
USING SECURE COPROCESSORS TO ENFORCE

NETWORK ACCESS POLICIES IN ENTERPRISE

AND AD HOC NETWORKS

by

Haidong Xia

B.S., Peking University, 1995

M.S., University of Pittsburgh, 2000

Submitted to the Graduate Faculty of

the Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12206376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

ARTS AND SCIENCES

This dissertation was presented

by

Haidong Xia

It was defended on

April 7, 2008

and approved by

José Carlos Brustoloni, Department of Computer Science

Rami Melhem, Department of Computer Science

Ahmed Amer, Department of Computer Science

James B. D. Joshi, Department of Information Science & Telecommunications

Dissertation Director: José Carlos Brustoloni, Department of Computer Science

ii

USING SECURE COPROCESSORS TO ENFORCE NETWORK ACCESS

POLICIES IN ENTERPRISE AND AD HOC NETWORKS

Haidong Xia, PhD

University of Pittsburgh, 2008

Nowadays, network security is critically important. Enterprises rely on networks to improve

their business. However, network security breaches may cause them loss of millions of dollars.

Ad hoc networks, which enable computers to communicate wirelessly without the need for

infrastructure support, have been attracting more and more interests. However, they cannot

be deployed effectively due to security concerns.

Studies have shown that the major network security threat is insiders (malicious or

compromised nodes). Enterprises have traditionally employed network security solutions

(e.g., firewalls, intrusion detection systems, anti-virus software) and network access control

technologies (e.g., 802.1x, IPsec/IKE) to protect their networks. However, these approaches

do not prevent malicious or compromised nodes from accessing the network. Many attacks

against ad hoc networks, including routing, forwarding, and leader-election attacks, require

malicious nodes joining the attacked network too.

This dissertation presents a novel solution to protect both enterprise and ad hoc networks

by addressing the above problem. It is a hardware-based solution that protects a network

through the attesting of a node’s configuration before authorizing the node’s access to the

network. Attestation is the unforgeable disclosure of a node’s configuration to another node,

signed by a secure coprocessor known as a Trusted Platform Module (TPM).

This dissertation makes following contributions. First, several techniques at operating

system level (i.e., TCB prelogging, secure association root tripping, and sealing-free attes-

tation confinement) are developed to support attestation and policy enforcement. Second,

iii

two secure attestation protocols at network level (i.e., Bound Keyed Attestation (BKA) and

Batched Bound Keyed Attestation (BBKA)) are designed to overcome the risk of a man-in-

the-middle (MITM) attack. Third, the above techniques are applied in enterprise networks to

different network access control technologies to enhance enterprise network security. Fourth,

AdHocSec, a novel network security solution for ad hoc networks, is proposed and evaluated

. AdHocSec inserts a security layer between the network and data link layer of the network

stack. Several algorithms are designed to facilitate node’s attestation in ad hoc networks,

including distributed attestation (DA), and attested merger (AM) algorithm.

iv

TABLE OF CONTENTS

PREFACE . xi

1.0 INTRODUCTION . 1

2.0 BACKGROUND AND RELATED WORK 8

2.1 TPM SECURE COPROCESSORS . 8

2.2 TPM-BASED SYSTEMS . 11

2.3 ENTERPRISE NETWORK ACCESS CONTROL METHODS 13

2.4 SECURITY IN AD HOC NETWORKS . 15

2.5 CHAPTER SUMMARY . 17

3.0 OPERATING SYSTEM ENHANCEMENTS 19

3.1 PROBLEMS . 19

3.1.1 HOW CAN OPERATING SYSTEMS MAINTAIN CONSISTENCY

BETWEEN ATTESTATION AND ACTUAL CONFIGURATIONS? 19

3.1.2 HOW CAN OPERATING SYSTEMS PREVENT ABUSE OF AT-

TESTATION AND SEALING FOR SOFTWARE LOCK-IN? . . . 20

3.2 SOLUTIONS . 21

3.2.1 MAINTAINING ATTESTATION CONSISTENCY 21

3.2.1.1 TCB PRELOGGING . 22

3.2.1.2 SECURITY ASSOCIATION ROOT TRIPPING 23

3.2.2 SEALING-FREE ATTESTATION CONFINEMENT 24

3.3 IMPLEMENTATION . 24

3.4 EVALUATION . 29

3.5 DISCUSSION . 30

v

3.6 RELATED WORK . 31

3.7 CHAPTER SUMMARY . 32

4.0 ATTESTATION ENHANCEMENTS . 34

4.1 PROBLEMS . 34

4.1.1 HOW CAN ATTESTATION BE PROTECTED FROM MITM AT-

TACKS? . 34

4.1.2 HOW CAN ATTESTATION BE USED WITH REAL WORLD PRO-

TOCOLS WITHOUT INTRODUCING EXCESSIVE LATENCY? . 36

4.2 SOLUTIONS . 36

4.2.1 BKA . 36

4.2.1.1 BKA WITH SECURE CHANNEL 37

4.2.1.2 BKA WITHOUT SECURE CHANNEL 39

4.2.2 BBKA . 42

4.3 IMPLEMENTATION . 45

4.4 RELATED WORK . 45

4.5 CHAPTER SUMMARY . 46

5.0 ENFORCING SECURITY POLICIES IN ENTERPRISE NETWORKS 47

5.1 ACCESS CONTROL PROTOCOLS FOR ENTERPRISE NETWORKS . 47

5.2 INSUFFICIENCY OF EXISTING ACCESS CONTROL PROTOCOLS . . 50

5.3 INTEGRATING PEAP WITH ATTESTATION 51

5.3.1 DESIGN . 51

5.3.2 IMPLEMENTATION . 52

5.4 INTEGRATING IKE WITH ATTESTATION 54

5.4.1 DESIGN . 54

5.4.2 IMPLEMENTATION . 56

5.5 EXPERIMENT RESULT . 57

5.5.1 IMPACT ON 802.1X PERFORMANCE 57

5.5.2 IMPACT ON IKE PERFORMANCE 58

5.6 CHAPTER SUMMARY . 60

6.0 ENFORCING SECURITY POLICIES IN AD HOC NETWORKS . . 62

vi

6.1 EXISTING AD HOC NETWORK PROTOCOLS 62

6.2 INSUFFICIENCY OF EXISTING PROTOCOLS 64

6.3 SOLUTION AND CHALLENGES . 65

6.4 ASSUMPTION . 67

6.5 NOTATION . 68

6.6 PROMISCUOUS UNICAST . 69

6.7 DISTRIBUTED ATTESTATION . 70

6.8 ATTESTED MERGER . 75

6.9 MESSAGE FRAGMENTATION . 77

6.10 ADHOCSEC LAYER . 79

6.11 EVALUATION . 82

6.11.1 SIMULATION . 82

6.11.1.1 ATTESTATION PERFORMANCE EVALUATION 83

6.11.1.2 COMPARING WITH ARIADNE 89

6.11.2 IMPLEMENTATION . 91

6.11.2.1 METHODOLOGY . 94

6.11.2.2 EXPERIMENT RESULTS 95

6.12 PERFORMANCE ANALYSIS . 99

6.12.1 LATENCY FOR GLOBAL KEY AGREEMENT 99

6.12.2 ATTESTED MERGER ANALYSIS 102

6.12.3 BANDWIDTH OVERHEAD . 105

6.12.4 IMPACT OF ADHOCSEC ON HIGHER LEVEL PROTOCOLS

AND APPLICATIONS . 106

6.13 SECURITY ANALYSIS . 106

6.14 CHAPTER SUMMARY . 110

7.0 CONCLUSION . 111

8.0 FUTURE WORK . 114

BIBLIOGRAPHY . 116

vii

LIST OF TABLES

2.1 Dissertation and Related Work Comparison 18

3.1 TPM PCR Usage . 25

3.2 TCB list’s component categories and number of entries 30

5.1 802.1x/PEAP Authentication Latency and Projected Throughput 59

5.2 IKE Authentication Latency and Projected Throughput w/ and w/o BKA . 60

6.1 Nodes’ Speed Ranges and Steady-State Average Speeds 83

6.2 Timers and Time Variables Used in DA and AM 84

6.3 Round trip time (ms) . 97

6.4 Throughput (KB/s) . 97

6.5 DA and AM latency (s) with the number of entry in measurement log is 67

and 1 . 98

6.6 DA and AM message size (bytes) when the number of entry in measurement

log is 67 and 1 . 99

viii

LIST OF FIGURES

1.1 Dissertation organization . 7

2.1 TPM architecture . 9

2.2 TPM chain of trust . 10

4.1 TCG defined attestation and MITM attack 35

4.2 Bound Keyed Attestation (BKA) with secure channel 38

4.3 Bound Keyed Attestation (BKA) without secure channel 40

4.4 Batched Bound Keyed Attestation . 42

5.1 PEAPv2 TLV format . 51

5.2 ISAKMP Header Format. Next Payload indicates the type of the first payload

in the message. Exchange Type indicates the type of exchange being used.

Flags indicates specific options that are set for ISAKMP exchange. 55

5.3 ISAKMP Attestation Payload Format . 55

6.1 Promiscuous Unicast . 70

6.2 Distributed attestation . 72

6.3 AdHocSec layer . 79

6.4 Layout of secure frame . 79

6.5 Layout DA/AM frames . 80

6.6 Distributed attestation and attested merger message format 81

6.7 Attestation Latency for Global Key Agreement 85

6.8 Cumulative Distribution Function of Attestation Latency 85

6.9 Number of messages sent by DA and AM. 86

6.10 Number of bytes sent by DA and AM. 87

ix

6.11 Attestation partition . 87

6.12 Attestation message distribution . 88

6.13 Data packet delivery ratio comparison . 90

6.14 Data packet delivery latency comparison . 91

6.15 Routing packet number comparison . 92

6.16 Routing packet bytes comparison . 92

6.17 AdHocSec implementation in Linux . 93

6.18 Two groups engaged in AM . 102

6.19 Three groups engaged in AM simultaneously with PRIG2 < PRIG1 and

PRIG2 < PRIG3 . 103

6.20 Three groups engaged in AM simultaneously with PRIG1 < PRIG2 < PRIG3 103

x

PREFACE

This dissertation would, not have been possible without the help of many people, including

my advisor, committee members, colleagues, the faculty and staff of my department, and

my family!

First, I am very grateful to my advisor, Prof. José Carlos Brustoloni, for his guidance

and support of my Ph.D. study. Prof. Brustoloni led me into the field that I like very

much and gave me detailed advice about the projects that I have worked on, including my

dissertation work. He is very patient and teaches me everything essential to be a researcher,

which will be invaluable to me for the rest of my life.

Second, I thank my committee members, who have made my work better and stronger.

Each talk with any of them is very informative and fruitful. Prof. Rami Melhem has always

been encouraging me on Ph.D study. Prof. Daniel Mossé has provided not only suggestions

and feedback on my dissertation, but also guidances for my future work and life . Prof.

Amer is very nice and always there to help. Prof. James Joshi has always provided valuable

suggestions quickly, despite his busy schedule.

Third, I would like to thank my colleagues and the faculty and staff of the Computer

Science department. They have helped in many aspects of my Ph.D. study during the several

years I have been at Pitt. The time I have shared with them is memorable. Special thanks

go to Jiang Zhang for her many helpful responses to my dissertation while she has been busy.

Finally, I do not know how to adequately thank my family. This dissertation is my

entire family’s contribution. I thank my parents for their patience, my sisters for their

encouragement, and my beautiful wife, Shihua Ren, for her invaluable support, which has

helped me continue through all the hardships. I also thank my lovely son, Andrew, whose

arrival during the final stage of my dissertation has brought me a lot of happiness.

xi

1.0 INTRODUCTION

The widespread deployment of networks in the world has made network security critically

important, and this urgency has been heightened by the development and spread of new,

fast-growing wireless technology. Attackers are able to strike targets not only remotely, from

outside the targeted network, but also from within it by using compromised or malicious

nodes inside the network. In addition to causing enterprises to suffer significant economic

losses, such attacks have impeded the application of new technologies, specifically ad hoc

networks.

The most common security strategy is to set up a firewall, which establishes a security

perimeter for the network. This approach relies on two assumptions: (1) nodes inside the

perimeter are trustworthy and (2) all attacks originate from outside. However, in reality, the

security perimeter often can be penetrated; thus, its effectiveness is limited. For example,

employees can bring compromised laptops into their offices, viruses or worms can propagate

into the network through email attachments, and spyware [1] can be downloaded into the

network by employees. Once inside the security perimeter, only fragile defenses such as

anti-virus software (AV) and intrusion detection systems (IDSs) are barriers to the attack.

AV depends on virus signatures to detect and remove malicious codes; an IDS may rely on

signatures, or it may be anomaly-based. Signature-based AV and IDS can identify known

attacks precisely, but demand frequent updates and are entirely ineffective against new forms

of attacks. Anomaly-based IDSs can detect new forms of attacks, but they usually generate

an excessive number of false alarms.

To prevent attackers from entering an enterprise network, newly-initiated approaches

such as Microsoft’s NAP (Network Access Protection)) [2] and Cisco’s NAC (Network Ad-

mission Control) [3] verify a node’s configuration to the protected network’s security policies

1

prior to allowing it network access. In NAP, before connecting to an Intranet, a host sends

a list of its software components and configuration to a network-designated server. This list

indicates, for example, what operating system and anti-virus software are installed in the

host, and it details the version, security patches, and virus definitions. If the server deter-

mines that the host’s software is up-to-date and acceptable, it allows the host to connect

to the Intranet. Otherwise, the server confines the host to a restricted network, which only

allows software to be updated and brought into compliance with Intranet policies. NAC ex-

tends this concept to control the connections of access points and other devices in addition

to hosts. The use of such access control functionality by networks and nodes is expected

to become commonplace during the next several years. However, NAP and NAC are weak

against malicious users. The list of a node’s configuration and software components can be

forged or modified easily. In this way, attackers can circumvent NAP and NAC with a node

that can greatly harm the network’s security.

Ad hoc networks [4] can also be targeted by nodes with malicious software, for example in

routing, forwarding, and leader-election attacks. Ad hoc networks enable nodes to commu-

nicate wirelessly without any infrastructure; nodes rely on one another to forward packets to

their destinations. Such networks have important applications in military operations, emer-

gency response, and impromptu meetings, yet their security is even worse than that of wired

networks. They are subject to many security problems, including routing disruption and

nodes’ selfish forwarding. Cryptographic techniques (i.e., the use of symmetric or asymmet-

ric cryptographic algorithms) have been proposed to be appropriate for securing routing in

such networks. However, cryptography has problems in ad hoc networks; it requires efficient

and robust key management and revocation, which can be very difficult for ad hoc networks

to achieve. Node cooperation enforcement systems [5, 6], which help identify ill-behaved

nodes in a network, have been proposed as a defense against selfish nodes, but attackers

may leverage this defense to malign legitimate nodes. Finally, while many secure routing

protocols have been proposed, they may depend on some assumptions which are hard to

achieve or need support from other solutions. Altogether, despite the existence of several

proposed solutions, there is no comprehensive solution for ad hoc networks that can solve

both the problems of security routing and node cooperation enforcement.

2

This dissertation addresses the security problems caused by malicious or compromised

nodes. We realize that many attacks against a network can be prevented by the network

authenticating a node’s configuration, rather than just its user identity, before authorizing its

access to the network. By enforcing required network access policies for all nodes attempting

to access a protected network, we can ensure both that attackers or compromised nodes are

prevented from getting into a protected network and that nodes which initially gain access,

but later violate required network access policies will be excluded from the network.

In this study, we used secure coprocessors–Trusted Platform Modules (TPM) [7]–to help

enforce network security policies for both enterprise and ad hoc networks. TPM is a secure

chip designed by Trusted Computing Group (TCG) [8]. It provides the functionality of attes-

tation, enabling one party to attest the validity of the software and hardware configuration

of another, without the weaknesses of NAP and NAC. It is cost-effective (only $4 a chip),

and it is embedded in many computers, including IBM ThinkPad laptops, IBM NetVisa

workstations, and HP D530 workstations.

The research discussed in this dissertation imposes several challenges on existing oper-

ating systems (OSs) and network protocols. First, general OSs do not support TPM attes-

tation. TCG does not provide specifications for how its TPM-provided interfaces should be

used by the operating system after boot time. Second, most OSs have privileged users (i.e.,

root) with authority to modify the OS or its configuration at any time. Modification of the

OS’s configuration after boot time can violate attestation consistency, and this problem is

not addressed by TCG. Third, TPM’s sealing function can cause lock-in problems, binding

data access to a specific application and platform, and preventing users of other OSs or

applications from accessing the data.

To address these barriers, we enhanced an existing OS for our approach to work. We

developed TCB prelogging (discussed in section 3.2.1.1) and security association root tripping

(discussed in section 3.2.1.2) to establish and maintain attestation consistency, and sealing

free attestation confinement (discussed in section 3.2.2) to prevent lock-in problems.

Challenges to existing network protocols include both the design of a secure attesta-

tion protocol and the integration of attestation in existing network access control protocols.

First, the attestation protocol as specified by TCG is incomplete and is vulnerable to man-

3

in-the-middle (MITM) attacks, if additional precautions are not taken. This risk cannot

be eliminated simply by tunneling attestation packets by using, e.g., transport layer secu-

rity protocol (TLS) [9]. Second, the TPM attestation process is slow (about 0.71 second),

which might affect network performance if a node receives several attestation requests simul-

taneously. Third, applying attestation in enterprise and ad hoc networks require different

techniques.

To address these concerns, we developed a novel form of attestation, called Bound Keyed

Attestation (BKA, discussed in section 4.2.1) and a new attestation method dealing with

multiple attestation requests, called Batched Bound Keyed Attestation (BBKA, discussed

in section 4.2.2). BKA can thwart MITM attacks. BBKA allows a single TPM quote

to be used for multiple attestation requests, which speeds up the attestation process so

that network performance is not degraded. We use different approaches to enforce network

access policies in each type of network. For enterprise networks, we integrate the attestation

protocol with existing network access methods (i.e., 802.1x [10] for wired and wireless access,

IPsec/IKE [11, 12] for remote access–virtual private network (VPN)). For ad hoc networks,

since each node of an ad hoc network is independent and there is no central authentication

server, we apply a distributed attestation algorithm and add a security layer (discussed in

section 6.10) between the network layer and data link layer (DLL) of the network stack. This

approach is transparent to routing protocols and able to detect compromised or malicious

nodes; thus, it provides a framework to potentially solve both secure routing [13, 14] and

the selfish node problem [5, 6] in ad hoc networks.

This dissertation differs from other related work, including NAP and NAC, TNC [15],

and some TPM-related research [16, 17, 18, 19]. First, like NAP and NAC, our approach

enforces client configuration verification to control network access. However, unlike those

approaches, ours does not allow the verification to be forged or modified easily, and therefore

is resilient to malicious users. Second, NAP and NAC only verify a node’s configuration at the

time it requests network access. As a result, they cannot guarantee the node’s configuration

is still valid after the node gains network access. However, our approach can. Third, our

approach is like TCG’s trusted network connection (TNC) protocol [15, 20, 21, 22, 23], which

applies attestation to enterprise network access. However, our approach differs in that (1) it

4

addresses MITM attacks, while TNC’s protocol does not, (2) it supports ad hoc networks,

and (3) it considers the necessary operating system modifications. Fourth, while there are

several other research projects that explore ways to enhance system security by using TPM,

each of these has different focus than ours. NGSCB [16] requires new processor architecture.

Both NGSCB and Terra [17] use virtual machine (VM) monitors, but neither considers in

details how to use attestation to secure network access. TcgLinux [18] considers how to

use attestation to secure access to virtual private networks. However, TcgLinux requires

frequent attestation for detecting and responding to configuration changes. It also exposes

in attestations the execution of unprivileged programs unnecessarily, reducing user privacy.

Enforcer [19] is a Linux based OS that supports TPMs and uses trusted lists signed by

trusted system administrator. It does not support attestation, relying instead on certificates

with special semantics, and has no protection against privileged users. Finally, our research

improves the security of both enterprise and ad hoc networks; none of above-listed research

applies TPM technology to secure ad hoc networks.

In summary, the contributions of this dissertation research are as follows:

• We present a general and robust solution for excluding compromised or malicious nodes

from a network. With the help of secure coprocessors, such nodes can be identified and

excluded from the network.

• We provide several OS enhancement techniques to help enforce security policies on a

network’s participating nodes. These techniques include TCB prelogging, security asso-

ciation root-tripping, and sealing-free attestation.

• We detail a secure and efficient attestation protocol for enterprise networks. This proto-

col, which can thwart MITM attacks, is implemented and integrated with existing access

control technologies.

• We provide AdHocSec, a security layer inserted between the network and data link layer

of the network stack of ad hoc networks to enforce security policies. Several efficient algo-

rithms (i.e., batched bound keyed attestation, distributed attestation, attested merger)

are detailed.

• We describe many simulations and implementations, which can be shared with other

researchers to facilitate their research.

5

This first chapter has provided an introduction to the dissertation research. The rest of

the dissertation is organized as follows (see Figure 1.1). Chapter 2 describes the background

and related work. Chapter 3 discusses the problems in existing operating systems and our

solutions. Chapter 4 discusses the problems with attestations and our solutions. Chapters 5

and 6 address the security problems in enterprise and ad hoc networks, respectively, and

describes how to integrate our solutions described in chapters 3 and 4 to solve these security

problems. Chapter 7 reviews and summarizes the findings of this dissertation, while chapter 8

suggests future research that could extend the work of this dissertation project.

6

Ch. 2 Background and
Related Work

Ch. 1 Introduction

Ch. 3 Operating System
 Enhancements

Ch. 4. Attestation
 Enhancements

Ch. 8 Future Work

Ch. 7 Conclusion

Ch. 5. Enforcing Security Policies

 in Enterprise Networks in Ad Hoc Networks

Ch. 6. Enforcing Security Policies

Figure 1.1: Dissertation organization

7

2.0 BACKGROUND AND RELATED WORK

This chapter provides background information and describes work related to this dissertation.

Since the solutions this dissertation proposes for securing enterprise and ad hoc networks

are based on the use of the TPM secure coprocessor, we first present an overview of the

TPM secure coprocessor (section 2.1) and its related research work (section 2.2). Then, we

discuss related work on the security of enterprise and ad hoc networks in sections 2.3 and

2.4, respectively.

2.1 TPM SECURE COPROCESSORS

TPM is a secure coprocessor designed by TCG [8], an industry organization that aims to

improve the security of computing platforms such as personal computers (PC), personal

digital assistants (PDA), or cellular phones. As shown in Figure 2.1, the structure of TPM

consists of a processor, cryptographic units, and memory units. Some of the memory units

are platform configuration registers (PCR), which can be used to store values such as the

secure hash algorithm (SHA1) [24] hash from a main system. Cryptographic units include

the hash, HMAC digest, and RSA encryption and signature components.

The TPM serves two important functions: authenticated boot and attestation. Authenti-

cation boot enables a computer’s boot sequence to be authenticated from the time it powers

on. TPM implements authenticated boot by building a chain of trust along with the booting

sequence (illustrated in Figure 2.2). The current execution unit measures (i.e., takes SHA-1

hash of) the next unit before transferring control to it. The measurement is recorded in a log,

and the measured results are extended to one of the TPM’s PCRs. Extending data to TPM

8

Figure 2.1: TPM architecture (Figure 3-3 in [25])

is a special way of writing data into TPM. Specifically, once the TPM receives the command

to extend the data to one of its PCRs, it concatenates the current value in the PCR with

the input data, takes the SHA-1 hash of the concatenation, and writes the hash result to

the PCR. Therefore, the value of the PCR at any moment is equal to the compression of all

the components executed since the computer was powered on. For example, before BIOS

loads an OS loader, it measures the OS loader, extends the result into the TPM PCR, and

appends the result into the measurement log. Any modification to code in the boot sequence

results in a different measurement result and, subsequently, a different value in the TPM

PCR. This difference is detected if the boot sequence is being authenticated. Since BIOS

is the first component to start when a computer is turned on, it is the core root of trust

measurement (CRTM). The boot sequence can be authenticated using attestation, another

function provided by TPM.

Attestation is the process of vouching for the accuracy of information. In TPM attes-

tation, a remote party can verify the hardware and software configuration of another party.

The TPM generates private and public attestation identity key (AIK) pairs internally and

get its AIK certificate from a third-party certifying authority. The TPM uses its private

AIK only to sign quotes and never reveals it externally. The TPM attestation takes the

following procedure. First, the remote party (Challenger) sends to the host a nonce, which

is a cryptographic random number that is never reused. The host (Platform Agent) requests

information from the TPM by issuing a quote command to its chip. TPM signs the informa-

9

Figure 2.2: TPM chain of trust (from [26]). The chain of trust is formed as follows. The

CRTM code measures OS Loader (1©) first, then transfers control to OS Loader (2©), OS

loader measures OS (3©) before it transfers control to the OS code (4©). OS code measures

an application (5©) before it executes the application (6©).

tion containing the PCR value and the nonce by using its AIK. The presence of the nonce

in the quote guarantees that the quote cannot be replayed later. The host sends the cor-

responding AIK certificate, the quote and the measurement log to the remote party. Next,

the remote party authenticates the AIK certificate using the certifying authority’s public

key, which it is assumed to be known out-of-band. Then, it uses the nonce and the public

AIK to authenticate the quote. Finally, it uses the quote to authenticate the measurement

log. This way of using TPM for attestation guarantees the information can be verified and

cannot be forged.

Another function provided by the TPM is sealing. Sealing is the process of binding a

message to a set of platform metrics. In sealing, the encrypted message is associated with a

set of PCR register values and a non-migratable asymmetric key. The sealing function occurs

when the data is input and the authentication credential for using a sealing key is provided.

The TPM returns an encrypted object. Thus, the sealed message is bound to a specific

hardware platform and software configuration; it can only be unsealed (released) when the

hardware and software configuration matches that from when it was sealed. Sealing provides

very strong protection for stored data by binding it with both the authentication credential

10

and a specific platform configuration. However, there is debate [27] on the use of TPM, as

well. One of the problems caused by sealing is lock-in problem. An application, e.g. an

editor, may seal to itself content created by the host owner. This can make it impossible for

the host owner to switch to a different application or to access the data using a future host.

2.2 TPM-BASED SYSTEMS

Since its introduction, TPM has generated a great deal of interest among researchers. As a

result, many applications and systems have been proposed. Among them are NGSCB (Next

Generation Secure Computing Base) [16], Terra [17], TcgLinux [18], and Enforcer [19]. These

are discussed below.

NGSCB [16], which was Microsoft’s vision of the next generation operating system, is

based on the TPM secure coprocessor and virtual machine (VM) technology. It consists of

two isolated OS kernels on top of the computer’s hardware. One is the traditional Windows

OS, which supports general Windows applications. The other, called Nexus, has a small

security kernel and manages small trustworthy applications called Nexus computing agents

(NCA). Some drawbacks of NGSCB are that it needs special hardware support (e.g., CPU,

memory) and may enable lock-in problems.

Terra [17] is also based on virtual machine technology. Instead of supporting only two

OSs, as NGSCB does, it supports multiple “open box” and “closed box” virtual machines.

An “open box” can be a general-purpose OS, while a “closed box” can be a specific trusted

application (e.g., a game console, set box, cell phone). A VM is certified by a chain rooted

in hardware and including each software layer’s measurement up to the application. Each

layer measures the higher layer block-by-block to certify it. A remote party can verify the

current trustworthiness of a VM by requiring a special form of attestation (different from

TCG’s). However, Terra does not by itself guarantee this VM’s integrity or confidentiality

after attestation. If a VM hosts a general-purpose OS, techniques such as we propose in

chapter 3 would help secure it.

TcgLinux [18] transforms a Linux box into a trusted client using a TPM-based Linux

11

Security Module. It builds a chain of trust by measuring every component starting from

system boot to the Linux kernel. The Linux kernel then measures each executable, library,

or kernel module loaded into the run-time system before they affect the system. TcgLinux

also requires shells and other executables to be modified to do the same with their security-

sensitive scripts and configuration files. This design makes it harder to verify that all TCB

configuration files are being measured. It also exposes in attestations the execution of un-

privileged programs, reducing user privacy.

Enforcer [19] was developed to secure a web server (Apache) on a Linux system. It clas-

sifies system components according to how frequently they are expected to change. Com-

ponents may be long-term (e.g., the kernel), medium-term (e.g., system applications and

configuration files), or dynamic (e.g., HTML web pages). The TPM and a modified LILO

(LInux LOader) boot loader are used to protect and authenticate long-term components.

One of these is enforcer, a Linux security module, that protects medium-term components.

Enforcer uses a list with the hash value of each medium component. Enforcer verifies that

the actual hash of each component on the list matches that on the list when the component

is loaded. The list is signed by a trusted system administrator. Enforcer can also bind

dynamic components to specific applications. Bound components are stored in an encrypted

loop-back file system. This file system’s keys are sealed by the TPM. Enforcer does not sup-

port attestation, relying instead on certificates with special semantics, and has no protection

against privileged users (e.g., system administrator).

This dissertation differs from these operating system enhancement efforts in both goal

and implementation. The goal of our research is to enhance OS such that networks can

enforce required access policies on their client nodes. Our system does not require new

processor architecture as NGSCB does; it prevents lock-in problem by applying sealing-free

attestation confinement, which is discussed in section 3.2.2. Our system uses TCB prelogging

(discussed in section 3.2.1.1), which does not require the measurement of the entire system

binary as Terra does and exposure of the execution of unprivileged programs as TcgLinux

does. To protect against privileged users, a problem in Enforcer, we have secure association

root tripping, which is discussed in section 3.2.1.2.

12

2.3 ENTERPRISE NETWORK ACCESS CONTROL METHODS

In addition to other approaches to security (e.g., firewalls, IDS, AV software), enterprise

networks often authenticate nodes that attempt access. This section discusses the most com-

mon access control protocols, 802.1x [10] and IPsec’s [11] Internet Key Exchange (IKE) [12],

as well as recently proposed approaches, including NAP [2], NAC [3], TNC [22, 23], and

attestation-based VPN [28].

IEEE 802.1x [10] is a standard, widely supported protocol that can be configured to re-

quire mutual authentication between a node and a local area network (LAN) before the node

is allowed to communicate through the network (beyond authentication). The participants

to this protocol are the supplicant, i.e. the node that requests access, the authenticator, e.g.

a switch or access point that mediates the supplicant’s access to the network, and the authen-

tication server, e.g. a RADIUS server that authenticates and authorizes the supplicant’s ac-

cess. A variety of authentication protocols can be used over 802.1x, including PEAPv2 [29].

PEAPv2 begins by creating a TLS tunnel between authentication server and supplicant,

with certificate-based authentication of the former by the latter. The server then typically

uses MS-CHAPv2 for password-based supplicant authentication. Finally, PEAPv2 binds the

TLS and MS-CHAPv2 keys to guarantee that the respective endpoints are the same. 802.1x

also enables the creation of a security association between authenticator and supplicant,

with cryptographic keys for encrypting and authenticating packets sent between them. On

Ethernet, such packet-level cryptography is being standardized by IEEE 802.1ae [30]; on

Wi-Fi [31], packet-level cryptography is enabled by IEEE 802.11i [32].

IPsec [11] is the leading approach for VPN access in enterprise networks. IPsec’s IKE

provides peer authentication and session key generation. Like PEAP, IKE works in two

phases. In phase 1, the communicating parties authenticate each other and establish an IKE

security association (SA). The IKE SA is bidirectional and determines what cryptographic

algorithms and keys the parties will use to communicate during phase 2. In phase 2, parties

use the IKE SA to negotiate one or more AH (Authentication Header) or ESP (Encapsulating

Security Payload) security associations between them. AH and ESP SAs are unidirectional.

AH provides packet authentication, while ESP can provide packet authentication and/or

13

encryption. Phase 2 negotiations determine the cryptographic algorithms and keys used in

each AH and ESP SA. Both 802.1x and IKE authenticate a client’s identity only. They do

not determine whether the client computers are compromised or configured well.

To overcome this weakness of 802.1x and IKE, the newly-initiated approaches NAP

and NAC authenticate a client node’s configuration when it tries to access a protected

network. NAP is proposed by Microsoft as the access control platform for “Longhorn”,

the next version of the Windows server operating system. It provides policy enforcement

components that help ensure that computers connecting to a network meet administrator-

defined requirements. In the NAP platform, when a computer or NAP client connects to

a network, it has to present its state of health (SoH) to network access servers (NAS). A

NAS validates the client’s state. If it conforms to the network’s policy, the client is granted

access. Otherwise, the client is isolated and directed to a restricted network. SoH includes

information about the client’s operating system, the anti-virus program’s signature, and

software versions. However, a malicious or infected client can forge the SoH. NAP verifies

but do not authenticate SoHs.

NAC is similar to NAP. At the endpoint system, a Cisco trust agent is installed to collect

security state information from security software solutions, such as anti-virus programs. The

network access devices (e.g., switches, access points) are modified to enforce and demand

host security information. When an endpoint system connects to the network, the trust

agent sends the collected information to network access devices, which relay this information

to policy servers for evaluation. Only endpoint computers with an approved configuration

are allowed to connect. However, NAC has the same vulnerability as NAP. It does not

authenticate the configuration information.

Recently, TCG has published TNC (Trusted Network Connection) specifications [15, 20,

21, 22, 23] to strengthen network security by checking the integrity and identity of access

nodes before they are allowed to join a protected network. TNC defines both the com-

ponents needed for platform authentication, such as Integrity Measurement Collectors and

Integrity Measurement Verifiers, and communication interfaces among these components. It

also provides guidelines for leveraging the TNC architecture with the existing network access

technologies. However, TCG specifications are incomplete. TCG does not specify operat-

14

ing system modification that are necessary to ensure that attestations are consistent with

current configuration. TCG also does not specify precautions that are necessary to protect

attestation from MITM attacks, as discussed in section 4.1.1. Also, TNC addresses platform

authentication only in conventional corporate networks. Ad hoc networks are outside TNC’s

scope.

Sailer et al. propose attestation-based policy enforcement for VPN access [28]. Like

the VPN approach used in this dissertation research for enterprise networks, their approach

applies TPM attestation. However, that solution has several shortcomings. First, TCG-

specified attestation is vulnerable to MITM attacks, as shown in Section 4.1.1. Second,

tcgLinux, used in [28], would be vulnerable to MITM attacks even if our designed attestation

protocol BKA (discussed in section 4.2.1) were used, because it does not prevent privileged

users from reading secret keys and other parameters of VPN tunnels. In contrast, security

association root tripping (discussed in section 3.2.1.2) would close the VPN tunnels before

such reading would be possible. Third, the VPN gateway has to verify fresh attestations

of each client frequently. If attestation frequency is low, users may be able to connect an

insecure node to the VPN long enough to cause harm. In contrast, security association

root tripping (discussed in section 3.2.1.2) achieves security with a single attestation at the

beginning of each client’s session.

2.4 SECURITY IN AD HOC NETWORKS

Security is a primary concern in ad hoc networks. Therefore, many security solutions have

been proposed to improve the situation. Recommendations include how to secure the routing

protocols and how to enforce the nodes’ cooperation in the network.

Research in secure routing protocols for ad hoc networks includes SEAD [14], Ari-

adne [13], SAODV [33], SRP [34], and ARAN [35]. These protocols aim to improve the

security of earlier ad hoc routing protocols such as DSDV [36], DSR [37], and AODV [38].

SEAD enhances the security of DSDV by using a one-way hash chain to protect the sequence

number and hop count in routing messages. This approach ensures that the malicious in-

15

crementing of the sequence number or decrementing of the hop count will be detected.

Ariadne improves the security of the DSR protocol. It uses a source-destination secret key

to authenticate routing messages and the TESLA [39] broadcast authentication protocol to

authenticate intermediate nodes. TESLA requires node clock synchronization, which may be

hard to achieve in an ad hoc environment. SAODV uses certificates to enhance the security

of AODV by attaching signature extensions to routing messages with the goal of protect-

ing important information (e.g. hop count, sequence number) in routing messages. SRP

prevents attacks that disrupt DSR’s route discovery process by using a source-destination

shared secret to authenticate the routing discovery messages. Intermediate nodes maintain

route request frequency counters in their routing tables to defend against the potential of

overwhelming route requests from malicious nodes. ARAN is designed to secure on-demand

distance vector routing protocols. It requires each node to have a certificate. Routing mes-

sages are verified by each node on the path checking the signature of the preceding node.

Using public keys for message encryption and authentication makes ARAN’s CPU overhead

large.

One of the potential problems these secure routing protocols have in common is the

difficulty of key management. Nearly all of them assume a priori trust or secret associations

between nodes. Depending on a priori trust and pre-established secret associations makes it

hard for nodes to join a network dynamically. For example, SRP and Ariadne both assume

that pairs share secret keys for message authentication, while Ariadne and SEAD assume

that each node can distribute its hash keys to the network. ARAN and SAODV depend

on the use of certificates and public keys. ARAN also assumes the existence of a centrally-

trusted certificate server, which is a particular challenge in a mobile ad hoc environment.

Another common problem in these secure routing protocols is that they address only the

security of routing messages and do not prevent node forwarding misbehavior.

Techniques for nodes’ cooperation enforcement fall into three categories: (1) reputation-

based mechanisms, (2) currency-based mechanisms, and (3) token-based mechanisms. Repu-

tation-based mechanisms, such as CONFIDANT [5, 40] and CORE [6], require monitoring

neighboring nodes’ behavior. Monitored events are fed into the reputation system so that

misbehaving nodes can be identified. A major problem with reputation-based mechanisms

16

is that an attacker may be able to malign and exclude legitimate nodes from the network.

These systems may also be vulnerable to sybil attacks [41], where a node impersonates other

nodes.

Currency-based mechanisms, such as Nuglets [42], use virtual currency to stimulate

nodes’ forwarding cooperation. A node needs to pay currency to intermediate nodes in order

to transmit a packet to its destination. To earn enough currency for its packet transmission,

the node needs to participate in packet forwarding. Currency-based mechanisms require

tamper-resistant hardware that is not available commercially. They can also be problematic

for nodes that require more service than they provide.

Token-based mechanisms [43] require each node to have a token in order to participate

in network operations. Once a node’s token expires, the node needs to renew the token with

its neighboring nodes. Neighboring nodes, which have been collaboratively monitoring the

behavior of the node, decide whether to issue a new token to the node based on its past

behavior. However, it is a problem for a node to renew its token if the node moves quickly

since the node’s new neighbors do not know the node’s past behavior.

It is noteworthy that previous solutions solve only particular problems in certain proto-

cols. No general solution for securing ad hoc networks have been proposed.

This dissertation describes the use of secure coprocessors to enforce access policies in ad

hoc networks. We add a secure layer between the network and data link layers of the network

protocol stack. This secure layer is transparent, without modifying the routing protocols.

We enforce network access policies on each participating node by using TPM attestation.

This attestation ensures that only nodes with expected configurations are allowed into the

network. Our solution also enforces node cooperation, since nodes with selfish configurations

cannot join the network.

2.5 CHAPTER SUMMARY

In summary, this chapter provides background information about this dissertation and its

related work. Since this dissertation presents solutions based on TPM secure coprocessors

17

to protect both enterprise and ad hoc networks, we discuss TPM and related work, as

well as some additional security approaches to enterprise and ad hoc networks, respectively.

Table 2.1 lists the relationships between the discussed work and this dissertation.

Table 2.1: Dissertation and Related Work Comparison

Area Related work Dissertation
TPM-based systems NGSCB, TcgLinux, Enforcer, Terra OS enhancement

Enterprise network
802.1x, IPsec/IKE

BKA integration
NAP, NAC, TNC

Ad hoc network

Secure routing protocols

AdHocSec
ARAN, Ariadne, SAODV, SRP, SEAD
Node cooperation enforcement
CONFIDANT, Nuglets, etc.

As we discussed earlier, many TPM-based operating system enhancement efforts, includ-

ing NGSCB, TcgLinux, Enforcer, and Terra, have been proposed. However, this dissertation

differs from them in both goal and implementation.

Traditional security approaches on enterprise networks, such as firewalls, IDS, and AV

software, cannot effectively defend against insider attacks. Existing access control technolo-

gies authenticate only users identities. They do not authenticate node configuration. Newer

approaches, such as NAP and NAC, verify but do not authenticate node configuration. TNC

specifies how to use attestation for such authentication, but does not specify all the necessary

operating system modifications. Furthermore, NAP, NAC, and TNC do not support ad hoc

networks.

Most approaches to secure ad hoc networks only seek to address a specific problem. For

example, secure routing protocols only secure routing messages, even only specific routing

protocols. The node cooperation problem is also addressed by many approaches. However,

these two problems actually have the same cause–malicious or compromised nodes. This

dissertation provides a solution that is able to solve both of the problems by defending ad

hoc networks against attacks from malicious or compromised nodes. Thus, it is able not only

to secure routing protocols, but also to help enforce nodes’ cooperation in ad hoc networks.

18

3.0 OPERATING SYSTEM ENHANCEMENTS

The goal of this dissertation is to improve network security by preventing malicious or

compromised nodes from accessing a protected network. Authentication of the nodes is based

on attestation enabled by TPM secure coprocessors. During and after attestation, security

policies need to be enforced such that only authenticated nodes can stay in a protected

network.

This chapter discusses operating system problems involved in such enforcement (sec-

tion 3.1), and our proposed solutions (section 3.2). Sections 3.3 and 3.4 discuss the imple-

mentation and evaluation respectively. Section 3.5 discusses the limitation and other issues

of our solutions. Related work is discussed in section 3.6. Section 3.7 summarizes this

chapter.

3.1 PROBLEMS

Existing operating systems lack features that would be required to support TPM attestations

and security policy enforcement. We identify two problems that need to be solved in existing

operating systems.

3.1.1 HOW CAN OPERATING SYSTEMS MAINTAIN CONSISTENCY BE-

TWEEN ATTESTATION AND ACTUAL CONFIGURATIONS?

TCG has defined the TPM software stack (TSS) [44]. This specification provides basic

interfaces for application developers. However, it does not include many necessary details.

19

Attestation is based on a chain of trust. TCG defines this chain of trust only up to the

point the operating system loads, as shown in Figure 2.2. TCG does not specify what the

OS needs to do to maintain attestation consistency after boot time.

To support attestation, the operating system needs to measure the integrity of the trusted

computing base (TCB) and record results in the measurement log and TPM’s PCR. A sys-

tem’s TCB is the set of components whose malfunction (due to a bug or attack) would

allow the system’s policies to be compromised. TCB includes, typically, the BIOS (basic

input/output system), MBR (master boot record), OS loader, OS kernel, loadable kernel

modules, configuration files, and root-owned automatic scripts (boot time or scheduled for

later). The TCB also includes any privileged applications, including daemons and interactive

commands that are used by root-owned automatic scripts or are set with privileged effective

user even if used by unprivileged real users (e.g., Unix setuid commands). In contrast, un-

privileged applications are not part of the TCB, and can be created, configured, modified,

or destroyed without compromising the system’s ability to enforce policies.

After the operating system kernel gains control of the system, the TCB may change as

a result of loading modules into the kernel, or executing privileged user-level code, such as

daemons or interactive commands. The operating system must ensure that these changes

are recorded in the measurement log and TPM’s PCR, so that attestations remain consistent

with the actual configuration of the system.

Therefore, solutions are needed for preserving attestation consistency in operating sys-

tems.

3.1.2 HOW CAN OPERATING SYSTEMS PREVENT ABUSE OF ATTES-

TATION AND SEALING FOR SOFTWARE LOCK-IN?

Software lock-in occurs when a user creates a file with some software and subsequently cannot

open the file with another software.

TPM’s sealing function could enable software lock-in. An application can store a file

encrypted with a sealed key that the operating system makes available only to that applica-

tion, and that the TPM makes available to the operating system only if the computer’s TCB

20

is the same as at the time of storage. The operating system denies the file’s key to other

applications. If the user tries to reconfigure or replace the operating system to circumvent

this protection, the TPM will not reveal the file’s key.

Alternately, an application can use the TPM attestation function for the same purpose.

The application stores file keys in a remote server. The server reveals such keys to a com-

puter’s operating system only if attestation shows that the computer’s TCB is one that the

server trusts, and the computer’s operating system vouches to provide the keys only to the

original application.

Software lock-in can benefit well-established software publishers since they can prevent

their customers from switching to other software. It can also harm users because it can

impede interoperation, competition, and make users unable to access their own data in

other computers or using other applications [45]. In the case of archival data, e.g., such

access can be necessary when the computer and application originally used become obsolete.

3.2 SOLUTIONS

This section presents our solutions to overcome the above discussed problems.

3.2.1 MAINTAINING ATTESTATION CONSISTENCY

Our approach for ensuring that a system’s attestation remains consistent with the system’s

actual configuration is based on the observation that privileged users (e.g., root) usually do

not need to log interactively into a system. In fact, enterprise users typically are unprivileged.

System administrators usually are the only privileged enterprise users, and typically log

interactively into a system only if the system has a problem that may require configuration

change.

It is therefore useful to analyze a system’s TCB as follows:

1. If no privileged user has logged interactively into a system since the latter booted, the

maximum set of kernel modules that may have been loaded and privileged user-level

21

code that may have been executed is defined by the system’s files at the time the system

boots.

2. If a privileged user has logged interactively into the system since the latter booted,

arbitrary configuration changes may have happened. Privileged users usually have the

authority to modify the OS or its configuration interactively and arbitrarily. For example,

in Unix, a root user can use “ifconfig” to modify network configuration or “sysctl” to

change in-kernel variables, thus changing the system’s configuration. These modifications

may not be defined by any files present in the system at boot time, and therefore may be

unpredictable. The operating system needs to catch them dynamically after boot time.

This analysis suggests the following solutions for maintaining attestation consistency:

TCB prelogging and security association root tripping.

3.2.1.1 TCB PRELOGGING TCB prelogging calls for each system to maintain a

configuration file, called TCB list, that maintains entries for the system’s TCB components

(e.g., privileged applications and shared libraries they use, loadable kernel modules, configu-

ration files, device files, and system log files) and their respective digests (i.e., SHA1 hashes)

and attributes (e.g., owner, group, permission bits). A flag in each entry of the TCB list

indicates what information needs to be verified for each component.

At boot time, after the kernel mounts the file systems and before it starts the first

user-level application (i.e., /sbin/init), the kernel:

1. Measures the TCB list file, extends the result in the TPM PCR, and appends the result

to the measurement log. Therefore, from the moment the system boots, attestations

reveal the system’s entire TCB, including components that may not yet have executed.

2. Reads each entry in the TCB list and constructs in-memory hash tables that contain

these entries. The kernel uses these in-memory hash tables for verifying each component

in the TCB list when the component is accessed later.

Thereafter, whenever a file that is in the TCB list or is a root-owned script, daemon, or

root setuid application is opened or executed, the kernel verifies that the file actually has the

attributes and/or digest specified in the TCB list. If there is a discrepancy, the kernel: (1)

22

closes any security associations established with previous attestations, and (2) compresses

the file’s digest into the TPM and appends the new measurement to the log. Reestablishment

of closed security associations will require new attestations. The new attestation will show

the system’s actual TCB, including components not on the TCB list.

3.2.1.2 SECURITY ASSOCIATION ROOT TRIPPING Unless the system has a

bug, unprivileged users cannot cause the OS kernel, daemons, or setuid applications to com-

promise the system’s policy enforcement. However, privileged users (e.g., root) can modify

system configuration so as to violate system policy enforcement. For example, privileged

users can use commands such as sysctl or ifconfig, or use a debugger for attaching and modi-

fying privileged processes after boot time. Moreover, privileged users typically can read any

information in the system. Although such reading does not modify the configuration, it may

reveal secrets (e.g., security association keys) that enable violating security policies. It can

be difficult or impossible to guarantee that all such modifications and accesses are captured

by the system’s measurement log and extended into the TPM.

To avoid attacks by privileged users, we modify the OS so that it detects when a privileged

user attempts to gain interactive access to the system (e.g., by logging in or using the su

command). If there are security associations established with previous attestations, the

system warns the user that, if the user wishes to continue, the system will immediately drop

those associations. In the case of secure Intranet access, this means that the system will

destroy the keys needed for packet-level authentication and encryption, thus making access

impossible. Then, if the user does continue, the system drops security associations, adds

this event to the measurement log with a well-known digest, and extends the digest into

the TPM. Therefore, subsequent attestations will show that a privileged user has logged in

interactively since the system started. Network administrators can configure authentication

servers to deny access to such systems. Such a system would then need to reboot before

regaining access to the network. Rebooting erases the measurement log, as well as any non-

persistent configuration changes. Persistent changes are captured by the new measurement

log after reboot. These mechanisms do not preclude remote system administration or help,

as long as these use daemons that the network’s authentication server is configured to trust.

23

3.2.2 SEALING-FREE ATTESTATION CONFINEMENT

Our approach for preventing abuse of attestation and sealing for software lock-in is based on

the following observations:

1. Network access protocols, such as 802.1x and IPsec’s IKE, typically are implemented by

trusted OS components, and cannot go through firewalls.

2. Network access protocols also typically do not require sealing.

These observations suggest the following solution: (1) the OS supports authenticated

boot and attestation, but not sealing, and (2) the OS uses attestation only in conjunction

with network access control protocols and does not export to other applications an interface

for attestation. Thus confining attestation is advantageous because abusive applications

cannot attempt to store file encryption keys in remote servers. If attestations were accessible

to such applications, the remote servers could reveal the keys only to those applications,

locking the user in. Since such applications cannot use attestation or sealing, lock-in is not

possible.

3.3 IMPLEMENTATION

We implemented the OS solutions described in section 3.2 in FreeBSD 4.8. We first ported

IBM’s TPM driver for Linux [46] to the FreeBSD kernel and set the TPM device to be

accessible only by privileged users. To build the chain of trust for attestation, we used a

version of the GRUB [47] boot loader that was modified by IBM. GRUB includes the MBR

and an OS loader. The modified MBR measures the modified OS loader and extends the

result into the TPM PCR 8. Likewise, the modified OS loader measures the OS kernel and

extends the result into the TPM PCR 9. The OS kernel uses TPM PCR 10 when it extends

any measurement result to the TPM. The usage of TPM PCRs is outlined in Table 3.1.

We implemented the measurement log using syslogd, a daemon that runs in the back-

ground, collecting and storing log information from the kernel and user-level processes.

Syslogd collects log information from the kernel by reading a special character device file

24

Table 3.1: TPM PCR Usage. There is a total of 16 PCRs. Usage of PCRs 0-7 is specified by

the TCG PC client specific implementation specification [48]. We do not use PCRs 11-15.

PCR Index Usage
0 CRTM, BIOS, and Host Platform Extensions
1 Host Platform Configuration
2 Option ROM Code
3 Option ROM Configuration and Data
4 IPL (Initial Program Loader) Code (usually the MBR)
5 IPL Code Configuration and Data (for use by the IPL Code)
6 State Transition and Wake Events
7 Host Platform Manufacturer Control
8 OS loader and its configuration data
9 OS kernel
10 Measurements by OS kernel

/dev/klog, which provides an interface to an in-kernel log buffer. The kernel writes to the

log buffer when it needs to log some information. We configured syslogd’s configuration file

/etc/syslog.conf so that syslogd logs the measurements in file /var/log/tcpahash.log. When

the kernel measures a file and the result has not yet been recorded in the TPM and measure-

ment log, the kernel first extends the result to the TPM, and then writes the file’s path name

and measurement to the log buffer. Syslogd reads /dev/klog to retrieve this information and

stores it in /var/log/tcpahash.log. When attestation is requested by a remote party, an

operating system daemon sends that party the content of /var/log/tcpahash.log along with

the TPM’s quote and AIK certificate (note that only privileged applications (part of the

TCB) can read the /var/log/tcpahash.log file and obtain a TPM quote for generating an

attestation reply).

In principle, the TCB list can be manually created using any text editor. However, to

facilitate its creation, we built an instrumented FreeBSD kernel. This instrumented kernel

collects into the log file, at boot and run time, the absolute path name and category of the

following files: (1) executable files with privileged effective user identity, (2) shared libraries

linked to the above applications, (3) any files opened by the above applications (includ-

ing device files), and (4) loaded kernel modules. Information about these files is collected,

25

respectively, by modified exec(), mmap(), open(), and kldload() system calls. The instru-

mented kernel is booted and subjected to a workload that requires all trusted components

to be accessed. The resulting log file is then manually edited to file tcbpol.txt. Files may be

added to categories 1, 2, and 4. Flags are set for checking the file attributes and secure hash

of files in these categories at boot and run time. Files may be added or deleted for category

3. Some files in this category (e.g., system configuration files) have flags set for checking

both file attributes and secure hash at boot and run time. Other files in this category (e.g,

device files or system log files) have flags set for checking only file attributes at boot and run

time. File attributes checked may include file owner, group, and permission bits.

Another program, “tcbsetup”, processes tcbpol.txt and generates file tcb.pol. For each

file in tcbpol.txt, tcb.pol contains an entry with the respective absolute path name, flags of

file information to be checked, and value of this information.

The tcb.pol file is the TCB list that will be read by the kernel at boot time before the

first user-level application in a system is started. The information in the file is used by the

kernel to verify the attributes of each component when it is accessed.

To implement TCB prelogging, as discussed in section 3.2.1.1, we modified the FreeBSD

kernel as follows. After mounting the root partition and before starting the first user-level

process (i.e., /sbin/init), the kernel:

1. Reads the TCB list file (tcb.pol) from the hard drive, measures its digest, extends the

digest into the TPM PCR 10, and appends the result in the measurement log (note that

the TCB list is stored in the root partition and can be accessed only after mounting the

latter).

2. Reads in memory each record from the TCB list file.

3. Creates in kernel a hash table (TCBEXEC) with 512 slots for binary executables (i.e.,

privileged applications, shared libraries used by privileged applications, kernel modules).

This hash table is keyed by the digest, or device and inode numbers of each binary

executable. Each entry in the hash table includes (from tcb.pol) an executable’s absolute

path name, owner, group, permission bits, digest, and (initialized to 0) time of last

modification, device number, and inode number. This TCBEXEC hash table stores

information about executables in the TCB list. It enables quick lookup of an executable

26

based on the executable’s digest or its device and inode numbers.

4. Creates in kernel another hash table (TCBNONEXEC) with 512 slots for non-executables

(e.g., configuration files, or device files). This hash table is keyed by the absolute path

name of each non-executable. Each entry in the hash table includes (from tcb.pol) the

non-executable’s absolute path name, owner, group, permission bits, and (initialized

to 0) time of last modification and digest (special files, e.g., device files, are assigned

an empty digest value.) This hash table stores the information about non-executable

components in the TCB list. It enables quick lookup of a non-executable file based on

the file’s absolute path name.

The kernel’s exec() system call is modified such that when an executable is invoked by a

privileged effective user, the kernel checks the executable’s integrity by searching TCBEXEC

with the executable’s device and inode numbers. (1) If the kernel does not find the executable

by device and inode numbers, the kernel measures the digest of the executable, and searches

TCBEXEC again with the digest. If the kernel does not find the executable by digest, or the

entry found has file attributes different from the executable’s, the executable is not trusted.

We say that the kernel then trips security associations: (a) extends the measured digest

in TPM, (b) appends the executable’s name and digest in the measurement log, and (c)

closes any security associations established with previous attestations. The kernel also puts

in TCBEXEC the executable’s device and inode numbers and modification time. Otherwise

(the kernel found entry in TCBEXEC with matching digest and file attributes), the kernel

writes in the entry the executable’s device and inode numbers and modification time. (2)

If the kernel finds the executable’s entry by device and inode numbers, the kernel compares

the executable’s and the entry’s modification time. If they differ, the kernel measures the

executable’s digest and processes it as above, using the digest to search the executable’s entry

in TCBEXEC. Otherwise (the modification time matches), the kernel simply proceeds. The

kernel uses the modification time to measure an executable at most once, when it is first

accessed, provided that the executable is not modified.

The kernel’s mmap() system call and elf load file() are modified the same as exec() system

call to check the integrity of shared libraries and the ELF loader, respectively. Kldload()

system call is also modified for kernel module loading. Actually, a subroutine, measure file(),

27

is implemented to do the function as described above. We only need to insert measure file()

in exec(), mmap(), elf load file(), and kldload().

The kernel’s open() system call is modified such that when a file in the TCB list is

opened, the kernel checks the file’s integrity. After resolving the file’s path name, the kernel

searches TCBNOEXEC with the file’s name. If the kernel does not find the file’s entry in

TCBNOEXEC (meaning the file is not part of the TCB list), it simple proceeds. If the kernel

finds an entry, the kernel checks the flag in the entry to determine whether to check the file’s

attributes and/or digest. If the flag indicates so, the kernel compares the entry’s and the

file’s attributes. If the flag requests comparison of the digest, the kernel compares the file’s

and the entry’s modification time. If they differ (e.g., on the file’s first access), the kernel

measures the file’s digest, writes the file’s modification time in the entry, and considers that

there is a discrepancy; otherwise, the kernel considers that digests match. If the kernel found

an attribute or digest discrepancy, the kernel trips security associations and stores the file’s

attributes and digest into the entry. (Since the digest of a device file cannot be measured,

the kernel can use a predefined digest value for the purpose of recording it in the TPM and

the measurement log.)

To support security association root tripping, as discussed in section 3.2.1.2, we defined

new kernel variables: attested and rootlogin. Attested indicates whether there are security

associations established with earlier attestations. Rootlogin records whether root has logged

interactively into the system since the system booted.

We modified two important applications, su and login, such that, when root attempts

to log into the system, if attested is true, the application warns the user that security as-

sociations will be dropped. If the user continues, the application performs a system call

that: (1) changes rootlogin to true, (2) extends a predefined dummy value to the TPM and

measurement log, and (3) closes security associations established with previous attestations.

To close security associations established with previous attestations, the kernel sends a

non-fatal signal (e.g., SIGHUP) to the daemons that established them (e.g., xsupplicant for

802.1x, racoon for IPsec’s IKE). These daemons are modified to respond to the signal (by

defining the signal handler using sigaction()), so as to destroy the security associations with

remote parties and the keys used for the communication, and notify the kernel by making

28

a system call after they are finished. In the case of IPsec’s IKE, racoon first sends to the

kernel the SADB FLUSH message through the PF KEY socket interface [49], causing the

kernel to delete all entries in its key table for IPsec. Racoon then deletes the IKE security

associations and notifies the kernel. In the case of 802.1x, xsupplicant sends the access

point a EAP-logoff message [10] (forcing the access point to transition the client’s port to

an unauthorized state), resets the secret key shared between the client and the access point,

and notifies the kernel. In order to send such signal to these daemons, the kernel needs to

know these daemons’ process identities. The kernel records them when these daemons set

the in-kernel variable attested after security associations are established.

3.4 EVALUATION

We evaluated our enhancements on an IBM ThinkPad T30 computer with 1.8 GHz Pentium

4 CPU, 256 MB RAM, TPM version 1.1b, TPM-aware BIOS, and built-in 802.11b interface.

We report the average and standard deviation (σ) of six instances of each measurement.

The master boot record and GRUB boot loader were modified for measuring digests and

compressing them into the TPM, as specified by TCG.

We first used the instrumented kernel to collect components that should be included in

the TCB list for a representative configuration. The result is listed in Table 3.2. Each entry

in the TCB list is a record including the component’s absolute path name, verification flags,

attributes, and digest. With each entry taking 1,052 bytes, the size of the TCB list for this

configuration is 275,624 bytes (uncompressed).

We then installed the enhanced OS on the evaluation platform. We measured a total boot

time of 18.05 s (σ = 0.18) before and 18.49 s (σ = 0.04) after our modifications. Although

TCB prelogging and file digest measurements do impose overheads, they are dominated by

other boot costs. During system operation, each digest file measurement is cached and is not

repeated as long as the file is not modified. Because TCB components change infrequently,

file digest measurements can be expected to have little impact on steady-state performance.

Security association root-tripping affects only certain commands (i.e., login and su) and

29

Table 3.2: TCB list’s component categories and number of entries for a representative con-

figuration. Verification flags are denoted: ‘D’ for digest, ‘O’ for owner, ‘G’ for group, and

‘P’ for permission bits.

Category Number of entries Examples Verification flags
Privileged applications 114 /usr/sbin/syslogd DOGP
Shared libraries 27 /usr/lib/libc.so.4 DOGP
Kernel modules 2 /modules/ipfw.ko DOGP
Scripts 14 /etc/rc DOGP
Configuration files 85 /etc/rc.conf DOGP
Device files 18 /dev/tpm OGP
Log files 22 /var/log/cron OGP
Total 262

only when used by privileged users. We measured the extra time that a privileged user

has to wait to interactively log in a system if security associations were established with

previous attestations. For IPsec, the extra time is 1.018 s (σ = 0.001). For 802.1x, the extra

time is 9.48 ms (σ = 0.54). Tripping IPsec security associations takes longer than 802.1x

associations. However, the overhead is acceptable in both cases.

To evaluate the impact of our kernel modifications to exec(), mmap(), elf load file(),

kld load(), and open(), we measured the time needed for compiling the kernel without and

with the modifications. The compilation time is 384.25 s (σ = 1.41) or 388.15 s (σ = 0.48),

respectively. Our modifications add only 3.90 seconds (about 1%) to the kernel compilation

time.

3.5 DISCUSSION

TCB prelogging does not necessarily log TCB components in the actual sequence in which

they are accessed. The access order between TCB components may in some cases be relevant

to security. Our scheme guarantees the order of execution of the chain BIOS→MBR→OS

loader→OS kernel. Thereafter, if two TCB components need to be accessed in a particular

30

order to guarantee a certain configuration (e.g., Linux security module (LSM) [50] installa-

tion), such accesses need to be established by a script or configuration file that is itself part

of the TCB.

3.6 RELATED WORK

There are several approaches to verify a node’s configuration. Our TCB lists are similar to

what Tripwire uses to verify host integrity [51]. However, unlike Tripwire, we enable the

host’s integrity to be verified remotely.

TcgLinux [18] is Linux-based OS with TPM support. Because tcgLinux does not have

a TCB list, it logs and compresses into the TPM digests of all files that are executed, and

requires shells and other programs to be modified to do the same with their security-sensitive

scripts and configuration files. This design makes it harder to verify that all TCB configu-

ration files are being measured. It also unnecessarily exposes in attestations the execution

of unprivileged programs, reducing user privacy. Moreover, since the system’s configuration

changes dynamically whenever a file is executed, a remote server in a network needs to verify

fresh attestations of each client frequently to maintain attestation consistency. If attestation

frequency is low, users may be able to connect an insecure node to the network long enough

to cause harm. In contrast, our solutions do not expose unprivileged programs in attesta-

tion (TCB prelogging) and can maintain attestation consistency without requiring frequent

attestation (security association root-tripping). TcgLinux has mechanisms to prevent priv-

ileged users from making system modifications that might not be detected by attestation.

It does allow, however, any modifications that would be detected by attestation. TcgLinux

may allow compromising a system’s confidentiality because it does not prevent privileged

users from reading secret keys that may be established between the system and a remote

server. In contrast, security association root tripping would close the security association

before such reading would be possible.

Terra [17] uses virtual machine (VM) technology to support multiple “closed-box” and

“open-box” VMs. The closed-box VM’s integrity can be verified by a remote server. However,

31

the attestation of the closed-box is based on certificates, which is different from the TPM

attestation approach in this dissertation. In addition, Terra requires the measurement of

the entire closed-box VM’s binary image for attestation. In contrast, TCB prelogging only

measures the trusted components in a system.

Schoen [52, 53] proposed the idea of “owner override” to prevent the use of secure co-

processors for software lock-in or digital rights management (DRM). Owner override allows

the owner of a computer to force the computer’s TPM to sign arbitrary quotes, regardless of

the computer’s actual configuration. Such fictitious quotes would prevent use of attestation

for software lock-in. However, it does not prevent use of sealing for the same purpose. It

also prevents secure verification of a node’s configuration before a node is admitted into a

network, as proposed in this dissertation.

3.7 CHAPTER SUMMARY

In this chapter, we discuss OS problems that need to be solved to reach the goals of this

dissertation, and provide solutions to them. The two OS problems are: (1) how to maintain

attestation consistency, and (2) how to prevent software lock-in. System integrity, privacy,

and confidentiality need to be considered for maintaining attestation consistency. We propose

TCB prelogging and security association root tripping for solving this problem. TCB prel-

ogging maintains attestation consistency and client system privacy by logging and extending

into the TPM expected measurements of all TCB components at boot time. Therefore,

from the start, attestations reveal a system’s entire expected TCB. Actual measurements

are deferred until the actual first use of a TCB component. If there is a discrepancy, the OS

drops any security associations established with previous attestations. Unprivileged appli-

cations are not measured and exposed to remote parties. Security association root tripping

likewise drops such security associations if a privileged user logs interactively into a system.

This technique prevents compromise of the system’s integrity or confidentiality by privileged

users. To prevent software lock-in, we propose sealing-free attestation confinement. We

evaluated our solutions by implementing them in FreeBSD. Experiment results show that

32

our solutions cause little overhead.

33

4.0 ATTESTATION ENHANCEMENTS

This chapter describes problems in TCG’s attestation specifications and our proposed solu-

tions. It also discusses related work.

4.1 PROBLEMS

TCG’s attestation specifications can be considered incomplete because they do not address

the security and performance problems discussed in the following subsections:

4.1.1 HOW CAN ATTESTATION BE PROTECTED FROM MITM ATTACKS?

TCG’s specifications are sufficient for protecting attestation against forgery and replay at-

tacks. Forgery is not possible because attestation is signed by a secure coprocessor using a

private key that is generated inside the secure coprocessor, is used only for signing attesta-

tions, and is never revealed outside the secure coprocessor. A trusted authority certifies that

the corresponding public key belongs to the secure coprocessor and that the latter is securely

bound to the respective platform. An attestation cannot be replayed because it contains a

nonce provided by the verifier. A responder can use an attestation only when the verifier

uses the respective nonce (i.e., once).

TCG’s specifications leave room, however, for MITM attacks. In a MITM attack between

communicating parties P1 and P2, the attacker impersonates P1 to P2 and P2 to P1. The

attacker then relays packets between P1 and P2. Even if the packets are authenticated and

encrypted, the attacker can read, modify, insert, or delete any packets between P1 and P2.

34

It is commonly assumed that a MITM attacker is an adversary both to P1 and P2.

However, this is not necessary the case. In an attack against attestation, the attacker would

have a configuration that is unacceptable to some verifier V . The attacker would seek to

pass as its own the configuration of a responder R, which is acceptable to V . R might

have colluded with or be under the control of the attacker (in such cases, we say that R is

“colluding” with the attacker).

If V and R do not use an authenticated channel to communicate, the MITM attack

against attestation is trivial, even without R’s cooperation. The attacker simply relays V ’s

nonce to R, and relays R’s response to V .

If V and R do use an authenticated channel to communicate, a MITM attack against

attestation may still be possible. Suppose, for example, that V and R establish a TLS

channel, and then V obtains R’s attestation via this channel. A MITM attacker can establish

a first TLS channel with V , a second TLS channel with R, and then relay attestation messages

between V and R, as shown in Figure 4.1. The attacker can establish the first channel because

TLS usually authenticates only the server (V) to the client. If the first TLS channel requires

client authentication, the attacker can use its own identity certificate, or that of a colluding

R. The attacker can also establish the second TLS channel because a colluding R can (1)

be directed to connect to the attacker, instead of V , or (2) be configured to trust a phony

certificate authority that associates the attacker’s public key with V ’s identity. Even if R

is not colluding, the attack may still be possible if R’s software allows users to override

certificate errors (as most Web browsers and SSH clients do). Users typically click through

warnings and continue the channel establishment despite certificate verification failures [54].

Figure 4.1: TCG defined attestation and MITM attack

35

4.1.2 HOW CAN ATTESTATION BE USED WITH REAL WORLD PROTO-

COLS WITHOUT INTRODUCING EXCESSIVE LATENCY?

An important design goal of TCG-specified secure coprocessors is to have low cost, so as to

enable widespread deployment. Commercially available TPMs indeed have lost cost (about

$4 a piece), but often correspondingly slow performance. In our tests on IBM’s ThinkPad

T30 computers, for example, attestation takes about 0.71 seconds.

For responders that engage in attestation only sporadically (e.g., client computers), such

attestation latencies may be acceptable. If a responder needs to respond to many verifiers

at once, however, latencies could rise excessively. Such a scenario could occur, for example,

if the responder is a sensor or node in an ad-hoc or peer-to-peer network. Multiple (say, N)

clients or other nodes, respectively, could send attestation requests to the same responder

at the same time. If the responder processes such requests sequentially, attestation latency

could be as high as N*0.71 seconds. As N increases, latencies could become unacceptable.

4.2 SOLUTIONS

Our solutions to the above problems are Bound Keyed Attestation (BKA) and Batched

Bound Keyed Attestation (BBKA), described in the following subsections.

4.2.1 BKA

Bound Keyed Attestation (BKA) is a novel form of attestation that prevents MITM attacks

by binding attestation with a secret key shared by attestation endpoints. Binding proves to

the verifier that the attestation responder knows a secret that the verifier shares only with

the responder. This secret is not the verifier’s nonce, because the verifier does not identify

who it sends a nonce to.

Suppose that the attestation endpoints have a shared secret key Ks, and the attestation

verifier sends a nonce Norig to the responder. The responder binds Ks and Norig by concate-

nating them first, then calculating the SHA1 hash of the concatenation. The responder uses

36

the result as the nonce Nbinding for TPM quote:

Nbinding = SHA1(Norig|Ks) (4.1)

When the verifier receives the attestation from the responder, it verifies that the TPM

quote includes Nbinding. Because of the one-way property of SHA1, only a responder that

knows Ks can generate a quote containing Nbinding. (Note also that an attacker cannot obtain

Ks from Norig and Nbinding.)

If there is a secure channel established between the endpoints before attestation is in-

voked, the endpoints already have a shared secret key. BKA binds this key to attestation.

On the other hand, if there is no secure channel between the endpoints before attestation,

BKA uses a Diffie-Hellman key exchange [55] to generate a shared key, and binds this key

with attestation.

4.2.1.1 BKA WITH SECURE CHANNEL In many situations, a secure channel is

already established between the endpoints before attestation is invoked. For example, if

attestation is to be integrated with protocols such as IPsec’s IKE, TLS, or PEAPv2, these

protocols can establish a secure channel C before attestation. We assume that C is crypto-

graphically secured with a dynamically-generated secret key KC that is not revealed to users.

C can have state either attested or not-attested; not-attested is the default. System policies

can prevent all communication except for attestation while the channel is not-attested.

All BKA messages are transmitted using the established secure channel with which the

attestation will be bound, as illustrated in Figure 4.2. BKA messages can be of type: request

(Mi), response (Mr) or response-request (Mrr), success (Ms) or success response (Msr), or

error (Me).

BKA messages are exchanged as follows. After the secure channel C is set up, the

attestation verifier A sends a BKA request message Mi containing a nonce NA to the

attestation responder B. The responder then computes the verifier’s attestation nonce

nA = SHA1(NA|KT) and gets from its TPM the quote QB containing nA. Finally, the

responder sends to the verifier a BKA response message Mr containing QB, B’s AIK cer-

tificate CB, and measurement log LB. Alternatively, if the responder also wishes to obtain

37

Verifier (A)Responder (B)

Select NANA

Select NB

Get QB(nA), LB, CB

Verify CB, QB(nA), LB

Get QA(nB), LA, CA]
[QA(nB), LA, CA]

Verify CA, QA(nB), LA]

Secure channel C with KC

nA = SHA1(NA|KC)

[NB], QB(nA), LB, CB

nA = SHA1(NA|KC)

[nB = SHA1(NB|KC)

[nB = SHA1(NB|KC)

Figure 4.2: Bound Keyed Attestation (BKA) with secure channel thwarts MITM attacks

by guaranteeing that the endpoints of the communication channel (e.g., TLS, PEAPv2) and

attestation are the same. Items between brackets are needed only for mutual attestation.

38

the verifier’s attestation, the responder sends to the verifier a BKA response-request message

Mrr containing the same fields as Mr, plus a fresh nonce NB.

If the verifier receives Mr, it processes the message as follows. First, the verifier computes

the bound nonce nA = SHA1(NA|KT) used by the responder for the TPM quote. The verifier

authenticates CB using the corresponding certificate authority’s public key (known securely

out-of-band), authenticates the responder’s quote QB using nA and CB, and authenticates

the responder’s measurement log LB using QB. If any of the authentications fails, or if the

verifier does not recognize a measurement in the responder’s log LB as that of a trusted

software component, the verifier sends a BKA error message to the responder and returns

failure. Otherwise, the verifier then sends to the responder a BKA success message Ms,

transitions T ’s state to attested, and returns success.

The verifier’s processing of Mrr is similar to that of Mr, with the following exceptions: (1)

The verifier also computes the responder’s attestation nonce nB = SHA1(NB|KT) and obtains

from the verifier’s TPM its quote QA containing nB. (2) Instead of Ms, the verifier sends to

the responder a BKA success-response message Msr containing QA, A’s AIK certificate CA

and measurement log LA.

After the responder processes Ms, if the attestation response is successful, it changes its

state to attested. Otherwise, its state remains as not-attested. Processing of Msr is similar,

with the following exceptions: (1) The responder also authenticates CA, QA, and LA; (2) If all

authentications succeed and the responder identifies every measurement in the verifier’s log

as that of a trusted software component, then the responder transitions its state to attested;

otherwise, its state remains not-attested.

4.2.1.2 BKA WITHOUT SECURE CHANNEL When attestation is needed but

there is no secure channel between attestation endpoints, BKA includes a Diffie-Hellman

(DH) key exchange [55]. Attestation endpoints derive a shared secret key and securely bind

it to attestation, as shown in Figure 4.3.

BKA uses two publicly-known numbers: a prime number q and an integer α that is a

primitive root of q. These numbers do not need to change. The attestation verifier A picks

two random numbers: a nonce NA, which is never reused, and another integer 0 ≤ XA < q,

39

Verifier (A)Responder (B)

Select NA, XA

YA = αXA mod q

Get QB(nA), LB, CB

nA = SHA1(NA|KAB)

YB = αXB mod q
KAB = Y XB

A mod q

Select NB, XB

Verify CB, QB(nA), LB

Get QA(nB), LA, CA]
[nB = SHA1(NB|KAB)

nA = SHA1(NA|KAB)
KAB = Y XA

B mod q

[QA(nB), LA, CA]

[nB = SHA1(NB|KAB)
Verify CA, QA(nB), LA]

YB, [NB], QB(nA), LB, CB

[q, α], YA, NA

Figure 4.3: Bound Keyed Attestation (BKA) without secure channel includes a Diffie-

Hellman (DH) key exchange. It thwarts MITM attacks by guaranteeing that DH and

attestation endpoints are the same. Items between brackets are needed only for mutual

attestation.

40

which may be reused. The verifier computes its public key YA = αXA mod q. The verifier

then sends a BKA request message Mi containing q, α, YA, and NA to the attestation responder

B. If q and α are known a priori by the responder (for example, if verifier and responder use

a previously agreed upon Oakley group, as defined for IPsec’s IKE [12]), these parameters

do not need to be included in the BKA request message.

The attestation responder B then picks a random integer 0 ≤ XB < q, which may

be reused, and computes its public key YB = αXB mod q. The responder computes the

attestation shared secret as KAB = Y XB
A mod q. The responder also computes the verifier’s

attestation nonce nA = SHA1(NA|KAB). The responder then gets from its TPM its quote

QB containing nA. Finally, the responder sends to the verifier a BKA response message

Mr containing YB, QB, B’s AIK certificate CB, and measurement log LB. Alternatively, if

the responder also wishes to obtain the verifier’s attestation, the responder sends a BKA

response-request message Mrr containing the same fields as Mr, plus a fresh nonce NB.

The verifier processes Mr as follows. First, it computes the attestation shared secret

as KAB = Y XA
B mod q, as well as the bound nonce nA = SHA1(NA|KAB) used by the

responder for the TPM quote. The verifier authenticates CB using the respective certificate

authority’s public key (known securely out-of-band), authenticates the responder’s quote QB

using nA and CB, and authenticates the responder’s measurement log using QB. If any of the

authentications fail, or if the verifier does not recognize a measurement in the responder’s

log LB as that of a trusted software component, the verifier sends a BKA error message to

the responder and returns failure. Otherwise, the verifier sends a BKA success message Ms

to the responder, transitions T ’s state to attested, and returns success.

Processing of Mrr by the verifier is similar to that of Mr, except that (1) the verifier

also computes the responder’s attestation nonce nB = SHA1(NB|KAB) and gets from the

verifier’s TPM its quote QA containing nB, and (2) instead of Ms, the verifier sends to the

responder a BKA success-response message Msr containing QA, A’s AIK certificate CA, and

measurement log LA.

The responder processes Ms as follows. If the attestation response is successful, it changes

its state to attested. Otherwise, its state remains not-attested. Processing of Msr is similar,

with a couple of exceptions: (1) The responder also authenticates CA, QA, and LA; (2) If all

41

a. multiple attestation requeests

b. single attestation response

Figure 4.4: Batched Bound Keyed Attestation allows a node to respond to multiple attesta-

tion requests with a single quote and a single message.

authentications succeed, and the responder identifies all measurements in the verifier’s log

as those of trusted software components, then the responder transitions its state to attested;

otherwise, its state remains not-attested.

Nonces NA and NB guarantee quote freshness and allow bound keyed attestations to be

obtained frequently, without burdening the processors each time with the expensive com-

putation of YA, YB, and KAB, if the nodes’ Diffie-Hellman keys are reused. Performance

can be improved by caching the authentication of CA and CB and the values of common

intermediate expressions that change infrequently. The attestation nonce nx is the one-way

function of both the nonce Nx and the attestation shared key KAB. Therefore, the quotes

are bound to the attestation shared key.

4.2.2 BBKA

BKA uses a TPM quote to reply to a single BKA request. However, the time necessary for

a TPM to produce a quote may be significant: We measured an average of 0.71 s on an

IBM ThinkPad T30 computer running Linux. If a single node receives many requests at

42

once (e.g., in an ad hoc or peer-to-peer network), BKA could introduce unacceptable delays,

because it requires as many quotes as there are requests. This section introduces Batched

Bound Keyed Attestation (BBKA), a novel form of attestation that uses a same quote to

respond securely to multiple attestation requests.

This section assumes absence of pre-established secure channels among nodes. Therefore,

BBKA includes DH key exchange. However, BBKA can use instead keys derived from pre-

established secure channels, similarly to BKA in section 4.2.1.

To amortize quote delays, BBKA batches attestation requests that are received from

multiple verifiers while a responder’s TPM is busy. BBKA then uses a single quote to

respond securely to all batched requests. This approach is shown in Figure 4.4. BBKA

incorporates a DH key exchange between the responder and each verifier and securely binds

the resulting shared secrets to the quote used in the response. The DH shared secrets enable

confidential and authenticated communication between the responder and each verifier after

attestation. The binding of these secrets with the attestation response’s quote prevents man-

in-the-middle attacks, in which a node with a malicious configuration attempts to circumvent

attestation by relaying attestation requests and replies between nodes with mutually-trusted

configurations (see section 4.1.1).

In BBKA, the attestation request received from a verifier i contains not only i’s nonce,

Ni, but also i’s DH public key Yi and DH group gi. Yi is computed from i’s DH private key

Xi using equation Yi = αXi mod q. Group gi identifies the DH modulus q and primitive root

α used by i, as do Oakley’s groups in IKE [12]. Assuming that all n verifiers and responder

use the same DH group and that the responder’s DH private and public keys are respectively

Xr and Yr = αXr mod q, the responder calculates each verifier’s shared secret Si and bound

nonce Bi respectively as:

Si = Y Xr
i mod q (4.2)

Bi = HMAC(Ni, Si) (4.3)

where the HMAC algorithm[56] uses the SHA-1 security hash [24]. The responder then

43

computes the batch nonce Nb:

Nb = SHA1(B1|...|Bn) (4.4)

where “|” denotes concatenation. The responder requests from its TPM a quote containing

Nb.

BBKA’s response contains not only the responder’s quote Qr with Nb, attestation identity

certificate Cr, and measurement log Lr, but also n and B1, ..., Bn. If the responder has not

already sent an attestation request to the verifier (e.g., for mutual attestation), then the

response also contains Yr. A verifier i should calculate its shared secret Si as:

Si = Y Xi
r mod q, (4.5)

obtain its bound nonce Bi from Ni and Si, verify that Bi is in B1, ..., Bn, compute from the

latter Nb, verify Qr using Nb and Cr, and use Qr to authenticate Lr.

Note that it is not feasible for intruders or verifiers other than i to obtain Xi or Si from

the BBKA requests or responses. BBKA also assumes that verifiers and responders have

configurations that do not reveal secrets such as Xi and Si to users (this assumption can be

verified by the respective attestations). Otherwise, an intruder could obtain shared secrets

from a node with trusted configuration, then use these secrets for impersonating the latter

with a maliciously configured node.

To save computation, verifiers and responders can reuse DH keys and cache intermediate

results of DH computations. However, to prevent replay attacks, they should use different

nonces in each attestation request. Since attestation latency is largely dominated by the

quote operation, BBKA latency with multiple verifiers is not much greater than latency for

responding to a single attestation request.

44

4.3 IMPLEMENTATION

We implemented BKA and BBKA in a library called libbkap.a. Differences between BKA

and BBKA are: (1) BBKA calculates a nonce based on information from multiple verifiers,

and (2) BBKA attestation response includes more information. Implementation in a library

enables, e.g., some applications to link only BKA and not BBKA. Header files define the BKA

and BBKA application programming interfaces (APIs) and data structures. A parameter

specifies whether BKA or BBKA is being used with or without a pre-established secure

channel between endpoints. The BKA and BBKA library handles message processing and

maintains attestation state. The implementation hides BKA and BBKA details, simplifying

integration with other protocols.

4.4 RELATED WORK

Garfinkel et al. [17] have previously discussed MITM attacks against attestation. Their pro-

posed solution is to embed attestation into SSL’s handshake protocol. The verifier must

complete the handshake’s key exchange only after verifying the responder’s attestation. De-

tails needed for implementing this proposal and evaluating its security against MITM attacks

are missing, however. It appears that MITM attackers would be able to obtain the verifier’s

nonce and the responder’s attestation response in clear text. This cannot be prevented sim-

ply by encrypting the attestation response with the verifier’s public key, because a colluding

or inattentive responder would use the attacker’s public key instead of the verifier’s. En-

crypting the attestation response with keys derived from the SSL exchange would also be

ineffective, since a MITM attacker would know these keys. If, unlike our solution, attestation

responses do not cryptographically depend on the SSL key exchange, it seems that a MITM

attacker would be able to insert the responder’s attestation response in the attacker’s SSL

handshake with the verifier. Other potential advantages of our solution include its ready

applicability to other protocols (in addition to SSL) and scalability to applications requiring

multiple simultaneous attestations (section 4.2.2).

45

Burger et al. [57] proposed vTPM, a system that enables trusted computing in virtual

machines (VMs) by virtualizing the TPM. vTPM makes it appear to each VM that the

VM has access to its own private TPM, even when multiple VMs share the same physical

TPM in a system. The virtualized TPM can securely attest the integrity of the respective

VM without interference from other VMs. vTPM can be combined with BKA or BBKA in

VM-based systems.

4.5 CHAPTER SUMMARY

In this chapter, we discussed attestation security and performance issues that are not ad-

dressed by TCG specifications, and described our solutions, BKA and BBKA. BKA and

BBKA thwart MITM attacks by cryptographically binding attestations with secret keys

shared by attestation endpoints. They can be used with or without pre-established secure

channel between endpoints. BBKA improves attestation performance by using a same quote

to reply to multiple attestation requests. We implemented BKA and BBKA as a library

that can be easily integrated with other protocols. The design and implementation of our

solutions have the advantages of simplicity, ready applicability, and scalability.

The performance impacts of BKA and BBKA on enterprise and ad hoc networks are

discussed in chapters 5 and 6, respectively.

46

5.0 ENFORCING SECURITY POLICIES IN ENTERPRISE NETWORKS

In this chapter, we discuss how we apply the proposed TPM-based security solution on

enterprise networks. We first analyze the existing access control protocols used in enterprise

networks (section 5.1) and their insufficiency (section 5.2). Then we describe the design and

implementation of our solution in section 5.3 and 5.4. Section 5.5 provides an evaluation of

our solution. Section 5.6 summarizes this chapter.

5.1 ACCESS CONTROL PROTOCOLS FOR ENTERPRISE NETWORKS

Enterprise processes are increasingly integrated via computer networks. Data transiting such

networks may include, e.g., employee records, customer orders, warehouse inventories, and

business plans. It is imperative to protect the integrity and confidentiality of this data.

Network availability also needs to be protected, as lack of communication can often bring

enterprise processes to a halt.

Ethernet is the most common enterprise network. A wired local area network (LAN),

Ethernet is confined by an enterprise’s walls. Thus, ordinary physical protection of enter-

prise buildings (e.g., checking employees’ badges at entrances) also controls access to these

networks.

Physical access control may be insufficient, however. Enterprises often have within their

premises part-time, outsourced, contractors, or partners’ employees or visitors. Once inside

an enterprise’s buildings, such people can plug their mobile computers into the enterprise’s

Ethernet ports.

IEEE 802.1x [10] is a relatively recent protocol that enables an enterprise to authenti-

47

cate a computer’s user before authorizing communication through the port the computer is

attached to. IEEE 802.1x can generate session keys for authenticating and encrypting an

authorized computer’s packets. Packet-level security prevents an attacker from piggybacking

on a legitimate user’s session, e.g. by connecting a hub to that user’s port. IEEE 802.1ae [30]

is a draft standard that will enable such packet-level security in Ethernet networks.

Wi-Fi [31] is a wireless LAN that is used in an increasing number of enterprises. It

can be installed much more cheaply than Ethernet, but is not confined by an enterprise’s

walls. Attackers may be able to access a company’s Wi-Fi network, e.g., from the company’s

parking lot. Wi-Fi’s original security scheme, Wired Equivalent Privacy (WEP) [58], has

been shown to be deeply flawed. IEEE 802.11i [32] is a newer standard that greatly improves

Wi-Fi security. It uses 802.1x for authenticating a user before authorizing the user’s computer

to access the network. It also derives session keys for strong packet-level authentication and

encryption.

Three parties participate in 802.1x: a supplicant (user’s computer), an authenticator (e.g.,

Ethernet switch or Wi-Fi access point), and an authentication server (e.g., RADIUS server).

By default, the authenticator’s ports are unauthorized. (In Wi-Fi, ”port” is interpreted as

an association between a mobile computer and an access point.) If a port is unauthorized,

the authenticator allows the port’s supplicant to communicate only with the authentication

server. When the latter sends the authenticator a message authorizing the supplicant’s

access, the authorizer switches the port’s state to authorized. With the port in that state,

the supplicant can communicate with the rest of the network.

IEEE 802.1x supports EAP (Extensible Authentication Protocol) [59]. EAP is a frame-

work over which many authentication methods can be implemented. A frequent choice is

Protected EAP (PEAP) [29]. PEAP has two phases. In the first phase, the network’s

authentication server proves its identity to the user’s computer, and a TLS [9] channel is

established between the server and the user’s computer. In the second phase, the user proves

her identity to the server. The first phase’s TLS channel protects the integrity and confiden-

tiality of the second phase’s packets. Many user authentication methods may be used in the

second phase. MS-CHAPv2 is a popular choice because it is password-based and therefore

easy to deploy. Like many other tunneled protocols, PEAP has been found to be vulnerable

48

to MITM attacks. PEAP version 2 (PEAPv2) [29] adds a cryptographic binding to the end

of PEAP’s second phase, guaranteeing that both phases’ endpoints are the same.

PEAP arguably achieves a better tradeoff between usability and security than do its

earlier alternatives, EAP-MD5 and EAP-TLS. Like PEAP, EAP-MD5 can conveniently use

passwords for user authentication. However, EAP-MD5 does not authenticate the network to

the user’s computer, and therefore is vulnerable to MITM attacks. EAP-TLS [60] mutually

authenticates user and network, overcoming this vulnerability. However, EAP-TLS requires

issuing, verifying, and possibly revoking user certificates, and therefore is harder to deploy

that is PEAP. TTLS [61] is another alternative to PEAP. Differences between both protocols

are slight. PEAP is more common because it is included in Microsoft operating systems,

while TTLS is not.

LANs, such as Ethernet and Wi-Fi, are insufficient for interconnecting an enterprise’s

multiple locations. LANs are also insufficient for connecting telecommuters and traveling

personnel (”road warriors”) to an enterprise’s network. Enterprises typically use virtual

private networks (VPNs) for such connections. An enterprise’s VPN gateways at different

locations, or a VPN gateway and a road warrior, mutually authenticate each other and es-

tablish a secure channel for communicating over the Internet. The channel can be configured

such that all packets sent between endpoints are authenticated and encrypted.

The protocol suite most commonly used in VPNs is IPsec [11]. IPsec secures packets be-

tween endpoints. IPsec endpoints may not coincide with the ultimate source and destination

of secured packets. For example, an IPsec connection between a road warrior and a VPN

gateway may secure packets sent between the road warrior and an enterprise mail server.

IPsec’s Internet Key Exchange (IKE) [12] protocol provides mutual authentication be-

tween endpoints and enables negotiation of AH (Authenticated Header) and ESP (Encap-

sulating Security Payload) security associations between them. The AH and ESP protocols

secure other IPsec traffic. AH provides packet authentication, while ESP can provide packet

encryption and/or authentication.

IKE comprises two phases. In Phase 1, IPsec endpoints (1) mutually authenticate each

other and (2) agree on packet authentication and encryption algorithms and keys for an

IKE security association between the endpoints. In Phase 2, the endpoints use the IKE

49

security association to negotiate algorithms and keys for an AH or ESP security association

between the endpoints. Unlike IKE, AH and ESP security associations are unidirectional.

Two modes are defined for Phase 1, main mode and aggressive mode. The quick mode

is defined for Phase 2. Supported authentication methods include digital signature, two

variants of public-key encryption, and pre-shared key. A benefit of IKE’s phased approach

is that mutual authentication, an expensive operation, needs to be performed only once.

A same IKE security association can be used to negotiate multiple AH and ESP security

associations.

5.2 INSUFFICIENCY OF EXISTING ACCESS CONTROL PROTOCOLS

Existing access control protocols, such as PEAP and IKE, attempt to prevent access by

untrusted users. An enterprise can use these protocols, e.g., to grant access only to full-time

employees.

A trusted user can, however, unwittingly use a compromised computer or insecure con-

figuration. For example, the user can have a mobile computer that became infected while

outside the enterprise. Similarly, a telecommuter can use a computer that is shared with

other household members and that is infected by them. In such cases, authenticating the

user is insufficient.

These vulnerabilities can be eliminated by having the 802.1x authentication server or

VPN gateway obtain an attestation of the user’s computer. The attestation allows the

network to authenticate the computer’s configuration, before authorizing its access.

IEEE 802.1x authentication servers and VPN gateways typically are physically well pro-

tected and are more carefully maintained than are user computers. Therefore, in most cases,

it will be considered sufficient for the user’s computer to authenticate the identity, but not

the configuration of the authentication server or gateway.

The following two sections describe how we integrated PEAP and IKE with attestation,

so as to authenticate not only the user’s identity, but also the configuration of the user’s

computer.

50

5.3 INTEGRATING PEAP WITH ATTESTATION

5.3.1 DESIGN

We integrate PEAP with attestation by adding BKA to the end of PEAP’s second phase.

The TLS channel established in PEAP’s first phase protects BKA messages. To guarantee

that TLS and BKA endpoints are the same, we (1) use TLS’s pseudo-random function to

derive an extra 128-bit key from the TLS channel’s master secret (as defined in section 3.5

of [60]), and (2) cryptographically bind this key to attestation, using the method described

in Section 4.2.1. BKA could be performed before or after PEAP’s second phase. The latter

choice offers greater resilience against denial-of-service attacks: The authentication server

verifies a user computer’s configuration (an expensive computation) only after verifying the

user’s identity (a comparatively inexpensive computation).

No modifications are necessary in PEAP packet formats for BKA integration. PEAP’s

second phase is inherently extensible to accommodate future user authentication methods.

PEAP user authentication messages are carried in generic TLV (Type-Length-Value) fields

inside TLS records. Fig. 5.1 illustrates the organization of a TLV field. A TLV field contains

subfields M (flags whether the sender considers support for that TLV type mandatory),

R (reserved), Type, Length, and Value. The Value subfield’s organization and length is

determined by the TLV’s Type and Length subfields, respectively. We define BKA messages

as a new TLV type. The latest PEAP draft defines TLV types 1-21; we used type 22 for

BKA.

M R TLV Type Length

Value ...

Figure 5.1: PEAPv2 TLV format

BKA responses can be several thousand bytes long, requiring fragmentation. PEAPv2

defines a general mechanism for message fragmentation and reassembly. The suggested

51

maximum message length is 64 KB, which is likely to be much more than necessary for BKA

messages.

Only localized changes in PEAP’s processing are necessary for BKA integration. After

PEAPv2’s cryptographic binding of PEAP’s first and second phases, and before the authen-

tication server sends the authenticator the access authorization packet, the server checks

whether it is configured to require attestation from the user’s computer. If so, the server

sends the supplicant a BKA request in a mandatory PEAP TLV field with type BKA. If the

supplicant is configured to accept such a request, the supplicant computes its BKA reply and

sends the latter to the server in another mandatory PEAP TLV field with type BKA. The

server verifies the reply and, if the latter is acceptable, sends the authenticator the access

authorization packet.

These modifications are backward-compatible. If a modified supplicant requests access to

an unmodified server, PEAP processing is unmodified. The server authorizes access without

attestation, and the client accepts it. On the other hand, if an unmodified supplicant requests

access to a server that requires attestation, PEAP processing fails: The supplicant is unable

to process the mandatory TLV field with the BKA request. Failure is the correct outcome

in this case because the supplicant cannot provide the attestation that the server requires.

5.3.2 IMPLEMENTATION

We implemented an attestation-capable supplicant by modifying Xsupplicant version 1.0.

Xsupplicant is an open-source 802.1x supplicant that supports many EAP methods, in-

cluding EAP-MD5, EAP-TLS, TTLS, and PEAP. It also supports MSCHAPv2 for user

authentication in TTLS and PEAP. However, Xsupplicant implements PEAP version 0, as

do current Microsoft operating systems. This version lacks two features of PEAPv2 that

are necessary for BKA, namely cryptographic binding and fragmentation. Each Xsupplicant

EAP method is implemented as a module.

We implemented a new Xsupplicant EAP module, PEAPc. We defined its EAP type

to be 0x08 (previously unused). It differs from the previous Xsupplicant PEAP module in

three ways. First, it has PEAPv2’s cryptographic binding at the end of the second phase.

52

Second, it supports the additional BKA handshake after the cryptographic binding. Third, it

supports fragmentation and reassembly for BKA messages as follows: (1) it defines two fields:

M and fragment offset, indicating if another fragment follows this one and this fragment’s

offset in the message, respectively; (2) If the fragment is the last fragment of a message, M

is set to 0. Other than that, M is set to 1; (3) Once a receiver receives all the fragments of

a message, it reassembles the fragments into message.

PEAPc depends on our TPM and BKA libraries, libtcpa.a and libbka.a, respectively. We

installed these libraries in /usr/local/lib/ and the respective header files in /usr/local/include/tcpa/,

and /usr/local/include/bka/. Xsupplicant is a root setuid application and therefore is in-

cluded in the TCB list of systems where it is installed.

We implemented a corresponding attestation-capable authentication server by modifying

open-source FreeRADIUS version 1.0.0 prerelease 3. FreeRADIUS supports proxying, fail-

over, and load balancing. It also supports many EAP methods, including EAP-MD5, EAP-

TLS, TTLS, and PEAP.

We implemented a new FreeRADIUS module, rlm eap peapc, and defined its EAP type

to be 0x08. It differs from the previous FreeRADIUS rlm eap peap module just as Xsup-

plicant’s PEAPc differs from PEAP. The new module can be configured to require or not

require attestation by defining a configuration option in radius.conf. The list of acceptable

configurations is configured as follows: We defined a configuration file trustedapp.conf which

includes absolute names of all the trusted applications and their corresponding SHA1 hash

value. This configuration file is read and parsed to build a hash table with the name of a

trusted application as key and its digest as value while FreeRADIUS daemon starts. When

a server receives BKA response from a client, it checks the digest of each component of the

client configuration against its record by looking up the trusted hash table. If the received

digest matches the record, that component is regarded trusted, otherwise, it is believed

malicious.

In our implementation, we added two options: acceptatt and serverlist in Xsupplicant’s

configuration file xsupplicant.conf. Acceptatt has true or false value, indicating if the Xsup-

plicant accepts attestation or not. Serverlist maintains a list of servers that the Xsupplicant

only accept attestation from. If a server is not in the server list, the client does not accept

53

its attestation request during the authentication process. These two options give a client the

flexibility to control whether or not it is being attested by a server.

Meanwhile, our implemented client and server have backward compatibility with legacy

Xsupplicant and authentication server implementation. If an attestation capable Xsuppli-

cant client communicates with a legacy authentication server, the server will not request

attestation, therefore, the attestation phase can be skipped. Although the client is attesta-

tion capable, it behaves based on the server’s request. If a legacy Xsupplicant communicates

with a server with attestation implementation, it will fail since it cannot respond to the

server’s attestation request. The server will time out and fail the client’s authentication

since it cannot receive attestation from the client.

5.4 INTEGRATING IKE WITH ATTESTATION

5.4.1 DESIGN

We integrate IKE with attestation by adding BKA in between IKE’s first and second phases.

This makes BKA messages be protected by the security channel established during phase

one, and guarantees either or both endpoints (depending on configuration) are attested

before the two end points negotiate IPsec security association. To guarantee that IKE

and BKA endpoints are the same, we (1) use IKE’s pseudo-random function (as defined in

section 5 of [12]) to derive an extra 128-bit key from the channel’s master secret, and (2)

cryptographically bind this key to attestation, using the method described in section 4.2.1.

The integration of IKE with BKA requires no change to IKE’s packet format. In IKE,

messages exchanged between the endpoints are formatted as defined in ISAKMP [62]. The

exchange type and next payload in the ISAKMP header 5.2 dictates the type and payload

sequence of the message being transferred. To accommodate BKA messages, we define

a new exchange type ISAKMP ETYPE ATT with number 240, and a new payload type

ISAKMP NPTYPE ATT with number 128. These two numbers are not currently being

used in the ISKAMP specification. The format of attestation payload in ISAKMP consists

54

Length

Message ID

Responder Cookie

Initiator Cookie

Next Payload MjVer MnVer Exchange Type Flags

Figure 5.2: ISAKMP Header Format. Next Payload indicates the type of the first payload

in the message. Exchange Type indicates the type of exchange being used. Flags indicates

specific options that are set for ISAKMP exchange.

of the generic payload header and attestation message, which is illustrated in Figure 5.3.

Either party in IKE can initiate attestation by sending attestation request after the first

phase finishes. The initiator can (1) encapsulate an attestation request message in the attes-

tation payload as illustrated in 5.3, (2) encrypt the attestation payload by using the key ma-

terials negotiated in phase one, and (3) construct an ISAKMP packet with exchange-type as-

signed to ISAKMP ETYPE ATT and the next payload assigned to ISAKMP NPTYPE ATT.

Once the packet is formed, the initiator sends it to its peer. When the peer receives

an ISAKMP packet, it can (1) identify the attestation exchange by checking if the ex-

change type is ISAKMP ETYPE ATT, (2) checks that the next payload in the ISAKMP is

ISAKMP NPTYPE ATT, (3) uses the key materials negotiated in phase one to decrypt the

Att Type

Next Payload Reserved Payload Length

Attestation Data

Figure 5.3: ISAKMP Attestation Payload Format

55

payload and extracts the attestation payload. Finally, it calls the BKA protocol handler to

process the attestation payload.

For backward compatibility and configuration flexibility, we add configuration options

in the IKE configuration file so that either party can enable/disable attestation or initi-

ate/response attestation request.

Attestation message fragmentation or retransmission is handled by IKE or its lower level

protocol. Since IKE is an UDP protocol. If the attestation message is too large, the UDP

protocol will fragment/defragment the message for transmission.

5.4.2 IMPLEMENTATION

We implemented IKE with BKA integration using racoon [63] (version 20040818a), an open-

source implementation of the IKE [12] protocol. Like the integration of 802.1x with BKA,

we installed the TPM and BKA libraries, libtcpa.a and libbka.a in /usr/local/lib/ and the

respective header files in /usr/local/include/tcpa/, and /usr/local/include/bka/.

We defined all the required functions associated with attestation in a file isakmp att.c,

and inserted attestation hooks after phase one of IKE finishes. This implementation tried

to avoid changing existing files as much as possible.

We added two configuration options: acceptatt and initatt in racoon’s configuration file

racoon.conf. Each of them has true or false value, indicating if an entity accepts attestation

from a peer and if it should initiate attestation to its peer after IKE phase one is finished,

respectively. An entity can set the acceptatt to true to accept attestation, otherwise, set it to

false. Furthermore, it can initiate the attestation after IKE phase one is finished by setting

initatt to true, otherwise set it to false. In the typical enterprise VPN environment, A VPN

gateway can set these options true to enable attestation and solicit attestation request to its

clients. A client can be configured to accept or not accept attestation. In the latter case,

the client will not be able establish a VPN connection to the VPN gateway that requests

client attestation. The combination of these two options enables an entity the flexibility of

controlling attestation.

These options also enable the IKE implementation with attestation to be compatible to

56

IKE client or server without attestation implementation. If a legacy IKE client connects to

a VPN gateway with attestation request, the client will not respond to attestation request

from the VPN gateway, causing the attestation request time out, thus it cannot establish the

IPsec security channel. If a client with attestation implementation connects to a legacy VPN

gateway, the connection can succeed since the VPN gateway does not request attestation

after IKE phase one finishes and directly establish the IPsec security association.

These two options can be added as two options for each IKE peer’s configuration, or apply

to a group of peers. Therefore, an IKE entity can specify the options to accept attestation

to each individual peer or a group.

5.5 EXPERIMENT RESULT

This section describes how we evaluated the integration of BKA with 802.1x and IKE, and

the experiment results. We emphasize the impact of BKA on the performance of OS, 802.1x,

and IKE.

5.5.1 IMPACT ON 802.1X PERFORMANCE

We integrated PEAPv2/802.1x with BKA on both the FreeRADIUS authentication server [64]

and the Xsupplicant [65]. In order to estimate a comparison with NAP, we alternatively in-

tegrated PEAPv2/802.1x with a NAP-like LOG protocol. Both in BKA and in LOG, the

supplicant sends its list of software components and configuration to the authentication

server, who may or may not approve it. However, unlike the BKA’s list, LOG’s list can be

forged by the supplicant. We installed FreeRADIUS on a Dell Dimension 4550 computer

with 2.4 GHz Pentium 4 CPU, 256 MB RAM, and unmodified FreeBSD 4.10. We installed

Xsupplicant on the aforementioned IBM T30 computer. As authenticator, we used a Cisco

1100 802.11b access point connected to the authentication server via Fast Ethernet.

Table 5.1 shows that the time it takes for the supplicant to connect to the network

increased from about 65 ms to 95 ms with LOG or to 798 ms with BKA. To understand the

57

cause of BKA’s large overhead, we measured the time it takes for the supplicant to obtain

a quote from its TPM, and found it to be 0.71 s. Therefore, most of the latency added by

BKA is due to the TPM. However, even with a low-cost, slow TPM, such as the one we

used, the connection latency is acceptable.

In order to evaluate the impact of LOG and BKA on the authentication server’s CPU

usage, we instrumented the OS’s idle loop and interrupt vector. The modified OS uses the

CPU’s built-in cycle counter to measure the CPU’s idle time, excluding interrupts. We also

instrumented FreeRADIUS to measure the total time necessary for the authentication and

authorization of supplicant access. Table 5.1 shows the time it takes the CPU to process a

single supplicant, as well as the projected throughput. From an estimated 2995 supplicants

per minute, LOG and BKA reduced the projected throughput to 2800 and 1842 suppli-

cants per minute, respectively. BKA’s large overhead is due to its use of authentication of

certificates and quotes, as well as repeated applications of SHA-1. In spite of its substan-

tial overhead, BKA’s projected throughput may be acceptable for medium- and small-sized

networks. Note that, in our scheme, a supplicant imposes no load on the authentication

server once authorization is accessed. In larger networks, the load can be distributed simply

through the use of multiple low-cost authentication servers.

5.5.2 IMPACT ON IKE PERFORMANCE

We ran our modified racoon on the aforementioned IBM T30 laptop running FreeBSD 4.8

as a VPN client and on the Dell desktop described above running FreeBSD 4.10 as a VPN

gateway. We measured the latency of each phase of the original IKE and the modified IKE,

as well as the CPU busy time during the entire IKE process. Table 5.2 shows the experiment

results using the IKE main mode and the RSA signature authentication method.

As shown in Table 5.2, VPN client attestation increased latency from about 153 ms to

about 867 ms. This increase is due mostly to the client’s TPM quote time (710 ms). For

VPN access, the increased total latency can be considered acceptable. Table 5.2 also shows

both the VPN gateway’s CPU busy time for a single client’s connection request and the

projected throughput. BKA reduces projected throughput from roughly 500 to about 445

58

Table 5.1: 802.1x/PEAP Authentication Latency and Projected Throughput (standard de-

viations represented between brackets: [σ]). The delay between TLS and MS-CHAPv2 is

the time interval when a server sends MS-CHAPv2 request to a client and when it receives

the first MS-CHAPv2 response from the client

Step PEAPv2 PEAPv2 + LOG PEAPv2 + BKA

TLS 38.32 ms [1.11] 38.49 ms [1.00] 38.60 ms [0.99]

Delay 7.42 ms [0.27] 7.66 ms [0.14] 8.27 ms [0.90]

MS-CHAPv2 12.78 ms [0.75] 12.04 ms [0.16] 12.27 ms [0.55]

Binding TLS/MS-CHAPv2 6.74 ms [0.42] 6.95 ms [0.76] 6.71 ms [0.14]

LOG 30.42 ms [1.08]

BKA 732.78 ms [2.81]

Total 65.26 ms [1.54] 95.55 ms [2.12] 798.04 ms [3.62]

CPU busy 20.03 ms [1.12] 21.42 ms [1.38] 32.57 ms [1.54]

Projected throughput 2995 supp/min 2800 supp/min 1842 supp/min

59

Table 5.2: IKE Authentication Latency and Projected Throughput With or Without BKA

for VPN client attestation (standard deviations represented between brackets: [σ])

Step Unmodified IKE IKE + BKA

Phase 1 110.57 ms [2.23] 112.77 ms [0.85]

BKA 719.48 ms [2.94]

Delay 14.03 ms [0.35] 8.48 ms [0.06]

Phase 2 28.48 ms [0.10] 28.48 ms [0.12]

Total 153.08 ms [2.23] 869.20 ms [2.78]

CPU busy 120.09 ms [0.69] 134.73 ms [0.84]

Projected throughput 500 clients/min 445 clients/min

clients per minute. Although BKA’s overhead is significant, the projected throughput is

acceptable for many applications. Multiple VPN gateways can be used for higher loads.

5.6 CHAPTER SUMMARY

In this chapter, we discuss our approach to improving the security of enterprise networks. Our

solution is hardware-based, relying on the attestation function of TPM secure coprocessors.

The security problems addressed by our work in this chapter are how to prevent mali-

cious or compromised clients from accessing enterprise networks and how to enforce network

security policies on the nodes that have gained access. Current access control protocols for

enterprise networks only authenticate users, but not clients’ configurations. Existing secu-

rity solutions (e.g., firewalls, IDS, and anti-virus software) do not address these problems,

and newer approaches, such as NAP and NAC are weak against malicious users. The TNC

group does define some interfaces of TCG for applying attestation in enterprise networks.

However, TNC does not specify how OS should be improved to support attestation.

We made two contributions to the existing scholarship: (1) we propose the idea of

60

hardware-based, operating system enhanced approach to authenticate and enforce client’s

configuration, (2) we identify a means of integrating the BKA with existing network access

control technologies. We have implemented our strategies and conducted experiments to

evaluate our approach. Our findings show that the addition of BKA attestation to enter-

prise network access control costs acceptable overhead and enforces very secure access control

that protects enterprise networks.

61

6.0 ENFORCING SECURITY POLICIES IN AD HOC NETWORKS

In this chapter, we discuss how we apply the proposed TPM-based security solution on ad

hoc networks. Following the same procedure as in chapter 5, we first introduce the existing

network protocols used in ad hoc networks (section 6.1), and analyze their insufficiency (sec-

tion 6.2). Then, after describing the assumptions (section 6.4) and notations (section 6.5)

used in this chapter, we describe the design and implementation of our solution (in sec-

tions 6.3, 6.7, 6.8, 6.9, and 6.10). Lastly, we evaluate and analyze our proposed solution

(in sections 6.11, 6.12, and 6.13). Finally, we conclude this chapter (in section 6.14).

6.1 EXISTING AD HOC NETWORK PROTOCOLS

Due to the unique ad hoc feature, routing protocol is fundamental to ad hoc networks.

Since there is no infrastructure support, each node has to participate packet forwarding to

enable normal communication among nodes. For this reason, each node has to function as a

router, maintaining routing table, such that it knows to which neighbor it needs to forward

an outgoing packet. Since wired network have been mature, most ad hoc routing protocols

leverage the ones in wired networks.

Most routing protocols for wired network fall in one of the two categories: link-state and

distance vector. Link-state routing protocol, e.g., open shortest patch forward (OSPF) [66],

requires each router maintain a global view of the network topology and the cost of each

link. The best route is the one with lowest cost. Distance vector routing protocols, e.g.,

routing information protocol (RIP) [67], require each router maintain for each destination a

next hop and the distance (number of hops) to the destination through that interface.

62

Ad hoc routing protocols leverage from the ones in wired networks. Examples of ad

hoc routing protocols designed at the early stage are DSDV (Destination sequenced distance

vector) [36], AODV (ad hoc on demand distance vector) [38], and DSR (Dynamic source

routing) [37]. DSDV leverages distance vector routing protocols used in wired network. It

removes some features that are not required in ad hoc networks and add other features (e.g.,

destination sequence number). DSDV requires periodic routing message exchange to keep

the routing table current, thus, consuming network bandwidth. To avoid period routing

information update, AODV doesn’t require periodic routing message exchange, but rather

establishing a route path to a destination when it is needed. DSR is a dynamic source routing

protocol. It differs from AODV in that the routing path is contained in a data packet once

a route is dynamically established.

However, these early stage ad hoc routing protocols didn’t take security into consider-

ation, therefore, are weak against many attacks. There is no access control and protocol

enforcement, thus allowing attackers get into the networks easily. Some of the attacks in-

clude eavesdropping, packet insertion or replay, man-in-the-middle (MITM) attacks, worm-

hole [68] attacks, and black-hole attacks.

To mitigate attacks on ad hoc networks, some security routing protocols and node co-

operation enforcement techniques have been proposed. These techniques typically protect

the networks by encrypting or authenticating messages based on cryptographic techniques.

Some of them use symmetric algorithms, which requires nodes in the network to have pair-

wise or group-wide shared secrets. Others use asymmetric algorithms, requiring each node

to have a public key and certificate authorized by a known certifying authority (CA). Exam-

ples of the secure routing protocols are SEAD [14], Ariadne [13], SAODV [33], SRP [34], and

ARAN [35]. Example of protocols that enforce node cooperation are CONFIDANT [5, 40],

CORE [6]), and Nuglets [42]. However, these protocols still have problems.

63

6.2 INSUFFICIENCY OF EXISTING PROTOCOLS

There are several problems with these secure routing protocols. First, almost all of them

assume the existence of a priori trust or secret associations among nodes, but they do not

account for this well. SRP and Ariadne assume pairs share secret keys for message authen-

tication. Ariadne and SEAD assume each node can securely distribute its hash keys to the

network. ARAN and SAODV depend on the use of certificates, with ARAN assuming the

existence of a centrally-trusted certificate server, which is hard to achieve in an ad hoc en-

vironment. Second, they all offer weak protection against compromised nodes. Once a node

is compromised and the shared secrets are revealed, the secure protocols are not secure any

more. Third, each proposed secure routing protocol only improves the security of a certain

original routing protocol. For example, Ariadne secures DSR [37], but not AODV [38] or

DSDV [36]. SAODV secures AODV, but not DSDV or DSR. Thus, the application of se-

curity in ad hoc networks is very complicated. Fourth, these secure routing protocols only

address the security of messages. They fail to address node forwarding misbehavior, which

isolates them from the techniques used for cooperation enforcement.

Existing solutions for enforcing node cooperation in a network have problems as well.

CONFIDANT [5, 40] and CORE [6]) are reputation-based systems, which depend on nodes

monitoring of their neighboring nodes’ behavior. Monitored events are fed into a reputation

system to detect misbehaving nodes. A major problem with reputation-based mechanisms

is that an attacker may be able to malign and thus exclude legitimate nodes from the

network. Like CONFIDENT and CORE, Nuglets [42] is a currency-based system. It uses

virtual currency to stimulate node forwarding cooperation. However, to determine how much

currency should be used in a transmission is a problem. Other mechanisms [43] are token-

based and require each node to have a token to participate in network operations. Once a

node’s token expires, it must renew the token from its neighboring nodes. However, token

renewal can be a problem due to node’s movement. Likewise, key management is a problem

for cooperation enforcement efforts. CONFIDANT assumes that nodes are authenticated

and that no node can pretend to be another; thus, it is weak against node spoofing.

Furthermore, a common problem with these existing solutions is that no single solution

64

addresses both secure routing and node selfishness problems. Most proposed secure routing

protocols fail to address the node selfishness problem at all; instead, they assume these

solutions already exist. At the same time, approaches to solve the node selfishness problem

do not address either secure routing or key management.

6.3 SOLUTION AND CHALLENGES

Our solution is based on the observation that many attacks on ad hoc networks are due to

the presence of malicious or compromised nodes, machines with malicious software that are

participating in the network. Attackers usually control such nodes with the goal of attacking

networks. For example, since the communication between a source and destination pair

depends on other intermediate nodes’ routing and forwarding, compromised or malicious

nodes could disrupt routing by using techniques such as worm-hole [68] or black-hole. These

cause problems such as routing loops, routing detours, and network partitions. Selfish nodes,

a kind of passive malicious node, may selectively not forward packets on behalf of other

nodes for the purpose of saving battery power. If a network is able to prevent malicious or

compromised nodes from joining the network, it is able to head off many such routing-based

attacks and node selfishness problems.

Therefore, we propose to secure ad hoc networks by enforcing the attestation of the

node’s configuration to prevent malicious or compromised nodes from participating in the

network. Only nodes that pass the configuration attestation can join the protected ad hoc

network. Furthermore, once a node is allowed to access the network, its enhanced OS is

able to enforce the required network security policies such that any node that initially gains

access, but subsequently violates these policies will be excluded from the network promptly.

As we can see, the requirement for OS support in ad hoc networks can be the same as for

enterprise networks. However, the particular features of ad hoc network require the design

of different attestation algorithms and alternative ways of integrating attestation with the

ad hoc network protocols.

The challenges of our approach are many. First, there is the problem that no dedicated

65

server exists in an ad hoc network. To address this, each node should be able to authenticate

the other nodes. Therefore, two nodes need to mutually attest each other if they want to

communicate. However, attesting every node in a network one-by-one involves significant

overhead. To solve this problem, we enable mutually-attested nodes to form a group with a

group identity. The nodes in the group do not have to attest each other directly. Instead,

two nodes can trust each other as long as there is an attested chain of trust among the

nodes. In addition, the nodes in the group can derive a shared secret, which can be used

to protect the messages among the nodes in the group. As an example of the approach

discussed above, if nodes A and B attest each other successfully and nodes B and C attest

each other successfully, then nodes A and C do not need to attest each other. They may

form a trusted group with a group identity and a shared secret. Communication among the

nodes in the trusted group can be authenticated by using the group secret. If more than

one trusted group forms in a network, the groups can merge if the groups attest each other

successfully; this can be done if representative nodes from each group attest each other.

This chapter contributes several algorithms and protocols. We develop a distributed

attestation (DA) algorithm, which triggers attestation in the entire network by broadcasting

attestation requests. Therefore, all the nodes can participate in attestation in parallel and

network-wide attestation can be finished in a short time. To help groups in a network

converge, we designed the attested merger (AM) algorithm. Finally, we propose to add

the AdHocSec layer, a secure layer that integrates our BBKA, DA, and AM attestation

algorithms, between the network layer and data link layer to protect the network layer

protocols and user-level applications.

The rest of this chapter discuss our design in detail. Section 6.6 discusses promiscuous

unicast, a new message transmission method in ad hoc networks to facilitate attestation

and reduce message collisions. Section 6.7 and 6.8 discuss distributed attestation (DA) and

attested merger (AM) algorithms, the two protocols used to organize all the nodes in an

ad hoc network to do attestation in parallel. Section 6.9 looks at the problem of message

fragmentation, while section 6.10 presents the method we use to integrate our designed

algorithms in ad hoc nodes. Section 6.11 discusses our evaluation of this work and presents

our experiment results. Sections 6.12 and 6.13 analyze the performance and security of our

66

approach, respectively. Lastly, section 6.14 summarizes this chapter.

6.4 ASSUMPTION

Our work relies on the following assumptions:

• Since our solution is based on the TPM secure coprocessor, we assume it is present on

each node. This requirement does not present a particular hardship. Nowadays, many

computer vendors ship their computers with TPM coprocessors embedded.

• Each node has at least one attestation identity key (AIK) certificate issued by a known

certificate authority. All nodes can use the same certifying authority or different nodes

can use different authorities, but all authorities involved with the nodes should be known

by all nodes either directly or in a chain of certificate trust.

• Each node is able to verify the configurations of the other nodes, including the OS version,

system configuration files, and trusted software applications. Therefore, each node should

have a repository of integrity measurements of these components. It should be noted that

we do not require all nodes to have the same configuration, but the configuration of any

node should be a subset of the repository, in order to pass attestation. In other words,

we do not require every node to have the same, immutable configuration; a node with

multiple safe configurations is supported.

The latter two assumptions may not be easily achieved in wild ad hoc networks since

heterogeneous computer devices exist in MANET [4]. However, our proposed solution can be

applied immediately in administrated environments, such as ad hoc networks formed during

corporate meetings, by a designed emergency response team, or in a military environment.

In addition, our solution can be applied in more environments if certificate administration

is solved and software integrity measurements can be published and maintained carefully.

67

6.5 NOTATION

We use the following notations in describing our algorithms and protocols in this chapter:

• R: a root node that initiates distributed attestation.

• NA, NB: node entities A and B in the network.

• PN : node N’s parent.

• AltPN : node N’s alternative parent.

• S: sender.

• N : node N or its identity.

• KIDN : node N’s group key identity.

• SN : the current state of Node N.

• PRIN : node N’s group priority.

• MrgPeerN : node N’s merge peer when N is engaged in a merge.

• TAttReq: the attestation request timer used in DA. It is the time during which a node

waits for attestation request messages from its children after the node broadcasting an

attestation request message. When this timer is triggered, the node stops to collect its

children and starts to do TPM quote.

• TAttRply: the attestation reply timer used in DA. This is the maximum time a node waits

for attestation reply messages from its parents and children. When this timer is invoked,

the node sends an attestation challenge to the parents and children from whom the node

does not receive attestation reply.

• TAttkey: the attestation new group key timer used in DA. This is the timer a node waits

for a new group key. If a node does not receive the new group key message in this time,

it sends an attestation challenge to its parents for the key.

• tBrdDelay: the delay that a node must wait for in sending its attestation request message.

The purpose is to avoid attestation message collision with its neighbors.

• tAttRplyDelay: the delay that a node must wait for in transmitting its attestation reply

message. This is determined based on the number of children a node has and the time

needed to transmit the AttRply message.

• tQuote: the time used in quoting the TPM.

68

• CAttRply: the time interval used in transmitting a packet from its sender to its receiver.

6.6 PROMISCUOUS UNICAST

A node in an ad hoc network could send a single BBKA (as described in section 4.2.2) request

and response to all its neighbors: BBKA messages need not vary per neighbor. Therefore,

the BBKA could broadcast its messages, instead of unicasting them. Broadcasting reduces

the number of messages and latency necessary for attestation. However, wireless data link

layers, such as Wi-Fi [58], often support broadcasting much less reliably than unicasting.

This section discusses promiscuous unicast, a technique that enables the network to reduce

the number of messages and the latency of certain distributed algorithms more reliably than

broadcasting.

Wi-Fi automatically acknowledges unicast frames and retries transmission if an acknowl-

edgment times out. Wi-Fi can also be configured to automatically fragment large unicast

frames and/or use small request-to-send/clear-to-send (RTS/CTS) control frames before

sending them. These mechanisms can promote fast recovery from collisions (e.g., due to

hidden terminals), and they can actually reduce the likelihood of collisions. However, they

are unavailable for broadcast.

Promiscuous unicast enables the BBKA and other distributed algorithms to achieve

broadcast benefits, such as fewer messages and less latency, without foregoing unicast’s

automatic RTS/CTS, fragmentation, and acknowledgments. Promiscuous unicast requires

wireless interfaces to be set in promiscuous mode. When a node needs to broadcast a

frame and it knows at least one destination, it sends a unicast frame to that destination

with a promiscuous unicast bit rather than a regular broadcast frame set in its header.

The frame’s destination enables the data link-layer frame RTS/CTS, fragmentation, and

acknowledgment, greatly reducing hidden-terminal effects. Other nodes that also receive the

frame treat it as a regular broadcast frame, thereby achieving the message-reduction benefit

of broadcasting.

Reception of a promiscuous unicast frame by n nodes may be less reliable than reception

69

h1 s h2r2r1

frame

ack

frame

Figure 6.1: Like broadcast, a promiscuous unicast frame can be received by all nodes (r1, r2)

within range of the sender (s). However, promiscuous unicast also provides fragmenta-

tion/reassembly and, for a designated receiver (r2), automatic retransmission (e.g., in case

of collision with h2). Higher-layer recovery is needed only for other errors (e.g., collision with

h1).

of n unicast frames, each destined for one of the nodes. As illustrated in Figure 6.1, promis-

cuous unicast does not promote automatic recovery, e.g., in case a hidden terminal transmits

at the same time, causing collision at a receiver other than the promiscuous unicast desti-

nation. Therefore, distributed algorithms that use promiscuous unicast need to have also

higher-layer acknowledgments, timeouts, and retransmissions. As a possible optimization,

on a higher-layer retransmission, the sender may vary the promiscuous unicast destination,

in an effort to avoid collisions in as many directions as possible.

6.7 DISTRIBUTED ATTESTATION

This section discusses distributed attestation (DA), a novel approach for nodes in an ad

hoc network to attest one another efficiently. DA first organizes the nodes in the network

systematically such that they can attest one another at the same time, then utilizes the

BBKA algorithm (described in section 4.2.2) to do the attestations. We assume that no

pre-established security channels are established among nodes in such ad hoc networks.

Therefore, we use the version of BBKA with DH key exchange. DA enables nodes in a

70

network can carry out attestation in parallel, thus greatly reducing the overhead that can

result from the attestation of many nodes in a large network if attestation is not well-

organized.

DA defines four types of messages: attestation request (AttReq), attestation reply (At-

tRply), new group key (AttKey), and no acknowledgment message (NAK). AttReq is used

by a node to solicit attestation with other nodes. AttRply is the BBKA attestation reply

message, which includes all of the necessary information about the node’s configuration.

AttKey is used to broadcast a new group key in a group. NAK is a message that tells the

receiver that a message that was expected has not been received by the sender. If neces-

sary, the node receiving the NAK message resends the requested message to the sender.

Besides these messages, several timers (i.e., TAttReq, TAttRply, TAttkey) are defined to regulate

the progress of DA such that a node can take some actions if it does not receive an expected

message from its neighbor in a limited time or if a specific event should be triggered at an

expected time. Several time variables and constants are defined to facilitate DA, including

tBrdDelay, tAltDelay, tQuote, and tAttRplyDelay (as describe in section 6.4).

Algorithm 1 Receiving an Attestation Request Message
1: if KIDN ≤ 0 then
2: if SN == IDLE then
3: PN = S; Set TAttReq;
4: else if N = PS then
5: if SN 6= Quote then
6: Add S to N’s children list;
7: end if
8: else if PN ≥ 0 and (AltP1N = −1 or AltP2N = −1) then
9: if AltP1N == −1 then

10: AltP1N = S;
11: else if AltP2N == −1 then
12: AltP2N = S;
13: end if
14: else if PN < 0 and RS > IDN then
15: PN = S;
16: end if
17: else if SN == IDLE then
18: Try merging with S;
19: end if

DA works in three stages. The first stage is attestation tree construction, which estab-

lishes the attestation relationship among the nodes. Figure 6.2 illustrates how the attestation

71

������

���
�

���
� ����

		

���
�

�

�
������ �������
�

������
������

������
������

��������������������

��������������������

������
���
������
���

��
�
��
�

������
������
������

������
������
������

������
������
���

������
������
���

root ��

!!"
" ##$$

%%&
&

''(
(

)�))�)*
*

++,
,

--.
.

/�//�/
/�//�/

0�00�0
0�00�0

1�11�1
1�11�1
1�11�1

2�22�2
2�22�2
2�22�2

3�3�33�3�33�3�33�3�3

4�4�44�4�44�4�44�4�4

5�55�5
5�55�5
5�55�5

6�66�6
6�66�6
6�66�6 7�77�7

7�77�7

88
88

99
9
::
:

(2) (3)(1)

attestation
requests

attestation
responses

new group secret

root

Figure 6.2: Distributed attestation achieves transitive configuration trust and key agreement

with as few as one attestation request and one attestation response per node (both destined

to node’s parent, but received promiscuously by node’s children) and one new group secret

message per interior node (destined to one of the node’s children, but received promiscuously

by the others).

tree is formed through the broadcast of an AttReq message. Any node can initiate this stage

by broadcasting an AttReq message to the network. An AttReq message includes a nonce,

a node’s parent, and its Diffie-Hellman (DH) public key. If a node receives an AttReq from

another node for the first time, it sets the sender as its parent and propagates the AttReq to

its neighbors after a random delay of time tBrdDelay, which is uniformly distributed within

a time constant CBrdDelay. After forwarding the AttReq, the node sets the timer TAttReq,

during which it adds a node into its children list if it receives AttReq from the sender with

the parent field set to its identity. Details about how a node processes an AttReq are shown

in Algorithm 1. Therefore, as the attestation request message is propagated, an attestation

tree is constructed. The initiating node is the root of tree and each intermediate node builds

the parent and children relationship with its neighbors. As a result of the first stage, each

node in the network aggregately receives AttReq from its neighbors at about the same time.

This facilitates applying the BBKA in the entire network. To further consolidate connections

among the nodes, our design allows each node to have alternative parents as well, which can

be set up as follows. After a node received an AttReq from its parent and is waiting to

propagate the message, it can set other nodes that it receives AttReq from as its alternative

72

parents. After this, in the second stage, each node can do attestation with its established

parents and children.

Algorithm 2 Receiving Attestation Reply Message
1: if PN == S and (N did not receive. AttRply from PN) then
2: if AttRply is verified then
3: set PN verified;
4: else
5: PN = −1;
6: end if
7: else if AltP1N = S then
8: if AttRply is verified then
9: set AltP1N verified;

10: end if
11: else if AltP2N = S then
12: if AttRply is verified then
13: set AltP2N verified;
14: end if
15: else if S is child of N then
16: if AttRply is verified then
17: update group size;
18: end if
19: end if

The second stage, BBKA attestation, is triggered by the timer TAttReq. As discussed in

section 4.2.2, when the timer is invoked, each node starts to quote its TPM for attestation

information based on BBKA since it has collected AttReq messages from its parents and

children. Once the node finishes its TPM quote, it waits for a random delay tAttRplyDelay,

which is uniformly distributed within the time that is based on the number of children the

node has as well as the time needed to transmit the AttRply message. Then, it promiscuously

unicasts its AttRply message to its parents and children, while simultaneously setting another

timer TAttRply to wait for AttRply messages from its parents and children. The random time

delay at each node is used to help reduce message collision, since a node could have many

children and it cannot receive AttRply messages from all of its children at the same time.

Once a node receives an AttRply from another node, it checks whether the sender is its parent

or child. If so, it updates its record which corresponds to the sending node. If not, it drops

the message. Algorithm 2 details how a node processes AttRply messages. A NAK message

is used to solicit an AttRply from a node’s parent or children if no reply has been received

in a limited time TAttRply. When the timer TAttRply is invoked, a node sets a separate timer

73

TAttKey for receiving a new group key. After the second stage, trust among nodes has been

built. Each node knows which of its neighbors are trustworthy. If a node cannot attest one

of its neighbors, it puts the neighbor into its blacklist, which maintains the list of untrusted

nodes in the network. The blacklist can be shared among trusted nodes later on.

The third stage of DA is called new group key dissemination. When TAttKey is invoked,

the root of the attestation tree sends its attested children the AttKey message, including a

newly-selected group identity, group key, and group priority. The group key is encrypted

using the secrets shared between the parent and its trusted children (derived from DH key

exchange algorithm). The AttKey message is propagated to other attested nodes in the

network. How a node processes the AttKey message is illustrated in Algorithm 3. This

new group key message is encrypted such that only nodes that succeed the attestation can

receive the key. The new identity key is used to authenticate messages among members of

this group later.

Algorithm 3 Receiving an Attestation New Group Key
1: if S == PN or S == AltP1N or S == AltP2N or (PS == N and S is trusted) then
2: if N is trusted by S then
3: update KIDN ; update group size;
4: if Number of children ¿ 0 then
5: send new group key message;
6: end if
7: end if
8: end if

Along with the new group key, the root node also sends its group priority number in the

AttKey message. The group priority number is an integer calculated as follows. When the

attestation tree is established, every parent node knows how many children it has. After

the second stage, the root node knows how many of its children are trusted. Also, since

each AttRply message from a node contains its number of children, the root also knows how

many children each of its trusted children has. The group priority number is the sum of the

root node’s trusted children and their children. The group priority number, which is the

estimation of the size of a trusted group, is used as a criteria when two groups merge.

74

6.8 ATTESTED MERGER

Attested merger (AM) is a merge and rekey protocol designed to help nodes in groups with

different group keys merge into one group. Nodes in a network are supposed to form a unique

group after the DA finishes. However, this does not always happen.

There could be many reasons why nodes in a network have different group keys after

DA. The two main reasons are the nodes’ mobility and message collisions, which could cause

partitions among nodes in the network at any stages of DA. One way such partitions can form

is if the nodes are physically partitioned from other nodes when DA starts. This can cause

the nodes to form their own groups. Also, even if the network is not physically partitioned,

a node can move from one location to another during DA such that it cannot be reached

by its established parents or children. This breaks the initial attestation relationship. The

broken parent and children form their own groups. Another possibility is that a node’s

AttRply or AttKey message may not be received by its neighbors due to message collision,

thus causing the group to fall apart during formation. Finally, malicious nodes may be inside

the network. Although they cannot pass the attestation of other nodes, their presence may

break the group into parts.

The attested merger protocol consists of two phases: merge and rekey. Both of these

phases are designed for simplicity. During the first stage, nodes in two groups attest each

other. It works as follows. When two nodes NA and NB in two different groups GA and

GB meet each other, they send merge request (MrgReq) messages to each other. The two

nodes then process these messages. As shown in Algorithm 4, based on the information in

the MrgReq message, the two nodes know each other’s group key identity, group priority

number, and more. They then compare the information received with their own.

Then the node (NA) in the group (GA) with the lower group priority number sends its

merge reply (MrgRply) message to the other node (NB). NB then verifies NA’s attestation

information, as shown in Algorithm 5. If the verification succeeds, NB sends MrgRply to NA.

Once NA receives and verifies NB’s MrgRply, it goes to the rekey stage. If the attestation

of either NA to NB or NB to NA is not successful, AM stops.

In the second stage, the rekey protocol helps the group with the lower group priority

75

Algorithm 4 Receiving a Merge Request Message
1: if KIDN == KIDS then
2: return;
3: end if
4: if SN == IDLE then
5: set N’s merge peer; set SN = MERGE; start TPM quote;
6: if PRIN < PRIS then
7: set TMrgSend to send merge reply to S;
8: else
9: set TMrgRply to wait for merge reply from S;

10: end if
11: else if MrgPeerN == S and (N initiated merge request to S) then
12: start TPM quote;
13: if PRIN < PRIS then
14: set TMrgSend to send merge reply to S;
15: else
16: set TMrgRply to wait for merge reply from S;
17: end if
18: end if

Algorithm 5 Receiving Merge Reply Message
1: if SN == MERGE and MrgPeerN == S and (N has sent and received MrgReq from S)

then
2: if PRIN > PRIS then
3: if S is verified by N then
4: send merge reply to S;
5: end if
6: else
7: if S is verified by N then
8: N updates its group key and identity to S’s; send RekeyDec message to other nodes in

its group;
9: end if

10: end if
11: end if

76

number update its group key and identity to the group with a higher group priority number.

This happens through a broadcast of a rekey decision (RekeyDec) message with the new

group key and identity encrypted, along with the current group key. In the above example,

NA simply broadcasts the new group key (from GB), encrypted with its current group key,

to its group members. Once other nodes in group NA receive the rekey decision message,

they update their group key and broadcast the same message to their neighbors in the same

group. Algorithm 6 shows how a node in a group processes the RekeyDec message.

Algorithm 6 Receiving a Rekey Decision Message
1: if KIDS == KIDN and (KIDN 6= the new group key id) then
2: update N’s KIDN and group size;
3: if SN == MERGE and PRIN < PRIMrgPeer and (N ’s group size ¿ MrgPeer’s group size)

then
4: reset N ’s merge state;
5: end if
6: forward the rekey decision message;
7: end if

6.9 MESSAGE FRAGMENTATION

This section discusses how we deal with message fragmentation in the AdHocSec layer.

Message fragmentation is needed if the length of a message sent from the AdHocSec

layer is greater than the Maximum Transmission Unit (MTU). In our design, most of the

messages used in DA and AM are very short. However, two messages (AttRply and MrgR-

ply) are typically about 5K bytes in length, since they contain a lot of information (e.g.,

attestation measurement log list, TPM quote result, TPM AIK certificate). Therefore, these

two messages need to be fragmented before being sent to the data link layer (DLL).

The method we use to fragment attestation messages in this work is similar to the

method used for IP fragmentation. The AdHocSec header includes two fields that are used

in fragmentation: isfrag and frag off. Isfrag indicates that a current packet is a fragment

and if there are subsequent fragments; frag off indicates the position of current fragment in

the entire message. Therefore, for the first fragment, isfrag is set to 1 and frag off is set to

0; for the last fragment, isfrag is set to 0.

77

When a node sends an attestation message to the data link layer, it first checks the

length of the message. If the message length exceeds the MTU, it slices the message into

fragments, which are then sent to the DLL. All of the fragments of a message share the same

sequence number in their headers. Therefore, when another node receives these fragments,

it is able to identify these fragments and defragment them.

When a node receives an attestation packet, it first checks the isfrag and frag off fields

in the AdHocSec header. If it finds the received packet is a fragment, it checks its fragment

queue. The receiver only starts to process an attestation message if it receives all the

fragments of the message and defragments them correctly.

Each node maintains a fragmentation hash table for all the fragmented messages it

receives. Each entry in the table is a structure identifying a fragmented message, and this

is where the node keeps all of the received fragments for a given message. When a node

receives a fragment, it finds the corresponding entry in the table by taking a hash based

on the sender’s identity, the sequence number, and the message type. Then, the node puts

the received fragment into its fragment list, which indexed by message. Next, it checks if it

has received all of the fragments. If it has, the node defragments the message and starts to

process it. Otherwise, it waits for the arriving of other fragments.

The AdHocSec layer does not contain any explicit mechanism for acknowledging each

fragment sent. Rather, the acknowledgement for each fragment relies on a mechanism of

the 802.11 MAC layer. However, the AdHocSec layer does provide a timeout mechanism

for each attestation message. If a node expects to receive a specific attestation message and

it does not within a limited time, it sends a NAK message to a corresponding node. Once

another node receives the NAK message, it tries to resend the attestation message to the

node. This mechanism is similar to what transpires in the TCP and IP layers. The IP layer

provides fragmentation, but no reliability, while TCP provides reliable data transfer. The

disadvantage of this scheme is that the entire message must be resent if even one fragment

is not delivered correctly.

78

Distributed
Attestation

IPAttested
Mergeer

Logical Link Control

ARPSecure
Frame

Figure 6.3: AdHocSec is implemented between the network and data link layers and is

comprised of three protocols: Secure Frame, Distributed Attestation, and Attested Merger.

MIC

8 bytes

PNGID PUF

1 bit 6 bytes

EtherType SF payload

2 bytes47 bits

Figure 6.4: Secure frame includes fields of group secret ID (GID), promiscuous unicast flag

(PUF), packet number (PN), payload, Ethernet type, and message integrity code (MIC).

6.10 ADHOCSEC LAYER

This section describes AdHocSec’s layering and frame format.

AdHocSec is comprised of three protocols: DA, AM, and Secure Frame (SF). They are

layered directly on top of LLC, with different EtherType values from those of IP and ARP.

DA and AM frames are used for distributed attestation and attested merger. SF provides

confidentiality, authentication, and replay protection for data frames. Figure 6.3 illustrates

the layering of DA, AM, and SF.

SF defines a header and a trailer for each SF payload, as shown in Fig. 6.4. The SF trailer

contains a message integrity check (MIC). SF uses an efficient symmetric-key algorithm

similar to AES-CCMP [32] for encrypting the SF payload and computing the MIC. The SF

header’s group secret id (GID) field identifies the key used for encryption and authentication.

This key is set by the DA or AM protocols. If an SF receiver receives an SF frame with

group secret id whose corresponding key the receiver does not know or indicates that the

MIC field is inconsistent, the receiver drops that frame. When DA or AM modifies the group

secret id and key, SF saves the previous values for enough time to accommodate frames that

may be in transit. The SF header’s EtherType field may have values IP or ARP.

79

Msg. Type

2Octets:

Message Body

2

Fragmentation

Bits

MF

1

Frag. Seq

15

Figure 6.5: DA/AM frames include fields of more fragment flag, fragment number, message

type, and payload.

Use of the SF layer could be governed by a Security Policy Database (SPD) similar to

IPsec’s [11]. In this case, communication with certain nodes might use SF, while commu-

nication with other nodes might not. If an outgoing IP datagram needs SF and the node

is not in key agreement, AdHocSec could automatically invoke DA, much like IPsec invokes

IKE. We have not implemented this functionality, however. In our simulations, either all or

no traffic used AdHocSec.

The sequence number in the SF header increments by one for each SF frame transmitted

to a receiver with a given group key. SF receivers use this field to detect and discard replayed

frames. SF receivers keep in a hash table the highest sequence number received (if any) with

a given key from each sender. SF receivers drop frames with sequence number not greater

than that found for the sender in the receiver’s table. This replay protection is effective for

unicast frames, but may fail for broadcast frames. In particular, an intruder can capture

a broadcast frame and replay it to any receiver not within range of the original sender

(wormhole attack [68]). To protect ad hoc networks against such attacks, defenses such as

packet leashes [68] are needed.

The DA/AM protocol comprises a header and a payload, as shown in Fig 6.5. The

DA/AM header contains the message type for DA and AM. It also contains the fields for

DA/AM message fragmentation, especially for DA/AM attestation reply message since its

length is usually greater than 2K bytes.

Figure 6.6 lists the format for different types of DA and AM messages. The Grp. Size

in all of the messages in Figure 6.6 indicates the size of attestation group; GID is the group

80

Depth

2 20 128

DH Public KeyNonce

Octets: 6

AttRoot
sub
type

1

(a) Attestation request

Grp. Size

Octets:

Attestation quote, Measurement log, and Certificate.

Nonces and DH public keys from participating nodes

(b) Attestation reply

16

new group key

8

MIC

Octets:

GID

2

Grp. Size

6

(c) Attestation new group key

GID

6

Grp. Size

2

Nonce

20 128

DH Public KeySess Id

2Octets:

(d) Merge request

New Grp. Key

16

MIC

8

Attestation quote result
measurement log, certificate

Octets:

(e) Merge reply

6

New GID

6

GID

2

New
Grp. Size

Octets:

New Grp. Key MIC

16 8

(f) Rekey decision

Figure 6.6: Distributed attestation and attested merger message format

identifier; MIC is the message integrity code for the message. In figure 6(a), AttRoot identifies

the root of the distributed attestation tree and is usually the node that initiates DA; Depth

indicates the depth of the node in the tree; and subType indicates whether the attestation

request is an initial request or an attestation refresh request. The Sess. ID in Figure 6(d)

is a random number that uniquely identifies the session between the two nodes that engage

in attested merger. Since two nodes could send merge request randomly when they meet

each other, the session ID in the message acknowledges that two nodes receive merge request

from each other and agree to engage to merge.

Implementing AdHocSec between layers 2 and 3 provides both benefits and difficulties.

The major benefit is that it enables AdHocSec to transparently secure layer-3 functionality,

such as ad hoc routing and forwarding, as well as higher-layer protocols and applications,

without modifying them. However, this architecture also imposes certain constraints. In

particular, we had to carefully avoid the use in AdHocSec of primitives that might intro-

duce circular dependencies with higher layers. For example, one might use a leader-election

81

algorithm in DA to avoid the formation of multiple trees. However, one would then need

to secure the leader election, which would be difficult. Instead, we used in AdHocSec only

link-layer functions, enabling AdHocSec to secure higher-layer algorithms, including leader

election.

6.11 EVALUATION

We evaluate our work by both simulation and implementation. Simulation enables us to see

the performance of our work in a large network with many nodes. Implementation tests if

our approach works well in real systems.

For simulation, we used the ns-2 network simulator [69]. To add the AdHocSec layer

into ns-2, we create and insert a new component in the ns-2’s wireless model, in which we

implement our attestation algorithms.

For implementation, we modified the Linux kernel and used the implementation technique

similar to PRAN [70].

6.11.1 SIMULATION

We use the following set up for simulation. We have 50 nodes with random location in the

field of 1500m x 300m. Of the 50 nodes, there are 20 pairs of sources and destinations.

Each pair transmits UDP packets with a CBR (Constant Bit Rate) of 4 packets per second.

The length of each UDP packet is 512 bytes. Each pair starts to send and receive packets

at a random time uniformly distributed between 0 and 180 seconds. Each node propagates

using the two-way ground propagation model with nominal radio range of 250 meters. The

original routing protocol used is DSR [37]. Each simulation takes 900 seconds.

We run the simulation using a Dell Dimension 4550 workstation with a Pentium-4 2.4GHZ

CPU, 256M RAM, Fedora core 3, Linux 2.6.14 kernel, and ns-2 version 2.28. We collect the

simulation traces and use Perl scripts to process them. The following sections discuss our

results, as they relate to attestation overhead and network performance.

82

To evaluate our work, we designed two sets of simulation experiments. The first set eval-

uates the performance of the designed attestation algorithms, while the second set compares

AdHocSec with other secure approaches (Ariadne).

Table 6.1: Nodes’ Speed Ranges and Steady-State Average Speeds

Speed range Steady-state avg. spd.
[12,32] 20.39
[11,31] 19.30
[10,30] 18.20
[9,29] 17.09
[8,28] 15.96
[7,27] 14.82
[6,26] 13.64
[5,25] 12.43
[4,24] 11.16
[3,23] 9.82
[2,22] 8.34
[1,21] 6.57
[1,19] 6.11
[1,17] 5.65
[1,15] 5.17
[1,13] 4.68
[1,11] 4.17
[1,9] 3.64
[1,7] 3.08
[1,5] 2.49
[1,3] 1.82

[0.2,1.0] 0.50

6.11.1.1 ATTESTATION PERFORMANCE EVALUATION We evaluated the

attestation performance to answer the following questions: how long it takes the network

to reach a trusted state in which every node has been attested and the network has a

global group key and what network load (i.e., number of attestation packets and bytes) do

our algorithms bring into the network? We collect the following matrices for performance

measurement during the simulation:

• Latency for Global Key Agreement: the attestation time used from the beginning of the

initial distributed attestation to the time when all nodes in the network has the global

83

key.

• DA and AM Packet Overhead: the number of DA and AM messages used.

• DA and AM Byte Overhead: the number of bytes used for DA and AM.

• DA and AM message type distribution: the distribution of types of message used during

attestation.

Table 6.2: Timers and Time Variables Used in DA and AM

Timers time (seconds)
TAttReq 0.08
TAttRply 0.80
TAttkey 0.60
tQuote 0.71

CAttRply 0.021
tBrdDelay uniformly distributed within 0.024

tAttRplyDelay jitter(maxslot(depth)) * CAttRply

tAltDelay 0.012

To evaluate the attestation performance, we warmed up each simulation until the nodes’

average speed reached a steady state before starting our algorithms and measurements [71].

Using the tool provided by LeBoudec and Vojnovic [71], we generate the node’s movement

pattern in this simulation. Table 6.1 shows the speed ranges and steady-state average speeds

of 23 nodes used in our simulations. For each average speed, we ran 10 random scenarios

with different seeds and initial node locations. The timers and time constants used in the

simulation are listed in Table 6.2.

The overhead for the AdHocSec layer of encryption and authentication is based on the

benchmark result from the Crypto++ Library 5.2.1 [72]. The benchmark was run on a

system with an AMD opetron CPU 1.6GHZ and Linux kernel 2.4.21. The throughput for

the AES algorithm is 46.461MB per second. Therefore, the delay caused by the AdHocSec

layer is calculated based on the size of message payload and the AES algorithm throughput.

The experiment results for the performance of attestations are presented and discussed

in the follows.

Figs. 6.7 through 6.12 evaluate the DA and AM protocols with null random-waypoint

pause time. Figure 6.7 shows the latency for all 50 nodes to reach transitive configuration

84

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20

La
te

nc
y

fo
r

G
lo

ba
l K

ey
 A

gr
ee

m
en

t (
s)

Steady State Ave. Speed (m/s)

Figure 6.7: The latency for reaching global key agreement does not change very much with

steady-state average node speed and typically remains between 4 and 8 s.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

Latency for Global Key Agreement (s)

Figure 6.8: About half of the scenarios reached global key agreement in less than 5 s, and

95% did so in less than 8 s.

85

 200

 250

 300

 350

 400

 450

 500

 550

 0 5 10 15 20 25

D
A

 +
 A

M
 P

ac
ke

t O
ve

rh
ea

d

Steady State Ave. Speed (m/s)

Figure 6.9: The average number of packets sent by the DA and AM protocols is close to the

theoretical lower bound when nodes do not move; increases are roughly proportional to the

steady-state average node speed.

trust and global key agreement. As the standard deviation shows, latency fluctuates at each

steady-state average speed. However, the average latency does not change too much with

average node speed. This indicates that the DA and AM work very well, regardless of the

average node speed in the speed range listed in Table 6.1. Figure 6.8 shows the cumulative

distribution function of latency for global transitive configuration trust and key agreement.

For all simulated scenarios, global key agreement takes less than 5.0 s in about 50% of the

cases, and less than 8.0 s in about 95% of the cases.

Figures 6.9 and 6.10 illustrate the number of packets and the number of bytes transmit-

ted, respectively. In both cases, the number used for DA and AM grows roughly proportion-

ally to the steady-state average node speed.

Figure 6.11 explains the relationships seen in Figures 6.9 and 6.10. For networks in which

the nodes do not move, the average number of partitions is less than two, and AM often

is not needed for global key agreement. However, as nodes move faster, neighbors move

further apart before DA completes, and the number of partitions that AM needs to merge

increases. At 20.39 m/s, the average number of partitions is three. The higher the number

of partitions, the higher the packet and byte overhead incurred to merge them.

86

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 240

 0 5 10 15 20 25

D
A

 +
 A

M
 B

yt
e

O
ve

rh
ea

d
(B

yt
es

*1
03)

Steady State Ave. Speed (m/s)

Figure 6.10: Number of bytes sent by DA and AM.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25

A
ve

. P
ar

tit
io

n
N

um
be

r

Steady State Ave. Speed (m/s)

Figure 6.11: When nodes do not move, DA often can achieve global key agreement without

any mergers. However, higher node speeds tend to fracture DA’s spanning trees, increasing

the number of partitions that need to be merged by AM.

87

 0

 20

 40

 60

 80

 100

0 0.5 1.8 3.1 5.2 8.3 9.8 13.6 15.9 18.2 20.39

A
ve

. D
A

 a
nd

 A
M

 M
sg

. T
yp

e
D

is
tr

ib
ut

io
n

Steady State Ave. Speed (m/s)

AttReq
AttRply

NAK
AttKey

MergeReq
MergeRply
RekeyDec

Figure 6.12: On average, when nodes do not move, each node transmits only about one

attestation request and one attestation reply, as expected. However, when the average node

speed increases, the frequency of NAKs and merger attestation requests rises markedly: more

neighbors move out of range before DA completes and therefore start AM.

88

Figure 6.12 shows the average number of packets of each type. The marked increase in

the frequency of MrgReq is symptomatic of the higher number of partitions that exist as

node speeds increase. The number of AttReq is close to the number of nodes. However, the

number of AttRply is usually more than the number of nodes, due to AttRply fragmentation,

message collision, and loss caused by node movement. The number of other attestation

messages increases a little with the average node speed, but not much. This indicates that

the DA and AM protocols work well in handling increases of node speed.

6.11.1.2 COMPARING WITH ARIADNE The objective of this second simulation

is to compare the network impact of AdHocSec with other security approaches. Since our

solution is the first approach that integrates attestation in ad hoc networks, we cannot

compare our solution with other experiments using the same approach. However, since

AdHocSec protects any original routing protocols (e.g., DSR [37]), its addition to an ad hoc

network replaces the use of secure routing protocols (e.g., Ariadne [13]). Therefore, we glean

valuable information by comparing AdHocSec and the alternative it may replace, Ariadne,

in terms of their network performance. (It is worth noting, however, that AdHocSec protects

more than just routing protocols, and so the benefits of these two options are not initially

equal.)

For this purpose, we run the simulation (almost the same configuration as Ariadne) with

different node pause times of 900, 600, 300, 120, 60, 30, and 0 seconds. For each pause time,

we run the simulation with 10 different scenarios (i.e., different node locations and random

seeds). In total, we complete 70 simulations. For each pause time, we calculate the average

of the 10 runs. These are the figures from 6.13 to 6.16 illustrated in the results graph and

discussed below. The 70 simulation scenarios are generated using tools included in the ns-2

simulator. The node movement pattern is generated using “setdest,” while the traffic pattern

is generated by using “cbrgen.tcl.”

We collect the following metrics for comparing AdHocSec and Ariadne during the second

set of simulations:

• Data packet delivery ratio: the ratio of the number of data packets received versus the

number of data packets sent.

89

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900

D
at

a
P

ac
ke

t D
el

iv
er

y
R

at
io

Pause Time (s)

DSR
DSR + AdHocSec

Ariadne

Figure 6.13: Data packet delivery ratio. AdHocSec has much lower impact on DSR perfor-

mance than does Ariadne.

• Data packet average latency: the average latency for data packets to reach their destina-

tions.

• Routing packet overhead: the number of routing packets sent during the simulation.

• Routing byte overhead: the number of bytes of routing packets sent during the simulation.

The simulation results are presented and discussed in the follows.

Figures 6.13 through 6.16 evaluate AdHocSec after global key agreement (i.e., primarily

SF). To increase validity when comparing our findings to previously published results [13],

we did not warm up the simulations before measurements.

Figures 6.13 through 6.16 also show previously reported average performance of Ariadne,

a secure version of DSR, for the same scenarios [13]. Note that DSR with AdHocSec differs

from Ariadne in dimensions other than performance. Compared to DSR with AdHocSec,

Ariadne has the disadvantage of securing only routing, not other protocols or applications. It

also has the advantages of not requiring TPM or any other hardware support and, thus, being

immune to hardware attacks against it. Note that optimization might improve Ariadne’s

previously-reported performance.

Figure 6.13 shows the data packet delivery ratios. DSR’s delivery ratios with and without

AdHocSec are statistically indistinguishable, with both being above 96%. Ariadne is reported

90

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700 800 900

D
at

a
P

ac
ke

t L
at

en
cy

 (
s)

Pause Time (s)

Ariadne
DSR

DSR + AdhocSec

Figure 6.14: Differences in DSR data packet latency with or without AdHocSec are not

statistically significant.

to have a significantly greater overhead, reducing the delivery ratio for continuously mobile

nodes to 76%.

Figure 6.14 shows the data packet latencies. DSR latencies with and without AdHocSec

are statistically indistinguishable. Reported latencies for Ariadne are much greater (0.75 s

vs. 0.38 s for continuously mobile nodes and 0.47 s vs. 0.02 s for immobile nodes).

Figures 6.15 and 6.16 show, respectively, the number of packets and the number of

bytes sent by routing protocols during the simulation. DSR’s overheads with and without

AdHocSec are statistically indistinguishable. Ariadne’s reported overheads are much greater

(118,000 vs. 34,000 packets and 26 MB vs. 2 MB for continuously mobile nodes, and 40,000

vs. nearly 0 packets and 15 MB vs. nearly 0 bytes for immobile nodes).

These figures show that AdHocSec’s overhead is very small. AdHocSec can secure rout-

ing, forwarding, and higher-layer protocols and applications with little effort and overhead.

6.11.2 IMPLEMENTATION

In addition to the simulations, we implement AdHocSec in Linux as well. This enables us to

evaluate our approach in real systems. Our implementation uses the same methodology as

the work described in [70], in which the real implementation makes use of simulation (protocol

91

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800 900

R
ou

tin
g

P
ac

ke
t O

ve
rh

ea
d

(P
ac

ke
ts

*1
03)

Pause Time (s)

Ariadne
DSR

DSR + AdHocSec

Figure 6.15: Ariadne’s packet overhead is much greater than AdHocSec’s.

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900

R
ou

tin
g

B
yt

e
O

ve
rh

ea
d

(B
yt

es
*1

06)

Pause Time (s)

Ariadne
DSR

DSR + AdHocSec

Figure 6.16: Unlike Ariadne, AdHocSec adds negligible byte overhead to DSR.

92

user level

kernel level

Network Layer

Data Link Layer

NS2 AdHocSec

Figure 6.17: AdHocSec implementation in Linux

written for ns-2 simulator) with little modification. Therefore, the proposed protocol is not

re-implemented in the OS kernel, but still uses the NS2 simulator running at user-level.

The OS kernel is modified to provide some interfaces to communicate with the user-level

protocol. Each time the protocol is needed, the OS kernel communicates with it through the

provided interfaces. Since we leverage the protocol implemented in the NS2 simulator, all

the parameters (e.g., broadcast delay, attestation request timer, new group key timer, etc),

besides the real implementation (e.g., attestation quote delay, attestation and merge reply)

used in the simulation are still valid.

The advantage of this implementation, as explained by Saha et al. [70] is that the same

protocol can be used for both the simulation and implementation, with little modification

needed. Another means of doing implementation is to actually insert the AdHocSec layer

between the network and data link layers of the Linux kernel. This methodology is possible,

but would likely require additional, time-intensive work unnecessarily. The advantage of this

approach is a reduction in the amount of code-writing that is required, since the simulation

code can be used for both the ns-2 simulator and the real system. The disadvantage is that

packet processing is slow, since all of the network traffic must be diverted to the user level

for processing. For an efficient real system, the implementation should be done at kernel

level.

93

6.11.2.1 METHODOLOGY Figure 6.17 shows the framework of our implementation.

We run the modified ns-2 simulator with our added AdHocSec layer at the user level and

provided hooks inside the Linux kernel. These hooks reside between the network and data

link layers of the Linux kernel network stack. Packets from either the data link layer or the

network layer are directed to the user-level ns-2 simulator to be processed by the AdHocSec

layer implementation. Output packets from the ns-2 simulator are fed back to the hooks for

the Linux kernel to process. If the packets are going out, they are fed into the data link

layer, otherwise the network layer.

In our implementation, packets flow through a node as follows. Any downstream packet

from the network layer (a packet from an application, routing, or ARP) is intercepted by

the hooks in the kernel. This packet is then diverted to the user-level ns-2 simulator with

AdHocSec implemented. If the node does not have a group key, AdHocSec drops the packet.

Otherwise, AdHocSec wraps it, by adding the SF header, encrypting it, and adding the MIC

(Message Integrity Code), then feeds it back to the kernel through the hooks. The packet is

then delivered to the lower level of the network stack.

An upstream packet is processed as follows. When the node receives a packet from

its NIC (Network Interface Card), the hooks in the Linux kernel first divert the packet

to the user-level ns-2 simulator. If the received packet is either a DA or AM attestation

message, AdHocSec processes it and send a reply attestation message downstream through

the hooks. If the received packet is a data packet (a packet from an application, routing, or

ARP), AdHocSec verifies the packet and removes the SF header, then feeds it back to the

kernel through the hooks. The packet is then delivered to the network layer. Therefore, the

AdHocSec layer in the ns-2 simulator fulfills the functions defined as occurring between the

network and data link layers in the stack, while remaining in the user level of the system.

The hooks between the Linux kernel and the ns-2 simulator are implemented by using the

raw PACKET socket interface defined in Linux. The PACKET socket enables applications

at the user level to receive and send packets directly to the NIC without going through

the TCP/IP layer, thus allowing users to manipulate the packet format and protocol. The

hooks must be designed to consider several different packet flows, including how to divert

a receiving packet from the DLL to ns-2 and how to divert a downstream packet from the

94

network layer to ns-2. For the output packets from ns-2 simulator, the hooks must also be

designed to consider how the ns-2 simulator transfers packets to either the network layer or

the DLL.

With these concerns in mind, we begin by creating a raw PACKET socket in the ns-2 to

send and receive packets to the Linux kernel. It is quite simple to divert a receiving packet

from DLL to the ns-2 simulator by using the PACKET socket, which can be configured to

only receive packets with the SF header. In order to divert an outgoing packet from the

network layer to the ns-2 simulator, we modified the kernel file dev.c so that the packet is

diverted to the created raw PACKET socket before the kernel passes it to DLL. An outgoing

packet from ns-2 can be either a downstream packet heading to the DLL or an upstream

packet going to the network layer. We modify the kernel file af packet.c so that an outgoing

packet from ns-2 with a SF header is delivered to DLL and a packet with just the IP or ARP

header is delivered to the network layer.

Ns-2 is also modified such that it can communicate with the Linux kernel correctly.

Since packets used in ns-2 are different from the real packets in a system, we have to add

a packet converter in ns-2. For packets received from the hooks, the converter acts as an

interface to convert packets received from the Linux kernel to ns-2 packets. Otherwise, if

ns-2 is outputting a packet to the Linux kernel, the converter converts the ns-2 packet to

real packet, and sends it to Linux kernel.

6.11.2.2 EXPERIMENT RESULTS After we finished the implementation, we did

two sets of experiments. We first installed the implemented system on three computers, two

IBM laptops and one IBM workstation, all with embedded TPM secure coprocessors, and

did some analytical experiments. We tested the DA and AM algorithms on these computers,

with positive results. After attestation, we run some user-level applications, such as ping,

SCP (Secure CoPy), and ssh. These applications are able to run without any problems.

While these applications were running, we checked the debug information displayed on the

screen and could see that the packets go through the Linux kernel and the AdHocSec layer

in the ns-2 simulator correctly.

We further did some experiments and collected the experiment data, by using another

95

two laptops: one IBM laptop with AtMel TPM version 1.1, and the other HP Compaq

nw8440 laptop with Infineon TPM chip version 1.2 (note that these two laptops use different

TPM chips and versions and thus require different Linux kernel drivers and user-level support

utilities).

We use the following metrics to evaluate our implementation.

• Round trip time (RTT) and throughput between two nodes without AdHocSec imple-

mentation.

• RTT and throughput between two nodes with AdHocSec implementation, but no AES

CCMP for packet encryption and authentication.

• RTT and throughput between two nodes with AdHocSec and AES CCMP implementa-

tion. the above two experiments are used to evaluate the impact of AES CCMP in the

implementation.

• Latency, number of packets, and number of bytes for reaching key agreement between

two nodes when they are within range of each other (tests distributed attestation).

• Latency, number of packets, and number of bytes for reaching key agreement between

two nodes when they are within range of each other, but in different group (tests attested

merger).

For the above experiments, we use ping (by pinging from one node to another for 10 times)

to measure the RTT, and TTCP to measure the throughput between two nodes. When we

use TTCP, we set one node as receiver, and another one as sender to transfer a file Linux-

2.6.18.8.tar.bz2 (Linux kernel source) with the size of 41,842,273 bytes. The throughput was

measured with the following setting: buflen=8192, nbuf=2.48, align=16384/0, port=5001,

and TCP protocol. Experiment results are showed in tables 6.3, 6.4, 6.5, and 6.6. One thing

that keeps in mind when we look at the experiment results here is that we basically leverage

the protocol implemented in the NS2 simulator, therefore, all the parameters (e.g., broadcast

delay, attestation request timer, new group key timer, etc), besides the real implementation

(e.g., attestation quote delay, attestation and merge reply), used in the simulation are still

valid.

96

Table 6.3: Round trip time (ms)

Average Standard deviation
W/o AdHocSec 2.14 0.40
AdHocSec w/o CCMP 2.34 0.19
AdHocSec w/ CCMP 2.47 0.39

Table 6.4: Throughput (KB/s)

Average Standard deviation
W/o AdHocSec 553.39 0.56
AdHocSec w/o CCMP 543.82 3.21
AdHocSec w/ CCMP 541.32 1.68

From table 6.3, we can see that the AdHocSec layer (with CCMP implemented) causes

0.3ms more latency, which is about 15%. Considering that this implementation is based on

NS2 simulator and runs at user-level, we think this is a pretty good performance. Also as

we can see, CCMP encryption and authentication to packets do cause a little more delay,

but is very acceptable.

Table 6.4 shows the measured throughput between two nodes by using TTCP. As we can

see, AdHocSec with CCMP implementation did reduce the throughput by 12KB/s (about

2.1%), compared with the measurement without AdHocSec implementation. This shows that

AdHocSec really does not affect too much the network performance in term of throughput.

Also, we can see that there is little difference between the one with CCMP and without

CCMP implementation.

Table 6.5 shows the latency between two nodes for DA and AM. We did the experiment

for twice with different setup. One was done with the number of entry in the attestation

measurement log is 1, the other was node with number of entry is 67. Since the size of

measurement log affects the size of attestation and merge reply, we want to see its impact to

global key agreement latency. The reason we used 67 in the measurement log list is because

97

Table 6.5: DA and AM latency (s) with the number of entry in measurement log is 67 and 1

Number of entries in measurement log 67 1
DA avg. 1.15 1.03
DA stdev 0.21 0.04
AM avg. 0.806 0.789
AM stdev 0.002 0.004

our simulation was done with this parameter.

The latency for DA was measured at the node that receives attestation request, not the

one that initiates DA. The experiment was done in the following procedure. The two nodes

were started to do DA at almost the same time. Each node started to send attestation request

periodically since they were in unattested state. When one node received the attestation

request from another node, it treated the sender as its DA parent and recorded the starting

time. DA continued between the two nodes. Finally, when the child node received the new

group key from its parent, it recorded the time. The interval between the two time recorded

is the value for DA in table 6.5. The latency for AM was measured by taking one of the

two nodes (after they finished DA) down for a while, then restarted. Since the other node

was already in attested stage, but the one that was took down in unattested stage, they

started to merge. The time for AM showed in Table 6.5 is the time interval on the node

that was restarted. The experiment for DA and AM latency was done for 5 times to have

the average and standard deviation. As we can see, the latency in Table 6.5 and Figure 6.7

is different. This is mainly due to that, in this implementation experiment, we only had two

nodes, therefore, there is not too much delay required for attestation reply and new group

key dissemination. And there was no group partition. Figure 6.7 shows the global attestation

latency for 50 nodes. There are always partitions due to some reason. therefore, the latency

in that Figure usually is a little more than the sum of DA and AM. Section 6.12.1 analyzes

the latency for DA and AM in detail.

Table 6.6 lists the packet number and bytes transferred between the two nodes. We

watched that there was only one number of message for each type of messages transferred.

98

Table 6.6: DA and AM message size (bytes) when the number of entry in measurement log

is 67 and 1

Number of entries in measurement log 67 1
ATT REQ 176 176
ATT RPLY 2074+2074+508 2074+96
NEWGRP KEY 50 50
MRG REQ 176 176
MRG RPLY 2074+2074+470 2074+58
REKEY 74 74

As we can see, the attestation and merge reply messages are fragmented into three frames

when they were sent out with 67 entries in measurement log, but two with one entry in

measurement log. Together with Table 6.5, we can see that the size of measurement log

did impact DA and AM. If there are lots of nodes involved in DA, size of measurement log

affects the number of frames, thus causes collision and delay.

6.12 PERFORMANCE ANALYSIS

In this section, we analyze the performance of our designed algorithms, including DA, AM,

and SF. The performance metrics we discuss here include the attestation latency for global

key agreement, bandwidth consumption, and the impact of SF on upper level protocols and

user-level applications.

6.12.1 LATENCY FOR GLOBAL KEY AGREEMENT

The attestation latency for global key agreement depends on many issues, including the DA

and AM algorithms, the distribution of the nodes’ physical locations, and traffic patterns

among the nodes in a network. In this section, we only discuss the impact of DA and AM

on it since we have no control of nodes’ physical locations and traffic patterns. However,

99

we should know that nodes’ physical partitions can cause a long latency for the global key

agreement, as indicated in Figure 6.7, where the nodes’ average steady speed is 1.82 seconds.

Traffic pattern among nodes affects AM since AM is triggered by the communication between

two nodes with different group identities; two groups may not be able to merge if they do

not communicate.

We aim to give a low bound for the attestation latency and analyze the impact of DA and

AM on it separately. In the following, we first analyze the latency caused by DA (TDAlatency),

then the latency caused by both DA and AM (Tlatency). After that, we analyze the special

case for DA and AM in which there are only two nodes involved in attestation.

For an intermediate node in the DA tree, TDAlatency is affected by the timers and other

time variables used in DA. As we discussed in section 6.7, DA attestation proceeds in three

stages. During these stages, several timers, including TAttReq, TAttRply, and TAttKey, are used

to regulate the DA process. Besides these timers, some other time variables and constants

are also used. tBrdDelay is the delay before a node sends an AttReq message when it receives

an AttReq from its parent. taltdelay is the extra time delay that a node waits for AttReq

from its alternative parents before sending its AttReq message. tQuote is the time consumed

by the TPM quote. tAttRplyDelay is the random time delay that a node needs to wait before

sending its AttRply message to its parent and children, in order to avoid message collision.

These timers, time variables, and time constants all together affect the attestation latency

for global key agreement.

TDAlatency = tBrdDelay + tAltdelay + TAttReq + tQuote + TAttRply + TAttKey (6.1)

The relationship between the DA latency TDAlatency for an intermediate node and these

timers, variables, and constants is shown in Equation 6.1. tBrdDelay is a variable uniformly

distributed between 0 and the maximum values. If we take its minimum value, based on

Equation 6.1 and Table 6.2, we can estimate the minimum value of TDAlatency:

TDAlatency > 2.20 s (6.2)

However, the timing for the root of a DA tree is a little bit different from an interme-

diate node. The attestation root does not need to wait for a tAltdelay, but its attestation

100

starting time depends on the attestation startup jitter, which is the random time uniformly

distributed between 0 and 2.5 seconds (as in our simulation experiment). As we find in

our simulation, most root nodes can pick up a very small value to start the DA process,

therefore, we ignore this overhead. By eliminating tBrdDelay and tAltdelay in Equation 6.1, we

can obtain a modified DA latency for the root as follows.

TDAlatency > 2.19 s (6.3)

The analysis of attestation latency above is based only on DA, and we assume that all

of a network’s nodes are able to participate in DA and form one group. Another issue that

is neglected in the above analysis is message loss, which may cause more latency. Therefore,

the TDAlatency poses a low bound for attestation latency caused by DA.

AM brings little overhead to the latency for the global key agreement once it starts. The

main overhead is the time used for the TPM quote (about 0.71 seconds). Therefore, if a

network is partitioned after DA, the latency Tlatency should, at least, be greater than the sum

of TDAlatency and CQuote. However, two partitions may not be able to merge immediately after

DA finishes since the two partitions may not reach each other at that time. This creates

more delay in the attestation latency. Therefore, with AM, the total latency for the global

key agreement is changed to:

Tlatency ≥ TDAlatency + CQuote = 2.90 s (6.4)

As we discussed before, many factors, such as physical partition, node movement, and

message collision, can cause nodes in a network to be partitioned during DA. Therefore, our

estimation of Tlatency only defines a lower bound for the attestation latency. Indeed, some

situations in our simulations are able to reach global key agreement during DA without

partitions. Their attestation latency is quite close to our analysis results reported here.

The discussion above applies to a network with many nodes. The special case is that

there are only two nodes in a network just like the experiments we did in section 6.11.2. In

such case, the latency for DA is about 1.15 seconds (in Table 6.5). Equation 6.2 indicates

that the lower bound for DA latency is 2.20 seconds. However, that includes the timer for

TAttRply and TAttKey, which does not apply for the two-node case since the parent node knows

101

������������ ���
�

���
��������

�
		

G1

G2

Figure 6.18: Two groups engaged in AM

it only has one child and the child node knows it is the leaf node of the tree. Therefore, they

do not have to wait, but send attestation reply and new group key messages immediately.

If we do not count these two timers (the value are showed in Table 6.2), the estimated DA

latency from Equation 6.1 is 0.8 seconds. Considering that our implementation uses user-

level NS2 simulator, not a kernel-level implementation, we think that our simulation and

implementation results match well.

6.12.2 ATTESTED MERGER ANALYSIS

AM enables two groups with different group identities to merge into one group. It is com-

posed of two processes: merge and rekey. The merge is based on groups’ priorities. The

rekey process is triggered by broadcast of RekeyDec messages in the group with lower group

priority. In this section, we analyze AM to answer the following questions: (1) how good

the group priority is, and (2) how well the rekey process works when there are many groups

involved in AM at the same time.

The group priority number is an estimation of a group’s size that is calculated during

DA. Two groups merge based on their group priority, which has several advantages. First,

the number is based on the size of the first two levels of the DA tree; therefore, it does reflect

the size of the tree, to some degree. Giving priority to big groups with many nodes makes

small groups merge into big groups. In addition, the way the group priority is calculated

may be the best approach to estimating a group’s size during DA since the root of DA tree

102

������������ ���
�

���
�������������

		

������������

�
�

���
�������������

������������
������������

������������

G1

G2

G3

A
B

C

D

Figure 6.19: Three groups engaged in AM simultaneously with PRIG2 < PRIG1 and

PRIG2 < PRIG3. G2 with the lowest group priority is merging with G1 and G3 at the

same time, causing G2 splits and forming two new groups G1’ and G3’. G1’ and G3’ are

then merged into one group.

�������
� ���

�

���
��������

�

	�		�	

�������
�
�

�
������

���
�

�������
�

���
�

���
�

�������
�

G2

G1

G3

Figure 6.20: Three groups engaged in AM simultaneously with PRIG1 < PRIG2 < PRIG3.

103

has no global view of all of the nodes involved. Second, once the group priority is calculated

during DA, it is not changed until AM starts. If the group priority number is unique for

each group, partitioned groups can quickly converge on the group with the highest group

priority. There is no confusion for groups about deciding which groups they should merge

with. If two or more groups have the same group priority number, the tie can be broken by

picking the group with the higher group identity.

The rekey process of AM is so simple that it may cause confusion when many groups are

involved in AM at the same time. We analyze this process for three simple cases first.

1. If only two groups are involved in AM, as shown in Figure 6.18, then the two groups can

be merged simply by comparing their group priorities. The group with the lower group

priority merges to the group with the higher priority.

2. A slightly more complicated case is the merging of three groups at the same time. The

group with the lowest group priority may engage in AM with two other groups with

different group identities and keys simultaneously. This may cause the group in the

middle to split, as shown in Figure 6.19. In that illustration, G2 has the lowest group

priority. The nodes in G2 engage in AM with G1 and G3 at the same time. Since

PRIG2 < PRIG1 and PRIG2 < PRIG3, part of the nodes in G2 are merged with G1 and

others are merged with G3 since the RekeyDec messages are broadcasted from the two

groups G1 and G3 to G2 at the same time. Thus two new groups are formed. These can

then be merged into one group as described above.

3. Three groups may merge with the group in the middle not having the lowest group

priority. As shown in Figure 6.20, the three groups with PRIG1 < PRIG2 < PRIG3 are

merging. The merging process may vary according to the timing difference between the

two merges.

a. Suppose the merges in the two AM finish at the same time, meaning that node

A in G1 and node C in G2 promiscuously unicasts the RekeyDec in their groups

at the same time. Since the nodes in G1 receive the RekeyDec from node A first,

they upgrade their group identity and key to G2 first. Therefore, when the nodes

originally in G1 receive the RekeyDec from node B in G2, they upgrade their group

identity and key to G3 again since they belong to G2 now. In this case, two AM can

104

merge three groups to one group.

b. Suppose that node B receives the RekeyDec first before it finishes merging with G1.

Node B can upgrades its group identity and key to G3 first, and keep the merging

state with node A in G1. When it is time for node B to send its merge reply to node

A in G1, B then sends the new group identity and key. Therefore, the nodes in G1

can directly upgrade their group identity and key to G3.

AM becomes more complicated when there are more than three groups engaged in AM

at the same time. However, the above analysis still applies in such a situation. Suppose

there are n partitions with each identified by Gi. There is always one group (e.g., Gj) with

the highest group priority. If the n groups are involved in AM at the same time, the groups

around Gj will be merged to Gj. In addition, according to the analysis in the third case

above, more groups than the number of neighbor groups of Gj can be merged to Gj during

the one-time AM. Therefore, the number of nodes in Gj can keep increasing. And in the

end, all the nodes in other groups will be able to merge into Gj. This has been demonstrated

in our simulation experiments. In fact, a comparison of Figures 6.7 and 6.11 shows that the

AM works well even when a network has many partitions.

6.12.3 BANDWIDTH OVERHEAD

The bandwidth overhead caused by AdHocSec is mainly from DA and AM messages. Of

all the messages, AttRply has the greatest impact, since it contains a lot of information for

attestation and its length is around 5k bytes.

Without considering message loss due to collision and retransmission, the messages used

for DA and AM are proportional to the number of nodes in the network. If the number

of nodes in the network is n, then the number of messages for each type of DA message,

including AttReq, AttRply, AttKey, should be n. For AM, only two MrgReq messages and

two MrgRply messages are needed. The number of RekeyDec messages is the same as the

number of nodes in the lower priority group.

However, message collision and loss due to nodes’ movement cause the use of NAK and

message retransmission. That is why more messages than expected are used in Figure 6.12.

105

The number of MrgReq messages is usually much more than MrgRply messages, because

more than one node in a group may propose to merge with nodes in another group.

From Figures 6.10 and 6.9, we can see that the bandwidth overhead demands caused by

DA and AM are endurable. Furthermore, the overhead is a one-time burst. After DA and

AM finish, there is no longer any such demand.

6.12.4 IMPACT OF ADHOCSEC ON HIGHER LEVEL PROTOCOLS AND

APPLICATIONS

The impact of AdHocSec on higher level protocols and applications should be negligible. In

fact, after DA and AM, all of the nodes in a network share a network secret key, which is

used to authenticate the messages among nodes. The only overhead AdHocSec adds is the

encryption, decryption, and message integrity code calculation and verification. As both the

benchmark experiment in [72] and our own simulation experiments (as shown in Figure 6.13

and 6.14) indicate, AdHocSec brings little overhead to the up-layer routing protocols and

network applications.

6.13 SECURITY ANALYSIS

In this section, we discuss the advantage and disadvantage of our solution for the ad hoc

network security. Our approach adds a secure AdHocSec layer between the network and

data link layers (DLL) of the network protocol stack, and enforces attestation in this layer.

The AdHocSec layer is transparent to both its upper layer (network layer) and its lower

layer (DLL). Therefore, the addition of the AdHocSec layer does not affect the function of

its upper and lower layers. Network layer protocols, user-level applications, and MAC layer

protocols require no change.

The advantages of AdHocSec layer to protect network’s upper layers lie in three folds.

First, it protects the network layer protocols, including the original routing protocols and

ARP. This allows the network layer to use the regular routing protocols (e.g., DSR, AODV,

106

DSDV) rather than the secure ones (e.g., Ariadne, SAODV, SEAD, ARAN), yet maintains

system security. Second, AdHocSec protects user-level applications. Third, AdHocSec solves

the node selfishness problem.

The original routing protocols were designed without consideration of the harmful en-

vironment; thus, they are subject to many different types of attacks. As summarized in

sections of other papers (e.g., ARAN [35] and Ariadne [13]), attackers can modify routing

information (e.g., route sequence number, hop count), impersonate other nodes, and fabri-

cate false routing messages, causing routing disruption and resource consumption. Attackers

may engage in creating a variety of routing disruptions, including routing loops, black holes,

gray holes, routing detours, network partitions, and rushing attacks. Their resource con-

sumption attacks may involve the injection of extra data or control packets, which consume

network bandwidth. All of these attacks are due to malicious or compromised nodes in the

network.

AdHocSec enables the secure use of the original routing protocols, thus replacing the

secure routing protocols. Compared with the secure routing protocols, AdHocSec has many

advantages. First, all of the designed secure routing protocols primarily aim to prevent

malicious or compromised nodes from disrupting and injecting routing messages by using

cryptographic techniques authenticating the routing messages. The existence of the AdHoc-

Sec layer with attestation not only prevents such bad nodes from joining the network, but

it is also able to disconnect any nodes that become compromised after attestation. Since

our modified OS is able to maintain the required security policy on such nodes, any attempt

to violate the required security policy will be prevented and cause the node to be excluded

from the protected network. Therefore, malicious or compromised nodes cannot participate

in route discovery, maintenance, and recovery. Second, AdHocSec further protects the rout-

ing messages through encryption and authentication, which guarantees their integrity and

confidentiality. Third, AdHocSec is not specifically designed for any single original routing

protocol; thus, it can protect all of them. However, most secure routing protocols proposed

so far do not apply to all of the original routing protocol. In addition, AdHocSec has a

better shared key generation method. Most secure routing protocols assume the existence

of key management system.

107

AdHocSec provides extra protection for user-level network applications and some impor-

tant network protocols, such as domain name service (DNS). Many user-level applications

do not include any security approaches to protect their communications. Since AdHocSec

authenticates and encrypts every data packet, it is able to provide integrity and authentica-

tion to these vulnerable user-level application packets. As a result, malicious nodes are not

able to eavesdrop or inject data packets. In addition, the protection AdHocSec provides to

DNS at the user level and ARP in the network layer together thwarts many possible attacks,

such as MITM, on the DNS and ARP protocols.

AdHocSec is also able to solve the node selfishness problem. As discussed in section 6.2,

the problem is that some nodes act selfishly and do not to forward packets on other nodes’

behalf, usually in order to save their power. Because of this problem, the network cannot

operate normally. Since AdHocSec enforces attestation, the ability to verify a node configu-

ration, it can prevent such selfish nodes from joining the network. In this aspect, AdHocSec is

able to replace some functions provided by earlier node-cooperation enforcement approaches

such as CONFIDENT, Nuglets, etc.

AdHocSec has security limitations as well, however. Due to its location between the

network and data link layers, the security features provided by AdHocSec only protect the

network upper layers, and not the lower layers. Therefore, any attacks against the MAC and

physical layers cannot be solved by AdHocSec. For example, AdHocSec is not able to prevent

wormhole attack [68], which is a more subtle type of routing disruption attack. Two colluding

nodes (e.g., A and B) linked through a private network can forward routing packets between

them without modification. Thus, a node that receives a routing packet from B may think

it receives the packet directly from another node near A. Wormhole attacks cause nodes in a

network to have different visions of the routing topology, which disrupts routing. AdHocSec

is not able to identify malicious nodes attacking networks using wormholes. Therefore, other

approaches (e.g., packet leash [68]) are needed to prevent wormhole attacks. In addition,

AdHocSec is not able to prevent some denial of services attacks at the MAC or physical layers,

such as the injection into the network of packets by a node with powerful transmitters. Even

though such nodes cannot pass attestation, attested nodes may busily receive such packets

and not be able to process packets from attested nodes. This kind of attack is a hard problem

108

to solve.

There also could be some attacks directly against AdHocSec. One possible attack is

the disruption of the initial attestation among the nodes in a network. At the beginning

of attestation, nodes send AttReq messages to solicit attestation. Since the network shared

secret key is not derived yet at this point, attackers can use malicious nodes to send AttReq

messages into the network. As a result, malicious nodes can be included in the attestation

graph. Though malicious nodes cannot pass attestation by other nodes, their existence

could lead to the partition of nodes in the network after DA. AdHocSec provides some

approaches to overcome this problem. First, the use of alternative parents in DA may help

reduce partitions caused by malicious nodes, since alternative parents cause nodes to have

more connections during DA. Furthermore, each node maintains a blacklist, which can help

trusted nodes identify malicious nodes. Although malicious nodes cannot be identified during

the first time, they can be recognized later on. Finally, AM can help the partitions to be

merged later. However, such attacks could cause the latency of the global key agreement to

be increased, since malicious nodes may cause partitions.

Other limitations to AdHocSec are the use of TPM, bugs found in the TCB list, and pos-

sible hardware attacks. First, as we discussed before, AdHocSec replies on TPM. Therefore,

a node without TPM cannot take its advantage. Furthermore, the TPM has to be certified

by a known certificate authority since the TPM quote needs a certified identity key to be

authenticated by another party. This may cause some limitation for its use. Second, the

attestation requires a TCB list. We assume that each component in the TCB list is trustwor-

thy. However, a bug in one component of the TCB list may breach the security. Therefore,

the TCB list needs to re-certified and updated as soon as a bug is found. Third, we assume

that the TPM is not breakable and hardware attack is nearly impossible. However, if an

attacker breaks the PC platform and uses some ways to steal the confidential in the TPM,

the attacker will be able to attack the network.

109

6.14 CHAPTER SUMMARY

Many attacks against ad hoc networks, such as have been discussed in this chapter, require

a maliciously configured node to join the attacked network. AdHocSec is a novel defense

against such attacks. AdHocSec uses secure coprocessors and operating system mechanisms

to guarantee that only nodes with trusted configurations can join a secure network and

that any possible compromise of a node configuration causes the node to leave the network.

Implemented between the data link and network layers, AdHocSec can transparently secure

routing, forwarding, and other protocols layered on top of it, without modifying them. In

this project, we contribute several efficient algorithms to help nodes perform attestation in ad

hoc networks. Simulations demonstrate that AdHocSec imposes little overhead–much less,

for example, than Ariadne, an efficient secure ad hoc routing protocol. Since AdHocSec’s

nodes authenticate each other’s configuration, not identity, it is not as susceptible to fraud

by malicious nodes. Innovative use of certain operating system features greatly simplifies

AdHocSec’s key management. In the vast majority of simulated cases conducted with 50

nodes, global trust in each others’ configuration and key agreement was achieved in less than

8 s. After key agreement, AdHocSec imposes negligible overhead. We believe that AdHocSec

is a valuable new approach for securing ad hoc networks.

110

7.0 CONCLUSION

Many attacks on network security are due to malicious or compromised nodes inside a net-

work. This dissertation investigates such problems in enterprise and ad hoc networks and

presents solutions for defending against them.

Enterprises increasingly suffer from damage caused by insider attacks. Existing secure

solutions (e.g., firewalls, IDSs, anti-virus software) are generally biased to defend against

attacks which originate outside the network; thus, they are not able to effectively detect and

defend against insider attacks. Attackers can get into enterprise networks by compromising

computers inside a network or by using compromised or malicious computers brought into

the network by employees. Existing access control technologies, such as 802.1x and IKE,

can only authenticate users’ identities and not their client systems. Newer access control

approaches, such as NAP and NAC, try to validate the configuration of client computers

when users are first accessing the network. However, such approaches are weak against

malicious users who may modify the initially-verified configuration without being detected.

Ad hoc networks have even more security problems, most of which are caused by mali-

cious or compromised nodes. Most secure routing protocols (e.g., SAODV, Ariadne, SEAD,

SRP, ARAN) were designed to prevent routing disruption and resource consumption caused

by malicious or compromised nodes. They are insufficient for dealing with many security is-

sues, including the node cooperation enforcement problem, which has been studied by many

researchers and is another type of attack by malicious or compromised nodes.

This dissertation provides a hardware-based secure solution, which relies on attestation

to verify a node’s configuration before allowing the node to access a protected network.

Attestation, provided by the TPM secure coprocessor, is the process of vouching for the ac-

curacy of information. Therefore, this solution is able to detect and defend against malicious

111

or compromised nodes.

We apply such solutions to improve the security of both enterprise and ad hoc networks.

Our solution integrates operating systems and network protocols. With modifications to

existing OS and the differing integration of attestation in the network access control tech-

nologies of enterprise and ad hoc networks, our solution provides strong protection for both

kinds of networks. Our approach can effectively protect the two networks by preventing

attackers or compromised nodes from gaining network access, and enforcing such security

policies constantly on nodes that already have access. Therefore, any nodes that gain net-

work access initially, but violate the required security policy later, can be detected and

excluded from the protected network.

While implementing our solutions, this dissertation made several contributions to oper-

ating systems. The OS is enhanced to be able to support attestation and enforce network

access policies on client nodes. We contribute several techniques, including TCB prelogging,

secure association root-tripping, and sealing-free attestation. These techniques convert a

traditional OS into a system that can support attestation and help enforce security policies

on the network.

This dissertation also makes many contributions to network protocols. First, a secure

attestation protocol BKA is designed, which can adapt to different network environments.

Second, for enterprise networks, we integrate BKA with existing access control technologies

(802.1x and IKE) seamlessly, thus preventing malicious or compromised nodes using different

network access methods from getting into a protected network. We believe our work with ad

hoc networks is the first approach to apply attestation to enhance network security. In order

to add attestation to the network, we designed several algorithms and protocols, including

BBKA, DA, AM, and the proposed AdHocSec layer, which is added into a node’s network

stack to enforce attestation.

In order to demonstrate and evaluate the proposed solution, this dissertation has required

many simulations and implementations. We implement the designed OS enhancement tech-

niques in FreeBSD and modify the existing network access control protocols in both the

client and server sides. We run real experiments to evaluate the impact of our work on

enterprise networks. The experiment results show that our solution has little overhead. We

112

run many simulations of ad hoc networks and compare our solution with existing secure

routing protocols. We also implement our work for ad hoc network in a real system with a

Linux kernel. Both simulations and implementation demonstrate that our solution performs

very well.

113

8.0 FUTURE WORK

Network and system security are important fields of exploration. In this dissertation, we

provide a hardware-based solution, using TPM secure coprocessors, to improve the security

of both enterprise and ad hoc networks by hardening both the operating system and network

protocols. In the following, we discuss some promising extensions of our work to enhance

network and system security.

TPM-based hardware solution can be applied in other networks or applications (e.g.,

peer-to-peer networks, distributed computing), besides enterprise and ad hoc networks, to

improve their security. Attestation of nodes’ configurations can help prevent malicious or

compromised nodes from harming these networks or applications as well. In peer-to-peer

networks or distributed computing, BBKA can be used to improve the performance of at-

testations.

One extension of our work in operating systems is to continue researching operating

systems in terms of security, privacy, and flexibility. In this dissertation, we modified an OS

such that it is able to support attestation and enforce network-required access policies. This

requires the client system to expose all of the important information to the network, which

may violate the privacy issue concerns of many users. In addition, users have no control

over the inflexible system they are using. Therefore, a better approach may be needed to

enable a system to have the required features to fulfill attestation and policy enforcement,

while providing flexibility and maintaining privacy. We are going to investigate how such a

system can be built. One of the approaches may use the virtual machine technology (e.g.,

xen [73]).

Another extension of our work in operating systems is to investigate how to enhance OS

security by combining the power of TPM with other system access control approaches, such

114

as mandatory access control or role-based access control [74]. DTE [75] (Domain and Type

Enforcement) is one kind of mandatory access control that divides a system into different

domains and mandates the access control in each domain. The use of TPM may further con-

solidate DTE and provide strong protection for domains. DTE has Linux implementations

(e.g., [76], [77]), which may facilitate the research in this direction.

This dissertation did not provide a solution to how the network can help attested nodes

inside an enterprise network to update software when a newer version or a security patch is

released. We also did not address how a client should update its configuration to conform

to the attestation requirement. Therefore, as the continuation of this dissertation research,

we may investigate a patch management system [78], [79] for enterprise networks.

As the continuation of our work for ad hoc network security, we will research how to

defend against attacks at the MAC layer. As we discussed in section 6.13, AdHocSec is

not able to defend against attacks such as wormholes [68], since they attack the layer lower

than the AdHocSec. One possible approach is to investigate putting attestation at the MAC

layer.

In the field of security, many topics can be explored. In the future, besides working

on network and system security, I am also interested in research on software vulnerability

and security. I would like to explore how attackers exploit software vulnerabilities and use

them for attacking and, correspondingly, to identify what approaches are best for defending

against such attacks. In addition, any research that relates to my past projects (e.g., [54],

[80], [81], [82], [83], [84], [85]) may be investigated.

115

BIBLIOGRAPHY

[1] S. Saroiu, S. D. Gribble, and H. M. Levy, “Measurement and analysis of spyware in a
university environment,” in First Symposium on Networked Systems Design and Imple-
mentation (NSDI’04), San Francisco, CA, 2004.

[2] Microsoft, “Network access protection.” [Online]. Available: http://www.microsoft.
com/windowsserver2003/technologies/networking/nap/default.mspx

[3] CISCO, “Network admission control.” [Online]. Available: http://www.cisco.com/en/
US/netsol/ns466/networking solutions sub solution home.html

[4] IETF, “Mobile ad-hoc networks (MANET).” [Online]. Available: http://www.ietf.org/
html.charters/manet-charter.html

[5] S. Buchegger and J.-Y. L. Boudec, “Performance analysis of the CONFIDANT protocol
(Cooperation Of Nodes: Fairness In Dynamic Ad-hoc NeTworks),” in MobiHoc ’02:
Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking &
computing, 2002, pp. 226–236.

[6] P. Michiardi and R. Molva, “CORE: a COllaborative REputation mechanism to en-
force node cooperation in mobile ad hoc networks,” in CMS’2002, Communication and
Multimedia Security 2002 Conference, September 2002.

[7] Trusted Computing Group, “Trusted computing platform alliance (TCPA) main
specification version 1.1b.” [Online]. Available: https://www.trustedcomputinggroup.
org/downloads/Main TCG Architecture v11b.zip

[8] Trusted Computing Group. [Online]. Available: https://www.trustedcomputinggroup.
org/home

[9] T. Dierks and C. Allen, “The TLS protocol version 1.0,” IETF RFC 2246, January
1999. [Online]. Available: ftp://ftp.rfc-editor.org/in-notes/rfc2246.txt

[10] IEEE, “Port-based network access control, 802.1x Std,” [Online] Available:
http://standards.ieee.org/getieee802/download/802.1X-2001.pdf, 2001.

[11] S. Kent and R. Atkinson, “Security architecture for the Internet protocol,” IETF RFC
2401, November 1998. [Online]. Available: http://www.ietf.org/rfc/rfc2401.txt

116

http://www.microsoft.com/windowsserver2003/technologies/networking/nap/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/networking/nap/default.mspx
http://www.cisco.com/en/US/netsol/ns466/networking_solutions_sub_solution_home.html
http://www.cisco.com/en/US/netsol/ns466/networking_solutions_sub_solution_home.html
http://www.ietf.org/html.charters/manet-charter.html
http://www.ietf.org/html.charters/manet-charter.html
https://www.trustedcomputinggroup.org/downloads/Main_TCG_Architecture_v11b.zip
https://www.trustedcomputinggroup.org/downloads/Main_TCG_Architecture_v11b.zip
https://www.trustedcomputinggroup.org/home
https://www.trustedcomputinggroup.org/home
ftp://ftp.rfc-editor.org/in-notes/rfc2246.txt
http://www.ietf.org/rfc/rfc2401.txt

[12] D. Harkins and D. Carrel, “The Internet key exchange (IKE),” IETF RFC 2409,
November 1998. [Online]. Available: http://www.faqs.org/rfcs/rfc2409.html

[13] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne:: a secure on-demand routing protocol
for ad hoc networks,” in MobiCom ’02: Proceedings of the 8th annual international
conference on Mobile computing and networking. New York, NY, USA: ACM Press,
2002, pp. 12–23.

[14] Y.-C. Hu, D. B. Johnson, and A. Perrig, “Sead: Secure efficient distance vector routing
for mobile wireless ad hoc networks,” in WMCSA ’02: Proceedings of the Fourth IEEE
Workshop on Mobile Computing Systems and Applications. IEEE Computer Society,
2002, pp. 3–13.

[15] Trusted Computing Group, “TNC architecture.” [Online]. Available: https://www.
trustedcomputinggroup.org/downloads/specifications/TNC Architecture v1 0 r4.pdf

[16] Microsoft, “Next generation secure computing base,” July 2003. [Online]. Available:
http://www.microsoft.com/technet/security/news/ngscb.mspx

[17] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: a virtual
machine-based platform for trusted computing,” in SOSP ’03: Proceedings of the nine-
teenth ACM symposium on Operating systems principles, 2003, pp. 193–206.

[18] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and implementation of a tcg-
based integrity measurement architecture,” in Proceedings of the 13th Usenix Security
Symposium, August 2004.

[19] J. Marchesini, S. Smith, O. Wild, J. Stabiner, and A. Barsamian, “Open-source applica-
tions of tcpa hardware,” in Proceedings of 20th Annual Computer Security Applications
Conference, December 2004.

[20] Trusted Computing Group, “TNC IF-IMC specification.” [Online]. Available: https:
//www.trustedcomputinggroup.org/downloads/specifications/TNC IFIMC v1 0 r3.pdf

[21] Trusted Computing Group, “TNC IF-IMV specification.” [Online]. Available: https://
www.trustedcomputinggroup.org/downloads/specifications/TNC IFIMV v1 0 r3.pdf

[22] Trusted Computing Group, “Trusted network connect to ensure endpoint integrity.”
[Online]. Available: https://www.trustedcomputinggroup.org/downloads/whitepapers/
TNC NI-collateral 10 may (2).pdf

[23] Trusted Computing Group, “Open standards for integrity-based network access
control.” [Online]. Available: https://www.trustedcomputinggroup.org/downloads/
whitepapers/Open Standards for IntegrityBased AccessControl.pdf

[24] NIST, “Secure hash standard,” April 1995. [Online]. Available: http://www.itl.nist.
gov/fipspubs/fip180-1.htm

117

http://www.faqs.org/rfcs/rfc2409.html
https://www.trustedcomputinggroup.org/downloads/specifications/TNC_Architecture_v1_0_r4.pdf
https://www.trustedcomputinggroup.org/downloads/specifications/TNC_Architecture_v1_0_r4.pdf
http://www.microsoft.com/technet/security/news/ngscb.mspx
https://www.trustedcomputinggroup.org/downloads/specifications/TNC_IFIMC_v1_0_r3.pdf
https://www.trustedcomputinggroup.org/downloads/specifications/TNC_IFIMC_v1_0_r3.pdf
https://www.trustedcomputinggroup.org/downloads/specifications/TNC_IFIMV_v1_0_r3.pdf
https://www.trustedcomputinggroup.org/downloads/specifications/TNC_IFIMV_v1_0_r3.pdf
https://www.trustedcomputinggroup.org/downloads/whitepapers/TNC_NI-collateral_10_may_(2).pdf
https://www.trustedcomputinggroup.org/downloads/whitepapers/TNC_NI-collateral_10_may_(2).pdf
https://www.trustedcomputinggroup.org/downloads/whitepapers/Open_Standards_for_IntegrityBased_AccessControl.pdf
https://www.trustedcomputinggroup.org/downloads/whitepapers/Open_Standards_for_IntegrityBased_AccessControl.pdf
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[25] B. balacheff, liqun chen, siani pearson, david plaquin, and graeme proudler, Trusted
Computing Platforms: TCPA Technology In Context, S. Pearson, Ed. Prentice Hall
PTR, July 2002.

[26] Trusted Computing Group, “TCG architecture overview.” [Online]. Available:
https://www.trustedcomputinggroup.org/groups/TCG 1 0 Architecture Overview.pdf

[27] R. Anderson, “Cryptography and competition policy: issues with ’trusted computing’,”
in PODC ’03: Proceedings of the twenty-second annual symposium on Principles of
distributed computing. New York, NY, USA: ACM Press, 2003, pp. 3–10.

[28] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn, “Attestation-based policy enforcement
for remote access,” in CCS ’04: Proceedings of the 11th ACM conference on Computer
and communications security. New York, NY, USA: ACM Press, October 2004, pp.
308–317.

[29] A. Palekar, D. Simon, J. Salowey, H. Zhou, G. Zorn, and S. Josefsson, “Protected eap
protocol (peap) version 2,” IETF Internet Draft. [Online] ftp://ftp.rfc-editor.org/in-
notes/internet-drafts/draft-josefsson-pppext-eap-tls-eap-10.txt, October 2004.

[30] IEEE, “P802.1ae/d2.01-draft standard for local and metropolitan area networks: Media
access control (mac) security,” IEEE standard, October 2004.

[31] “Wi-Fi alliance.” [Online]. Available: http://www.wi-fi.org

[32] IEEE, “P802.11i/d10.0-part11: Wireless medium access control (mac) and physical layer
(phy) specifications: Amendment 6: Medium access control (mac) security enhance-
ments,” IEEE standard, April 2004.

[33] M. G. Zapata and N. Asokan, “Securing ad hoc routing protocols,” in WiSE ’02: Pro-
ceedings of the ACM workshop on Wireless security, 2002, pp. 1–10.

[34] P. Papadimitratos and Z. Haas, “Secure routing for mobile ad hoc networks,” in Pro-
ceedings of CNDS, 2002.

[35] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. Belding-Royer, “A secure
routing protocol for ad hoc networks,” in ICNP ’02: Proceedings of the 10th IEEE
International Conference on Network Protocols. IEEE Computer Society, 2002, pp.
78–89.

[36] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector
routing (dsdv) for mobile computers,” in ACM Conference on Communications
Architectures, Protocols and Applications, SIGCOMM ’94, London, UK, ACM. ACM,
August 1994, pp. 234–244. [Online]. Available: http://people.nokia.net/charliep/txt/
sigcomm94/paper.ps

[37] D. B. Johnson, D. A. Maltz, and J. Broch, “DSR: the dynamic source routing protocol
for multihop wireless ad hoc networks,” pp. 139–172, 2001.

118

https://www.trustedcomputinggroup.org/groups/TCG_1_0_Architecture_Overview.pdf
http://www.wi-fi.org
http://people.nokia.net/charliep/txt/sigcomm94/paper.ps
http://people.nokia.net/charliep/txt/sigcomm94/paper.ps

[38] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in WM-
CSA ’99: Proceedings of the Second IEEE Workshop on Mobile Computer Systems and
Applications. Washington, DC, USA: IEEE Computer Society, 1999, pp. 90–100.

[39] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “The tesla broadcast authentication
protocol,” RSA CryptoBytes, vol. 5, no. Summer, 2002.

[40] S. Buchegger and J.-Y. L. Boudec, “Nodes bearing grudges: Towards routing security,
fairness, and robustness in mobile ad hoc networks,” in Proceedings of the Tenth Euromi-
cro Workshop on Parallel, Distributed and Network-based Processing. IEEE Computer
Society, January 2002, pp. 403–410.

[41] J. R. Douceur, “The sybil attack,” in IPTPS ’01: Revised Papers from the First Inter-
national Workshop on Peer-to-Peer Systems. London, UK: Springer-Verlag, 2002, pp.
251–260.

[42] L. Buttyán and J.-P. Hubaux, “Nuglets: a virtual currency to stimulate cooperation in
self-organized ad hoc networks, Tech. Rep. DSC/2001, 2001.

[43] H. Yang, X. Meng, and S. Lu, “Self-organized network-layer security in mobile ad hoc
networks,” in WiSE ’02: Proceedings of the 3rd ACM workshop on Wireless security.
New York, NY, USA: ACM Press, 2002, pp. 11–20.

[44] Trusted Computing Group, “TPM software stack (TSS) specifications.” [Online].
Available: https://www.trustedcomputinggroup.org/specs/TSS

[45] E. Felten, “Understanding trusted computing: will its benefits outweigh its drawbacks,”
IEEE Security and Privacy, vol. 1, no. 03, pp. 60–62, 2003.

[46] IBM, “TCPA resources.” [Online]. Available: http://www.research.ibm.com/gsal/tcpa/

[47] GNU GRUB, “GRand Unified Bootloader.” [Online]. Available: http://www.gnu.org/
software/grub/

[48] Trusted Computing Group, “TCG PC client specific implementation specification
for conventional BIOS.” [Online]. Available: https://www.trustedcomputinggroup.org/
specs/PCClient/TCG PCClientImplementationforBIOS 1-20 1-00.pdf

[49] D. McDonald, C. Metz, and B. Phan, “PF KEY key management API, version 2,” IETF
RFC 2367, July 1998. [Online]. Available: ftp://ftp.rfc-editor.org/in-notes/rfc2367.txt

[50] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman, “Linux security
modules: General security support for the linux kernel,” in Proceedings of the 11th
USENIX Security Symposium. Berkeley, CA, USA: USENIX Association, August 2002,
pp. 17–31.

[51] Tripwire.org. [Online]. Available: http://www.tripwire.org/

119

https://www.trustedcomputinggroup.org/specs/TSS
http://www.research.ibm.com/gsal/tcpa/
http://www.gnu.org/software/grub/
http://www.gnu.org/software/grub/
https://www.trustedcomputinggroup.org/specs/PCClient/TCG_PCClientImplementationforBIOS_1-20_1-00.pdf
https://www.trustedcomputinggroup.org/specs/PCClient/TCG_PCClientImplementationforBIOS_1-20_1-00.pdf
ftp://ftp.rfc-editor.org/in-notes/rfc2367.txt
http://www.tripwire.org/

[52] S. D. Schoen, “EOF - give TCPA an owner override,” accessed on July 26, 2006.
[Online]. Available: http://www.linuxjournal.com/article/7055

[53] S. D. Schoen, “Trusted computing: Promise and risk,” accessed on July
26, 2006. [Online]. Available: http://www.eff.org/Infrastructure/trusted computing/
20031001 tc.php

[54] H. Xia and J. C. Brustoloni, “Hardening web browsers against man-in-the-middle and
eavesdropping attacks,” in WWW 2005, Chiba, Japan, May 14-18 2005.

[55] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions on
Information Theory, vol. IT-22, no. 6, pp. 644–654, November 1976.

[56] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for message
authentication,” RFC 2104, IETF, 1997. [Online]. Available: ftp://ftp.rfc-editor.org/
in-notes/rfc2104.txt

[57] S. Berger, R. Caceres, K. A. Goldman, R. Perez, R. Sailer, and L. van Doorn, “vTPM:
Virtualizing the trusted platform module,” IBM, Tech. Rep., Feb 2006.

[58] IEEE, “Wireless lan medium access control (mac) and physical layer (phy) specification.
802.11 std.” IEEE standard, 1999.

[59] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz, “Ex-
tensible authentication protocol (EAP),” IETF Intternet Draft, [Online]
http://www.ietf.org/rfc/rfc3748.txt, June 2004.

[60] B. Aboba and D. Simon, “Ppp eap tls authentication protocol,” RFC 2716. [Online]
http://www.ietf.org/rfc/rfc2716.txt, October 1999.

[61] P. Funk and S. Blake-Wilson, “Eap tunneled tls authentication protocol (EAP-TTLS),”
IETF Internet draft, [Online] http://www3.ietf.org/proceedings/02jul/I-D/draft-ietf-
pppext-eap-ttls-01.txt, February 2002.

[62] D. Maughan, M. Schertler, M. Schneider, and J. Turner, “Internet security association
and key management protocol (ISAKMP),” IETF RFC 2408, November 1998. [Online].
Available: http://rfc.net/rfc2408.html

[63] KAME, “Racoon IKE daemon.” [Online]. Available: ftp://ftp.kame.net/pub/kame/
misc/

[64] FreeRADIUS, “The FreeRADIUS server project.” [Online]. Available: http:
//www.freeradius.org/

[65] Open1x, “Open source implementation of IEEE 802.1x.” [Online]. Available:
http://www.open1x.org/

120

http://www.linuxjournal.com/article/7055
http://www.eff.org/Infrastructure/trusted_computing/20031001_tc.php
http://www.eff.org/Infrastructure/trusted_computing/20031001_tc.php
ftp://ftp.rfc-editor.org/in-notes/rfc2104.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2104.txt
http://rfc.net/rfc2408.html
ftp://ftp.kame.net/pub/kame/misc/
ftp://ftp.kame.net/pub/kame/misc/
http://www.freeradius.org/
http://www.freeradius.org/
http://www.open1x.org/

[66] J. Moy, “OSPF version 2,” IETF RFC 2328, [Online]
http://http://www.faqs.org/rfcs/rfc2328.html, April 1998.

[67] C. Hedrick, “Routing Information Protocol,” IETF 1058, June 1998. [Online].
Available: http://www.faqs.org/rfcs/rfc1058.html

[68] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Packet leashes: A defense against wormhole
attacks in wireless networks,” in Proceedings of IEEE Infocomm 2003, April 2003.

[69] NS-2, “The network simulator - ns-2.” [Online]. Available: http://www.isi.edu/nsnam/
ns/

[70] A. K. Saha, K. A. To, S. PalChaudhuri, S. Du, and D. B. Johnson, “Physical implemen-
tation and evaluation of ad hoc network protocols using unmodified simulation models,”
in ACM SIGCOMM Asia Workshop, Beijing, China, April 2005.

[71] J. LeBoudec and M. Vojnovic., “Perfect simulation and stationarity of a class of mobility
models,” in Proc. INFOCOM’2005. IEEE, March 2005.

[72] Crypto++ Library 5.2.1. [Online]. Available: http://www.eskimo.com/∼weidai/
benchmarks.html

[73] “The xen virtual machine monitor.” [Online]. Available: http://www.cl.cam.ac.uk/
Research/SRG/netos/xen/

[74] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based access control models,”
IEEE Computer, vol. 29, no. 2, 1996.

[75] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat, “Practical
domain and type enforcement for unix,” in SP ’95: Proceedings of the 1995 IEEE
Symposium on Security and Privacy. Washington, DC, USA: IEEE Computer Society,
June 1995, p. 66.

[76] S. E. Hallyn and P. Kearns, “Domain and type enforcement for linux,” in 4th Annual
Linux Showcase and Conference, October 2000.

[77] S. Smalley, C. Vance, and W. Salamon, “Implementing selinux as a linux security
module.” [Online]. Available: http://www.nsa.gov/selinux/info/docs.cfm#papers

[78] J. Chan, “Essentials of patch management policy and practice.” [Online]. Available:
http://www.patchmanagement.org

[79] F. M. Nicastro, “Security patch managment,” internet Network Services. [Online].
Available: http://www.ins.com

[80] H. Xia and J. C. Brustoloni, “Improving the usability of web browser security,” in
Symposium on Usable Privacy and Security (SOUP), Pittsburgh, PA, July 6-8 2005.

121

http://www.faqs.org/rfcs/rfc1058.html
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.eskimo.com/~weidai/benchmarks.html
http://www.eskimo.com/~weidai/benchmarks.html
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
http://www.nsa.gov/selinux/info/docs.cfm#papers
http://www.patchmanagement.org
http://www.ins.com

[81] H. Xia and J. C. Brustoloni, “Secure and flexible support for visitors in enterprise wi-fi
networks,” in GLOBECOM 2005. St. Louis, MO: IEEE, Nov. 29 - Dec. 1 2005.

[82] H. Xia and J. C. Brustoloni, “Detecting and blocking unauthorized access in Wi-Fi
networks,” in NETWORKING 2004, Athens, Greece, May 9-14 2004.

[83] H. Xia and J. C. Brustoloni, “Virtual prepaid tokens for Wi-Fi hotspot access,” in LCN
2004, Tampa, Florida, November 2004.

[84] H. Xia, J. Kankana, and J. C. Brustoloni, “Using secure coprocessors to protect the
access to enterprise networks,” in NETWORKING 2005, Waterloo, Canada, May 2-6
2005.

[85] H. Xia, J. Kankana, and J. C. Brustoloni, “Enforcement of security policy compliance
in virtual private networks,” in SSI 2005, Sao Jose dos Campos, Brazil, Nov. 8-11 2005.

122

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	2.1. Dissertation and Related Work Comparison
	3.1. TPM PCR Usage
	3.2. TCB list's component categories and number of entries
	5.1. 802.1x/PEAP Authentication Latency and Projected Throughput
	5.2. IKE Authentication Latency and Projected Throughput w/ and w/o BKA
	6.1. Nodes' Speed Ranges and Steady-State Average Speeds
	6.2. Timers and Time Variables Used in DA and AM
	6.3. Round trip time (ms)
	6.4. Throughput (KB/s)
	6.5. DA and AM latency (s) with the number of entry in measurement log is 67 and 1
	6.6. DA and AM message size (bytes) when the number of entry in measurement log is 67 and 1

	LIST OF FIGURES
	1.1. Dissertation organization
	2.1. TPM architecture
	2.2. TPM chain of trust
	4.1. TCG defined attestation and MITM attack
	4.2. Bound Keyed Attestation (BKA) with secure channel
	4.3. Bound Keyed Attestation (BKA) without secure channel
	4.4. Batched Bound Keyed Attestation
	5.1. PEAPv2 TLV format
	5.2. ISAKMP Header Format. Next Payload indicates the type of the first payload in the message. Exchange Type indicates the type of exchange being used. Flags indicates specific options that are set for ISAKMP exchange.
	5.3. ISAKMP Attestation Payload Format
	6.1. Promiscuous Unicast
	6.2. Distributed attestation
	6.3. AdHocSec layer
	6.4. Layout of secure frame
	6.5. Layout DA/AM frames
	6.6. Distributed attestation and attested merger message format
	(a). Attestation request
	(b). Attestation reply
	(c). Attestation new group key
	(d). Merge request
	(e). Merge reply
	(f). Rekey decision
	6.7. Attestation Latency for Global Key Agreement
	6.8. Cumulative Distribution Function of Attestation Latency
	6.9. Number of messages sent by DA and AM.
	6.10. Number of bytes sent by DA and AM.
	6.11. Attestation partition
	6.12. Attestation message distribution
	6.13. Data packet delivery ratio comparison
	6.14. Data packet delivery latency comparison
	6.15. Routing packet number comparison
	6.16. Routing packet bytes comparison
	6.17. AdHocSec implementation in Linux
	6.18. Two groups engaged in AM
	6.19. Three groups engaged in AM simultaneously with PRIG2 < PRIG1 and PRIG2 < PRIG3
	6.20. Three groups engaged in AM simultaneously with PRIG1 < PRIG2 < PRIG3

	PREFACE
	1.0 INTRODUCTION
	2.0 BACKGROUND AND RELATED WORK
	2.1 TPM SECURE COPROCESSORS
	2.2 TPM-BASED SYSTEMS
	2.3 ENTERPRISE NETWORK ACCESS CONTROL METHODS
	2.4 SECURITY IN AD HOC NETWORKS
	2.5 CHAPTER SUMMARY

	3.0 OPERATING SYSTEM ENHANCEMENTS
	3.1 PROBLEMS
	3.1.1 HOW CAN OPERATING SYSTEMS MAINTAIN CONSISTENCY BETWEEN ATTESTATION AND ACTUAL CONFIGURATIONS?
	3.1.2 HOW CAN OPERATING SYSTEMS PREVENT ABUSE OF ATTESTATION AND SEALING FOR SOFTWARE LOCK-IN?

	3.2 SOLUTIONS
	3.2.1 MAINTAINING ATTESTATION CONSISTENCY
	3.2.1.1 TCB PRELOGGING
	3.2.1.2 SECURITY ASSOCIATION ROOT TRIPPING

	3.2.2 SEALING-FREE ATTESTATION CONFINEMENT

	3.3 IMPLEMENTATION
	3.4 EVALUATION
	3.5 DISCUSSION
	3.6 RELATED WORK
	3.7 CHAPTER SUMMARY

	4.0 ATTESTATION ENHANCEMENTS
	4.1 PROBLEMS
	4.1.1 HOW CAN ATTESTATION BE PROTECTED FROM MITM ATTACKS?
	4.1.2 HOW CAN ATTESTATION BE USED WITH REAL WORLD PROTOCOLS WITHOUT INTRODUCING EXCESSIVE LATENCY?

	4.2 SOLUTIONS
	4.2.1 BKA
	4.2.1.1 BKA WITH SECURE CHANNEL
	4.2.1.2 BKA WITHOUT SECURE CHANNEL

	4.2.2 BBKA

	4.3 IMPLEMENTATION
	4.4 RELATED WORK
	4.5 CHAPTER SUMMARY

	5.0 ENFORCING SECURITY POLICIES IN ENTERPRISE NETWORKS
	5.1 ACCESS CONTROL PROTOCOLS FOR ENTERPRISE NETWORKS
	5.2 INSUFFICIENCY OF EXISTING ACCESS CONTROL PROTOCOLS
	5.3 INTEGRATING PEAP WITH ATTESTATION
	5.3.1 DESIGN
	5.3.2 IMPLEMENTATION

	5.4 INTEGRATING IKE WITH ATTESTATION
	5.4.1 DESIGN
	5.4.2 IMPLEMENTATION

	5.5 EXPERIMENT RESULT
	5.5.1 IMPACT ON 802.1X PERFORMANCE
	5.5.2 IMPACT ON IKE PERFORMANCE

	5.6 CHAPTER SUMMARY

	6.0 ENFORCING SECURITY POLICIES IN AD HOC NETWORKS
	6.1 EXISTING AD HOC NETWORK PROTOCOLS
	6.2 INSUFFICIENCY OF EXISTING PROTOCOLS
	6.3 SOLUTION AND CHALLENGES
	6.4 ASSUMPTION
	6.5 NOTATION
	6.6 PROMISCUOUS UNICAST
	6.7 DISTRIBUTED ATTESTATION
	6.8 ATTESTED MERGER
	6.9 MESSAGE FRAGMENTATION
	6.10 ADHOCSEC LAYER
	6.11 EVALUATION
	6.11.1 SIMULATION
	6.11.1.1 ATTESTATION PERFORMANCE EVALUATION
	6.11.1.2 COMPARING WITH ARIADNE

	6.11.2 IMPLEMENTATION
	6.11.2.1 METHODOLOGY
	6.11.2.2 EXPERIMENT RESULTS

	6.12 PERFORMANCE ANALYSIS
	6.12.1 LATENCY FOR GLOBAL KEY AGREEMENT
	6.12.2 ATTESTED MERGER ANALYSIS
	6.12.3 BANDWIDTH OVERHEAD
	6.12.4 IMPACT OF ADHOCSEC ON HIGHER LEVEL PROTOCOLS AND APPLICATIONS

	6.13 SECURITY ANALYSIS
	6.14 CHAPTER SUMMARY

	7.0 CONCLUSION
	8.0 FUTURE WORK
	BIBLIOGRAPHY

