture of the network, the influences between nodes,

the cost of setting countermeasures in the nodes, etc. In the presented experiments,

we have analyzed different alternatives for rather small and simple IDNs. We defined

different alternatives by randomly assigning influences and costs using different

distributions. However, when dealing with bigger networks and having non-trivial

alternatives (i.e., which are not random), the value of DEFIDNET is even greater.

In the next section, we provide experimental results using a larger and more complex

IDN than the ones used here.
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6.4 Case Study

In this section, we use DEFIDNET to analyze a Cooperative Intrusion Detection

Network (CIDN). In a CIDN, several entities (companies, organizations, governments,

etc.) share the information that they have obtained from their own corporate network.

Each of these corporate subnetworks are proprietary of one entity, and thus they

may have different architectures, sizes, and also the adversary model varies for each

of them.

In this section, we first define the IDN and all its parameters. Second, we

show the tradeoff between cost and risk of different solutions in terms of the pareto

front. Finally, we select one specific solution according to a budget and discuss the

countermeasures that this solution suggests.

6.4.1 Architecture Design and Adversarial Model

Figure 6.7 shows the IDN used for the case study, once the probabilities are en-

tered and propagated. The network simulates a scenario where five entities share

information of intrusion attempts in their corporate subnetworks. Each corporate

subnetwork has a global node in charge of the communication with global nodes

from other corporations. The global nodes correlate data received from their cor-

porate subnetwork and from the other global nodes. If needed, global nodes emit

responses. Because the corporations are independent and they are vested with the

same authority, the global nodes are interconnected in a distributed fashion, and

each of them is connected with all the remaining global nodes. Next we describe

each corporate subnetwork:

1. Subnetwork centralized-100. Within this network, 100 nodes with role DC

gather data locally and send it to the global node. The influence of these nodes

to the global one is established with a fractional distribution, and the costs of

each DC node is established with an exponential distribution. This subnetwork

is highly targeted: 70% of the DC nodes have full probability of being attacked

(i.e., the probability for each intrusive action is set to 1).

2. Subnetwork centralized-20. This network has a centralized architecture

but, unlike the previous network, it has only 20 nodes collecting data. Moreover,



154 6. Optimal Allocation of Countermeasures in Intrusion Detection Networks

these nodes do not communicate directly with the global node of the entity,

but with a proxy who actually communicates with this global node. The

distribution of influences and costs of the subnetwork are uniform, and only

10% of the nodes are targeted.

3. Subnetwork hierarchical. The global node of this entity is the root of a

hierarchical subtnetwork. The hierarchy has two middle level nodes (with role

RC), each of them correlating data gathered from five DC nodes. This network

is completely targeted, and thus all the nodes have their probability of being

attacked equal to one. The distribution of the influences is uniform, and the

distribution of the costs is fractional.

4. Subnetwork ring. This subnetwork uses a special architecture with a ring

of hierarchies. Four nodes are interconnected within a ring architecture (i.e.,

a node is connected to just another node and receives data from a different

one). At the same time, each of these nodes correlates data received from three

nodes who gather data locally. One of the nodes in the ring, acting as proxy, is

connected to the global node of this entity. Both the influences and costs are

uniformly distributed, and only three nodes in the lower level of the hierarchy

are targeted.

5. Subnetwork distributed. The detection within this network is distributed,

and all the nodes have the same responsibility. Each node has the role LDA

and is connected to 10% of the remaining nodes of the subnetwork. One of the

nodes is the proxy connected to the global node. The distributions of the costs

and influences are uniform. Only a small subset of these nodes are targeted

(5%). However, it can be observed in Figure 6.7 that, due to the propagation

of the probabilities, almost every node within this network is put at risk. The

impact of compromising each of these nodes, though, is one-hundred times

lower than the impact of compromising the global node of this entity (following

we explain the impacts assigned to the nodes of the network).

Each global node, besides cooperating with the remainder global nodes, generates

responses.1 Accordingly, the impact of attacks on these nodes is higher than in the

remaining nodes of the network. The impacts established for each node role are:

1Note that we do not consider in our study the specific responses emitted by nodes
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Figure 6.7: CIDN for the case study in its initial state.

• Global nodes: 100

• Proxy nodes (those that are connected to a global node): 10

• Data Collector and peers in the partially-distributed: 1
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A priori, it is not easy to determine where it is better to set countermeasures in

this network. Should every node in the centralized-100 subnetwork being protected

first?, or is it better to protect the hierarchical subnetwork because it is smaller? We

next use DEFIDNET to analyze the cost-risk tradeoff by plotting the pareto front

obtained. Then, we analyze specific solutions suggested by DEFIDNET.

6.4.2 Cost-Risk Tradeoff

Figure 6.8 shows the pareto front of the solutions for the cooperative network. As

explained above, each point in the pareto front correspond to an optimal solution

for each risk level with the least cost. In the figure, we have highlighted certain

points which we analyze further in the next section. The trend line of the pareto

indicates that, spending few resources in the beginning, the risk rapidly decreases,

and spending approximately 10% of the cost, the risk decreases to 75%. In that

point, the gradient of the line becomes zero for an appreciable interval. That means

that there is no improvement in the mitigated risk spending 15% and 22% of the

cost. In the next subsection we analyze these two solutions and analyze why this

situation occurs. Suddenly, the trend line substantially falls below 50% (between the

orange triangle and the blue circle points), which means that, a solution that spends

only 7% more of the cost than the previous one, reduces the risk 24%. Again, in the

next section we analyze why this improvement occurs.

Following the analysis of the trend line, we observe that once the risk has been

reduced below 50%, the trend line relatively enters in a decreasing interval for a

while. However, it can be observed that it is required a greater percentage of the

cost than the corresponding risk reduction. Finally, just before the line crosses the

third quartile of the risk (i.e., just before reducing the risk below 25%), the trend

line suffers a significant decrease, and the network becomes practically secured by

spending 80% of the cost.

The analysis of this specific line shows that, if the budget for defending the

network is low, then a good option is to reduce the risk at least 50%, because it can

be achieved with little more than 25% of the budget. However, if the budget is high,

it is better to spend the 80% because in such a case the risk is practically reduced to

zero.
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Figure 6.8: Pareto front showing the cost-risk tradeoff of the CIDN studied.

The highlighted points are the solutions analyzed in Section 6.4.3.

6.4.3 Analysis of Specific Solutions

As explained above, each point in the pareto front correspond with one solution

in the network, i.e., the set of countermeasures to be applied to optimally reduce

some risk using some cost. In this section, we analyze four solutions suggested by

DEFIDNET which are highlighted in Figure 6.8.

The two solutions S1 and S2 mitigate little risk and spend few resources. The

difference between them is that, while S2 mitigates only 1% more than S1, it costs

7% more. However, analyzing the line in the point S2, it can be seen that spending

again another 7% of the cost provokes that the risk is reduced 25% (as seen in the

solution S3 highlighted in Figure 6.8). What exactly is the difference between S1, S2

and S3?

In Table 6.3 we show the number of countermeasures that solutions S1, S2, and S3

allocate in each of the corporate subnetworks. The biggest different between solutions

S1 and S2 is in the subnetwork centralized-100 and the subnetwork distributed. This

difference suggests that setting countermeasures in these subnetworks does not reduce

substantially the risk, unless all the risk in these subnetworks is mitigated. In the

case of the centralized-100 subnetwork, the problem is that all the DC nodes are

directly connected to the global node. In the case of the distributed subnetwork,

the problem is that a single targeted node will propagate the risk throughout the
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entire network, and because one of the participants in this subnetwork is directly

connected to the global node, the attack is propagated to the entire CIDN.

Regarding the difference between the solutions S2 and S3, it can be observed

that in the hierarchical subnetwork, the defenses allocated by S3 are doubled, and

even in the centralized-20 there is one less countermeasure. It can be observed that

it spends more resources in protecting the hierarchical subnetwork and the overall

risk is considerably reduced. The costs in the hierarchical network follow a fractional

distribution, which means that some of the nodes has a high cost while the remainder

has low cost. This means that, if there is enough budget to protect the highest cost

nodes, then it is worth doing so, because the remaining nodes are cheap and then it

becomes easier to protect the entire subnetwork.

Figure 6.9 shows the countermeasures allocated per action type. As it can be

observed, in the solution S4, countermeasures to interception are almost the same

than in solutions S3 and S2. This suggests that avoiding interception is not optimal

unless there are enough resources. Actually, as shown in Table 6.1, the interception

is only valuable for an adversary to perform a reverse engineering attack. Thus,

protecting against interception only reduces the risk for reverse engineering. Another

conclusion that can be extracted from Figure 6.9 is the importance of avoiding

fabrication actions. Indeed, between S1 and S2, the countermeasures to protect

against fabrication are the same, while there are considerable differences in the

blocking, modification, and interception. As seen in Figure 6.8, solutions S1 and

S2 mitigate almost the same risk, S2 being a 7% more expensive than S1. Solution

S3, though, by spending of few more resources than S2 to protect nodes against

fabrication, decreases the risk considerably.

Table 6.3: Analysis of the solutions highlighted in Figure 6.8.

Solution Number of countermeasures in each subnetwork
Centralized-100 Centralized-20 Hierarchical Ring Distributed

S1 96 3 5 3 7
S2 131 3 7 4 11
S3 139 2 14 6 14
S4 167 5 33 11 33
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Figure 6.9: Number of countermeasures per action type.

Finally, Figure 6.10 shows the CIDN after the solution S4 is applied. It can be

observed that, as it was suggested in the analysis of solutions S1, S2, and S3, when

allocating countermeasures, the optimal approach is to leave the centralized-100

network at the end of the queue and protect the other subnetworks first.

6.5 Conclusions

Intrusion Detection Networks are used to detect complex, distributed attacks. They

aggregate several nodes with different roles that are interconnected to share informa-

tion. Accordingly, a compromised node may expose the entire IDN to a risk. Due

to the adversarial scenarios in which these networks operate, the design of robust

architectures is critical to maintain an acceptable level of security.

In this chapter, we have presented DEFIDNET, a framework that assesses the risk

of IDNs against specific attacks in the nodes. Node abstraction allows the definition

of single probabilities of intrusive actions in the channels of each node, which is

simpler than defining the probability of complex attacks in the entire network. Then,

considering these probabilities and their propagation throughout the network, the
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Figure 6.10: CIDN after applying the countermeasures of the solution S4.

likelihood of different attacks being happening is calculated. These attacks are defined

regarding its consequences on the IDN, and they have an associated impact. Using

the likelihood and the impact of attacks, the global risk of the IDN is calculated.

In order to save resources, it is important to analyze the tradeoff between

cost and risk of implementing countermeasures in the channels. To this end, we

use a Multi-Objective Optimization algorithm to get optimal allocations of these

countermeasures. Concretely, we use an evolutionary algorithm known as SPEA2.

This algorithm provides solutions that are pareto optimal, where a solution is the set

of countermeasures to be applied in order to protect the channels of the IDN nodes.
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In our experimental results we have seen that, depending on the cost and the

connections in the network, deciding what to fix and deciding whether it is worth

doing can help saving resources. Moreover, we have provided an analysis of a case

study that suggest that the use of DEFIDNET helps to determine the optimal

allocation of resources in big complex networks.
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7

Conclusions

Intrusion Detection Networks (IDNs) are mechanisms that provide security to ICT

systems. IDNs constitute a primary component for securing computing infrastruc-

tures, and thus have become themselves the target of attacks. This Thesis has

focused in the protection of IDNs against adversaries. In this chapter we provide

the conclusions of our work. We first summarize the main contributions and discuss

how they meet the objectives established. Second, we discuss open issues and future

work. Finally, we mention the list of results published related to this Thesis and

other publications obtained from parallel work carried out while working on this

Thesis.

7.1 Summary of Contributions and Conclusions

We next summarize the contributions and discuss the main conclusions that arise

from them:

• In Chapter 2 we have reviewed the state of the art of IDNs in adversarial

environments. We have seen that since the beginning of 21st century, many

works have considered the possibility of attacks against IDS. Additionally, since

a commonly used approach used in anomaly detection is the application of ML

algorithms, recently the research community has questioned the robustness of

such algorithms in adversarial settings. From the analysis of the state of the

art, several conclusions are drawn:

1. Though the security of ML is an active research topic, little progress has

been made over the last few years in the design of resilient algorithms.
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Moreover, there is a substantial lack of experimental work exploring the

problems derived from an attacker who can modify instances at will to

subvert the detection function.

2. In order to secure IDSs against attacks, many state of the art solutions

have proposed the use of random components in the detection process

that are kept secret for the adversaries. Some of these solutions assume

that a potential adversary could not know which parts of the events are

being processed by the IDS. However, a formal security analysis of such

solutions is still missing.

3. While strong analysis models for attacks on individual IDN nodes have

been explored, almost no research works have focused on the study of

resilient IDNs in the face of adversaries.

• In Chapter 3 we have presented reverse engineering and evasion attacks, which

corroborate the need for robust machine learning algorithms. The reverse

engineering process derives a model from a training distribution assumed to

be the same the detector uses. This model is then processed by a searching

algorithm which suggests evasion strategies. Furthermore, we show that IDS

that rely on lightweight feature construction algorithms are easily manipulable

by an adversary, facilitating the mapping of feature vectors into real world

evasions. The experimental work carried out leads to the following conclusions:

1. The use of machine learning for intrusion detection, though it is effective

and efficient, must consider robustness against adversarial manipulation.

2. The dataset used to train the classifiers should represent properly the

complete data space. Otherwise, the classifiers may learn patterns that

are valid for a dataset with such distribution, but are not robust enough

to classify data specifically modified by an adversary.

3. The use of lightweight feature construction methods allows an adversary to

obtain real world evasions from the feature vectors. Ideally, in adversarial

environments, the feature construction should be a one-way function, i.e.,

whose invert function is computationally hard to calculate.

• In Chapter 4 we have evaluated the randomization of the detection boundary,

which is one of the proposed solutions to counteract reverse engineering and
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evasion attacks. We have focused on a popular anomaly detector in the

research community called Anagram [Wang et al., 2006]. The proposed reverse

engineering attack shows that not only the attacker can infer the decision

boundary, but this knowledge indeed makes it easier for an adversary to

evade the detector. While the attacks presented in Chapter 4 are not directly

applicable to other randomized anomaly detectors, the underlying ideas are

general enough and can be used to reverse engineer other schemes based on

similar constructions. The work presented leads to the following conclusions:

1. In general, the use of query-response analysis allows an adversary to build

“nearly-anomalous” events which may be close to the detection boundary.

Then, by performing small incremental modifications and observing the

output, the adversary can learn what the decision boundary is.

2. Randomization provides security, but it may turn into a loss of effectiveness,

because the inputs are slightly modified internally to hide how they are

processed. An adversary who manages to find out the secret information

used in the detection, could actually take advantage of the less efficient

randomized detection process to evade the IDS, thus turning a security

measure into an undesirable feature.

3. From the above conclusions, it can be observed that, while randomization

is a promising countermeasure to protect IDSs, further improvements to

this technique are required to counteract reverse engineering and evasion

attacks.

4. The contributions presented in Chapters 3 and 4 meet the objective O1

stated in the beginning of this Thesis, which was to “Study techniques to

reverse engineer and evade IDSs based on ML algorithms”.

• In Chapter 5 we have proposed a system model for IDN that integrates the

key features of individual nodes of an IDN and existing architectural options.

The system model facilitates the definition of goals, tactics, and capabilities

of adversaries aiming at disrupting the IDN operation. After analyzing the

main features of IDNs, both in wired an wireless networks, we have built a

general model from common building blocks. Accordingly, we have defined

a set of common threats against these communication channels, that lead us

to the provision of a list of attacks against IDNs. Finally, we have presented
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such attacks in two scenarios: MANETs and Collaborative IDN. Regarding

this work, we state the following conclusions:

1. The different nodes operating in an IDN share common functional compo-

nents, which are generalized in a system model. With the proposed model

it is possible to define the assets and the adversarial model of an IDN,

which facilitates the risk assessment and the design of defense strategies

for the IDN.

2. The main goal stated at the beginning of this Thesis was to “improve the

security of intrusion detection systems and networks operating in adver-

sarial settings by developing techniques to analyze their vulnerabilities

and countermeasures to increase their resiliency”. Our findings shows that

perfectly securing IDNs in real scenarios is an almost impossible mission.

Indeed, it would be required that each independent node in the IDN is

properly secured, which is unrealistic in real settings where economical

and operational constraints apply. Consequently, it is necessary to pro-

vide resilient architectures that maintain the protection operative, even

assuming that some nodes are being targeted. Concretely, the system

model presented in Chapter 5 accomplishes the objective O2.

3. A risk assessment of IDNs involves knowing the assets and threats to

which the IDN is exposed. Then, deciding what to fix and how many

resources to spend presents a tradeoff between cost and risk. This tradeoff

helps to make decisions about when and where it is worth to implement

countermeasures. Indeed, depending on the cost and the specific settings

of the network, deciding where to allocate countermeasures can aid in

saving resources.

• In Chapter 6 we have proposed a framework called DEFIDNET. This framework

can be used to obtain a set of countermeasures and evaluate the cost and risk

tradeoff. The main steps of the framework are summarized as follows. First, the

model of nodes discussed above allows the definition of probabilities of different

intrusive actions in each communication channel. Second, the connections

and influences between nodes determine how intrusive actions targeted to one

node affect the IDN, i.e., how threats are propagated across the IDN. Third,

the risk of the IDN is calculated from the probabilities and the impacts of
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the attacks. Finally, the framework calculates the set of countermeasures to

optimally protect the network, along with a tradeoff between cost and risk of

these countermeasures, using a multi-objective optimization algorithm. We

have also provided a case study that uses DEFIDNET to determine the optimal

allocation of resources in a complex IDN. Next we provide two conclusions

from the work carried out in this chapter:

1. IDNs may have many different architectures and operational settings,

which makes them a complex scenario. Traditionally, the more complex a

system is, the more security breaches it may expose. Accordingly, it is

critical to design methods to provide operators with global awareness of

the IDNs, including the assets of the IDNs and the threats to which it is

exposed. Thus, these methods may facilitate the security evaluation of

IDNs.

2. The abstraction offered by DEFIDNET provides several advantages to

design resilient architectures for IDNs. On the one hand, it facilitates the

definition of the assets of the IDNs and the adversarial capabilities, which

facilitates the risk assessment of the IDN. On the other hand, it allows

to devise defense strategies, optimizing the allocation of countermeasures

that save resources. Accordingly, the objective O3 established at the

beginning of the Thesis is accomplished.

7.2 Open Issues and Future Work

As stated in this Thesis, the sophistication of attackers evolves parallel to the

robustness of defenses. Thus, the design of robust countermeasures seems to be

a never-ending research topic. In this Thesis, we have provided contributions to

counteract current attacks. These contributions admit extended work and open new

interesting research challenges. In what follows we discuss future work directions

that arise from this Thesis:

• Defending machine learning from reverse engineering and evasion

attacks. The attacks against ML based IDSs presented in Chapter 3 made some

assumptions for the adversary that nowadays are reasonable. Concretely, that



168 7. Conclusions

the attacker knows the training data distribution and the feature construction

method. Even assuming that this information is available to the adversary, an

effective mechanism would be to hide some other relevant information for the

detection. This way, the attacker would not know how to find attack vectors

that evade the classifier. A recent approach is to use keys in the detection

function. These keys, which are secret, determine the internal behavior of the

detector. However, as we have also shown in this Thesis, the use of secret

information might be vulnerable to reverse engineering attacks if it is not done

properly. Thus, further research must be done to improve the robustness of

this solution.

The attacks presented actually succeed because the adversary can easily invert

the feature construction process, and thus obtain real world evasions from the

feature vectors. Accordingly, research on one way feature construction methods

(i.e., which cannot be inverted) may counteract such attacks. Still, it would be

required a security analysis of these functions before considering them for real

scenarios.

• Generalization of attacks against randomized IDS. Another open issue

derived from this work is the generalization of reverse engineering attacks to

randomized IDSs. In Chapter 4, we have described why these attacks succeed

and we have detailed a concrete attack against Anagram. Since the same idea

can be extended to other randomized detectors using a formal definition, more

research work is required to generate similar attack strategies.

• Improve the robustness of Anagram. Even though the attack presented

in Chapter 4 allows an adversary to recover the random mask used by Anagram,

this detector is still a valid candidate to use in real settings. Thus, another

open issue is the design of countermeasures against reverse engineering attacks

for Anagram. For example, a possible countermeasure to the proposed reverse

engineering attack is to randomize the choice of the random mask itself. How-

ever, the potential impact of such a double randomization from the detection

point of view must be further studied.

The three points commented until now suggest that attacks and defenses to

strengthen the security of IDSs is a race between attackers and defenders. As

pointed out before, this race makes the design of attacks and defenses for IDSs
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a promising research topic.

• Implementation of real attacks on state of the art proposals for IDNs.

In Chapter 5, we have presented several attack strategies to IDNs, describing

how these strategies would be applied in two scenarios. Concretely, we analyzed

IDNs proposed in the literature for MANETs and Collaborative IDNs. Since we

have provided conceptual attack strategies, it would be interesting to actually

implement such attacks in either simulated networks or actually in real networks.

For example, since many IDNs studied for MANETs have been tested using

simulated networks, an interesting work would be to simulate adversaries for

such IDNs.

• Update DEFIDNET to facilitate dynamic analysis of IDNs. One of

the advantages of the proposed framework DEFIDNET is that it facilitates the

assessment of the risk of IDNs, by virtually defining the assets and adversarial

capabilities in the IDN. Thus, it can be applied in dynamic scenarios by

properly setting the parameters in real time. The dynamic analysis assumes

that the adversarial model changes over time, due to the establishment of

new countermeasures in the node channels, the addition of new nodes and

connections in the IDN, changes on the influences, etc. This dynamism requires

a constant reconfiguration. For example, if it is known that a certain node is

compromised and setting countermeasures in this node cannot be afforded, then

it may be useful to decrease the influence on this node to reduce the propagation

of the risk. Currently, reconfiguration is not optimized in DEFIDNET as it

must be performed manually. Thus, automatic reconfiguration of the network

would allow to perform a faster, dynamic risk analysis.

A possible implementation of DEFIDNET with dynamic analysis would be

its integration with cloud computing platforms designed to deploy and man-

age large networks of virtual machines. These virtual machines would be

instantiated as nodes of the IDN. Thus, whenever a new virtual machine is

created in the network, DEFIDNET may automatically suggest reconfiguration

alternatives and countermeasures to reduce the risk of the IDN.

• Application of DEFIDNET in real scenarios. We have evaluated DE-

FIDNET with a simulated network, obtaining promising results. However, it is

desirable to assess the framework with real IDNs which are actually protecting
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some infrastructure. The framework should be applied in simulated scenarios,

which in turn would not differ substantially from the case study provided in

Chapter 6. We are currently developing a graphical user interface and we

plan to make it publicly available. Thus, users will be able to download and

use it, reporting any inconsistency or improvement that they consider to the

framework.

7.3 Results

The research work done during this Thesis has resulted in some publications and

contributions to journals, conferences, and a book chapter. In this section we first

describe the publications that have a direct relation with the Thesis presented in

this document. Then, we describe publications obtained from research work carried

out while working on this Thesis.

7.3.1 Publications Directly Related to the Thesis

Journal papers

1. Title: Randomized Anagram Revisited.

Authors: Sergio Pastrana, Agustin Orfila, Juan E. Tapiador, Pedro Peris-

Lopez.

Journal: Journal of Network And Computer Applications.

Reference information: Volume 41. Pages 182-196, May 2014 [Pastrana

et al., 2014].

Impact Factor 2012: 1.467.

Journal Ranking: Position 11/50, Hardware and Architecture (Q1).

Conference papers

1. Title: Anomalous Web Payload Detection: Evaluating the Resilience of 1-

grams Based Classifiers.

Authors: Sergio Pastrana, Carmen Torrano-Gimenez, Hai Than Nguyen and

Agustin Orfila.
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Conference: 8th International Symposium on Intelligent Distributed Com-

puting.

Reference information: September 2014, Madrid (Spain).

2. Title: A Functional Framework to Evade Network IDS.

Authors: Sergio Pastrana, Agustin Orfila and Arturo Ribagorda.

Conference: Hawaii International Conference on Systems Sciences (HICSS44).

Reference information: January 2011, Kauai (USA) [Pastrana et al., 2011].

Conference Ranking: CORE A [Research and Education, 2013].

3. Title: Modeling NIDS Evasion Using Genetic Programming.

Authors: Sergio Pastrana, Agustin Orfila and Arturo Ribagorda.

Conference: World Congress in Computer Science, Computer Engineering

and Applied Computing.

Reference information: July 2010, Las Vegas, USA [Pastrana et al., 2010].

Conference Ranking: CORE C [Research and Education, 2013].

Book chapters

1. Title: Evading IDS and Firewalls as Fundamental Sources of Information in

SIEMS.

Authors: Sergio Pastrana, Jose Montero, Agustin Orfila.

Book: Advances in Security Information Management: perceptions and out-

comes.

Reference information: NOVA Publishers, ISBN 978-1-62417-221-2 (2013)[Pas-

trana et al., 2013].

Submitted papers

1. Title: DEFIDNET : A Framework for Optimal Allocation of Cyberdefenses

In Intrusion Detection Networks.

Authors: Sergio Pastrana, Juan E. Tapiador, Agust́ın Orfila and Pedro Peris-

López.

Journal: Computer Networks (Impact Factor=1.231)

Submission date: May 2014

2.
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7.3.2 Related Publications

Journal papers

1. Title: Evaluation of Classification Algorithms for Intrusion Detection in

MANETs.

Authors: Sergio Pastrana, Aikaterina Mitrokotsa, Agustin Orfila, Pedro Peris-

Lopez.

Journal: Knowledge Based Systems.

Reference information: Volume 36. Pages 217-225. December 2012 [Pas-

trana et al., 2012].

Impact Factor 2012: 4.104.

Journal Ranking: Position 6/115, Artificial Intelligence (Q1).

Conference papers

1. Title: Artificial Immunity-Based Correlation System.

Authors: Guillermo Suarez-Tangil, Esther Palomar, Arturo Ribagorda and

Sergio Pastrana.

Conference: International Conference on Security and Cryptography (SE-

CRYPT).

Reference information: July 2011, Sevilla, Spain [Suarez-Tangil et al., 2011].

Conference Ranking: CORE B [Research and Education, 2013].



Glossary of Terms

AI Artificial Intelligence

APT Advanced Persistent Threat

AS Attack Strategy

B Blocking (attack to communications)

CID Intrusion Detection Capability index

CIDN Collaborative Intrusion Detection Network

DC Data Collection (role)

DDF Distributed Detection Function

DoS Denial of Service

EA Evolutionary Algorithm

ESF Event Sharing Function

F Fabrication (attack to communications)

FC Feature Construction

GP Genetic Programming

HIDS Host based Intrusion Detection System

I Interception (attack to communications)

ICS Industrial Control System

ICT Information and Communication Technology

IDMsg Intrusion Detection Message
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IDN Intrusion Detection Network

IDS Intrusion Detection System

IIDM Input Intrusion Detection Message (channel)

LD Local Detection (role)

LDA Local Detection and Alert sharing (role)

LDF Local Detection Function

LE Local Events (channel)

M Modification (attack to communications)

MANET Mobile Ad-hoc Network

ML Machine Learning

MOO Multi-Objective Optimization

NIDS Network based Intrusion Detection System

NSGA2 Non-dominated Sorting Genetic Algorithm

OIDM Output Intrusion Detection Message (channel)

PC Pure Correlation (role)

PKI Public Key Infrastructure

RA Response Action (channel)

RC Remote Correlation (role)

RCD Remote Correlation and Detection (role)

RF Response Function

SPEA2 Strength Pareto Evolutionary Algorithm v2
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Detailed Description of the Reverse

Engineering Attack Against Anagram

The attack to recover the secret mask is divided into several functions. In order to

limit the execution of the algorithm, it takes as inputs two estimated thresholds: the

number of sets and the maximum random mask length (see Figure 4.2). We next

provide a pseudocode description of the attack divided into 4 algorithms, namely

Algorithm 3, 4, 5 and 6.

As shown in Algorithm 3, the attack starts by initializing the mask with the

value ‘-1’. The value ‘-1’ in the position I means that the algorithm has not yet

obtained the set corresponding to I. The algorithm also initializes an empty list of

the positions that are first delimiters. These two structures are global to all the

processes. At each iteration of the algorithm’s main loop, the function findSet is

called with the starting point Is and the current set Scurrent. This starting point

is the position from which the algorithm will search delimiters of the set starting

in this position (Scurrent). In the first step, the algorithm starts at 0 and obtains

the delimiters of the set 0 of the mask. Once obtained, it will proceed similarly but

starting from a new point (line 9 in Algorithm 3), specifically the next delimiter

whose set has not been processed yet (i.e., a delimiter whose next position in the

mask is still ‘-1’).

The function findSet, shown in Algorithm 4, receives the starting position Is and

the current set Scurrent. This is the core function of the attack. First, it selects a

payload P which is considered “normal” by calling the function anagramTest (lines

4-9 in Algorithm 4). Next, it looks for a “nearly-anomalous” payload P ∗ that is

used in the following steps of the algorithm. It does so by calling the function

getValidPayload, which is shown in Algorithm 6 and explained in Figure 4.3. The
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malicious byte µ is inserted into the 10 positions immediately next to the starting

point of payload P (lines 2-5 in Algorithm 6). If this modification causes the payload

to become anomalous (line 7 in Algorithm 6), then it removes the byte µ backwards,

one position at a time, until the packet becomes normal again. This process will

only work with payloads P that are close enough to become anomalous. As we can

only use 10 positions following the starting point Is (by definition these are the only

positions that belong to the same set with certainty), we need payloads classified

as normal that, with the addition of just a few previously unseen bytes, become

anomalous.

Due to the behavior of the randomized test of Anagram, P ∗ (function findSet

showed in Algorithm 4) will become anomalous only when µ is inserted into chunks

of data that are mapped into the set Scurrent. The key point here is that when µ is

inserted in the region of a set different from Scurrent, the anagramTest will still output

“normal”, as this µ is no longer considered within the bytes of the set S. Therefore,

by sliding the malicious byte through the payload (lines 17-28 in Algorithm 4), as

shown in the Figure 4.4, and looking where the output of anagramTest changes, we

can estimate where the delimiters of the set Scurrent are. Regarding Figure 4.4, in the

steps 1, 2, 3 and 4, anagramTest may output “anomaly” because the malicious byte

is still inserted in the Set 1, whereas steps 5 to 14 may output “normal”. However,

in the step 15, as the malicious byte is inserted again into the Set 1, it may output

again “anomaly”. In order to optimize the process and to avoid unnecessary queries

to Anagram, this step is skipped (line 18 in Algorithm 4) if the position where µ is

going to be inserted has a value different from ‘-1’ in the estimated random mask.

We repeat this process for several payloads and record the delimiters indicated by

each of them, which we call VOTES (line 24 in Algorithm 4). The final step of the

algorithm is to process all votes using the function processVotes (line 31 in Algorithm

4).

The function processVotes, shown in Algorithm 5, processes the votes obtained by

all payloads. We consider that a position is a delimiter of Scurrent if it is supported

by at least half of the votes (line 4 in Algorithm 5). If so, we add this position to

the final list of delimiters of Scurrent: D1, D2, ..., Dd. The algorithm also saves the list

of possible next starting points (FIRST DELIMITERS). Then, the estimated

mask is updated by setting the set Scurrent to the positions between the consecutive

delimiters Da and Db (lines 15-17 of Algorithm 5). Finally, the function obtains and
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returns the next starting delimiter whose set has not been already obtained (lines

22-26 in Algorithm 5). This NEXT Is delimiter will be the next starting point (Is)

for the algorithm (line 5 in Algorithm 3).

Algorithm 3 FindMask

Input: Number of estimated Sets NS and maximum estimated random length
MAX LENGTH
Output: Estimated MASK.

1: MASK = {−1, ...,−1}
2: FIRST POSITIONS = ∅
3: Is ← 0
4: for S = 0→ NS do
5: {NEXT Is} ← findSet (Is, S)
6: if NEXT Is = NULL then
7: return MASK
8: end if
9: Is ← NEXT Is

10: S ← S + 1
11: end for
12: return MASK
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Algorithm 4 findSet

Input: Initial position Is and current set S
Output: Next starting positionsNEXT Is.

1: V ALID = 0
2: V OTES = {0, ..., 0}
3: while V ALID < NUMPAY LOADS do
4: P ← getPayloadFromPool ()
5: OUTPUT ← anagramTest (P )
6: while OUTPUT 6=′ NORMAL′ do
7: P ← getPayloadFromPool ()
8: OUTPUT ← anagramTest (P )
9: end while

10: P ∗ ← getV alidPayload (P, Is)
11: if P ∗ 6= NULL then
12: V ALID ← V ALID + 1
13: POSITION ← lastIndexOf (µ, P ∗) + 1
14: LOOKER← P ∗

15: LOOKER[POSITION ] = µ
16: PREV IOUS ← anagramTest (LOOKER)
17: while POSITION < MASK.LENGTH do
18: if MASK[POSITION ] < 0 then
19: POSITION ← POSITION + 1
20: LOOKER← P ∗

21: LOOKER[POSITION ] = µ
22: OUTPUT ← anagramTest (LOOKER)
23: if OUTPUT 6= PREV IOUS then
24: V OTES[POSITION ]← V OTES[POSITION ] + 1
25: end if
26: end if
27: PREV IOUS ← OUTPUT
28: end while
29: end if
30: end while
31: return processV otes (V OTES, V ALID, S)
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Algorithm 5 processV otes

Input: An array of votes V OTES, the number of valid packets V ALID, the
current set S, the current starting position Is
Output: Next starting delimiterNEXT Is.

1: DELIMITERS ← {Is}
2: END DELIMITER←′ TRUE ′
3: for I = 0→ V OTES.LENGTH do
4: if V OTES[I] >= V ALID/2 then
5: DELIMITERS.add (I)
6: if END DELIMITER then
7: END DELIMITER←′ FALSE ′
8: FIRST DELIMITERS.add (I)
9: else

10: END DELIMITER←′ TRUE ′
11: end if
12: end if
13: end for
14: for I = 0→ DELIMITERS.LENGTH − 1 do
15: for J = DELIMITERS[I]→ DELIMITERS[I + 1] do
16: MASK[J ] = S
17: end for
18: I ← I + 2
19: end for
20: sort (FIRST DELIMITERS)
21: NEXT Is ← FIRST DELIMITER[0]
22: while MASK[NEXT Is + 1] > 0ANDNEXT Is 6= NULL do
23: FIRST DELIMITERS.remove (0)
24: NEXT Is ← FIRST DELIMITER[0]
25: end while
26: return NEXT Is



192 Appendix A

Algorithm 6 getV alidPayload

Input: A payload P and the starting position Is.
Output: A payload P ∗ or “NULL′′.

1: P ∗ ← P
2: for i = Is → Is + 10 do
3: P ∗[i] = µ
4: i← i+ 1
5: end for
6: output← anagramTest (P )
7: if output =′ ANOMALY ′ then
8: for i = Is + 10→ Is do
9: P ∗[i] = P [i]

10: output← anagramTest (P ∗)
11: if output =′ NORMAL′ then
12: return P ∗

13: end if
14: i← i− 1
15: end for
16: end if
17: return NULL


