7 research outputs found

    K-Means Fingerprint Clustering for Low-Complexity Floor Estimation in Indoor Mobile Localization

    Full text link
    Indoor localization in multi-floor buildings is an important research problem. Finding the correct floor, in a fast and efficient manner, in a shopping mall or an unknown university building can save the users' search time and can enable a myriad of Location Based Services in the future. One of the most widely spread techniques for floor estimation in multi-floor buildings is the fingerprinting-based localization using Received Signal Strength (RSS) measurements coming from indoor networks, such as WLAN and BLE. The clear advantage of RSS-based floor estimation is its ease of implementation on a multitude of mobile devices at the Application Programming Interface (API) level, because RSS values are directly accessible through API interface. However, the downside of a fingerprinting approach, especially for large-scale floor estimation and positioning solutions, is their need to store and transmit a huge amount of fingerprinting data. The problem becomes more severe when the localization is intended to be done on mobile devices which have limited memory, power, and computational resources. An alternative floor estimation method, which has lower complexity and is faster than the fingerprinting is the Weighted Centroid Localization (WCL) method. The trade-off is however paid in terms of a lower accuracy than the one obtained with traditional fingerprinting with Nearest Neighbour (NN) estimates. In this paper a novel K-means-based method for floor estimation via fingerprint clustering of WiFi and various other positioning sensor outputs is introduced. Our method achieves a floor estimation accuracy close to the one with NN fingerprinting, while significantly improves the complexity and the speed of the floor detection algorithm. The decrease in the database size is achieved through storing and transmitting only the cluster heads (CH's) and their corresponding floor labels.Comment: Accepted to IEEE Globecom 2015, Workshop on Localization and Tracking: Indoors, Outdoors and Emerging Network

    A tripartite filter design for seamless pedestrian navigation using recursive 2-means clustering and Tukey update

    Get PDF
    Mobile devices are desired to guide users seamlessly to diverse destinations indoors and outdoors. The positioning fixing subsystems often provide poor quality measurements with gaps in an urban environment. No single position fixing technology works continuously. Many sensor fusion variations have been previously trialed to overcome this challenge, including the particle filter that is robust and the Kalman filter which is fast. However, a lack exists, of context aware, seamless systems that are able to use the most fit sensors and methods in the correct context. A novel adaptive and modular tripartite navigation filter design is presented to enable seamless navigation. It consists of a sensor subsystem, a context inference and a navigation filter blocks. A foot-mounted inertial measurement unit (IMU), a Global Navigation Satellite System (GNSS) receiver, Bluetooth Low Energy (BLE) and Ultrawideband (UWB) positioning systems were used in the evaluation implementation of this design. A novel recursive 2-means clustering method was developed to track multiple hypotheses when there are gaps in position fixes. The closest hypothesis to a new position fix is selected when the gap ends. Moreover, when the position fix quality measure is not reliable, a fusion approach using a Tukey-style particle filter measurement update is introduced. Results show the successful operation of the design implementation. The Tukey update improves accuracy by 5% and together with the clustering method the system robustness is enhanced

    Blind localization of radio emitters in wireless communications

    Get PDF
    The proliferation of wireless services is expected to increase the demand for radio spectrum in the foreseeable future. Given the limitations of the radio spectrum, it is evident that the current fixed frequency assignment policy fails to accommodate this increasing demand. Thus, the need for innovative technologies that can scale to accommodate future demands both in terms of spectrum efficiency and high reliable communication. Cognitive radio (CR) is one of the emerging technologies that offers a more flexible use of frequency bands allowing unlicensed users to exploit and use portions of the spectrum that are temporarily unused without causing any potential harmful interference to the incumbents. The most important functionality of a CR system is to observe the radio environment through various spectrum awareness techniques e.g., spectrum sensing or detection of spectral users in the spatio-temporal domain. In this research, we mainly focus on one of the key cognitive radio enabling techniques called localization, which provides crucial geo-location of the unknown radio transmitter in the surrounding environment. Knowledge of the user’s location can be very useful in enhancing the functionality of CRs and allows for better spectrum resource allocations in the spatial domain. For instance, the location-awareness feature can be harnessed to accomplish CR tasks such as spectrum sensing, dynamic channel allocation and interference management to enable cognitive radio operation and hence to maximize the spectral utilization. Additionally, geo-location can significantly expand the capabilities of many wireless communication applications ranging from physical layer security, geo-routing, energy efficiency, and a large set of emerging wireless sensor network and social networking applications. We devote the first part of this research to explore a broad range of existing cooperative localization techniques and through Monte-Carlo simulations analyze the performance of such techniques. We also propose two novel techniques that offer better localization performance with respect to the existing ones. The second and third parts of this research put forth a new analytical framework to characterize the performance of a particular low-complexity localization technique called weighted centroid localization (WCL), based on the statistical distribution of the ratio of two quadratic forms in normal variables. Specifically, we evaluate the performance of WCL in terms of the root mean square error (RMSE) and cumulative distribution function (CDF). The fourth part of this research focuses on studying the bias of the WCL and also provides solutions for bias correction. Throughout this research, we provide a case study analysis to evaluate the performance of the proposed approaches under changing channel and environment conditions. For the new theoretical framework, we compare analytical and Monte-Carlo simulation results of the performance metric of interest. A key contribution in our analysis is that we present not only the accurate performance in terms of the RMSE and CDF, but a new analytical framework that takes into consideration the finite nature of the network, overcoming the limitations of asymptotic results based on the central limit theorem. Remarkably, the numerical results unfold that the new analytical framework is able to predict the performance of WCL capturing all the essential aspects of propagation as well as the cognitive radio network spatial topology. Finally, we present conclusions gained from this research and possible future directions

    Intelligent and Efficient Ultra-Dense Heterogeneous Networks for 5G and Beyond

    Get PDF
    Ultra-dense heterogeneous network (HetNet), in which densified small cells overlaying the conventional macro-cells, is a promising technique for the fifth-generation (5G) mobile network. The dense and multi-tier network architecture is able to support the extensive data traffic and diverse quality of service (QoS) but meanwhile arises several challenges especially on the interference coordination and resource management. In this thesis, three novel network schemes are proposed to achieve intelligent and efficient operation based on the deep learning-enabled network awareness. Both optimization and deep learning methods are developed to achieve intelligent and efficient resource allocation in these proposed network schemes. To improve the cost and energy efficiency of ultra-dense HetNets, a hotspot prediction based virtual small cell (VSC) network is proposed. A VSC is formed only when the traffic volume and user density are extremely high. We leverage the feature extraction capabilities of deep learning techniques and exploit a long-short term memory (LSTM) neural network to predict potential hotspots and form VSC. Large-scale antenna array enabled hybrid beamforming is also adaptively adjusted for highly directional transmission to cover these VSCs. Within each VSC, one user equipment (UE) is selected as a cell head (CH), which collects the intra-cell traffic using the unlicensed band and relays the aggregated traffic to the macro-cell base station (MBS) in the licensed band. The inter-cell interference can thus be reduced, and the spectrum efficiency can be improved. Numerical results show that proposed VSCs can reduce 55%55\% power consumption in comparison with traditional small cells. In addition to the smart VSCs deployment, a novel multi-dimensional intelligent multiple access (MD-IMA) scheme is also proposed to achieve stringent and diverse QoS of emerging 5G applications with disparate resource constraints. Multiple access (MA) schemes in multi-dimensional resources are adaptively scheduled to accommodate dynamic QoS requirements and network states. The MD-IMA learns the integrated-quality-of-system-experience (I-QoSE) by monitoring and predicting QoS through the LSTM neural network. The resource allocation in the MD-IMA scheme is formulated as an optimization problem to maximize the I-QoSE as well as minimize the non-orthogonality (NO) in view of implementation constraints. In order to solve this problem, both model-based optimization algorithms and model-free deep reinforcement learning (DRL) approaches are utilized. Simulation results demonstrate that the achievable I-QoSE gain of MD-IMA over traditional MA is 15%15\% - 18%18\%. In the final part of the thesis, a Software-Defined Networking (SDN) enabled 5G-vehicle ad hoc networks (VANET) is designed to support the growing vehicle-generated data traffic. In this integrated architecture, to reduce the signaling overhead, vehicles are clustered under the coordination of SDN and one vehicle in each cluster is selected as a gateway to aggregate intra-cluster traffic. To ensure the capacity of the trunk-link between the gateway and macro base station, a Non-orthogonal Multiplexed Modulation (NOMM) scheme is proposed to split aggregated data stream into multi-layers and use sparse spreading code to partially superpose the modulated symbols on several resource blocks. The simulation results show that the energy efficiency performance of proposed NOMM is around 1.5-2 times than that of the typical orthogonal transmission scheme

    Kernel and Multi-Class Classifiers for Multi-Floor WLAN Localisation

    Get PDF
    Indoor localisation techniques in multi-floor environments are emerging for location based service applications. Developing an accurate location determination and time-efficient technique is crucial for online location estimation of the multi-floor localisation system. The localisation accuracy and computational complexity of the localisation system mainly relies on the performance of the algorithms embedded with the system. Unfortunately, existing algorithms are either time-consuming or inaccurate for simultaneous determination of floor and horizontal locations in multi-floor environment. This thesis proposes an improved multi-floor localisation technique by integrating three important elements of the system; radio map fingerprint database optimisation, floor or vertical localisation, and horizontal localisation. The main focus of this work is to extend the kernel density approach and implement multi- class machine learning classifiers to improve the localisation accuracy and processing time of the each and overall elements of the proposed technique. For fingerprint database optimisation, novel access point (AP) selection algorithms which are based on variant AP selection are investigated to improve computational accuracy compared to existing AP selection algorithms such as Max-Mean and InfoGain. The variant AP selection is further improved by grouping AP based on signal distribution. In this work, two AP selection algorithms are proposed which are Max Kernel and Kernel Logistic Discriminant that implement the knowledge of kernel density estimate and logistic regression machine learning classification. For floor localisation, the strategy is based on developing the algorithm to determine the floor by utilising fingerprint clustering technique. The clustering method is based on simple signal strength clustering which sorts the signals of APs in each fingerprint according to the strongest value. Two new floor localisation algorithms namely Averaged Kernel Floor (AKF) and Kernel Logistic Floor (KLF) are studied. The former is based on modification of univariate kernel algorithm which is proposed for single-floor localisation, while the latter applies the theory kernel logistic regression which is similar to AP selection approach but for classification purpose. For horizontal localisation, different algorithm based on multi-class k-nearest neighbour classifiers with optimisation parameter is presented. Unlike the classical kNN algorithm which is a regression type algorithm, the proposed localisation algorithms utilise machine learning classification for both linear and kernel types. The multi-class classification strategy is used to ensure quick estimation of the multi-class NN algorithms. All of the algorithms are later combined to provide device location estimation for multi-floor environment. Improvement of 43.5% of within 2 meters location accuracy and reduction of 15.2 times computational time are seen as compared to existing multi-floor localisation techniques by Gansemer and Marques. The improved accuracy is due to better performance of proposed floor and horizontal localisation algorithm while the computational time is reduced due to introduction of AP selection algorithm

    Physical Layer Challenges and Solutions in Seamless Positioning via GNSS, Cellular and WLAN Systems

    Get PDF
    As different positioning applications have started to be a common part of our lives, positioning methods have to cope with increasing demands. Global Navigation Satellite System (GNSS) can offer accurate location estimate outdoors, but achieving seamless large-scale indoor localization remains still a challenging topic. The requirements for simple and cost-effective indoor positioning system have led to the utilization of wireless systems already available, such as cellular networks and Wireless Local Area Network (WLAN). One common approach with the advantage of a large-scale standard-independent implementation is based on the Received Signal Strength (RSS) measurements.This thesis addresses both GNSS and non-GNSS positioning algorithms and aims to offer a compact overview of the wireless localization issues, concentrating on some of the major challenges and solutions in GNSS and RSS-based positioning. The GNSS-related challenges addressed here refer to the channel modelling part for indoor GNSS and to the acquisition part in High Sensitivity (HS)-GNSS. The RSSrelated challenges addressed here refer to the data collection and calibration, channel effects such as path loss and shadowing, and three-dimensional indoor positioning estimation.This thesis presents a measurement-based analysis of indoor channel models for GNSS signals and of path loss and shadowing models for WLAN and cellular signals. Novel low-complexity acquisition algorithms are developed for HS-GNSS. In addition, a solution to transmitter topology evaluation and database reduction solutions for large-scale mobile-centric RSS-based positioning are proposed. This thesis also studies the effect of RSS offsets in the calibration phase and various floor estimators, and offers an extensive comparison of different RSS-based positioning algorithms
    corecore