
algorithms

Article

Defacement Detection with Passive Adversaries

Francesco Bergadano 1,* , Fabio Carretto 2, Fabio Cogno 2 and Dario Ragno 2

1 Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy
2 Certimeter Group, Corso Svizzera 185, 10149 Torino, Italy
* Correspondence: francesco.bergadano@di.unito.it; Tel.: +39-011-6706743

Received: 28 May 2019; Accepted: 25 July 2019; Published: 29 July 2019
����������
�������

Abstract: A novel approach to defacement detection is proposed in this paper, addressing explicitly
the possible presence of a passive adversary. Defacement detection is an important security measure
for Web Sites and Applications, aimed at avoiding unwanted modifications that would result in
significant reputational damage. As in many other anomaly detection contexts, the algorithm used to
identify possible defacements is obtained via an Adversarial Machine Learning process. We consider
an exploratory setting, where the adversary can observe the detector’s alarm-generating behaviour,
with the purpose of devising and injecting defacements that will pass undetected. It is then necessary
to make to learning process unpredictable, so that the adversary will be unable to replicate it and
predict the classifier’s behaviour. We achieve this goal by introducing a secret key—a key that our
adversary does not know. The key will influence the learning process in a number of different ways,
that are precisely defined in this paper. This includes the subset of examples and features that are
actually used, the time of learning and testing, as well as the learning algorithm’s hyper-parameters.
This learning methodology is successfully applied in this context, by using the system with both real
and artificially modified Web sites. A year-long experimentation is also described, referred to the
monitoring of the new Web Site of a major manufacturing company.

Keywords: adversarial learning; anomaly detection; defacement response; Security Incident and
Event Management; Security Operations Center

1. Introduction

Web Site and application defacement is considered a major security incident, that should be
detected as early as possible. It requires appropriate response technology and processes, and a number
of approaches have been proposed in the scientific literature [1–11]. Commercial services have also
been proposed (e.g., those surveyed in [12], but see also Weborion and PharmingShield), as well as
software products [e.g., Nagios, Sawmill, Foresight, NGINX], that can be adapted to this purpose.

The consequences of undetected defacements can be far-reaching for any organization’s image
and operations. Yet, appropriate detection and response is often lacking, as is demonstrated by average
reaction times [13], and by the large number and importance of reported incidents [14,15]. The Zone-H
monitoring portal [16] maintains a listing of reported Web Site defacements, together with relevant
statistics. During the past eight years, an average of one million defacements per year have been
reported [15].

Defacement detection can be addressed as an anomaly detection problem: defaced Web
content can be labeled as anomalous, based on a classifier that is learned from previously available
examples [1,2,5,17]. However, this is not normally sufficient, because an adversary may observe the
alarm-raising behaviour of the anomaly detector, and try to find wanted defacements that will escape
detection. It is therefore necessary to prevent an adversary from knowing what will be classified as
anomalous and what will not. Although some works have addressed this issue (see, e.g., [6,18]), it still

Algorithms 2019, 12, 150; doi:10.3390/a12080150 www.mdpi.com/journal/algorithms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302348120?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-2567-336X
https://orcid.org/0000-0001-5639-5062
http://www.mdpi.com/1999-4893/12/8/150?type=check_update&version=1
http://dx.doi.org/10.3390/a12080150
http://www.mdpi.com/journal/algorithms


Algorithms 2019, 12, 150 2 of 27

represents a limitation of the state-of-the-art solutions and of the above-cited previous research in
defacement detection.

This paper proposes a general way of dealing with passive adversaries in defacement detection,
by developing a generalized concept and methodology of keyed learning, that can be defined as
learning with a key that is unknown to an adversary. The key will influence the learning process
in many possible ways—for example, it will determine the choice of the learning algorithm and
its parameters. A detailed description of the key’s effect on the defacement detection system will
be provided in Section 3. A consequence of this approach is that the adversary will not have the
information necessary to mimic the learning process, using available training data, and obtain a learned
hypothesis that is similar to the one we will use.

One way to prevent the prediction of a learned classifier by an adversary is to hide the hypothesis
space, hyper-parameters, or the learning bias [6], or by introducing some form of randomization [18–20].
We argue in the present paper that many other factors that influence learning could be hidden from our
adversary, including the subset of the available training data that are really used, and the timing and
context of the learning process. In order to avoid so-called “security through obscurity”, we concentrate
the information hidden from our adversary in a secret key, whilst the overall learning procedure is
left open and public. In this paper we define a precise and general way to derive all such hidden
parameters from a secret key, and to apply them in a comprehensive anomaly detection system.

The concept of keyed intrusion detection has been introduced in the literature [21–25], with similar
motivations. This was, however, restricted to that particular application domain, and the secret key
was used only as a “word delimiter” in intrusion payloads. Keyed learning was first highlighted in a
previous conference presentation [26], and is a more general concept than keyed intrusion detection,
because it affects any form of learning and uses any kind of secret information. In the present paper
we develop this idea with further detail (Section 3).

We have implemented a keyed and adaptive defacement detection system, and successfully
deployed it and tested it in a full-size and real-world context. The results show that the approach is
simple and feasible, and leads to a reasonable number of alerts. The alerts that were generated are
unpredictable, if the key is not known, but at the same time they were found to be well motivated
and really corresponding to anomalous content. We take a practical approach: our methodology is
based on application requirements and on previous experience in learning classifiers and anomaly
detection [26,27]—we will then start by describing the general context of defacement response.

2. Defacement Response

Defacement response is a complex process, that is planned based on risk analysis results and
available budget. It normally comprises three phases:

• Prevention. One should in the first place avoid the very possibility of defacement, by protecting
the relevant perimeter, including the Content Management Systems (CMS), and the target Web
Servers and Proxies. This can be done with conventional security measures, e.g., WAFs, IDS/IPS
systems, vulnerability scanning and remediation.

• Detection. When defacement occurs it should be immediately detected, yielding low error rates
for both false positives (e.g., normal CMS changes, acceptable external feeds, and advertising
banners), and undetected defacements.

• Reaction. Again, a three-phase process:

1. Alerting: based on detection alarm thresholds, an alert is generated, firing automated
reaction or a request for human intervention.

2. Inspection: defacements are rare, yet high priority events; as a consequence, human
inspection is needed when an above-threshold alarm is fired. Integration with a Security
Operation Center (SOC) and corresponding Security Incident and Event Management (SIEM)
software architectures is needed for enterprise-level solutions. The reaction component



Algorithms 2019, 12, 150 3 of 27

should be available as a 24/7 service and appropriate information/escalation procedures
should be defined.

3. Mitigation: a courtesy page should be displayed, until normal operation is enforced. If proxies
or a CDN such as Akamai are involved, this action should be propagated accordingly.

In this paper, we will concentrate on the detection phase. See [28] for a discussion of the general
relationship between detection and response in anomaly detection. We will, however, also address
issues that may be relevant for the reaction phase.

2.1. Defacement Detection: Problem Definition

From a practical point of view, defacement detection should raise an alarm and activate the
reaction phase when a Web Site or an Application interface is “not what it is supposed to be”. As such,
it is an ill-defined problem, as there is no way to formalize a definition of what the page is supposed to
look like.

One could define accepted content based on a previously accepted reference page, or on some
application image that has been separately stored (see, e.g., [10], and most of the commercial monitoring
services [12]). However, the web site’s pages will change often, and modification processes are normally
outsourced to suppliers and system integrators, involving some complex CMS and corresponding
authorizations to third parties. Hence, detection based on a separately maintained reference content,
with an equality check, is practically impossible to implement and deploy in an enterprise context.
At the same time, this very system could be attacked and made ineffective [14]: a hacker could take
control of both the Web Site and of the CMS, or the client machines where users insert content changes
could be compromised. Finally, active proxies could be targeted.

We would then like to define a possibly defaced application as a system producing information
that does not respond to one or both of the following criteria:

• Matching a set of predetermined rules, e.g.,:

– including/excluding a set of keywords/images
– responding to semantic consistency [12]
– responding to a given graphical/content schema

• Response to some similarity criterion:

– it should be similar to a set of previously published or otherwise accepted content, and/or
– it should be different from known unwanted content, or from content samples that have been

labeled as out of context.

Whether this possibly defaced application actually is a defacement incident can only be assessed by
human intervention. This could be labeled as a form of Turing test, and one could argue that no totally
automated system can detect defacements without errors. In a relatively recent defacement incident,
an international airport Web Site was changed, and departures were substituted with unlikely tropical
destinations - indeed a difficult one for an automated defacement detection system. As a consequence,
a reasonable detection/reaction approach for enterprise solutions can be heuristic and based on
previously accepted content:

• a current page version is downloaded using undeclared IP sources, hidden client types and
randomized navigation patterns, so as to avoid so-called differential defacement [14], where an
adversary tries to detect monitoring before defacement is enacted;

• a matching degree w.r.t. the above-mentioned predetermined rules is computed;
• a similarity value w.r.t. accepted and, possibly, unwanted pages is computed;
• an overall heuristic “defacement degree” is obtained;



Algorithms 2019, 12, 150 4 of 27

• if this number is above a given threshold, a SOC service is alerted, with possible human
intervention. The threshold should be set based on available SOC budget, and on risk level
considerations (e.g., in the context of ISO-27001 or other standards and regulations). The best
automated detection system will yield low error rates: a small percentage of “false positives”
(reducing SOC effort), and a very high percentage of alerts being fired when a real defacement
has occurred (reducing risk).

The ill-defined defacement detection problem can now be understood:

Defacement: the unauthorized change of a Web Site or a Web Application front-end, that introduces
significant modifications, with important negative impacts for the reputation and the operations
of the owner organization

Defacement detection: the act of promptly realizing a defacement has occurred, followed by the
generation of an alarm and a severity score

A definition of what a “significant” modification should be depends on risk management choices,
often based on business impact and regulatory context. For example, changing the company logo or
name, or inserting totally extraneous text, is normally considered a serious defacement, while the
normal upgrade of Web site content and of the graphical evolution of the interface, as well as the
changing advertising banners, should not generate continuous alarms.

The above definitions must be understood in the context of a defacement response process, where
prevention measures make the occurrence of a defacement instance unlikely, and alarm management
and mitigation strategies are in place, normally with the support of an SOC. In this context, we are
interested in two error measures for the defacement detector during a defined period of time:

UDR (Undetected Defacement Rate): the relative number of defacement occurrences, validated as
such by human SOC operators, but not recognized by the defacement detector

FAR (False Alarm Rate) : the relative number of generated alarms that do not correspond to real
defacements

We may then define the following requirements for a defacement detector:

Very low UDR. Undetected defacements have extreme consequences, so their number should be as
low as possible.

Low FAR. False alarms cost, as they must be dealt with by the SOC. Based on available budget,
thresholds can be set so as to have a desired FAR value. Obviously, lower FARs will make the
expected UDR higher.

Unpredictability. Only system administrators, responsible for the defacement detector, should have
access to details and keys that make defacement alarms predictable. If adversaries know the
alarm behaviour, they will be able to simulate it and break the defacement response infrastructure.

2.2. Previous Work in Defacement Detection

A number of papers strictly related to defacement detection and response have been
published [1–11]. Some commercial monitoring services are also available [12].

The simplest approach is based on direct comparison of downloaded content with trusted and
separately stored content [4,8,10,12]. Most commercial services [12] detect any minor change and fire
an email alert, based, for example, on the difference in the hash codes of downloaded and trusted
content. The same approach is used in [10], where the check is embedded in a ready-to-use Apache
module. The module will prevent a defaced page from being served to a client. A similar method,
based on a more involved difference computation, is described in [8]. The authors have done some
experimentation and have realized that such difference checks can be computationally demanding,
hence they propose efficient but partial difference evaluation algorithms. In [4] an extreme approach
is adopted, where reference content is stored in a read-only local storage, so as to avoid the very



Algorithms 2019, 12, 150 5 of 27

possibility of content injection that could be so pervasive as to avoid detection. Similarly, in [11] the
operating system’s features are used, in combination with a secure hardware component, to monitor
file systems changes and detected unwanted modifications.

More involved approaches, that are more directly related to the present paper, are adaptive
in nature, and rely on Pattern Recognition and Machine Learning techniques, in order to classify
a currently downloaded page as either “normal” or “defaced” (e.g., [1,3,5–7]). As such, these
approaches are part of a more general notion of anomaly detection, with applications to computer
security. We will not cite papers from this broader area, but excellent recent surveys are available,
e.g., [28,29]. In [6] a number of different or parametric approaches to anomaly detection for defacement
monitoring are surveyed and quantitatively compared. In particular, the use of different learning
algorithms is evaluated in the light of performance (false positive and false negative rate).

In [1] a novel “Delta Framework” is described, using a Machine Learning approach,
and introducing a concept of “Fuzzy tree difference”. This is interesting, because it overcomes the
limitations of an exact match, and it addresses the issue of the computational workload that such
monitoring services typically involve. In both [1] and [9] linguistic and semantic issues are addressed.
In particular, in [9] the notion of “semantic consistency” is introduced, a notion that can be effective for
detecting undercover defacements, where page look and feel is maintained, but nonsense, or totally
out of context sentences are injected.

Quite in the opposite direction, the approach described in [2] is based on image difference and
can be effective when text is unchanged or not involved in the defacement attack, because everything
is obtained with the final visual effect facing the user.

Defacement approaches based on image recognition are challenged with a very difficult goal,
being related to a kind of Turing test, this time a form of “reversed CAPTCHA”:

• in a standard CAPTCHA, the “good guy” is a human user, who reads and types text from an
image. The “bad guy” is an automated algorithm, also trying to correctly read some words,
in order to bypass robot detection.

• in this reversed CAPTCHA, applied to image-based defacement detection, the “good guy” is
an automated algorithm (the monitoring system), trying to extract meaning from an image and
checking that it is consistent with the site’s profile. The “bad guy” is a human attacker, wanting to
write unwanted text in the image.

Since this reverse CAPTCHA challenge is intrinsically difficult, most defacement detection approaches
are not based on image recognition and labeling.

3. Keyed Learning of a Defacement Detector

Many security challenges have been addressed by means of adaptive techniques, involving
both supervised learning and clustering. These include one step and especially continuous
authentication, network intrusion detection, spam filtering, defacement response and malware analysis
(see, e.g., [29,30]). In such applications examples are often continuously generated, and online learning
methods are needed.

In anomaly detection challenges, a security adversary may avoid defense mechanisms by
influencing or predicting the output of every learning phase. Following the seminal paper by Kearns
and Li [31], and more recent work [18,20–25,32–35], a new field of research has emerged, known as
adversarial learning. As a large number of examples, both real and malicious, may be generated,
the term “adversarial data mining” has also been used [36].

Defacement response has not been directly studied in an adversarial context, except for the
inspiring discussion in the final section of [6]. However, it should be: our adversary is willing
to deface our application, and will maximize success by trying to pass undetected through our
defacement detection component. This can involve two lines of action: (1) influencing the learning
system, e.g., by injecting malicious examples, so that it will be ineffective, or (2) predicting the alarm



Algorithms 2019, 12, 150 6 of 27

system behavior, and use a defacement instance that will stay below a criticality level requiring
human intervention.

In order to frame these considerations in a more precise context, we will use the classification of
adversarial learning proposed by Barreno et al. [21], and apply it to defacement detection as follows:

1. Defacement detection is exposed to exploratory attacks. In fact, it may be difficult to inject
examples, as this would amount to causing real defacements, the very goal our adversary is
seeking. Our adversary will likely be limited to an exploratory approach, observing application
evolution and content over time.

2. For defacement detection we address targeted adversarial models. In fact our adversary has
a precise, targeted, goal: inserting a defacement that will be noticed, not just any change in a Web
page. For example, a change in one long text page, where just one word is deleted, cannot be
considered as a successful attack.

3. Defacement detection faces integrity attacks. If even just one defacement goes undetected, our
adversary wins. On the other hand, it would be difficult to make the whole detection system
unstable, as injecting training data (defacement examples) has a high probability of being detected,
causing the used vulnerability to be fixed, and preventing further adversary action.

In summary, defacement detection should be addressed in an exploratory, targeted, and integrity
context. Similarly, defacement detection naturally falls within the framework of evasion attacks that are
performed at test time [37], and we will generally speak of anomaly detection with passive adversaries,
who will not be able to manipulate examples in the learning set.

In fact, for adversarial applications like defacement detection, the main objective of our adversary
is to predict the learned classifier. The adversary will then attack at test time with an anomalous vector
that will escape detection, and yet represent a meaningful and substantial change, that will achieve
some practical purpose. In the case of defacement, the adversary will simulate or predict the learning
phase, and then deface the application while avoiding an above-threshold alarm to be raised.

What we then want is a learning system that is unpredictable. One way to do this would be to
hide all relevant information, or even the presence of an adaptive component—a form of “security
through obscurity”. A more mature approach, suggested for example in [6,18,21–26,38], would be to
keep the learning system public and visible, while keeping some system parameters secret.

We continue along this line of reasoning, and extend it in the context of a more general keyed
learning methodology. A learning system takes as input training data, a feature set, hypothesis space
restrictions/preferences, and other forms of bias including rule-based prior knowledge [39]. A keyed
learning algorithm will take an additional input: a secret key k (see Figure 1). Round arrows indicate
that the process may be repeated, as a form of online or reinforcement learning. The key and the other
input data may then change over time and for different learning sessions. The key used in one learning
episode will then have the role of what would be called a session key in cryptographic applications.

This information can be considered as a key used in symmetric cryptography, and will be known
to the anomaly detection system, but not to our adversary. The learning system can use the key to:

• unpredictably select feature subsets, restrict the hypothesis space, or specify other forms of bias;
• unpredictably choose subsets of learning examples;
• unpredictably choose time of learning, time constraints on learning phases, and the amount of

available computational resources.

How does the key practically influence the learning process? Starting from a key k, we have to
determine a possibly large number of choices, including a specific selection of features, parameters,
and input data. The number of bits in k might not suffice.



Algorithms 2019, 12, 150 7 of 27

Features,
Data, Bias

k

Keyed 
Learning H

Figure 1. Keyed Learning, producing a learned hypothesis H, e.g., a classifier or a cluster.

We have used straightforward method, with a 128-bit secret key k, and fed it into a pseudo-random
function PRF to obtain an infinite and unpredictable bit stream. A PRF may also require as input
an additional seed value, a bit vector, that is not necessarily required to be secret. A number of
techniques to achieve this goal have been proposed [40–42], and we have used a simplification of
TLS-PRF, as defined in RFC 5246 [42]:

PRF(k, seed) =
HMAC(k, A1 || seed) ||
HMAC(k, A2 || seed) || ...

where || represents bit vector concatenation and Ai is defined as:

A0 = seed, Ai = HMAC(k, Ai−1) (1)

We now have an arbitrarily long vector of secret bits PRF(k, seed). From this we draw in sequence
three bit vectors: (1) bits used to select features and feature parameters, (2) bits used to select training
examples and (3) bits that affect system timing and other implementation-level parameters.

Features are associated to one bit b in the first part of PRF(k, seed): if b = 1 the feature is selected
and will be used during the learning phase, if b = 0 it is excluded. If a feature requires parameters
(e.g., f j(n) = number of lines longer than n characters), it is associated to one bit b in PRF(k,seed), used
for selecting/deselecting the feature, and a fixed number of subsequent bits, representing the numeric
value of the parameter n. This is all illustrated in Figure 2, while the precise use of the system timing
bits will be discussed later.

bits for feature selection data selection timing

PRF seedk

infinite & unpredictable bit sequence …

… 0/1 ... … 0/1, n … 0/1 … …

selection 

of fi 

selection 

of fj(n)

selection of 

example el

Figure 2. Computing the learning system’s parameters from the secret key k.

Methodology Motivations and Limitations

In this subsection we discuss why the keyed learning methodology is needed to improve classifier
performance in an adversarial setting. We then list some limitations of the approach.

The use of a secret key as an input to the learning algorithm amounts to hiding information
from our adversary. Previous work on keyed intrusion detection [21–25] and on adversarial learning



Algorithms 2019, 12, 150 8 of 27

with randomization [18–20] is based on similar considerations. The principle has also been informally
suggested in the context of defacement detection [6]. In this paper, we take a security perspective,
following Kerckhoffs’ principle and putting all hidden information into one secret key k. Moreover,
we extend this information hiding principle to the whole system behaviour, including aspects that
were not previously considered, such as the learning and application time of the anomaly detector.
The requirement for k is not randomness, but rather practical unpredictability. For example k could
not be physically random, because it is output by a pseudo-random number generator, but, if our
adversary cannot replicate the process, it will be perfectly adequate for our purposes.

In the context of anomaly detection, one may argue that use of a key or other more informal
ways of hiding information from our adversary is not only a sound approach to learning with passive
adversaries, but even a mandatory requirement when all input data is public. In fact, if the learning
system is completely known and the input data is available, an adversary could simply replicate
the learning process, obtaining the very same classifier we will use. This is the case for defacement
detection, because the input examples are taken from the target Web site, and from known defacement
examples. In other applications, such as anti-spam filters, the situation can be different because the
examples of non-spam emails for a specific user are normally not available to the adversary. When
the anomaly detector is applied in the production environment, the adversary will look for an attack
pattern that is classified as normal, and use it to defeat the alarm system. As a consequence, evasion is
simple and straightforward when no information is hidden from an adversary, and keyed learning is a
natural solution that improves classifier performance in this context.

However, a number of limitations of the approach should be considered.
First, we must consider consequences on the prediction performance of the learning system.

As stated by Biggio et al. in [18]:

«an excessive randomisation could lead to selecting a classifier with a poor performance, to the extent
that the advantage attained by hiding information to the adversary is lost.»

Similarly, it should be noted that the key is random and unpredictable, and could lead to the
selection of a poor set of features, from a prediction perspective. The feature subset selection process
induced by the key should not be confused with “feature selection” as addressed in Pattern Recognition
and Machine Learning, where a set of features is selected at training time, with the goal of achieving
better prediction. Here we only mean that some features are used and others are not, based on the
value of the secret key—the selected set of features may not be optimally performing, and could
actually be redundant and include useless features from the point of view of prediction. Nothing
prevents the training phase from doing some further feature selection, in its classical meaning, after
the keyed feature selection has been done. Traditional feature selection, aimed at better accuracy,
is normally predictable, and thus a possible vulnerability [43] from an adversarial point of view.

As a possible mitigation of this issue, we may observe that this situation can be detected at
learning time, e.g., via cross-validation with a testing set. If this happens, a new session key could be
generated, and the process would be repeated. Computational effort and convergence issues should
however be addressed.

As a second limitation, we cannot exclude the possibility that our adversary obtains a close
enough classifier even without knowing the hidden information, for example, by relying on a large set
of available data. In fact, keyed learning will hide the hypothesis space and other training parameters,
but our adversary could use a different hypothesis space to learn, possibly with different methods,
an equivalent or similar classifier. This issue could be studied in a PAC-learning context: for example,
knowledge of the key would allow us to use a learnable hypothesis space H2, while our adversary,
who does not know the key, is faced with a larger, not learnable, space H1. When the key k is
known, the learning process will then produce, with high probability, a classifier C belonging to H2,
that has adequate accuracy. On the other hand, our adversary should be unable, either directly or
by using another key k’, to identify a learnable hypothesis space H3 that also includes C or other



Algorithms 2019, 12, 150 9 of 27

accurate classifiers. In our system we have used decision tree classifiers, as they are considered to be
computationally hard to learn [44]. This is illustrated informally in Figure 3.

k

H 1

H 2

C
H 3

k’

Figure 3. Keyed Learning—the correct key k helps select a hypothesis space H2 that is easier to learn,
including a predictive classifier C.

As a third limitation, an adversary could observe system behavior to guess the key value, possibly
combined with a brute-force approach (key recovery). Previous work has addressed this issue in
the context of Intrusion Detection [22,35], but further analysis is needed, applied to the present
generalized methodology.

Finally, one could argue that the key has limited impact, because, as stated in [18], «in real tasks
the adversary hardly ever has complete knowledge about the classifier decision function». However, in security
applications, one should not rely on general lack of knowledge by an adversary, and hide information
in a systematic and sound way, normally with a key—again an instance of Kerckhoffs’ principle.

4. System Architecture and Implementation

In the implementation of our defacement response system, we have taken into consideration
the following:

• Application and web page analysis can lead to a high computational cost, and to some
bandwidth constraints—this is often underestimated, but our experiments have shown that
for enterprise-level Web Sites even just the scanning of all content with reasonable frequencies
can be a demanding requirement.

• The analysis of a complex application or Web Site is suited for parallel processing, as there is
little or no correlation between pages or site sub-directories when defacement detection is our
purpose (at the state of the art [1,26], even though attacks can be massive and affect most Web
Site pages, each page is individually targeted, and defaced content is not spread over multiple
pages). Different pages (URLs) in the target Web Site will normally have different importance,
and will thus be assigned a weight—for example, the home page will normally be assigned the
highest weight.

• The implementation should be suited for installation with multiple clients with different and
difficult to predict IP addresses, so as to avoid differential defacement [14], i.e., sophisticated
defacement instances where normal page content is returned to clients that are suspected monitors,
whilst defaced content is returned to normal end-user clients.

As a consequence, our implementation addresses one page or application component at a time,
in parallel and from different IP sources.

4.1. Keyed Scheduler

As a first step, we will analyse the concept of a “keyed scheduler”, i.e., a system component that
will spawn a process and determine its inputs in a way that is unpredictable for our adversary. This will
be an essential component of our defacement detection architecture, and is described in Figure 4.



Algorithms 2019, 12, 150 10 of 27

Figure 4. Keyed scheduler.

The keyed scheduler will use as input a list of URLs and corresponding weights:

< URL1, w1 >, ...,< URLn, wn > (2)

as well as the secret key k. It has two components: a keyed selector and a keyed delayer.
The keyed selector will select one URL out of the input list. The weights associated to each URL

determine the frequency of their use:

f requency(URLi) = wi/ ∑
1≤j≤n

wj. (3)

The choice of the URL will depend on the key k and should respect the above defined frequencies.
As a first step, a frequency table FT is constructed:

FT = [[URL1, 1], ..., [URL1, w1], ..., [URLn, wn]] (4)

where each URLj is repeated wj times. The length of FT, that we will call m, is then computed as

m = ∑
1≤j≤n

wj (5)

The keyed selector’s output URLi will be computed as URLi = FT[index][0], where

index = HMAKk(At) mod m (6)

and At is obtained as part of our pseudo-random function PRF as defined in Equation (1), computed
for the current iteration t. The value of t will be incremented for every new cycle of the keyed scheduler,
i.e., every time the keyed selector is activated.

In summary, index will be an unpredictably chosen element of FT, and thus URLi will be chosen
unpredictably out of the input list, respecting the given frequencies. The user will then be able to
assign different weights to the URLs in the list, depending on their relative importance.

The keyed delayer will wait for an unpredictable time interval T, measured in milliseconds, where
T ≤ MaxTimeInterval:

T = HMAKk(At) mod MaxTimeInterval (7)

The adversary will then be unable to predict this time interval, and hence know when the detector
will be running.



Algorithms 2019, 12, 150 11 of 27

After the keyed delay, the keyed scheduler will spawn a process and pass to it the selected URL.
The process will run on a new selected client. Again, the client could be selected based on the secret
key k. In our implementation we have used a simpler round robin strategy, so that all available clients
are equally used. The resulting effect is a monitoring process being spawned at unpredictable times
and with an unpredictable input URL.

4.2. Overall System Architecture

The overall system architecture is described in Figure 5, where all activity is triggered by
two separate keyed schedulers: (1) a scheduler for the URL tester, on the top right side of the figure,
and (2) a scheduler for the keyed learning component, at the bottom of the figure.

Figure 5. System architecture.

The input to the scheduler for the URL tester is a comma separated list of values (CSV), where each
value consists of a <URL, weight> pair. We generate the URLs in the CSV by crawling the application,
while corresponding weights decrease as we run further from the site’s document root, unless our
application-specific component risk labeling states otherwise. Thus, in general, the application’s home
page will be checked more frequently than content leaves, that may have a lower reputational impact.

The scheduler will spawn a process in due time, and a corresponding URL testing procedure is
followed (see Figure 6). As a consequence, also within the same client, multiple <URL, weight> pairs
are consumed by independent processes running in parallel.

First, the URL content is downloaded, together with its inline external components (scripts,
images, etc.). In our experimentation, we targeted a large enterprise site where a CDN was in place.
In this case, it is important to download content from the original content source, and not from the
CDN or intermediate proxies.

Second, two basic tests are performed, availability and equality (see again Figure 6):

• Availability: if the URL cannot be downloaded, because an error is returned (e.g., http 4xx or 5xx),
or a timeout occurs, the availability test fails and the spawned process instance stops.
A corresponding log line is stored and a possible alarm is generated in the alerting subsystem.

• Equality: if a hash of the downloaded content is equal to the one computed for previous
downloads, the detection procedure was already run with the same data, and again the process



Algorithms 2019, 12, 150 12 of 27

stops. This is very important in practice, because the equality check will cause a stop most of
the time, as the application does not change continuously, resulting in significant computational
savings. Equality is actually verified in two steps:

– domHash: compares the hash (sha256) of the most recently saved DOM, with the DOM that
was currently downloaded;

– contentHash: extracts the “pure text” from the current DOM (including the alt tag values),
and from the previously saved DOM, and checks the corresponding hash values for equality.

If domHash succeeds (the two hash values are equal), then equality succeeds and the process
stops. It may, however, happen that domHash fails only because some script names differ or
other content-unrelated differences apply—in this case contentHash succeeds and the defacement
detection process stops, without generating any alarm. We do the check in those two phases for
efficiency reasons, as domHash is more easily computed and detects most situations that do not
require further processing.

Figure 6. URL tester.

Third, a number of fixed custom tests, and one adaptive test are fired, yielding an overall
defacement score. This will cause possible logs, alarms and SOC-alerting procedures to be generated.

The overall system is then composed of three functional components: (1) keyed schedulers,
(2) keyed learning, and (3) URL tester. The components are interconnected as shown in Figure 5,
and the motivation of each of them can be summarized as follows:

• There are two keyed schedulers: a “testing” scheduler (top and right in Figure 5) and a “learning”
scheduler (bottom of Figure 5). The schedulers work as shown in Figure 4 and have the purpose
of making system actions start at times that are unpredictable for our adversary. The use of a
testing scheduler is a common requirement of all complex alarm systems: if the adversary knows
when the system checks for anomalies, the time of attack will be planned so as to avoid the check.
For similar reasons we also make the learning time unpredictable, so that the adversary will not
know when the classifier undergoes possible changes.



Algorithms 2019, 12, 150 13 of 27

• The keyed learning component (middle and left in Figure 5) is of course essential in the system
architecture, because it is responsible for producing a good classifier, based on available examples,
prior knowledge, and the key k. The system would not adapt to Web site changes without this
component, and it would be deterministic and predictable, so the component is essential for
classifier performance (UDR, FAR and unpredictability as defined at the end of Section 2.1).

• The URL tester (middle and top box in Figure 5, details in Figure 6) is spawned at unpredictable
times and with an unpredictable input URL—it will check whether the corresponding
Web page has undergone a possible defacement, based on the currently available classifier.
So this component is essential and necessary for generating possible alarms, as required in
defacement detection (see again Section 2.1).

4.3. Basic Custom Tests (Fixed)

The fixed tests are encoded custom tests, not resulting from a previous training phase. We soon
realized this was necessary because in practice some simple, common sense checks are extremely
effective. For example, just checking the existence of the correct company logo in the correct position
detects a large number of real-life defacement instances.

We will label these custom tests as T1, ..., Tn, and they are part of the “fixed tests” box in Figure 6.
Some tests are binary (with 0 or “fail” meaning a possible defacement and 1 or “success” meaning
a possibly normal content), other tests are weighted. The implemented tests may include the following:

• dnsSpoof: given a list of IP addresses (or ranges of IP addresses specified with CIDR notation),
it verifies that the response comes from a “trusted” IP address, belonging to the given list

• untrustedSources: given a list of trusted domains, it verifies that scripts or resources from external
and untrusted sources are not included in the page

• publicDefacedSitelist: verifies that the given URL or its domain component are not present in the
RSS feed of Zone-h.org, containing the list of the last 20 “important” sites that have been defaced

• imageNumber: compares the number of images in the previous and in the current DOM—if there
is a difference of more than a given threshold (defaulting to 10%), the test fails

• lineNumber and wordNumber: same as the previous one, but the number of HTML lines and
words is compared

• language: identifies the prevalent natural language in the downloaded content, and verifies that
it is within a pre-configured list of accepted languages (e.g., English, Italian)

• wordBlacklist: given a word dictionary, divided in subcategories (e.g., hacking, spam, politics),
it counts the number Nu of such undesired words or word variants in the page, and returns
a weight w = Nu/Nt, where Nt is the total number or words in the page

• diffDistance: using a sequence matching algorithm, the difference between the current and the
previous DOM is computed (resulting in a floating-point number between 0 and 1, with 0 meaning
equal, and 1 maximally different)—this is then combined with the site’s changing frequency to
yield a test output in the form of a numeric weight between 0 and 1

• diffOCR: starting from the page’s screen shot, an OCR routine is run yielding an alphanumeric
sequence; this is again processed as in the diffDistance test, yielding a difference weight between
0 and 1

• dictOCR: the words obtained via OCR are processed as in the wordBlacklist test
• fixedImage: a specific image in a specific position must occur (e.g., company logo)
• fixedText: a specific text sequence in a specific position must occur (e.g., company motto)
• applicationSpecific: other custom tests have been implemented that are specific to the

target application.

Some of the above tests are assigned a weight and are combined to yield a “fixed test weight”.
It is important to note that the computation of the above tests provides us, as a byproduct,

with a number of computed quantities that will be useful for the following adaptive test. For example,



Algorithms 2019, 12, 150 14 of 27

the lineNumber test computes the number of lines, and the dictOCR test produces a list of words
extracted from page images. These quantities are used as precomputed features in the adaptive test,
avoiding duplicate evaluation of the same quantities. This is also why, in Figure 6, the adaptive test
follows the fixed tests, and receives input from them. The fixed tests can run in parallel threads or
processes, but the adaptive test will have to wait for all such processes to terminate before it can
start execution.

4.4. Adaptive Tests (Based on the Learned Classifier)

After the fixed tests T1, ..., Tn have been executed, an adaptive test, based on the learned classifier,
is activated. We will label the adaptive test as TL. This step requires input data from T1, ..., Tn, because
most of these custom tests will have computed quantities that TL needs to use as features. In this way
TL will not have to recompute such values (e.g., Ti is the above-mentioned test wordNumber, verifying
differences in the number of words: it will have computed the number of words in the Web page, and
TL could need it as a feature value to be used by the learned classifier).

TL is fully defined by the features to be used, the selected positive and negative examples, and
the keyed learning methodology, as described in the following subsections.

4.4.1. Feature Choice

Following our previous discussion on keyed learning, we face the goal of identifying a large
number of features, where only a subset of such features will actually be used for training. The choice
of this subset will depend on the learning key, that is selected at deployment time, can be changed at
run time, and is unknown to our adversary.

The features to be used should be adequate for addressing the defacement problem, and hence
should be

• easy to compute for general Web pages, and preferably available from previously computed
values in the custom tests T1, ..., Tn

• applicable to dynamic pages and pages containing different types of client-side code
• adequate for describing “normal” page content and “defaced” page content
• capable of capturing the page look and feel
• easy to extend and change, so as to allow for larger keys

Based on the above guidelines, and using some of the features also suggested by [6,7], we have
identified a large number of features, including:

• Global page features, e.g.,

– Empty space to Filled-in ratio
– Prevalent colors
– Text to image ratio
– Static to moving content ratio
– Amount and type of client side code

• Simple numeric features, e.g.,

– Number of lines
– Number of characters
– Number of images
– Number of images from external URLs
– Number of hyperlinks



Algorithms 2019, 12, 150 15 of 27

• Words and semantics, e.g.,

– Number of words in a given semantic classes or dictionaries
– Prevalent languages (e.g., 1st English, 2nd Italian, 3rd French)
– Presence of mandatory words / lines (e.g., company motto)

• DOM tree

– Depth, arborescence
– Number of leaves and nodes
– Tags
– Fonts
– Character size and color

• Images

– Color map (e.g., RGB mean in given areas)
– Average image size
– Prevalent image position within page
– Presence of predefined images in a given page area (e.g., company logo)

• Text from image OCR

– Word to size ratio
– Prevalent semantic class in image words
– Total number of words in images

• Network data

– Download time
– Number of different IP addresses contacted
– Number of TCP connections

Some of the above features can easily be changed or extended, so that an even larger number
can be produced. Some can even be parameterized, for example number_of_links(k,n) is defined as
the number of external links in the k-th portion of the page, after dividing the page in n segments of
equal size.

4.4.2. Keyed Learning Application

As explained above, and highlighted in Figure 1, a secret key is used, and initialized when the
anti-defacement system is deployed—it may be changed later and will be stored and known on this
system only. With this key, we will select examples, features, and learning method and parameters,
as discussed in the previous section on keyed learning, and illustrated in Figure 2. The following uses
of the key are included.

• Keyed selection of examples

An initial set of positive (acceptable page content) and negative (anomalous, possibly defaced
page con-tent) examples is obtained as follows:

– Positive examples: a reference version of the target URL (validated by the end user),
system-generated modifications of this page, previous versions downloaded from the same
URL, pages downloaded from the same Web Site, pages from a defined set of related URLs.



Algorithms 2019, 12, 150 16 of 27

– Negative examples: system generated modifications of the target URL’s content, examples of
defaced pages (e.g., from zone-h), pages for a defined set of URLs with content considered as
inappropriate, content from applications that are semantically distant from the target.

For all of the above examples, the complete set of features is computed and their value is stored.
A sub-set of positive and negative examples is selected based on the secret key. Examples may
be weighted, where a higher weight gives an example a higher probability of being selected.
For instance, the positive examples from the target URL may have a higher weight, with respect
to the ones obtained from related Web sites, and high-impact defacement examples in the style of
“hacked by anonymous” could be given a higher weight based on risk evaluation issues. Such
weights are considered as domain knowledge and are not part of the secret key.

• Keyed selection of a subset of features

The secret key is used to select the features that will actually be used, among the complete set of
available features. The keyed selection of features may include the setting of parameter values
in features that include this option (e.g., selection of k and n in the above-mentioned feature
number_of_links(k,n)). Features with parameters are selected and parameters are set as described
in Figure 2.

• Keyed choice of the hypothesis space, the learning algorithm and its parameters

The secret key is used to define a general hypothesis space, e.g., decision tree versus Boolean
formulae. A subspace may also be defined with parameters, e.g., kDNF or k-term-DNF for
Boolean formulae. Other parameters, also selected based on the secret key, may be used to define
or constrain the learning method, e.g., minimum number of examples covered by a decision tree
node, or pruning criteria. Any form of learning bias should also be codified with components of
the secret key. This is not explicitly described in Figure 2, but an additional and unpredictable bit
vector could be generated for addressing such forms of algorithm and bias selection.

• Keyed selection of learning times and schedule

The secret key will also define when learning takes place. As for the URL defacement test and
alarm process, the learning schedule will also be defined with a secret, comma separated list
of URLs and weights (see Figure 5). When the keyed scheduler in the bottom of the figure
outputs a given URL, a process is spawned and will perform a new learning phase, and the
example database will be updated. In fact, the learning phase will not be done only once at the
beginning, because:

– The secret key may change. Actually, it will be a good idea to maintain a master key, and
generate “learning session keys” to be used for a given period of time, so as to prevent our
adversary from inferring secret information based on the observation of generated alarms
and site management actions.

– The examples might change. When the URL content is willingly modified by the site owner,
it will make good sense to add the new version as a positive example, possibly with variants.
In the same way, if new defacement examples become available, we want to add them to the
negative examples.

It is important to hide the time when a new learning episode is triggered, so as to prevent the
adversary from guessing possible classifier behavior. The “learning URLs” CSV (containing pairs
<URL, weight>) and the secret key k constrain the possible moment when the learning process
is spawned and the URLs it will use. The same is done for making the moment of defacement
testing unpredictable, in the top of Figure 5—in this case the “testing URLs” list is used.

After the learning phase has completed, we have a new classifier C, that will label any new
URL content as either normal or anomalous. We have in fact used a binary classifier (yielding



Algorithms 2019, 12, 150 17 of 27

a normal/anomalous classification), but multiple classes (e.g., normal/suspect/anomalous) or
regression could be used, yielding a numeric evaluation of the degree of anomaly. This classifier
C is then input to the “adaptive tests” box in Figure 6.

4.5. Combined Evaluation and Alerting

The outputs of T1, ..., Tn and of TL, are finally used in a combined numerical evaluation (hidden in
the Alerting Subsystem of Figure 6): based on defined thresholds, that depend on domain knowledge
and on the secret key k, we produce an overall alarm level: No_alarm, Information, Warning,
and Critical.

“No_alarm” will cause no action. “Information” and “Warning” produce a log line,
with corresponding labels and parameters. “Critical” will produce a log line, a web service
communication to the SOC, and a message (email or sms) to a human operator, as defined by our service
team configuration. The intervention of a human operator will provide, as a side effect, a validated
classification of normal or defaced content, that will be added to positive and negative examples,
respectively (box “evaluate” in Figure 6).

4.6. Software Tools and Platform

We have deployed a testing platform and system, as well as a production platform; the testing
platform is based on the above-described functionalities, and uses the following software and
platform components:

• Platform: Debian 8 jessie Kernel, version 3.16.0-4-amd64
• Software and libraries: Python 2.7, running in Virtualenv
• DOM reading: Phantomjs 2.1.1 with Selenium Web-Driver
• Learning System: scikit-learn library
• Cryptographic libraries: OpenSSL 2.0.13
• Alerting method: Email and SMS in case of critical events, Unix-style logging files

The testing system runs in a virtual machine with 1 GB RAM and two i5 Cores, and the production
systems use 1 GB and 2 E5606 @ 2.13Ghz Cores.

5. Results: Experiments, Full-Scale Deployment and Discussion

We will describe three different experiments:

• (Section 5.1) a newspaper scenario, where a real web site has been used, but simulated changes
and defacements were injected

• (Section 5.2) the same newspaper scenario, where defacements were injected by simulating
an adversary, in two cases: (1) when the adversary does not know the key k used for learning and
(2) when the adversary knows the key

• (Section 5.3) a production environment where our system is presently being used as a defacement
response component.

This approach was chosen because no actual defacements were expected to happen in the
production environment. As a consequence, some performance parameters could only be evaluated in
the newspaper scenarios.

5.1. Newspaper Scenario

5.1.1. Setup

The test system has been used to monitor 10 selected URLs of a major news website. The URLs
were chosen based on the likelihood of changes and expected update frequency.



Algorithms 2019, 12, 150 18 of 27

To simulate an attack, we used the Nginx web server, as a virtual host that responds to local
requests. Nginx will respond to HTTP requests sent to the local domain with a PHP page that loads
content from a substitution source, locally hosted. This substituted content can be (1) a modified
version of the expected page, (2) a page from another news website or (3) a known defacement instance
from Zone-H [16].

Before some randomly chosen executions of the defacement detection tool, a script will add
a line to the local hosts file, in order to redirect HTTP requests to the local virtual host. On those
random occasions, we will thus obtain locally substituted content, instead of the remote target page.
Afterwards, the script deletes the line from the hosts file, to restore normal operation. In this way,
we use the modified page for virtually just one execution of the tool. When defacement detection is
performed with a high frequency, the modified page can be found for more than one execution.

A Python script runs daily, decides when to carry out the replacement of the page, and generates
a configurable number of tasks, to be scheduled randomly during the day. The defacement examples
used in the replacement are not used in the Machine Learning phase, in order to make the test as
realistic as possible.

5.1.2. Performance and Results

To assess the accuracy of the tool it is useful to evaluate its behavior in the context of the response
mechanisms as previously discussed, where our combined evaluation produces an overall alarm
level: No_alarm, Information, Warning, Critical. We also consider this experimental setting, where
two possible cases are at hand: (1) the original URL content is downloaded or (2) a replacement page
is obtained. The replacement page can be (2.1) a defacement instance D, (2.2) a page R from a similar
Web Site or (2.3) a modified version R of the same page. We then found it useful to define three kinds
of errors:

• False positive: there has been no page replacement of any kind, as defined in case (1) above,
but the system evaluated the URL as critical.

• False warning: there has been no page replacement, again as defined in case (1) above,
but we obtained a warning because an ordinary change in the original page was detected.

• False negative: there has been a page replacement including some defacement instance D, as in
case (2.1) above, but the evaluation is either “Information”, “No_alarm”, or “Warning”—since
this is a defacement we would have wanted a “Critical” evaluation.

The percentage of false positives corresponds to the False Alarm Rate (FAR) as defined
in Section 2.1, and the percentage of false negatives corresponds to the Undetected De f acement
Rate (UDR).

We have run the system over a three-day period, injecting a total of 150 defacements, obtaining
the results reported in Table 1.

The results are also represented graphically in Figure 7. The defacement detection system was run
every 10 minutes during the three-day period. For every execution, three quantities were measured:

1. The total number of “Critical” alerts that were generated for the 10 URLs being monitored
2. The total number of “Warning” alerts that were generated for the 10 URLs being monitored
3. The value of the combined numerical evaluation computed in the alerting subsystem, averaged

over the 10 URLs being monitored.

The above three values were thus obtained every 10 minutes, yielding a total of 174 critical
messages and 272 warnings over the three days. The average evaluation value and the total number
of warning and critical alerts over one hour periods are plotted in Figure 7. Since there is a total of
10 URLs, a maximum of 60 alerts can be obtained every hour (10 × 6 executions per hour). The graph
of Figure 7 highlights four semantically meaningful events that occurred during those three days,
as reported in Table 2.



Algorithms 2019, 12, 150 19 of 27

Table 1. Accuracy in the newspaper scenario.

Number of Defacements False Positives (FAR) False Warnings False Negatives (UDR)

150 10 266 1

Figure 7. Aggregated evaluation and relevant events (newspaper scenario).

Table 2. Major events in the newspaper scenario.

Event Description

Evt.#01 Redirection to a local defacement page

Evt.#02
Warning events due to the presence of an article describing a “hacking” incident that had just
made the news, plus some of our injected defacements. Moreover, some artificial defacements
were also substituted, as in Event #01.

Evt.#03 Replacement with a Web Site from another newspaper—there are big differences in the
structure and the contents of the site, with respect to our target URLs

Evt.#04 Replacement with a different page from the same target Web Site

Taking into account the dynamic nature of the target Web Site, the experiment produced the
expected results. We obtained a moderate number of false positives and a low number of false negatives.

As reported in Table 1, a total of 266 false warning were obtained—these do not necessarily
require human intervention and can be easily dealt with in a running installation. They are due to
significant changes on the target pages, as is it common for a news web site. This can include major
text and keyword changes, as well as abrupt changes in the page size, text to image ratio, and number
of images.

The learned component of the classifier produced no False Alarms (FAR = 0%), and an Undetected
Defacement Rate (UDR) of 18%.

The overall accuracy is better for UDR, as reported in Table 1, because the global evaluation
combines TL with the fixed tests of Figure 6. It is interesting to note that the result of the classification
depends on the selected key k. Changing this, in terms of features and selected examples, causes
an unpredictable change in the classifier. When the selected page is not a defacement from Zone-H,



Algorithms 2019, 12, 150 20 of 27

but a replacement page from the original Web site or from another newspaper, a lower number of
alerts is generated (events #03 and #04), as one would expect.

5.2. Adversarial Newspaper Scenario

We now describe an experimental setting similar to the one of the previous subsection, but where
defacements are chosen by an adversary. Since the focus of this section is about studying the effect of
adversarial action, only the adaptive classifier TL was used, and the custom tests previously described
were bypassed.

The test system has been used to monitor just one selected URL from the same news website.
A set P of “normal” page examples and a set N of “defaced” page examples were generated, where
normal pages are relatively simple variants of the newspaper page, and defaced examples are obtained
by injecting content from Zone-H [16] defacement content into variants of the newspaper pages. P is
divided into a training set (PTr) and a test set (PTs). N is divided into a training set (NTr), a test set
(NTs), and an adversarial defacement set (ADS). A random forest classifier RFCk is learned using the
training set PTr ∪ NTr, after selecting a secret key k, based on the previously described keyed learning
methodology.

To simulate an attack, we suppose that when our adversary knows k, she can learn a classifier
RFCAk, starting from the same learning set PTr ∪ NTr. Assuming the adversary has access to
the same training set we use amounts to giving her a lot of information. In many practical cases,
the adversary does not have access to this, or we could use the key to hide it. In this experiment
we have decided to simulate a powerful adversary, having access to the same training data we
use. However, the classifier RFCk we have previously generated and RFCAk will not normally be
functionally equivalent, because of the variability instrinsic in the random forest generation and in
other system components (e.g., timeouts, hyper-parameters). The key was used in this experiment
only to select the features to be used during traning.

We used again the Nginx web server, as in the previous subsection. The browser will in this case
always contact the local Nginx server, that will behave in two possible ways:

1. download the real URL content from the newspaper site, and return a variant of it (then log
“page tag = normal”), or

2. in some randomly selected cases, use a symbolic link in the file system, pointing to a substitution
page (a defacement), return this page, and log “page tag = defaced”. The link to the substitution
page is changed by a script that is run repeatedly, and is chosen from the adversarial defacement
set ADS. This choice can be done in two ways:

(a) pick a random page from ADS (when the adversary does not know k), or
(b) run through the ADS set and pick a page that, using RFCAk, is tagged as a “normal”.

After the page is returned as just described, we classify it with RFCk as either normal or defaced,
and log this classification (“class = normal” or “class = defaced”). Finally, we compute FAR and UDR
as follows:

FAR = |{ logs with “page tag = normal” and “class = defaced”}|/|{logs with “class = defaced”}|

UDR = |{logs with “page tag = defaced” and “class = normal”}|/|{logs with “page tag = defaced”}|

In case 2(b), the adversary tries to pick from ADS a defacement page that will escape detection.
More precisely, knowing the key k, she learns a classifier RFCAk, and uses this to select a defacement
that is likely to be classified as “normal” by our detector. If RFCk and RFCAk are semantically close,
the adversary will be likely to achieve her goal, and cause a high UDR. The results are reported
in Table 3, and the experiment can be replicated using the software and data made available in
www.di.unito.it/~fpb/KeyedLearningData/.

www.di.unito.it/~fpb/KeyedLearningData/


Algorithms 2019, 12, 150 21 of 27

Table 3. Results for the adversarial news scenario.

Adversarial Knowledge FAR UDR

k known 11.11% 88%
k not known 10.81% 25%

As expected, if the adversary knows the key, she can simulate learning, thus obtaining a classifier
that is similar to ours. She will then pick defacements that are likely to go undetected (UDR = 0.88).
If, instead, she does not know the key, all she can do is pick a random defacement, and face detection
based on expected system performance (UDR = 0.25). In this setting, it is then clear that keyed learning
is essential for preventing adversarial action, since UDR changes dramatically when the adversary
does not know the key.

5.3. Production Environment

5.3.1. Setup and Context

The production environment targets a single Web Site of a large company in the industrial sector,
where about 260 active URLs are being monitored by the system, as part of an outsourced security
maintenance contract.

The activity started in a moment when the company was changing its Web Site completely,
including graphics, CMS and content. Our defacement monitoring was started on the development
environment for the new Web Site, and continued in the early stages of its production deployment—it
is currently still active as the company has decided to use it as an additional and ongoing security
control. This context implies that:

• The test is interesting, as there has been significant content changing activity in the early stages of
the transition to the new Web Site, potentially causing a large number of false alarms (false alarm
rate—FAR)

• This is a real-world test, but it cannot be used to measure the percentage of defacements that were
not recognized (undetected defacement rate—UDR): in fact, as one would expect and hope, no
real defacement ever occurred during the reference period. To evaluate UDR, we have then used
the experiment in the simulated, testing environment described in the previous subsection.

The 15 top level URLs in the Web Site’s tree are monitored with a frequency of 5 min, and the full
site is monitored once per hour. The exact time when the test is performed is, however, randomized
and made unpredictable by using our secret key, based on the keyed scheduler.

5.3.2. Performance and Results (Deployment Phase)

We first analyze an initial period of four months, when the site was set up, tested, and filled
with content. Since no real defacements have occurred, we measure the number of false positives that
caused an alarm, due to their higher “evaluation” result (called “notification” events), and we count
the number of critical messages and warnings. Let us start by analyzing just one month (Table 4).

Table 4. Single month.

Period Critical Events Warning Events Notification Events

M4 3 0 3

The three events mentioned in Table 4 are caused by a known bug in the Selenium WebDriver,
that occurs when HTTPS is used: for self-signed certificates the page may be loaded incorrectly and
the WebDriver returns an empty page. They caused a notification.



Algorithms 2019, 12, 150 22 of 27

A graphical representation is given in Figure 8, where we report, for every day: (1) the total
number of critical messages, (2) the total number of warnings and (3) the day’s average for the
combined evaluation of fixed and adaptive tests. The three critical messages of Table 4 are visible in
the first part of the month.

Figure 8. Aggregated evaluation graph and relevant events (production scenario—month M4).

On day 16, the CMS users made some changes that affected all the pages, as highlighted by
a relative peak in the graph. However, every evaluation for a single URL was below threshold,
so no event was triggered and no message or warning was generated.

For the complete deployment period (four months: M1, M2, M3, M4), a total of 975 events
(warnings or critical messages) were generated, as reported in Table 5.

Table 5. Total monitoring period.

Period Critical Events Warning Events Notification Events

M1–M2 393 324 66
M3–M4 258 0 6

Only 72 events caused a notification. Again, a graphical representation with average daily
evaluation and total number of messages is reported in Figure 9. One can observe the small peak on
the right end side of Figure 9, corresponding to the main peak of Figure 8.

With reference to Figure 9, we identified four major events that have a semantic relevance, where
the system reasonably generated several alerts (see Table 6).

Table 6. Events.

Event Description

Evt.#01 The development environment is targeted: most pages are empty or filled with mock content,
many changes and rollback

Evt.#02 Website go-live; after a CMS error (peak on month M2, day 27), content insertion began
Evt.#03 Website responding with an error
Evt.#04 CMS temporary shutdown



Algorithms 2019, 12, 150 23 of 27

Figure 9. Aggregated evaluation graph and relevant events (production scenario—M1 till M4).

5.3.3. Performance and Results (Maintenance Phase)

During the maintenance period (that we have called the “maintenance months”, MM2 to MM9),
after the Website was deployed and became stable, system-generated alerts were less frequent,
as reported in Table 7 and Figure 10. This is a desired situation during normal maintenance, because
with a limited number of alerts it is possible to obtain manual inspection of the corresponding pages,
after a criticality is automatically detected by the system.

Table 7. Total monitoring period.

Period Critical Events Warning Events Notification Events

MM2–MM9 4 4 2

Figure 10. Aggregated evaluation graph and generated alerts (maintenance months MM2 till MM9).

5.4. Limitations

Defacement detection is an important, but very particular case of anomaly detection:

1. it is extremely unbalanced, because in normal operating conditions all data is non-anomalous,
but just one defacement instance has catastrophic consequences



Algorithms 2019, 12, 150 24 of 27

2. once a defacement attempt is detected, it is game over for the adversary, because the vulnerability
will be fixed and no additional attempts will be possible

3. the adversary normally has available all the non-anomalous examples, when the Web Site is
public, as it normally is

4. defacement examples are available (e.g., Zone-H [16]), but they are normally unrelated to the
target Web site and should not be considered as representative of possible defacements that will
occur in the future in the target organization.

As a consequence, we did not simulate adversarial behaviour in the production scenario. This
was done, e.g., in [18] for the case of anti-SPAM applications. In that case, the above enumerated
items do not apply. Yet, a number of simplifying assumptions had to be done: (a) a limited number of
equi-probable randomization choices were possible (100 different sets of weights), (b) the adversary
could arbitrarily reduce the score of each anti-spam module, and (c) the cost of such reduction was
assumed to be proportional to its value. In our production environment even more assumptions would
have been needed, due to the particular application characteristics as enumerated above.

We did, however, apply a similar strategy in the newspaper scenario (Section 5.2), and the results
show that keyed learning is effective: if the key is not known, the measured UDR is significantly lower,
when compared to the value obtained when the key is known to an adversary.

In the real world application context described in Section 5.3, our detection component was
integrated with a SOC service and a CDN. We measured success based on FAR and UDR, and modeled
the presence of an adversary as a constraint: the adversary should have as little information as possible
about the learning procedure and the overall detection system. In fact, an adversary could avoid
detection if this information were available. Moreover, we wanted to avoid so-called security through
obscurity, and all hidden information is derived from an n-bit secret key, where 2n choices are possible.
As a consequence, not only does the adversary lack information, as in the case of the introduction of a
limited number of randomization choices, but she will also face a computational difficulty, as not all
key values can be feasibly tried.

A question remains unanswered: could an adversary predict classifier behaviour by some other
means, i.e., without trying all possible key values? This is an intriguing area for future work. Moreover,
we suggest that keyed learning should be applied to other areas of anomaly detection, where it is
necessary to hide classifier details in a way that is both systematic and unpredictable.

6. Conclusions

The present study is, to our knowledge, the first systematic application of adversarial learning
to defacement detection, although the concluding sections of the article by Davanzo et al. [6] had
previously addressed the issue, advocating the need to hide learning parameters in this particular
application context.

A keyed learning methodology was implemented and integrated in a real-world defacement
response system. The obtained results can be considered successful from two point of views:

• practical usability: the number of alarms was very limited during the maintenance phase, and still
acceptable even during the content insertion and set-up phase;

• security: in the production scenario, all significant changes in the contents and graphics were
detected and generated an alarm. Moreover, in the partially artificial newspaper scenario,
all injected defacements were recognized, and keyed learning was shown to be effective to
limit adversarial success.

The keyed learning methodology we have developed suggests that the constraint we have
set—preventing an adversary from predicting classifier behaviour - is enforced. In fact, the adversary
would face very strong challenges, because of the significant effect of the key on the results of
learning. The key can be in fact of great length and influence all components of the learning process:



Algorithms 2019, 12, 150 25 of 27

example selection, feature selection, learning algorithm choice and corresponding choice of algorithm
parameters, timing of learning sessions and timing of defacement testing.

7. Materials and Methods

Data and material is available at www.di.unito.it/~fpb/KeyedLearningData/. This includes the
core software component, and the data and web links to be used for the experiments in Sections 5.1
and 5.2. The data for the experiments in Section 5.3 are not provided since the owner of the web site
being monitored did not provide a corresponding permission.

Author Contributions: F.B. developed the adversarial methodology and wrote most of the paper. F.C.
(Fabio Cogno) developed the software component containing the keyed learning mechanisms. D.R. and F.C.
(Fabio Carretto) developed the other system components and carried out the experimentation.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Mario Leone for help with the deployment of the needed
IT infrastructure.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

WAF Web Application Firewall
IDS/IPS Intrusion Detection/Prevention System
SIEM Security Incident and Event Management
SOC Security Operations Center
CDN Content Delivery Network
CMS Content Management Systems

References

1. Bartoli, A.; Davanzo, G.; Medvet, E. A Framework for Large-Scale Detection of Web Site Defacements.
ACM Trans. Internet Technol. 2010, 10, 10:1–10:37. [CrossRef]

2. Borgolte, K.; Kruegel, C.; Vigna, G. Meerkat: Detecting Website Defacements through Image-based Object
Recognition. In Proceedings of the 24th USENIX Security Symposium, Washington, DC, USA, 12–14 August
2015; pp. 595–610.

3. Borgolte, K.; Kruegel, C.; Vigna, G. Relevant Change Detection: Framework for the Precise Extraction of
Modified and Novel Web-based Content as a Filtering Technique for Analysis Engines. In Proceedings of
the 23rd International Conference on World Wide Web Conference (WWW) (IW3C2), Seoul, Korea, 7–11
April 2014.

4. Cooks, A.; Olivier, M. Curtailing web defacement using a read-only strategy. In Proceedings of the 4th
Annual Information Security South Africa Conference, Midrand, South Africa, 30 June–2 July 2004.

5. Davanzo, G.; Medvet, E.; Bartoli, A. A Comparative Study of Anomaly Detection Techniques in Web
Site Defacement Detection. In Proceedings of the Ifip Tc 11 23rd International Information Security Conference
(SEC 2008); Springer: Boston, MA, USA, 2008.

6. Davanzo, G.; Medvet, E.; Bartoli, A. Anomaly detection techniques for a web defacement monitoring service.
Expert Syst. Appl. 2011, 38, 12521–12530. [CrossRef]

7. Enaw, E.E.; Prosper, D.P. A conceptual approach to detect web defacement through Artificial Intelligence.
Int. J. Adv. Comput. Technol. 2014, 3, 77–83.

8. Kanti, T.; Richariya, V.; Richariya, V. Implementation of an efficient web defacement detection technique and
spotting exact defacement location using diff algorithm. Int. Emerg. Technol. Adv. Eng. 2012, 2, 252–256.

www.di.unito.it/~fpb/KeyedLearningData/
http://dx.doi.org/10.1145/1852096.1852098
http://dx.doi.org/10.1016/j.eswa.2011.04.038


Algorithms 2019, 12, 150 26 of 27

9. Liao, X.; Yuan, K.; Wang, X.; Pei, Z.; Yang, H.; Chen, J.; Duan, H.; Du, K.; Alowaisheq, E.; Alrwais, S.;
et al. Seeking Nonsense, Looking for Trouble: Efficient Promotional-Infection Detection through Semantic
Inconsistency Search. In Proceedings of the IEEE Symposium on Security and Privacy, San Jose, CA, USA,
22–26 May 2016.

10. Verma, R.K.; Sayyad, S. Implementation of Web Defacement Detection Technique. Int. J. Innov. Eng. Technol.
2015, 6, 134–140.

11. Viswanathan, N.; Mishra, A. Dynamic Monitoring of Website Content and Alerting Defacement Using
Trusted Platform Module. In Emerging Research in Computing, Information, Communication and Applications;
Springer: Singapore, 2016.

12. Kumar, C. 7 Website Defacement Monitoring Tools for Better Security. Last Updated August 2016. Availiable
online: https://geekflare.com/website-defacement-monitoring/ (accessed on 27 July 2019).

13. Bartoli, A.; Davanzo, G.; Medvet, E. The Reaction Time to Web Site Defacements. IEEE Internet Comput. 2009,
13, 52–58. [CrossRef]

14. Chee, W.O. Web Defacements and Data Leakages—Twin Towers website threats. In Proceedings of the RSA
Conference, Singapore, 22 July 2016.

15. Zone-H.org. Statistics Report 2008–2016. January 2017. Available online: http://www.zone-h.org/stats/
ymd (accessed on 27 July 2019).

16. Zone-H.org. Defacement Portal and Reporting Platform, Active from March 2002 to Present, 2019. Available
online: http://www.zone-h.org/ (accessed on 27 July 2019).

17. Maggi, F.; Balduzzi, M.; Flores, R.; Gu, L.; Ciancaglini, V. Investigating Web Defacement Campaigns at Large.
In Proceedings of the 2018 on Asia Conference on Computer and Communications Security (AsiaCCS 2018),
Incheon, Korea, 4 June 2018; pp. 443–456.

18. Biggio, B.; Fumera, G.; Roli, F. Adversarial Pattern Classification Using Multiple Classifiers and
Randomization. In Proceedings of the 12th Joint IAPR International Workshop on Structural and Syntactic
Pattern Recognition, Orlando, FL, USA, 4 December 2008; pp. 500–509.

19. Chen, Y.; Wang, W.; Zhang, X. Randomizing SVM Against Adversarial Attacks Under Uncertainty.
In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD),
Melbourne, Australia, 3–6 June 2018.

20. Bulò, S.R.; Biggio, B.; Pillai, I.; Pelillo, M.; Roli, F. Randomized Prediction Games for Adversarial Machine
Learning. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2466–2478. [CrossRef] [PubMed]

21. Barreno, M.; Nelson, B.; Sears, R.; Joseph, A.D.; Tygar, J.D. Can Machine Learning be Secure? In Proceedings
of the 2006 ACM Symposium on Information, Computer and Communi-cations Security (AsiaCCS), Taipei,
Taiwan, 21–24 March 2006; pp. 16–25.

22. Lomte, V.; Patil, D. Survey on Keyed IDS and Key Recovery Attacks. Int. J. Sci. Res. 2015, 4, 12.
23. Mrdovic, R.S.; Drazenovic, B. KIDS—Keyed Intrusion Detection System. In Proceedings of the International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA), Bonn, Germany,
8–9 July 2010; pp. 173–182.

24. Perdisci, R.; Ariu, D.; Fogla, P.; Giacinto, G.; Lee, W. McPAD: A Multiple Classifier System for Accurate
Payload-based Anomaly Detection. Comput. Netw. 2009, 5, 864–881. [CrossRef]

25. Wang, K.; Parekh, J.; Stolfo, S. Anagram: A Content Anomaly Detector Resistant to Mimicry Attack.
In Proceedings of the 9th International Conference on Recent Advances in Intrusion Detection, Hamburg,
Germany, 20–22 September 2006.

26. Bergadano, F.; Carretto, F.; Cogno, F.; Ragno, D. Defacement Response via Keyed Learning. In Proceedings of
the 8th IEEE IISA Conference International Conference on Information, Intelligence, Systems & Applications
(IISA), Larnaca, Cyprus, 27–30 Auguat 2017.

27. Bergadano, F.; Gunetti, D.; Picardi, C. User Authentication through Keystroke Dynamics. Acm Trans. Inf.
Syst. Secur. 2002, 5, 367–397. [CrossRef]

28. Anwar, S.; Zain, J.M.; Zolkipli, M.F.; Inayat, Z.; Khan, S.; Anthony, B.; Chang, V. From Intrusion Detection to
an Intrusion Response System: Fundamentals, Requirements, and Future Directions. Algorithms 2017, 10, 39.
[CrossRef]

29. Munaiah, N.; Meneely, A.; Wilson, R.; Short, B. Are Intrusion Detection Studies Evaluated Consistently?
A Systematic Literature Review; Technical Report; University of Rochester; Rochester, NY, USA, 2016.

https://geekflare.com/website-defacement-monitoring/
http://dx.doi.org/10.1109/MIC.2009.91
http://www.zone-h.org/stats/ymd
http://www.zone-h.org/stats/ymd
http://www.zone-h.org/
http://dx.doi.org/10.1109/TNNLS.2016.2593488
http://www.ncbi.nlm.nih.gov/pubmed/27514067
http://dx.doi.org/10.1016/j.comnet.2008.11.011
http://dx.doi.org/10.1145/581271.581272
http://dx.doi.org/10.3390/a10020039


Algorithms 2019, 12, 150 27 of 27

30. Parrend, P.; Navarro, J.; Guigou, F.; Deruyver, A.; Collet, P. Foundations and applications of artificial
Intelligence for zero-day and multi-step attack detection. Eurasip J. Inf. Secur. 2018, 2018, 4. [CrossRef]

31. Kearns, M.; Li, M. Learning in the presence of malicious errors. Siam Comput. 1993, 22, 807–837. [CrossRef]
32. Huang, L.; Joseph, A.D.; Nelson, B.; Rubinstein, B.; Tygar, J.D. Adversarial Machine Learning. In Proceedings

of the ACM Workshop on AI and Security, AISec’11, Chicago, IL, USA, 21 October 2011; pp. 43–57.
33. Lowd, D.; Meek, C. Adversarial Learning. In Proceedings of the 11th ACM SIGKDD international conference

on Knowledge Discovery in Data Mining, Chicago, IL, USA, 21–24 August 2005; pp. 641–647.
34. Šrndic, N.; Laskov, P. Practical Evasion of a Learning-Based Classifier: A Case Study. In Proceedings of the

IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18–21 May 2014.
35. Tapiador, J.E.; Orfila, A.; Ribagorda, A.; Ramos, B. Key-Recovery Attacks on KIDS, a Keyed Anomaly

Detection System. IEEE Trans. Dependable Secur. Comput. 2015, 12, 312–325. [CrossRef]
36. Aggarwal, C.; Pei, J.; Zhang, B. On privacy preservation against adversarial data mining. In Proceedings of

the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia,
PA, USA, 20–23 August 2006; pp. 510–516.

37. Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Šrndic, N.; Laskov, P.; Giacinto, G.; Roli, F. Evasion Attacks
against Machine Learning at Test Time. In Machine Learning and Knowledge Discovery in Databases, European
Conference, ECML PKDD, Prague, Czech Republic, 23–27 September 2013; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2013; Volume 8190.

38. Bendale, R.; Gokhale, K.; Nikam, S.; Dhore, A. KIDS: Keyed Anomaly Detection System. Int. J. Adv. Eng.
Res. Dev. 2017, 12, 312–325.

39. Bergadano, F.; Giordana, A. A Knowledge Intensive Approach to Concept Induction. In Proceedings of the
Fifth International Conference on Machine Learning, Ann Arbor, MI, USA, 12–14 June 1988; pp. 305–317.

40. Arkkom, J.; Carrara, E.; Lindholm, F.; Naslund, M.; Norman, K. MIKEY: Multimedia Internet KEYing; IETF
RFC 3820; IETF: Fremont, CA,USA, 2004.

41. Chen, L. Recommendation for Key Derivation Using Pseudorandom Functions; NIST Special Publication 800-108;
NIST: Gaithersburg, MD, USA, 2009.

42. Dierks, T.; Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.2; IETF RFC 5246; IETF: Fremont,
CA,USA, 2008.

43. Xiao, H.; Brown, B.B.G.; Fumera, G.; Eck-ert, C.; Roli, F. Is feature selection secure against training data
poisoning? In Proceedings of the 32nd International Conference on Machine Learning (ICML’15), Lille,
France, 6–11 July 2015.

44. Hancock, T. On the Difficulty of Finding Small Consistent Decision Trees. Unpublished manuscript. Harvard
University: Cambridge, MA, USA, 1989.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s13635-018-0074-y
http://dx.doi.org/10.1137/0222052
http://dx.doi.org/10.1109/TDSC.2013.39
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Defacement Response
	Defacement Detection: Problem Definition
	Previous Work in Defacement Detection

	Keyed Learning of a Defacement Detector
	System Architecture and Implementation
	Keyed Scheduler
	Overall System Architecture
	Basic Custom Tests (Fixed)
	Adaptive Tests (Based on the Learned Classifier)
	Feature Choice
	Keyed Learning Application

	Combined Evaluation and Alerting
	Software Tools and Platform

	Results: Experiments, Full-Scale Deployment and Discussion
	Newspaper Scenario
	Setup
	Performance and Results

	Adversarial Newspaper Scenario
	Production Environment
	Setup and Context
	Performance and Results (Deployment Phase)
	Performance and Results (Maintenance Phase)

	Limitations

	Conclusions
	Materials and Methods
	References

