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ABSTRACT

As different positioning applications have started to be a common part of our lives,
positioning methods have to cope with increasing demands. Global Navigation Satel-
lite System (GNSS) can offer accurate location estimate outdoors, but achieving
seamless large-scale indoor localization remains still a challenging topic. The re-
quirements for simple and cost-effective indoor positioning system have led to the
utilization of wireless systems already available, such as cellular networks and Wire-
less Local Area Network (WLAN). One common approach with the advantage of
a large-scale standard-independent implementation is based on the Received Signal
Strength (RSS) measurements.

This thesis addresses both GNSS and non-GNSS positioning algorithms and aims
to offer a compact overview of the wireless localization issues, concentrating on
some of the major challenges and solutions in GNSS and RSS-based positioning.
The GNSS-related challenges addressed here refer to the channel modelling part for
indoor GNSS and to the acquisition part in High Sensitivity (HS)-GNSS. The RSS-
related challenges addressed here refer to the data collection and calibration, channel
effects such as path loss and shadowing, and three-dimensional indoor positioning

estimation.

This thesis presents a measurement-based analysis of indoor channel models for
GNSS signals and of path loss and shadowing models for WLAN and cellular signals.
Novel low-complexity acquisition algorithms are developed for HS-GNSS. In addi-
tion, a solution to transmitter topology evaluation and database reduction solutions
for large-scale mobile-centric RSS-based positioning are proposed. This thesis also
studies the effect of RSS offsets in the calibration phase and various floor estimators,

and offers an extensive comparison of different RSS-based positioning algorithms.
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1. INTRODUCTION

1.1 Background and motivation

In July 2016, Niantic released Pokémon GO, a location-based reality game for smart
phones [5]. The game became rapidly a global phenomenon and got downloaded
hundreds of millions times within the first months after its release. Since Pokémon
GO relies heavily on Global Positioning System (GPS) for most of the game’s be-
haviors, is works accurately outdoors, but gets into trouble in urban canyons and
indoors, due to multipaths and signal attenuation. As people spend a majority of their
time (over 80%) indoors [6], it is obvious that many players have wished the game
to work accurately also indoor environments, such as inside shopping centers and

universities.

Location-based services is one of the fastest growing segments in mobile applica-
tions, Pokémon GO being only one example of the various possibilities in leisure,
sports, navigation, asset tracking and many more. The size of indoor localization
market is estimated to grow with annual growth rate of 37.5 % from 2016 to 2021 [4].
Thus, it is easy to understand the urgent need for accurate localization in any place at
any time. Although satellite-based localization via Global Navigation Satellite Sys-
tem (GNSS) can offer positioning outdoors at global scale, the indoor localization
remains challenging. GNSS signals are easily blocked indoors, and even those sig-
nals, that are strong enough to enter indoors, are still received at a very weak power
due to severe attenuation. Therefore, many different indoor positioning systems have
been proposed within the last decade.

The increasing demand for simple and cost-effective global indoor positioning sys-
tem has led to the utilization of different wireless systems already available, such
as cellular networks and Wireless Local Area Networks (WLAN) [52,123,130,228,
238, 265,275, 306, 313, 315, 328, 333, 334, 336, 356]. Other possibilities are, e.g.,
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Fig. 1.1: Different positioning systems as a hybrid solution.

based on Bluetooth [59, 272, 321], magnetic fields [255, 314] or Ultra Wideband
(UWB) [78,113]. By combining different localization techniques as hybrid solu-
tions as illustrated in Fig. 1.1, highest benefit in terms of positioning accuracy and
cost-effectiveness can be obtained. Since many wireless communication networks
offer an easy access to Received Signal Strength (RSS) measures without additional
hardware, RSS-based positioning approaches are an attractive alternative for posi-
tioning purposes. However, there are still challenges to overcome. For GNSS-based
positioning algorithms, the main challenges appear in indoor and urban canyon cases
and they refer to No-Line-of-Sight (NLOS), low signal-to-noise ratios and multipath
propagation. In addition, the new ambiguous modulation types, such as Binary Offset
Carrier (BOC) modulation with its variants, create new challenges to the signal syn-
chronization process. In RSS-based positioning techniques, most of the challenges
are caused by unknown statistical characteristics of the propagation channel, suitab-
ility of the existing transmitter configuration for positioning purposes, storage and
transmission requirements for large databases, RSS biases in training and estimation
phases and the choice of appropriate positioning methods. Thus, current positioning
algorithms have to be improved and new solutions have to be developed in order to
cope with these challenges and to achieve seamless and accurate position estimates

in all environments.
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1.2 Objective and scope of research

The main target in this thesis work has been to research and develop new signal
processing algorithms for wireless localization. The focus has been both on satellite-
based positioning and on RSS-based positioning techniques in cellular and WLAN
networks. Several of the challenges in wireless positioning techniques today have
been addressed in this thesis, taking into account especially the high need for accurate

indoor positioning and floor detection.

This thesis presents a comprehensive survey of different positioning methods, to-
gether with their challenges and state-of-the-art solutions. GNSS related challenges
at physical layer are studied, to overcome the difficulties caused by multipath propaga-
tion and low signal levels. RSS-based methods have been investigated, both in cel-
lular and in WLAN-based positioning, with unknown transmitter location and based
on real measurements. The focus is on the two-stage localization approaches, where
the process is divided into the training phase (i.e., data collection phase) and the
estimation phase (i.e., user localization phase).

Parts of the results in this thesis are also based on the knowledge and measurement
equipment obtained from participation in the following research projects:
1. ”Rx Positioning (RxPos)”, funded by HERE, 2010-2012.

2. ”Digital Signal Processing Algorithms for Indoor Positioning Systems (ACAPO)”,
funded by the Academy of Finland, 2008.

3. ”Advanced Techniques for Personal Navigation (ATENA)”, funded by Tekes,
the Finnish funding agency for Innovation, 2006-2007.

4. ”Mobile Positioning Techniques (MOT)”, funded by Tekes, 2003-2006.

1.3 Main contributions

The main contributions of this thesis are summarized below:

e An extensive state-of-the-art overview of GNSS, cellular and WLAN-based

positioning is written.
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An analysis of the indoor fading channel model in GPS frequency bands is
performed, based on indoor GPS measurements. The obtained fading channel
characteristics are compared to typical fading distributions and Nakagami-m
distribution is found to be the best fit.

An efficient but simple simulation model is created for Nakagami-m distributed
fading channels, as this type of fading proved to model the best the real-life
channels. A previously proposed method, called the Beaulieu &al. method,
is extended to a wider range of m-values, while keeping a low computational
effort.

Three Constant False Alarm Rate (CFAR) detectors are proposed for GNSS
acquisition and analyzed in terms of detection probability and dependence on
the channel conditions. The analysis is done for different channel conditions

to show which of the proposed CFAR detectors is the most robust to noise.

A novel enhanced differential non-coherent integration method is proposed for
the acquisition stage in High Sensitivity (HS)-GNSS or GNSS receiver operat-
ing at low Carrier-to-Noise Ratio (CNR). A comparative analysis between the
differential correlations and the conventional non-coherent integration method
is carried out in multipath fading channels, taking into account both ambigu-
ous Binary Offset Carrier (BOC) modulation and sideband based unambiguous

technique.

A Cramér-Rao Lower Bound (CRLB)-based criterion for RSS-based position-
ing is presented. This thesis shows how the derived CRLB-based criterion can
be used either to calculate the expected accuracy bound in WLAN-networks
with predefined topology or to choose the optimal Access Point (AP) density
and AP topology for a certain target of positioning accuracy, in a network that
is designed for positioning purposes. The proposed approach is verified with

measurements.

An analysis of path loss and shadowing models and of the relevant parameters
for WLAN and cellular signals is presented. The analysis is based on extensive
measurement campaigns. The similarities and differences between cellular and

WLAN wireless propagation models are also discussed.
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Fig. 1.2: Block diagram of the contributions of this thesis in the field of wireless positioning.

e A novel study of AP significance measures as database reduction solution for
RSS-based positioning system is performed. AP significance is taken into ac-
count both at the training phase and at the estimation phase. AP reduction is
examined with several choices for appropriate selection criterion. The effect
of AP reduction to different methods (fingerprinting, path loss and weighted

centroid based algorithms) is studied.

e The effect of a RSS bias or offset in the training and estimation phases of the
RSS-based positioning system is studied extensively. Different offset types and
offset values are studied on a large scale, in terms of 3D positioning accuracy

and floor detection probability.

o Different RSS-based positioning methods (fingerprinting, path loss and weighted
centroid based algorithms) are analyzed, in terms of complexity and perform-
ance, based on real measurements. Also, the effects of grid size for each
method is studied.

e A novel low-complexity floor detection algorithm is presented. The proposed
algorithm is compared with other floor detectors, in terms of performance and

complexity.

The contributions of this thesis are also summarized as a block diagram in Fig. 1.2.
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1.4 Thesis outline

This thesis is organized as follows. The thesis starts with an introductory overview of
wireless positioning in Chapter 2. In Chapter 3, the structure of a GNSS receiver is
described first, concentrating to the baseband processing and especially to the signal
acquisition part. The chapter continues with a discussion of the main challenges. In
Chapter 4, the focus is in RSS-based localization. The chapter starts with describ-
ing the system fundamentals of two-stage RSS-based positioning approaches and
continues with discussion of the typical physical layer challenges in RSS-based loc-
alization. Thus, chapters 2-4 provide an extensive survey of GNSS and RSS-based
positioning and their typical challenges, that will be completed with solution propos-
als in Chapters 5-11.

Chapters 5-6 offer solution proposals to GNSS challenges. In Chapter 5, the focus
is on GNSS channel modeling. Indoor fading channel models are analyzed, and
based on the results, an efficient Nakagami-m fading channel simulator is built. The
challenges of multipath propagation, interference and ambiguous modulations are
taken into account in Chapter 6, where improvements to the acquisition algorithms

are proposed as solutions to the mentioned challenges.

Chapters 7-10 focus on solution proposals to the challenges in two-phase RSS-based
localization. Since a significant part of the proposed solutions are based on or val-
idated via real data measurements, this part of the thesis starts with describing the
measurement set-ups and relevant information in Chapter 7. In Chapter 8, the posi-
tioning architecture design is addressed and a CRLB-based criterion is calculated to
evaluate the AP topology in a building for positioning purposes. In Chapter 9, the
challenges related to the training phase and data transferring is tackled. This chapter
starts with shadowing modeling and path loss models, and continues with solutions
to the large databases, namely with the choice of an appropriate grid interval and
data removal solutions. In Chapter 10, solutions related to the estimation phase are
proposed. A novel study of the effect of biases is presented and suitable positioning

methods are discussed. A novel low-complexity floor detector is also proposed.

Finally, Chapter 11 offers a comparative analysis and summary of the discussed pos-
itioning approaches (namely GNSS, cellular and WLAN based positioning) and the
proposed solutions to various challenges. This chapter also discusses the need of

hybrid approaches to guarantee the availability, continuity and integrity. The conclu-
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sions are drawn and future directions are discussed in Chapter 12.
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2. STATE-OF-THE-ART IN WIRELESS POSITIONING

This chapter presents an overview of current and future positioning techniques. The
chapter starts with a discussion about the differences in indoor and outdoor localiz-
ation. System aspects and positioning algorithms are described shortly for satellite-
based (Section 2.2), cellular-based (Section 2.3), and Wireless Local Area Networks
(WLAN)-based positioning (Section 2.4) techniques. Few other indoor positioning
systems are introduced in Section 2.5. Finally, the main challenges and differences

between the positioning systems are discussed in Section 2.6.

2.1 Indoor versus outdoor: challenges, constraints, limitations

Positioning and navigation are taken nowadays for granted. Easy navigation solu-
tions, offered by Global Navigation Satellite Systems (GNSS), have increased the
safety and control, and have made many challenges in everyday life easier to handle.
Global Positioning System (GPS) is familiar for everyone and works well outdoors,
but the system has limitations as well. One limitation is its operation in urban areas
with high buildings, that can block or attenuate the satellite signals or cause mul-
tipath propagation. In these situations, GPS does not work in a trustable manner in
stand-alone mode, but needs some assistance, e.g., from mobile networks. Another
very important limitation to satellite-based positioning is indoors. Wall materials at-
tenuate the satellite signals remarkably, and the weak signal powers make the signal
detection more challenging. Even with assistance data, satellite-based solutions are

not able to provide exact positioning estimates indoors.

Due to the fact that people spend most of their time indoors (at home, at work, at
school, in stores etc.), accurate localization indoors is as important than outdoors,
or arguably, even more important. Numerous applications, varying from commer-

cial and industrial to public safety and everyday life, get benefits of accurate indoor
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localization. Old people’s homes need indoor localization systems to track the eld-
erly, hospitals need to track people with special needs and locate currently needed
equipment, warehouses need to find specific items, and policemen and fire fighters
need to be located fast inside buildings in emergency situations [303]. Since the
GNSS generally fail to offer an accurate location estimate indoors mainly due to low
visibility of satellites, weak signal powers and multipath propagation [99, 268, 285],
many different indoor positioning solutions have been proposed and developed dur-
ing the last decade. The explosion of smart-phones with built-in sensors and WLAN
technologies has made several different indoor positioning techniques attractive and
possible, varying from WLAN [173,228, 230, 238, 328] or Bluetooth [59,272,321]
to ultrasound [138] or magnetic fields [192,255,314] -based systems. In general, po-
sitioning indoors is more challenging than outdoors also with other techniques than
GNSS. Changes in the building (or room) layouts and the number of people may af-
fect the positioning results. Besides the position estimate, also floor detection and
venue tracking (i.e., to provide smooth transition from outdoor to indoor position-
ing) are important, and indoor maps are needed to make the solutions meaningful.
Indeed, the building infrastructure in the future is also changing, with bigger sizes
of public buildings (such as hospitals, shopping malls or offices) and underground

parking areas.

One big challenge nowadays is faced in the increasing number of different Indoor
Positioning Systems (IPS) to choose from. There is not any standard way to build
an IPS, and therefore, the number of different methods and systems is increasing.
Due to the complexity of the indoor environment, a cost-effective but accurate po-
sitioning system is not easy task to achieve, and many existing systems require a
lot of resources to implement a specific positioning infrastructure or demand a data
collection phase with big databases to be saved and maintained. An ideal position-
ing system would be able to locate the user anywhere, both outdoors and indoors,
seamlessly and accurately. Since no position solution works perfectly in every envir-
onment, the best option for a continuous positioning may be a combination of two
or more techniques. This means that receivers support several positioning solutions,
and switch between them when needed. Research is however still needed to achieve

this goal.
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2.2 GNSS positioning

In general, a GNSS refers to a satellite constellation based positioning system that
provides global coverage within the system limitations. The Navstar GPS is the first
and the most famous of the two universal satellite navigation system providing con-
tinuous real-time three-dimensional position (latitude, longitude, altitude), velocity
and time with appropriate receivers. Its development started in the USA in the early
1960s with an original name Transit, when several U.S. government organizations
were interested to develop satellite systems for positioning [161]. The GPS achieved
full operational satellite constellation in 1995 and it is implemented and developed
by U.S. Department of Defense. From the beginning, the target was to allocate nav-
igation services for military purposes only, but soon the civil applications became

available as well.

The growing demands for improved performance and the need to stay competitive
with other international satellite positioning systems have led to the long-term mod-
ernization program of the GPS. The GPS modernization program is on-going project,
that will provide many new capabilities, such as a new frequency band L5, new sig-
nals for civilian use, and new modulation types. The new signals are related to the
new generations of navigation satellites, but the modernization involves some im-
provements to the GPS control segment as well. The baseline GPS was specified to
consist of 24 satellites [161], but as a result of the modernization process, the GPS
constellation consists of 32 Block II/ITA/IIR/IIR-M/IIF satellites at the time of writ-
ing, most recent one launched successfully on July 15th 2015 [7]. Fig. 2.1 shows
an example of the sky plot with the movement of GPS satellites in terms of elevation
(inclination) and azimuth (North, South, East, West), for one hour at TUT location at

the time of writing the thesis. The current almanac information can be found in [3].

Right after the announcement of the GPS project in the mid-1970s, the former Soviet
Union (later Russia) started to develop their own GNSS system, namely GLONASS.
Similarly with GPS, also GLONASS was designed primarily for military purposes.
GLONASS was fully operational in 1995, but due to the economic crisis caused by
the collapse of the Soviet Union, the system was not maintained for several years and
the number of operational satellites decreased significantly. In 2000, the repair and
modernization process was started again with high effort, and since 2011, GLONASS

has been fully operational with worldwide coverage and providing acceptable accur-
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Fig. 2.1: An example of a sky plot at TUT location at the time of writing the thesis.

acy for most users. Also the restrictions have been removed, and the military-only
signals are nowadays freely available to public use as well. GLONASS has been us-
ing since its inception the Frequency Division Multiple Access (FDMA) technique,
in which the satellite transmissions are separated in frequencies and not in codes, as
in Code Division Multiple Access (CDMA) technique used by GPS [161].

Besides the fully operational navigation systems GPS and GLONASS, two more
worldwide satellite-based positioning systems are under development: an European
Galileo and a Chinese BeiDou. China has been developing BeiDou Navigation Satel-
lite System (BDS), that has been providing initial navigation services for the Asia-
Pacific region since December 2012 (BeiDou Phase 2) [68]. At the time of writing,
according to [1], 22nd BeiDou satellite has been launched and the system is expected
to achieve global coverage around 2020 (BeiDou Phase 3). Galileo is a joint pro-
ject of the European Space Agency (ESA) and the European Union (EU), another
independent system with political and economical motivations, and the only system
being developed by a consortium of nations. Despite of the independence of the

new-coming system, Galileo will nevertheless be interoperable with both GPS and
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GLONASS, and supposedly with BeiDou as well. This means that the user will be
able to estimate the location using the same receiver for any combination of satellites
of the above systems. The big difference between Galileo and other satellite-based
positioning systems is that Galileo is developed and maintained from the beginning
by civil, not military authorities. Thus, Galileo will be available to both civil users
and military with the same full precision. Galileo has been developed already more
than a decade; it was supposed to be operational in 2008, but financial and technical
problems have delayed the commissioning with several years. At the time of writing,
18 Galileo satellites have been launched to their orbits [2]. The current estimate is
that the system will be fully operational in 2020.

2.2.1 GNSS system aspects

Within the next five years, the number of operational GNSS satellites will be more
than 100, transmitting a variety of signals on multiple frequencies. Different GNSSs
have many things in common, e.g., signal spreading technique (i.e., Direct Sequence
Spread Spectrum, DSSS), partially overlapping frequency bands, central frequencies
and modulation types. The frequency allocation for each system is presented in Fig.
2.2, and as it can be seen, many carrier frequencies for different GNSSs are over-
lapping with each others allowing interoperability between the systems. E.g., GPS,
Galileo, GLONASS and Compass all operate (or plan to operate) on L1 band centered
at 1575.42 MHz. At the same time with the possibility for interoperability, GNSSs
need to be compatible as well, meaning that the systems do not interfere each others.
New modulation techniques (e.g., Binary Offset Carrier, BOC, with its variants) will
help in this, by keeping the interference between the signals on the same frequency
band as small as possible with spectral separation [33]. It has been however noticed,
that more than three GNSSs operating on the same frequency band can increase the

noise floor and cause more challenges to the signal reception [114].

Besides the common characteristics, the desire of independence for each GNSS leads
to many differences as well. Table 2.1 shows both satellite constellation details and
signal structures for all GNSSs, including the maximum number of planned satel-
lites (svs) and orbital information (number of planes, orbital altitude, inclination
and period), frequency bands, signal spreading technique, Multiple Access (MA)

scheme, signals, used modulation types (abbreviations for modulation types of this
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Fig. 2.2: Frequency bands for GPS, Galileo, GLONASS and BeiDou.

table will be described later on in Section 3.2.2) and pseudorandom (PRN) code
lengths. BeiDou signals have different characteristics in different phases of BeiDou
(Phase 1, Phase 2, Phase 3), and even some signals are added while some other are
eliminated. Therefore, Galileo and BeiDou systems are described as they will be

when fully operational ability is achieved.

2.2.2 GNSS positioning algorithms
Time-Of-Arrival

The satellite-based positioning technology is based on an accurate Time-Of-Arrival
(TOA) measurement of the received time-stamped signal, by estimating the propaga-
tion delay it takes for a signal to arrive at the receiver from the satellite. This is
calculated as the difference between receiving and transmission moments, being the
basic measurement in GNSS. The propagation delay is then multiplied with the speed
of the signal (i.e., speed of light) in order to calculate the distance between the trans-
mitter and the receiver. In satellite based positioning, this satellite-receiver range is

usually called pseudorange. [161,278]

In order to be able to measure the pseudoranges and calculate the position, a GNSS

receiver has to first find and acquire the signal from each visible satellite. After find-
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Table 2.1: Comparison of GNSS system characteristics [69, 196, 240, 278].

GPS Galileo GLONASS | BeiDou \
Max. no
of planned 31 30 27 35
Svs
No. of 3 (MEO)
orbital 6 3 3 3 (IGSO)
planes 1 (GEO)
Orbital 21500 (MEO)
altitude 20200 23222 19100 35800 (IGSO)
(km) 35800 (GEO)
Orbital
inclination 55 56 64.8 55 (MEO & IGSO)
(degrees)
Orbital
period 11h58m?2s 14h4m4ls 11h15m44s 12h52m4s
(MEO orbits)
Frequency L1,L2 El, L1,L2 Bl1, B2,
bands L5 E6, ES, L3 B3
E5a, ESb
Signal DS-SS DS-SS DS-SS DS-SS
spreading
MA CDMA CDMA FDMA, CDMA
CDMA ¢
C/A, E1OS, L10OF, L20OF, B1-C,Bl-A,
L1C, E1 PRS, L1SF, L2SF, B3, B3-A,
Signals M-code, E6 CS, L30C, L10C, B2, B2b,
P/Y-code, E6 PRS, L1SC, L20C B2a
L2C, ES, ESa, ESb L2SC
L5
BPSK(1) BPSK(5) BPSK(1) BPSK(2)
BPSK(10) CosBOC(10,5) BPSK(0.5) QPSK(10)
Used SinBOC(10,5) CosBOC(15,2.5) BPSK(5) BPSK(10)
modulation | TMBOC(6,1,4/33) | AltBOC(15,10) SinBOC(1,1) MBOC(6,1,1/11)
SinBOC(1,1) CBOC(6,1,1/11) | SinBOC(5,2.5) SinBOC(15,2.5)
QPSK(10) QPSK(10) SinBOC(4,4) AItBOC(15,10)
QPSK(10)
PRN code
lengths 1023 4092 511 2046
for open 10230 5115 10230
signals 10230

4 CDMA is now studied for future GLONASS.
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ing the signals and measuring the pseudoranges, the receiver computes the satellite
positions using the ephemeris data (or navigation data) decoded from the satellite
signals. When the pseudoranges have been measured and the satellite positions are
known, the position of the receiver can be finally calculated. Each GNSS system
has its own GNSS System Time (GST), and the satellites of the same system are
synchronized and have highly accurate atomic clocks on board. If the receiver was
perfectly synchronized to the GST, it would be enough to have the pseudoranges and
positions for three satellites in order to be able to calculate the three-dimensional re-
ceiver position. However, in reality, the receiver clock is not as accurate as the atomic
clocks in satellites. Therefore, also the time difference between the satellites and the
receiver clocks have to been taken into account as a one more unknown parameter
in the non-linear equations, and the three-dimensional position estimate actually de-
mands measurements from four satellites instead of three. [85, 161]

Since the focus on this thesis related to the GNSS receiver functions is on the signal
acquiring and especially on acquisition algorithms, the latter two tasks of the GNSS
receiver are not described here in details. More details about data demodulation and
the position calculation can be found in many GNSS related books, e.g., in [161,240,

278,318]. Acquisition and tracking functions will be discussed more in Chapter 3.

Assisted GNSS

The main point with assisted GNSS (A-GNSS) or assisted GPS (A-GPS) is to provide
information to the receiver. The aim of the assistance process is two-hold: first, to
make the positioning task faster to the receiver (i.e., to decrease the time-to-first-fix,
TTFF) and secondly, to make it possible to detect also signals with weaker power
than it could be possible without any additional information [85]. The information is
the same that the receiver could obtain also from the satellites, and the receiver still

has to receive and process the satellite signals.

Even though every GNSS satellite uses the same frequencies, the satellite speeds
cause some variation to the frequency, i.e. Doppler shift. Therefore, each satellite
appears in reality on a different frequency. While a standard GNSS receiver has to
look for all possible frequencies to find the satellites in view, in A-GNSS the idea
is to provide some information to the GNSS receiver about the possible frequencies

and also the satellite positions. Thus, all the receiver has to do is to measure the
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pseudoranges and compute the position estimate. This decreases the TTFF remark-
ably. Indeed, if the receiver knows in advance the possible frequencies for the search
process, it is possible to use longer dwell times [85]. This means that the sensitiv-
ity increases as well, and signals with lower signal strengths can be acquired. Thus,
A-GNSS significantly improves the performance of the receiver. Besides A-GNSS,
other improvements for the GNSS positioning exist. One example is the High Sensit-
ivity (HS)-GNSS, where the position fix can be obtained with very weak signals (in-
doors, urban canyons) by utilizing a large number of correlators and with improved
correlation and integration methods [85]. The accuracy and TTFF are however not as

good as in ideal conditions.

2.3 Cellular (2G, 3G, 4G, 5G) positioning

Though GNSS provides very high accuracy positioning outdoors, it has also limita-
tions, especially in urban areas and indoors, where the satellite signals are blocked
and/or attenuated. Therefore, also other positioning methods are needed. One of the
most attractive alternatives is to utilize the available radio networks and signals for
localization. Besides the backup or assistance for GNSS, other localization methods
are justified also with economical and operational reasons, such as implementation
costs and energy-efficiency. Positioning accuracy is an important criteria, and is crit-
ical in emergency cases, but it is not always the most important one. One example is
the location-based marketing, that requires a location application to run continuously
as a background process in the cell phone. In this case, GNSS could offer a high-
accuracy solution, but at the cost of energy-inefficiency. With non-GNSS techniques

feasible accuracy can be obtained together with longer battery duration.

Mobile networks were from the beginning meant only for communication purposes.
Thus, cellular positioning has been based on existing signals only, being an add-
on feature in the current and previous network generations. When the need for
more accurate location later came obvious, a position specific signal and position-
ing protocols to the specifications were added to the next generations of mobile net-
works. These are, e.g., Idle Period Down Link (IPDL) utilization in 3rd Genera-
tion (3G) cellular systems of Universal Mobile Telecommunications System (UMTS)
[264,300,357] and the Positioning Reference signal (PRS) in 4G Long-Term Evolu-
tion (LTE) [274,300]. Currently, the discussions and planning towards 5G commu-
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nication networks is going on, and some insights can be found, e.g., in [17,107,245].
With new technologies aiming to provide 10-100 x higher user data rate, 1000 x
higher mobile data volume per area, 10-100x higher number of connected devices
and 10x longer battery lifetime [246], the upcoming dense 5G network infrastructure
is perfectly suitable for accurate user positioning [312]. Indeed, it has been stated
in [8] that 5G positioning technologies should be cooperatively with other techniques
and the positioning accuracy in 5G should be from 10 m to < 1 m at 80% of occasions
and better than 1 m indoors. It is stated also in [10,235,312] that the user should be
able to be localized with sub-meter accuracy in 5G networks.

2.3.1 Cellular system aspects

Table 2.2 shows the differences and evolution of different mobile network gener-
ations, starting from 2G, i.e., Global System for Mobile Communications (GSM)
network. The focus is on the system aspects related to positioning capabilities. Since
many parameters, such as carrier frequencies, are area- or country-dependent, Table
2.2 concentrates on Europe only. Indeed, 3G refers here to UMTS only, i.e., the en-
hancements such as the development of Evolved High Speed Packet Access (Evolved
HSPA or HSPA+) is not taken into account. The current status of the 5G technology
for cellular systems is still in the early development stages, and hence, the parameters
in Table 2.2 for 5G are more like current suggestions found in 5G white papers than

specifications.

2.3.2  Cellular positioning algorithms

Localization in wireless networks has been studied widely [42—44,52,123, 130,256,
306, 332-334,336] and besides GNSS/A-GNSS, several different algorithms or al-
gorithm combinations have been standardized and proposed for each mobile network
generations. Cellular network based positioning methods can be divided roughly into
three categories: coverage-area based, ranging based, or Angle-Of-Arrival (AOA)
based methods. A short introduction to different methods can be found, e.g., in [276].
These methods are all based on measurements, that the Mobile Station (MS) has, can
measure, or can obtain from the network. Besides these three categories, also other

techniques have been proposed, e.g., GSM fingerprinting [247].
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Table 2.2: Comparison of cellular system characteristics [9,10,95,96,231,235,274,300,357,

366].
2G 3G 4G 5G
Modulation QPSK, adaptive,
types GMSK QPSK 16QAM, under
64QAM definitions
OFDMA,
TDMA/ WCDMA OFDMA / NOMA,
MA FDMA SC-FDMA SCMA,
under
definitions
Positioning
specific - - Yes (PRS) Most
signal likely
Main 900 MHz, 1900 MHz / 700, 800,
carrier 1800 MHz 2100 MHz 900, 1800, 1 —100 GHz
frequencies 2600 MHz
1.4,3,5, N/A
BW 200 kHz 5 MHz 10, 15, (hundreds
20 MHz of MHz)
A-GPS, A-GPS, A-GPS,
Standardized CID, CID, CID,
positioning RSS/TA- RSS/RTT- RSS/TA/AOA- under
methods assisted assisted assisted definitions
CID/ECID, CID/ECID, CID/ECID,
E-OTD, OTDOA-IPDL, TDOA
U-TDOA U-TDOA

Table 2.2 summarizes also the standardized positioning methods by European Tele-

communications Standards Institute (ETSI) for each existing network generation [9,
95, 96, 274, 300, 357]. A-GPS is still the primary positioning technology, and the

network-based methods are seen as backups. For 5G, no standardization exists at the

time of writing the thesis. In what follows, different positioning methods mentioned

in Table 2.2 are introduced shortly.
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Coverage-area based methods

Coverage-area based positioning methods are pure network-based methods. This
means that the MS only assists the positioning process by providing information or
measurements to the corresponding network element. One example of coverage-area
based methods is the Cell Identity (CID) method [317], that can determine the mobile
position at the network based on the coverage area of the serving communication
node (i.e., Base Station (BS) in GSM network, Node B in UMTS or Evolved Node B
(eNodeB) in LTE). In the simplest case, when there is not any additional information
on the sectorization or beam width of the node antenna, the location of the MS is
estimated as the location of the node itself or as the cell origin. Typically however,
more than one node is heard, and the MS can be located in the intersection of the

heard node’s coverage areas. This is the case, e.g., in soft handover.

The CID method is very simple and fast [288] and available in all existing network
generations, but its accuracy is totally dependent on the size of the serving cell or
sector. In dense networks and small cells, such as pico- and femtocells, the accuracy
may be even tens of meters, but in rural areas with wider cell radius, the performance
decreases remarkably [9,317]. Another problem is the cell breathing, where the cell
size is reduced according to the traffic load. However, these simple methods are very
good to provide approximate information on mobile position to the network. CID
can be further improved by combining it with some ranging-based measurements,
e.g., Timing Advance in 2G networks [302], Round Trip Time (RTT) in 3G networks
[42,43], AOA [274] or RSS [130]. This combined technique is called Enhanced CID
(ECID).

Ranging-based methods

Ranging-based methods mean techniques, where the distance (range) between the
transmitter (node) and receiver (MS) is estimated with either time delay or path loss
measurements. If the distance can be determined to several nodes, the MS location

can be estimated using standard trilateration or multilateration similarly to GNSS.

As described earlier in Section 2.2.1, GNSS is based on TOA. In principle, time-delay
based distance estimation is as straightforward in cellular positioning as well. If a

node sends a time-stamped transmission, the MS can calculate the distance between
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the node and the MS, based on the time delay (i.e., the difference between the trans-
mission and reception times). However, in order to be able to calculate the MS loc-
ation, the node locations have to be known. Indeed, the method demands perfect
synchronization between all the nodes in the network and the MS clock. One ex-
ample of the available time-delay measurements is Timing Advance (TA) delay in 2G
networks [9,301]. GSM transmissions are Time Division Multiple Access (TDMA)-
based, where all MSs connect to the BS using the same frequency, but different time
slots. Since MSs are located with different distances from the BS, the propagation
delay can still cause overlaps between the adjacent users. In order to avoid the in-
terference, the BS has to measure propagation delays, i.e., the time it takes between
the transmission of the beginning of a packet frame to the MS and the reception of
the beginning of the corresponding respond packet from the MS. Based on the time
delay, the MS can then adjust the allowed transmission time slots for the MS with
a TA-parameter [278]. The TA-parameter can further be used to estimate the dis-
tance between the BS and the MS, though the resolution to the distance estimation
is typically one bit, that corresponds to 550 m. Typically, as already mentioned, TA
is combined together with CID method for assistance, resulting as a ECID (CID +
TA) [302]. RTT in 3G/4G networks corresponds to the TA-parameter in GSM net-
work. The positioning accuracy with CID + RTT in 3G/4G networks is typically
better due to the better timing resolution of RTT, but depends still on the network
topology [44]. Again, in the case of soft or softer handover, the measurements can be

obtained from several BSs, and thus, the accuracy can increase remarkably [42].

Time-Difference-Of-Arrival (TDOA) or Observed-Time-Difference-Of-Arrival (OT-
DOA) methods are used, when the transmissions are not time-stamped and there is
not time synchronization between the network nodes and the MS. In this kind of
case, when there is no information about the exact transmission time, TOA can not
be used to determine the time delay. The idea in TDOA method is to measure the
time difference of arriving signals from two or more transmitters at the receiver, i.e.,
the relative arrival times. The transmitter locations have to be known, but the possible
time bias between the node and the MS can be eliminated algebraically. With two
transmitters, the position of the receiver can be seen as a hyperboloid. With three or
more transmitters, the position of the MS can be found as an intersection of two or
more hyperboloids, respectively. In GSM, this hyperbolic positioning, based on the
existing OTD feature in GSM network, is called Enhanced Observed Time Difference
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(E-OTD) [300,357]. In 3G, IPDL is utilized to avoid the hearability problem, result-
ing as a method called OTDOA-IPDL [264,300,357]. Uplink TDOA (U-TDOA) is
an uplink alternative to TDOA. It is a network based method and basically identical
to OTDOA, the difference being that the timing measurements are made from signals
coming from the mobile and received at neighboring nodes.

When in time delay-based methods the idea is to estimate the range between the re-
ceiver and the transmitter based on the travelling time of the the transmitted signal, in
Path Loss (PL) based methods the range is estimated based on the signal attenuation
due to the travelled distance. The attenuation can be seen by measuring the strength of
the received signal, i.e., RSS. Assuming that transmitter’s location and transmission
power are known, the range between the transmitter and receiver can be calculated
by using an appropriate propagation model to estimate the dependence between the
RSS and the propagation distance. Again, RSS measurements are needed from three
or more nodes with known locations, in order to be able to calculate the MS posi-
tion in 3D via trilateration [97,219,338]. The basic PL model is free-space loss, but
in practise, this model is way too simple to model reliable the PL in realistic envir-
onment. Besides the propagation distance, also other phenomena affects the RSS.
E.g., different obstacles in the environment can cause reflections or diffraction. Since
the environments are different (rural or urban areas, outdoors or indoors, etc.), sev-
eral different PL. models have been presented within the past years [11,90,242,305].
Many models require knowledge of different parameters, that are not always avail-
able and are difficult (or impossible) to estimate. Therefore, the most suitable PL
model for the particular environment is not always feasible due to the number of re-
quired parameters. In general, time-delay based distance estimation is more precise,
and thus, the location estimation is more accurate, but the big drawback is that the
devices need to be finely synchronized. The advantage of PL based location estim-
ation is that no synchronization is needed between the transmitters and the receiver.
Another advantage is the availability of RSS measurements for more than one node.
In radio resource management of cellular networks, RSS measurements are needed
for monitoring the signal levels, that is further used to make decisions of handovers.
Thus, in addition to the serving cell, RSS measurements are typically available also
for neighboring nodes as well. PL-based methods for cellular networks have been
studied, e.g., in [11,90, 170,242,305]. PL based positioning approaches are further
discussed in Chapter 4.
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Angle-Of-Arrival

While both time-delay based or ranging based methods provide distance estimation,
AOA or Direction-Of-Arrival (DOA) is a method that estimates the direction of the
incoming signal instead. AOA is network-based method, defined as the estimated
angle of uplink transmission with respect to a reference direction. The basic principle
of AOA is to use antenna arrays and measure the phase differences of the received
signal between several antenna elements. The degree of the phase shift is a function
of the AOA, the antenna element spacing, and the carrier frequency [300]. If the
node characteristics are known, the AOA can be estimated by comparing the phase
differences [300]. AOA measurements at two BSs are sufficient to provide a unique
location in 2D. The major error source in AOA method is multipath propagation, due
to the reflected signal, that may not be coming from the direction of the MS [52].
Indeed, AOA requires sophisticated antenna arrays on the nodes, and thus, it has
not been standardized for positioning in the current networks, though it has been
proposed in many papers [80,331]. Since very dense networks and equipped antenna
arrays are expected to be included in the future 5G networks, AOA is a very good
alternative for positioning in future 5G networks. In [330], it has been shown that
even a sub-meter positioning accuracy can be achieved with joint AOA/TOA method.
One modification of AOA is Angle-Difference-Of-Arrival (ADOA), that is studied,
e.g., in [189]. Also Phase-Difference-of-Arrival (PDOA) techniques exist, but they
have not yet been much studied in the context of current cellular systems [119].

2.4  WLAN positioning

Though the primary purpose of WLAN networks (also called WiFi or IEEE 802.11)
is in communications, the widespread infrastructure offers the possibility to locate
mobile devices in an economical way. The main advantage of position determination
using WLAN technology is that it can perform both indoors and outdoors, due to the
very dense AP network, especially indoors and outdoor urban areas. Another advant-
age are relatively small signal coverage ranges, leading to better positioning accuracy.
The main challenge is that an existing Access Point (AP) infrastructure may not be
suitable for positioning. Indeed, AP topology may be changed relatively often, and

that may affect also the positioning results. Many technologies and measurements
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that are used, e.g., for cellular-based positioning, can be adopted for other access net-
works as well. This holds for coverage area-based, ranging-based and AOA-based
methods, that were described in Section 2.3. One difference between outdoor and
indoor positioning is that the indoor area is more limited, and thus, some positioning
technologies may be more suitable indoors than outdoors. On the other hand, as a
different aspect compared to outdoor positioning, floor detection has to be taken into

account indoors.

2.4.1 WLAN system aspects

Table 2.3 shows some basic characteristics of the most important 802.11 standards,
developed by The Institute of Electrical and Electronics Engineers (IEEE) [145-148].
The characteristics are bandwidth (BW), carrier frequencies, possible modulation
types, MA schemes, possible multi-antenna support and cognitive spectrum use. The
evolution of the 802.11-family started in 1997, and is still increasing while new spe-
cifications are continuously developed. The next generation wireless transmission
standard is IEEE 802.11ay at 60 GHz. It is expected to be completed in 2017.

2.4.2 WLAN positioning algorithms

WLAN networks have not originally been designed for positioning, and hence, there
are no extra protocols or suitable frame types for this purpose. Since the widespread
networks with appropriate standards however have very good potential, WLAN-
based positioning has gained considerable attention and become a huge research field
over the last decade. Many different positioning approaches have been developed,
varying from coverage-based methods [173] to fingerprinting [16,23,157,174,193,
228,230,238,265,275,303,313-315,322,323,328], both for outdoor [127,193,197,
322,356] and indoor situations [83,173,183,241,291,316,325,328]. The main differ-
ence between coverage-area based methods between cellular and WLAN-networks is
that the transmitter positions (i.e., BSs for cellular and APs for WLAN) are generally
known in cellular networks, but this is usually not the case with WLAN networks.
Thus, in order to be able to use, e.g., CID-based method for WLAN network, AP
locations should be first estimated or alternatively use some coverage area estimates,

like in [173]. AP locations are needed for distance-based estimation methods as well.
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Table 2.3: Comparison of most recent WLAN standards in terms of system characteristics

[145-148].
] | 802.11g | 802.1ln | 802.11ac | 802.1lad [  802.11af
BW 20 MHz 20, 20, 40, 80 2.16 GHz 6,7,
40 MHz | 160 MHz 8 MHz
Carrier 24GHz | 2.4,GHz 5 GHz 60 GHz 470 — 790 MHz
freq. 5.8 GHz
BPSK, BPSK, BPSK, SQPSK, BPSK,
QPSK, QPSK, QPSK, QPSK, QPSK,
Modulation | 16QAM, | 16QAM, | 16QAM, 16QAM, 16QAM,
64QAM 64QAM | 64QAM, 64QAM, 64QAM,
256QAM BPSK 256QAM
CCK, CCK, OFDM,
MA DSSS, DSSS, OFDM single OFDM
or OFDM | or OFDM carrier
Multiple
antenna No Yes Yes No Yes
support
Cognitive No No No No Yes
spectrum
Positioning RSS RSS RSS RSS, RTT RSS, RTT,
methods TDOA, AOA TDOA, AOA

As it was shown in Table 2.3, the underlying MA schemes for WLANs are either
Complementary Code Keying (CCK), DSSS, or Orthogonal Frequency Division Mul-
tiplexing (OFDM) techniques. Also the underlying modulations range from Binary
Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK) to higher
order Quadrature Amplitude Modulation (QAM). Therefore, TOA or RTT based
positioning approaches for WLAN positioning are still not widespread, due to the
various underlying physical layer features of WLANSs on the market. Another chal-
lenge is that an exact signal propagation delay is still difficult to measure, since a
high-precision timer is not included in today’s standard WLAN components [281].
This may however change in the future. As an alternative to TOA-based methods,
most of the WLAN positioning methods are based on the RSS measurements ex-
tracted from the APs and identified by unique Medium Access Control (MAC) ad-
dresses [177, 181, 183, 225,241,265, 275,303, 325]. As in cellular networks, RSS-

based positioning methods have the advantage of easy accessibility and availability
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in almost every user device, that makes the measurement both practical and cost ef-
fective. Besides different P models (described in 2.3.2), RSS measurements are
very suitable to be used in so-called fingerprinting (FP) methods, also called pat-
tern recognition or pattern matching. Fingerprinting techniques are many times pre-
ferred, since they neither require the AP location nor attempt to model the signal
strength via any path loss models. Some low-complexity methods are an alternat-
ive, such as Weighted Centroid (WeiC) -based algorithms. As already mentioned,
many of the cellular-based positioning approaches described in 2.3.2 can be used
similarly with other networks, including WLANs. Besides WLAN and cellular net-
works, RSS-based positioning can also be applied with radio-frequency identification
(RFID) [57,236], Bluetooth [59,321], or ZigBee [40,239] signals.

Fingerprinting

In general, RSS-based positioning methods have two stages: an initial off-line train-
ing phase and an on-line estimation phase [99,225,344]. In the training phase, models
and/or databases are created based on collected information. Usually this collected
information (also called training data or radiomap) means location dependent data
samples (i.e., the fingerprints), such as RSS measurements with known locations. In
the estimation phase, that involves real-time processing, the unknown position of a
MS is calculated based on the observed RSSs of the hearable transmitters (or APs, in
the case of WLAN network) and the radiomap database saved in the training phase.
The radiomap consists of (X,y,z)-coordinates for each fingerprint or grid point in the
building (or in the area of interest), together with the MAC-addresses for each hear-
able AP and the corresponding RSSs in the particular grid point. The RSS radiomap
can be used for the localization purposes via several ways: by matching the meas-
ured RSSs by the MS with the radiomap (i.e., fingerprinting method) [16, 23, 157,
174,193,228,230,238,265,275,303,313-315,322,328,334], by trilateration meth-
ods using some signal-to-distance mapping derived from the radiomap (PL based
method) [241,291], or by some low-complexity methods, such as WeiC [40, 88,200].
Other possible methods are, e.g., clustering [60, 63,76, 143, 175,232,269, 344] and
spectral compression [311] based methods. All methods do not need the full radio-
map information in the positioning phase, but only parts of it. E.g., in PL based
method, the radiomap is used to calculate the path loss parameters in training phase,

but after this, the collected data is not needed anymore, and the calculated paramet-
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ers are the only data needed to be saved and transmitted to the mobile. This will be

discussed more in Chapter 4.

Fingerprinting is a database correlation technique, where no distance measures are
needed between a transmitter and a receiver. Most common data used for FP method
is RSS, but any other location dependent signal characteristic is also possible. In the
estimation phase, only the database of fingerprints and the current real-time measure-
ments are used to calculate the position estimate online, by comparing the measured
signal characteristics (e.g., RSS levels) by the MS to the measurements saved in the
database. Further on, the position of the MS is estimated as the best match among the
fingerprints. Several different fingerprinting-based positioning algorithms using pat-
tern recognition technique have been presented in the literature: K Nearest Neighbor
(KNN) [22,122,233,258,313,315,316], probabilistic methods (e.g., Gaussian like-
lihood) [16, 197,224,230, 275], neural networks, Support Vector Machine (SVM),
and Smallest M-vertex Polygon (SMP). Fingerprinting is discussed more in Section
4.1.2.

Fingerprinting has the potential to use any existing radio signals in positioning. In
addition to indoors, FP positioning method can be used outdoors, e.g., by utilizing
cellular networks. The main drawback with all positioning methods based on RSS
measurements is the need for training phase. The process to form the radiomap is not
only slow and costly, but also very sensitive to changes in the environment. Indeed,
RSSs can be affected by reflection, diffraction and scattering in the propagation en-
vironments, especially indoors. Besides the radiomap forming process, the size of the
database causes challenges. Due to the high deployment of APs in many buildings,
many indoor positioning methods suffer from having to deal with a huge amount
of data. The memory requirements to store the radiomap database in large areas or
buildings may become overwhelming, and also data transmission may become a bot-
tleneck for the localization system, especially for fingerprinting. Thus, especially
outdoors, where the target area is usually bigger, some methods with data compres-
sion may be more suitable. These challenges and how to address them are discussed

more in Chapters 4, 9 and 10, respectively.
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2.5 Other positioning systems

Due to the complexity of the indoor environment, a low-cost and accurate positioning
system is not easy task to achieve. An ideal IPS would provide sub-meter accuracy
and be cost-effective, but also be universal in that sense that it would work anywhere
with any device, preferably also outdoors. Though several IPSs already exist, they
all make some trade-offs with these requirements. Also the accuracy requirements
change according to the use - finding a specific store in a multi-floor shopping center
needs different application and accuracy than locating a specific item in a supermar-
ket. It should also be remarked that locating a MS indoors is in many cases only
half of the solution. For the location to be meaningful for navigation purposes, ac-
curate indoor maps are needed. An Inertial Navigation System (INS) means some
navigation aid, that includes motion and rotation sensors (accelerometers and gyro-
scopes) to the positioning, in order to be able to estimate also orientation and velocity
of the MS. Venue tracking and floor detection bring their own challenges to the end

solution.

Besides WLAN networks, positioning can be based on other radio frequency sig-
nals as well, e.g., on Bluetooth [59,272,321], ZigBee [40,239] or digital television
signals [58]. The main advantage with these Signals-Of-Opportunity (SOO) based
methods is the low cost and wide coverage. Some methods require a deployment
of a new specific infrastructure, such as Ultra Wideband (UWB) based position-
ing methods [78, 113]. Deploying a new network is expensive, but the advantage
is seen as better positioning accuracy, when the new infrastructure is planned espe-
cially for positioning purposes. Other IPS technologies are based, e.g., on magnetic
fields [192,255,314] or infrared [340]. Table 2.4 describes shortly some of the most
known IPS today in addition to GNSS, cellular and WLAN.

Many of the systems presented in Table 2.4 can obtain very good indoor positioning
accuracy. However, their implementation usually requires resources to form some
specific infrastructure, e.g., beacons or tags meant only for positioning purposes.
Therefore, these systems are used many times in relatively small areas, such as in
one building only, and many of these do not achieve seamless outdoor-indoor pos-
itioning in large scale. As widespread and cost effective general solutions, WLAN
and cellular network based positioning approaches are still offering most viable al-

ternatives for mass-market large scale positioning solutions indoors.
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Table 2.4: Some existing IPS based on different technologies.

Company Technology Positioning Reported
algorithm accuracy
Indoor Atlas magnetic field,
other sensors FP 1-3m
(proprietary solutions)
Ekahau WLAN, 1-3m
infrared FP (RSSI) (sub-meter with
(optional) infrared)
UbiSense UWB TDOA, AOA <15cm
Ambiplex infrared AOA 20-30 cm
Nimble Devices Bluetooth N/A 2 m
(Steerpath)
Quuppa Bluetooth AOA, RTT <lm
Sensewhere hybrid (Bluetooth, triangulation 5-10m
WLAN, GNSS, INS)
Spreo Bluetooth, INS FP sub-1 m
GloPos Cellular networks, N/A sub-10 m (2G,3G),
WLAN sub-3 m (WLAN)

2.6 Comparison of methods

Table 2.5 summarizes the main discussion of GNSS, cellular and WLAN-based po-
sitioning methods. Accuracies are rough estimates, since they naturally depend a lot
on the used network and algorithms. Indoor/outdoor usage means here if the method
can be used independently in these circumstances, like indoors, such that the accur-
acy is considerable. E.g., cellular network based methods can of course be used also
indoors, but the accuracy is meaningful only if they are combined with some other
methods (as a hybrid solution). DGPS in Table 2.5 stands for Differential GPS, that is
an enhancement to a primary GNSS system consisting of reference stations enabling

corrections to the positioning estimate.

The main weaknesses of GNSS (or A-GNSS) are the receiver complexity and power
consumption, and the unsuitability to positioning indoors. On the other hand, GNSS
is very accurate in most outdoor situations, and can be used also to augment or enable
other positioning methods. Cellular methods can provide a coarse location estim-

ate really fast, and can be used to improve the position estimates offered by GNSS,
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Table 2.5: Comparison of different positioning methods.

Methods | Accuracy | Outdoor Indoor Complexity Power
usage usage consumption
TOA 10-15m Yes No
GNSS DGPS 3-10 m Yes No High High
A-GNSS 1-3m Yes Partial
TDOA 50-125 m Yes No Low
cellular RSS 100-200 m Yes Yes Low Low
AOA <1 Yes Yes (5G) Moderate
WLAN RSS 1-5m Partial Low to
RTT (indoors) (urban Yes Low moderate
areas)

e.g., in urban areas with low satellite visibility. The main drawbacks stay in lower
accuracy, when compared to GNSS, and in the positioning techniques that may re-
quire synchronization to the network. WLAN based methods can be very accurate
indoors and in urban areas. It is also a low-cost and low-complexity method, that
does not require synchronization and can utilize the exiting AP infrastructure, but
many algorithms need a database to be collected and maintained. Indeed, in low AP

environments (outdoor suburban areas) the positioning accuracy is decreased.

Challenges for GNSS are naturally partly different than challenges for WLAN or
cellular based techniques. While multipath is the main error sources in GNSS, it
affects WLAN or cellular based methods directly only if TDOA or AOA positioning
techniques are used. Same holds for No-Line-Of-Sight (NLOS). In RSS, the effect
of multipath and NLOS is seen only as RSS fluctuations. Thus, all these effects can
be lumped together and they do not have as high effect as on GNSS. Path losses
affect the RSS of all systems, but not necessarily to the positioning accuracy, e.g., in
WLAN fingerprinting. Narrowband interference (e.g., jamming) is a problem with
GNSS but not with other systems, that are more affected by multiuser interference.
GNSS does not require any databases, but for fingerprinting with any network these
are a challenge: not only the collection and maintaining, but also the data transfer,
that easily becomes a bottleneck of a system. The challenges typical to WLAN and
cellular positioning, such as database size, may also become a challenge in the new
studies and solutions of cloud GNSS [211]. Table 2.6 lists the main challenges for

each positioning methods. Physical layer challenges in GNSS are discussed with
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Table 2.6: Most common challenges for different positioning methods.

Multipath | Pathloss | Narrowband Multiuser NLOS Database
interference | interference size
GNSS Yes Yes Yes - Yes only for
cloud GNSS
For For

cellular TDOA For PL Yes Yes TDOA For FP
and AOA and AOA

WLAN Yes In

(RSS) -a For PL Yes some b For FP

range

¢ Not directly, but can be seen as RSS fluctuations.
b Body impact is more significant than NLOS.

more details in Chapter 3, and in cellular and WLAN-positioning in Chapter 4.

2.7 Summary

This chapter has provided an introductory overview of wireless positioning. Sys-
tem aspects and most typical positioning algorithms have been described for GNSS,
cellular and WLAN-based positioning approaches. Several comparative tables have
been included. This survey and summary of methods provided in this chapter is a
contribution towards the state-of-the-art. The discussion of GNSS and RSS-based
localization approaches and their challenges will be continued in Chapters 3 and 4,

respectively.
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3. GNSS POSITIONING - SYSTEM OVERVIEW AND
CHALLENGES

About half of the work in this thesis has been focused on improving the GNSS re-
ceiver design, concentrating especially in the acquisition part of baseband processing
functions. In this chapter, the main tasks and the structure of GNSS receiver are
discussed shortly before going into more details of GNSS challenges and possible

solutions.

3.1 GNSS receiver fundamentals

As it was already mentioned in Section 2.2.2, satellite-based positioning is based on
TOA measurements and trilateration principle. In order to be able to calculate its
position, a GNSS receiver has to first find and acquire the signal from each visible
satellite, and further on, decode the ephemeris data from the signals to find the po-
sition of the satellites and to be able to measure pseudoranges. Thus, the receiver
has several important tasks starting from signal acquiring (acquisition and tracking

functions) and continuing to data extraction and finally position calculation.

Fig. 3.1 shows the structure of a typical GNSS receiver. Each receiver consists of
three main blocks, namely radio front-end, baseband processing unit and navigation
unit [240]. After the signal is captured through the antenna, the radio front-end unit
takes care of constructing the signals for baseband block. The main tasks for the
front-end-block includes several functions, such as amplification, filtering, frequency
conversation and signal digitization [240]. More detailed information about the radio
front-end and its functions can be found, e.g., in [161,240,318]. After digitization,
the signal arrives to the baseband processing unit, where it undergoes several signal
processing operations. The first phase is signal acquisition, where the purpose is to

identify the visible satellites in the sky and to get some coarse estimates of the code
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Fig. 3.1: Simplified block diagram of a typical GNSS receiver.

phase and carrier frequency. Signal acquisition is followed by tracking, where the
produced coarse estimates are enhanced to get fine estimates. After navigation data

extraction, a separate navigation unit takes care of the position solution calculation.

Since the focus of this thesis is in the baseband processing part and especially the
signal acquisition, we will concentrate in this chapter mainly on signal acquisition
phase. The reason for this is that code acquisition is typically considered as one of the
most challenging and crucial tasks in a spread spectrum system [109]. More details
of GNSS receiver functions concerning data extraction and position calculation can
be found for example in [161,240,278,318].

3.1.1 Signal acquisition

In spread spectrum systems, the PRN code sequence xpgy,, Without pulse shaping

can be modeled as
Sr
xprN,n(t) = Y €jn8(t — nTyym — jTo), (3.1
j=1

where j is the chip index, n is the data symbol index, Sr is the spreading factor (i.e.,

Sr = Tyym/T.), Tyym is the symbol period, T.. = 1/ fonip is the chip period, ¢}, is the jth
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chip corresponding to the nth symbol, and §(¢) is the Dirac pulse. After spreading,

the data sequence x4, can be expressed as

xdata(t> - Z mbdala (n) xPRN,n(t)y (32)

n—=—oo

Here, E), is the data bit energy and b, (n) is the nth complex data symbol (in the
case of a pilot channel, by, (n) = 1). The transmitted signal x(7) can be expressed as
the convolution between the PRN code with data modulation x;4,(?), the modulating

waveform s5(7), and the pulse shaping filter pz, (r) [205]:

+oo  Sp
x(t): Ebs €3 Z Zbdata C/n nTsym_ch)C*)pTB(t)v (3.3)

n=—oo j=

where, ® is the convolution operator. The modulating waveform s(f) can be either
BPSK [135] or BOC modulated. BOC modulation waveforms are further presented
in Section 3.2.2. Detailed expressions for different modulations can also be found
in [205].

Further on, if a discrete tap channel model is adopted, the received signal y(¢) in
fading multipath channel can be expressed as

L
Zoclx t—1))e I L (r). (3.4)

Here, L denotes the number of channel paths, [ is the multipath index, oy is time-
varying complex fading coefficient for /th path, T; is the multipath delay, x(-) is the
transmitted signal, and m () is additive Gaussian noise with zero mean and double-
sided power spectral density Ny including all possible interference except multipath.
White noise assumption is based on central limit theorem [298]. Frequency shift,
namely Doppler shift fp, is caused by the speed of the satellite and receiver with
respect to each other, resulting as deviation to the carrier frequency f.. Estimates for
the timing and the correct frequency of the received signal are necessary, in order to
be able to remove the carrier frequency and to despread the received signal to obtain
the original data. Since each satellite transmits an unique PRN code in CDMA-
based GNSS, the satellite can be detected through correlation between the received
signal y(r) and the reference PRN code s, s with certain tentative delay T and Doppler
frequency E:

- 1 ilom s
CR, fp,i) = E( /( | V(0)sres (&, fD,t)dt), (3.5)

T:me i—1 )T;)m
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Fig. 3.2: Slmpllﬁed block diagram of the acquisition process with k dwells.

where i is the index for code epoch, E(-) means the expectation operation with respect
to the PRN code, and

—_—~ ., _ SF o~
Sref (T fpot) = € P01y 05, 8(t — nTyym — jT. —T) @ pr, (1) (3.6)
j=1
Since PRN codes have high correlations close to zero delay error, the high peak
in the correlation output indicates that the satellite with this certain PRN code is
available. Indeed, the correlation output also provides estimates for the code delay
and frequency offset. Thus, the acquisition can be seen as three-dimensional search

process.

Fig. 3.2 shows a block diagram of the acquisition, that consists of multiple dwells
and three stages per dwell. A dwell refers to the time to reach a first decision, which
can be further fine-tuned by sub-sequent dwells. Each dwell has a correlator block, a
search stage and a detection stage, but the parameters of each of these 3 blocks differ
from one dwell to another [240]. Single-dwell structures are the most used in GNSS,
but also multi-dwell approaches have been studied for example in [53,73,204]. In
the correlation phase, a two-dimensional correlation output is formed by correlat-
ing the received signal with the locally generated reference code s,.; with different

tentative Doppler frequencies and delays. By examining the resulting correlation



3.1. GNSS receiver fundamentals 37

output and looking for a correlation peak which appears for correct delay-frequency
combination, it can be determined whether the signal is detected or not. Correlation
can be accomplished either in time domain [161] or in frequency domain using Fast
Fourier Transform (FFT) [13]. Wavelet-based acquisition structures have also been
studied in [56, 191], but FFT-based correlators are nowadays the most widespread in

software-defined radio implementations [45].

After the correlation is performed, the process is typically continued with both co-
herent and non-coherent integrations in order to reduce the noise from the received
signal [75,85]. In coherent integration, the correlator outputs are coherently averaged
over N¢ chips (i.e., coherent integration length). However, the coherent integration
length N¢ is limited due to the channel fading, presence of data bits, residual Dop-
pler error and the instability of the oscillator clocks [153,178,240,318,319]. Thus,
Nc¢ should be less than the coherence time (Af).,, and less than the bit duration for
non-pilot channels, in order to avoid the fading spectrum to be distorted. On the other
hand, N¢ also defines the frequency resolution in the frequency uncertainty. Natur-
ally, the higher the N¢ is, better frequency resolution is obtained, as it can be seen
in Fig. 3.3. Due to the limitations in the coherent integration time, coherent integra-
tion can be followed by non-coherent averaging (or integration) over Ny¢ blocks (i.e,
non-coherent integration length) [85, 161]:

o~ 1 1 N 2
Z(R,fp) = N—M;M )NC;C(r,fD,J)‘ 3.7)
It is also possible to use other types of post-correlation combination instead of non-
coherent integration. These methods have been studied also in this thesis, and are
presented in detail in Chapter 6.

Search stage

The search uncertainty in time domain (Af),,, is typically the PRN code length, e.g.,
4092 chips for Galileo E1 signal and 1023 chips for GPS C/A signal. Frequency un-
certainty is defined as +/— maximum possible Doppler shift caused by the satellite’s
and receiver’s relative speed. Thus, the search interval in frequency domain (Af)nax
may be even tens of kHz, usually 4/ — 10 kHz for Galileo signal [54]. If it is pos-
sible to estimate the Doppler shift in some range in advance, e.g., with A-GNSS, the

search space can be reduced and the acquisition time decreased [85].
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Fig. 3.3: Examples of frequency resolution of FFT-based correlation output for (a) Nc = 20

ms and (b) Nc =4 ms. Correct time-frequency window.

In the search process, the search uncertainty area is divided into search windows,
who define the decision region and whose number depends on the chosen search
strategy. Each search window is divided into search bins, (Af)pin X (Af)pin, where
(At)piy is time bin, and (Af )y, is frequency bin. For GPS, common values for the
search bins are (Af)p;; = 0.5 chip and (Af)pin = 1 kHz. For other GNSS signals,
such as Galileo signals, smaller time bin steps are usually needed in order to avoid
ambiguities in the correlation function. The problem of the acquisition ambiguities
and solutions to it are discussed more in Section 3.2.2 and Chapter 6. Different
search strategies can be roughly divided into serial [263], parallel [297] or hybrid
search [159,161,204]. The serial and parallel search are also included as two extreme
cases in hybrid search [204]. The choices of the best search algorithm and the suitable
window and bin sizes are discussed more, e.g., by us in [251]. After the correlation
output Z is formed for the search window as a grid of correlation values (see Fig. 3.4
with examples of correlation output for both correct and incorrect search window), a
test statistic (or decision variable) X is computed. The choice of the decision variable
has also been studied in this thesis and will be discussed in more detail in Chapter 6.

Detection stage

In the detection stage, the aim is to decide whether the signal is present or not in the

current test window by comparing the test statistic X to a pre-determined threshold .
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Fig. 3.4: Examples of correlation output for (a) correct and (b) incorrect search windows.

This is the classical detection problem [164]:

Hy : signalabsent 3.9)

H, : signal present. ’
With the assumption that there are no false alarms in the correct search window, the
detection and false alarm probabilities (P, and Py,, respectively) can be calculated as

the probability that at least one variable is higher than threshold v [53, 164]

Pra=p(X 27| 76) 59

Py =p(X >v[H,). '
Under the assumption of an Additive White Gaussian Noise (AWGN) channel, in has
been proven for example in [201] that the correlation output after the non-coherent
integration is distributed according to either a central y>-distributed variable with a
Cumulative Distribution Function (CDF) F,.(y) (%), or according to a non-central
x>-distributed variable with a CDF Fy,.(y,\) (). Thus, the formulas in Eq. (3.9)
can be extended to [204]

Pra= 1= (F ()"

. 3.10
Py =By (1= (R () Vo N TES e (1)) oY

where A is the non-centrality parameter depending on channel path energies, Ny is
the number of search bins in the search window, and N_p;,, is the number of correct
search bins. Due to the width of the main lobe of the ACF, there might be several #;

bins even in single-path channels. For multipath channels, there is always more than
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one correct bin. The definitions for CDFs F,.(y,A) and F,(7y) are [294]

Nyc—1 WNEN, J

(—Welve (YNeNye 7 1

Ry = 1- Y R ( -
=0 2Ny

7 3.11)
i) = 1 (R )

where Ny is the noise power spectral density and Qn,.(-) is generalized Marcum
Q-function of order Nyc. If the threshold is set too high, false alarm probability de-
creases, but miss detection probability increases. Therefore, the choice of a proper
threshold value is very important for the whole acquisition process. The chosen
threshold can be either fixed to a constant value, or it can be adapted, e.g., according
to estimated Carrier-to-Noise Ratio (CNR). Also the decision stage has been studied

in this thesis and some results are shown in Chapter 6.

One advantage in signal detection would be to adapt the threshold ¥y according to
desired Py,. In decision theory for known signals, in a theorem called Neyman-
Pearson criterion, P; can be maximized for a given Py, = o, when deciding #; if
likelihood ratio L(x) [164]

p(x; 7))
Lx)=—/—"—""<>7. (3.12)
) pcH)
Here, the threshold 7 is found from
Pry = / p(x; Hy)dx = o (3.13)
{xL(x)>v}

This can be seen as the optimal (and simplest) detector with known signals [164].
In practice however, unknown parameters, such as the noise characteristics, exist
and the Probability Density Functions (PDF) under #{ and # are not completely
known. Therefore, the likelihood ratio test of Eq. (3.12) would offer unrealistic
results as such. One common approach in this kind of situation is Generalized Like-
lihood Ratio Test (GLRT) detector, that utilizes Maximum Likelihood estimates for
the unknown parameters [164]. Constant False Alarm Rate (CFAR) detector is a vari-
ant of GLRT with the assumption that the asymptotic PDF under #; does not depend
on any unknown parameters. In CFAR detector, a threshold ¥ to maintain a constant
Py, can be found [150, 151, 164].
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3.1.2 Signal tracking

Once the signal is detected, the coarse estimates for the code delay and frequency
offset are passed to the tracking stage, as can be seen in Fig. 3.1. Tracking can
be seen as a fine synchronization process, where the main target is to improve the
coarse delay and frequency offset estimates achieved in the acquisition stage and
also continuously keep track on them, since they tend to change over time. Besides
the code delay and the carrier frequency estimations, also carrier phase estimation
is included in the tracking stage. These three tracking processes are inter-operating
feedback loops. One very common feedback loop for code tracking in GNSS is Delay
Lock Loop (DLL) [161]. Carrier tracking is needed, since an exact carrier signal
replica is necessary for successful navigation data demodulation. Carrier tracking
loops that provide a phase estimate are called Phase Lock Loops (PLL). The phase
of the incoming signal may differ from the original one broadcasted by the satellite,
due to various errors. Frequency Lock Loops (FLL) are similarly used for carrier
frequency tracking, since also the frequency changes due to the user and the satellite
movements. If the frequency changes are small, PLL may be enough [45]. The FLL
and PLL can also be used together as a FLL-assisted-PLL configuration [327]. Good
comparisons between various tracking structures can be found, e.g., in [37, 38,45,
240].

3.2 GNSS related challenges at physical layer

The errors in GNSS can be divided into three main categories:

1. Satellite-based, such as clock drifts or orbital errors [39]; these are not ad-

dressed in this thesis.

2. Channel-based, which are the ones addressed in this thesis and are described

in Section 3.2.1.

3. Receiver-based, such as receiver clock errors, receiver noise and antenna error;

these are not addressed in this thesis.

One of the challenges for the new GNSS signals is also the new modulation type

BOC or its variants, that introduce ambiguities and side lobe peaks to the envelope
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of the autocorrelation function. This challenge with possible solutions is described in
Section 3.2.2. In order to compensate for such errors, good acquisition and tracking
algorithms are needed at the receiver. The trade-off is always between complexity or
power consumption and performance. Typical performance metrics in acquisition are
P, and the mean acquisition time. Typical performance metrics in tracking are the
mean, the variance and the Root Mean Square Error (RMSE) of the tracking estimate
and the multipath capability of the algorithm, measured often via multipath error

envelopes.

3.2.1 Channel effects

Propagation channel related errors include everything that the signal faces on its way
through the wireless communication channel. The signal travels through atmosphere,
whose effects are divided into ionospheric and tropospheric. Among these, iono-
spheric effect is frequency dependent, i.e., signals that are transmitted at different
frequencies have different delays and phase advances. This fact can be utilized in
dual-frequency receivers, where the first order ionospheric delay can be removed by
a linear combination of the available pseudorange measurements [93]. In single-
frequency approaches, some ionospheric correction models are however needed. In-
deed, also tropospheric models are needed to mitigate frequency independent tropo-
spheric delay. Besides these delays caused by the atmosphere, the GNSS signal is
also affected by reflections, scattering and diffraction together with possible other

interferences before reaching the receiver.

Multipath effect

Multipath is a cause of reflections of the direct Line-Of-Sight (LOS) signal, where
the transmitted signal arrives at the receiver through several paths from a number of
different directions. Reflections are caused by surfaces surrounding the receiver, such
as trees or building walls. As a result, the received signal is a combination of several
copies of the transmitted signal, with different amplitude attenuation, phases, delays

and arriving angles, that can cause the receiver to calculate an incorrect position.

In the acquisition stage, multipath propagation can be seen in the correlation output

as multiple incoming versions of the transmitted signal, resulting as several correl-
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ation peaks in the search uncertainty area. This is illustrated also in Fig. 3.5, that
shows an example of three multipaths in the correct time-frequency window. How-
ever, the delays of the multipath signals can be also so small in comparison to the
actual LOS signal, that they distort the phase and the amplitude of the LOS signal
leading to a compounded signal in the correlation output. This kind of deformed
correlation shape may be attenuated, and thus, more difficult to detect, especially in
the case of low CNR. It is also possible that the maximum correlation value of the
compounded signal is delayed more than the actual LOS signal, leading to errors in
the pseudorange measurements. In severe multipath scenarios like indoors or dense
urban canyons, it may also be that there are only reflected NLOS signal components

available, and the multipath error can be even few tens of meters [116].

Despite the fact that some multipath effects may cause challenges already in acquisi-
tion stage, multipath mitigation is typically left for the tracking process and is handled
in the acquisition stage only as several correct bins [240]. Indeed, according to [91],
multipath effect is not seen as severe in the acquisition process than in the tracking,
since in many multipath cases the signal can still be acquired within 1 chip interval,
especially in the case of closely located channel paths. Many tracking algorithms
have some kind of ability to deal with with multipath scenarios, and the trade-off
between different tracking algorithms is usually between performance and complex-

ity. Some comparisons can be found in [36,38,206].

However, in some acquisition algorithms the presence of multipaths needs to take
into account. One example is forming the decision statistic, as will be discussed
more in Chapter 6. Indeed, there are some proposed methods, that try to mitigate the
multipaths already in the acquisition stage. In [46], so-called Monte Carlo Markov
Chain (MCMC) method for multipath identification and elimination is suggested.
Differential correlation ideas to deal better with multipaths are proposed in [282] and

by us in [249]. These will be presented in more details in Chapter 6.

Wideband and narrowband interference

Besides multipath propagation, also different types of interference may degrade the
receiver performance. Though certain frequency bands are reserved legally protected
for GNSS, radio frequency spectrum is more and more crowded and unintentional

interference is possible, especially since GNSS signal powers are rather weak after
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Fig. 3.5: An example of a correlation output for a correct time-frequency window, in the

presence of three multipaths.

transmitted from great distance (20000 km). Also intentional interference, that can
be divided into spoofing, meaconing and jamming, is possible [279]. While jamming
is only blocking or interfering the GNSS signals from the receiver, spoofing and
meaconing replace the true GNSS signals with false signals, without the receiver
recognizing anything [279].

Depending on the BW of the interfering signal, unintentional interference can be
either wideband or narrowband. In wideband interference, the BW of the interfer-
ence BW;, is higher than the BW of the GNSS system BWgyss (i.e., BWy, >>
BW gnss). One example of wideband interference is UWB technology with very wide
BWs but low transmission powers [115, 125]. In narrowband interference, where
BW ,,; << BW gnss, one class of disturbing signals is called Continuous Wave Inter-
ferences (CWIs). CWI includes narrowband signals that can be represented as pure
sinusoids, such as Very High Frequency (VHF) and Ultra High Frequency (UHF)
TV signals [41]. Another example of systems causing narrowband interference is
radio-navigation aids offering support for airplanes to navigate and land. These sys-
tems, namely Distance Measuring Equipment (DME) and Tactical Air Navigation
(TACAN), share the spectrum with LS GNSS signal band, and their high-power ra-
dio pulses can severely disturb GNSS signals in the same frequency band [287]. The
effect of narrowband interference on GPS has been studied, e.g., in [25, 35, 172]
and on Galileo in [352,353]. Several interference mitigation methods have been

proposed in the literature, such as time-domain based blanking method [111] and
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filtering methods based on convolution operations [67], or frequency-domain based
zeroing technique [352] and cyclostationary approach [277]. Some interference mit-
igation methods are also compared in [279]. Interference mitigation remains still one
of the main challenges in GNSS, especially in the new-coming Galileo, and in the
case of intentional attacks [240].

In this thesis, the interference effect is also taken into account as we propose an en-
hanced differential correlation technique in Chapter 6. Our proposed method exploits
the signal correlation in longer time intervals, and this reduces the interference effects
that are coming from noise and other temporally uncorrelated sources. In CDMA
systems, also multiple access interference is inherently very weakly time-correlated.

Low CNR

One very important challenge in all GNSS is also the low CNR. Typically low CNR
is due to NLOS cases, especially in heavy urban areas and indoors. One possible
solution is the HS-GNSS technology, that is able to obtain a position fix with weaker
signals using some advanced detection algorithms. Increasing the coherent integra-
tion time would be one optimal strategy for improve the acquisition sensitivity in
harsh environments, but as discussed in Section 3.1.1, coherent integration time has
limitations as well. Thus, a wide variety of detection algorithms for weak signal
acquisition have been proposed within the last few years. With these methods, the
receiver sensitivity can be increased, but typically at the cost of complexity. Indeed,
though the position estimate is possible to do with more challenging environments,

the accuracy and TTFF are many times still not as good as in ideal conditions [349].

One solution studied in this thesis is different post-correlation combination algorithms,
e.g., differential correlations or generalized post detection integration (GDPI) schemes
[75,207,260] that are discussed more in Chapter 6. Since many new GNSS signals
(e.g., E1 OS, ES, E6 signals of Galileo and LS, L2C, L1C signals of GPS) are com-
posed of two channels (data and pilot), it is also possible to use channel combin-
ing acquisition to improve the sensitivity [112,223,308]. Other possible methods
to mention are, e.g., a INS aided acquisition algorithm [213], a Block Acquisition
Method [267] or a new peak finding algorithm [220].
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3.2.2 Challenges related to GNSS modulation types

As mentioned in Chapter 2, in current standards the BOC modulation or its vari-
ants are introduced to be used for modernized GPS and Galileo signals. The reason
for these new modulations is in their split spectrum ability, that makes interference
between the signals on the same frequency band as small as possible [33]. BOC
modulation was first introduced in [33], and since then, several variants are devel-
oped, such as Sine BOC (SinBOC) [33], Cosine BOC (CosBOC) [33], Alternat-
ive BOC (AItBOC) [134], Complex Double BOC (CDBOC) and Multiplexed BOC
(MBOC) [133]. Many of these different variants are used (or proposed) to GNSS

signals, as was shown in Table 2.1.

BOC modulation consists of modulating the chip level PRN code with a synchronized
square wave subcarrier. As a result, most of the signal power heads near to the edges
of the allocated frequency bands [27]. A BOC-modulated signal can be notated as
BOC(fehip»fsc), where fepip is the chip rate in MHz and f;. is the subcarrier frequency
in MHz [33]. More common notation is however BOC(mg,np), where mp and np rep-
resent two indices computed from f.p;, and fi, respectively, with respect to a refer-

chip

IO£3MH and ng = W The BOC modulation

ence frequency 1.023 MHz: mp =
order Npoc is a positive integer showing the ratio Ngoc =2 x 2 =2 X f < 1205].
Thus, e.g., Npoc = 2 would represent, e.g., BOC(1,1) and BOC(2,2) and NBOC =12
would represent, e.g., BOC(15,2.5). The BPSK modulation is a special case of the
BOC modulation with Ngpc = 1 [205].

The SinBOC subcarrier as a modulating waveform s(¢) (see Eq. (3.3)) is defined
as [33,240]:

c

N, t
ssinpoc(t) = sign <sin< B;Cn )) ,0<t<T, (3.14)

where sign(-) is the signum operator. Similarly, the CosBOC subcarrier is expressed

as

NpocTt
sc()sBoc(t):sign(cos< o )>,osr§n. (3.15)

]
Since ssinpoc(t) and scospoc(t) are sequences of —1 and +1, Egs. (3.15) and (3.14)
can be formed also as [205, 240]

Npoc—1 T,
ssinpoc(t) = pr, () ® Z ( > (3.16)

NBOC
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and

1 Npoc—1

scosoc(t) = pr()® Y, Y (—1)’+15<t—i —J ) (3.17)

=0 =0 Npoc  ~ 2Npoc

Further on, by combining Eq. (3.3) with Eqgs. (3.16)-(3.17), the transmitted BOC

modulated signal can be denoted as

( ) Sr Npoc—1
pTB @ Z Z Z \/ bdata X
n=-—oo0 j=
Cin 8(t —nTym — jT, — i ;C) for SinBOC
xpoc(t) = o Sp Nsoc—1 (3.18)
pTB @ Z Z Z Z V Eb +jbdata )X
n=—o j=
cj,,,S(t—nTS)m jT,. — iNBOC —]2N30C> for CosBOC

Since in the studies for this thesis the focus was on SinBOC(1,1) modulation, the
other BOC waveforms are not presented here in details. Waveforms for other variants
of BOC-modulation can be found in [133, 134, 205, 240].

Besides the ability to split the spectrum and decrease the interference within the sig-
nals operating at the same frequency band, another benefit of BOC modulation is the
sharp shape of the main correlation peak enabling tracking with high accuracy [34].
The main challenge introduced by the BOC-modulated signals is however to deal
with the ambiguities and side lobe peaks in the envelope of the ACF when com-
pared to BPSK-modulated signal. This is illustrated in Fig. 3.6, that shows an ideal
non-coherent squared ACF for BPSK, SinBOC(1,1) and CosBOC(15,2.5) modulated
signals. These side lobe peaks will affect both acquisition process and tracking pro-
cess. In signal acquisition, the time-bin step Afy;, and other relevant parameters have
to be chosen more carefully in order to be able to detect the signal. In tracking, the
side lobe peaks may result as false lock points, and thus, cause inaccuracies in the

delay estimation.

One way to handle narrower main peak and the side peaks in the acquisition func-
tion is to decrease the length of the search step in time domain, i.e., time-bin length
Atpin. In order to be able to detect the main peak correctly, Aty;,, has to be smal-
ler than 0.5 x the width of the main peak, preferably even smaller. Since the width

is dependent on the BOC modulation order, as can be seen also in Fig. 3.6, the
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search process can become very time consuming task for higher BOC modulation
orders. Therefore, other solutions have been searched for faster acquisition and to
deal with the side lobe peaks. Some proposed methods methods, typically called
as unambiguous acquisition methods, are the following: Betz and Fishman (B&F)
algorithm [27,32, 108], modified B&F algorithm [203], Martin and Heiries (M&H)
algorithm [136, 137, 222], modified M&H algorithm [203] and Unsuppressed Ad-
jacent Lobes (UAL) algorithm [203]. In all of these, the primary goal is to shape
the ACF into BPSK-like form by removing the side lobe peaks within 1 chip in-
terval from the maximum correlation peak [240]. In the original B&F method, the
spectral sidebands are handled individually via filtering. If single sideband (SSB)
processing is used, only one of the main lobes is processed, but due to possible in-
tegration losses [108], usually dual sideband (DSB) processing is chosen instead. In
DSB, both sidebands are kept, processed separately and added non-coherently. B&F
method is the most typical method in the current GNSS literature [240], and used also
in this thesis (see Chapter 6). In M&H algorithm, both main lobes and possible lobes
between them are selected and correlated with shifted version of the PRN reference
code. However, it is noticed that M&H method is unable to work correctly with odd
Npoc orders [49,50,203]. Both modified B&F and modified M&H algorithms temp to
decrease the correlation complexity and reduce the number of used filters [203]. The
same holds for UAL, where the filtering part is removed totally to decrease the com-
plexity, but at the cost of slightly reduced performance [203,240]. Fig. 3.7 shows the
effect of B&F and M&H methods for the ACF envelope, in the case of SinBOC(1,1)
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Fig. 3.7: Normalized ACF envelopes for SinBOC(1,1) modulation, with B&F and M&H un-
ambiguous methods.

modulation. It can be seen, that the side lobe peaks are cancelled and higher At;, can
be used, if some unambiguous method is used. In this thesis, unambiguous methods

are considered together with differential correlations in Chapter 6.

In tracking accuracy point of view, there is however one drawback in the unambigu-
ous methods, namely in the width of the main correlation peak. In the ambiguous
BPSK modulated signal, the sharp main peak would allow very precise delay estim-
ation in tracking function, but after unambiguous methods, the main peak is as wide
as with BPSK modulation. One solution for this is to remove the side lobe peaks,
but still keep the main correlation peak untouched. There are few variations of these
type of methods, such as Sub-Carrier Phase Cancellation (SCPC) method [136] and
Sidelobe Cancellation Method (SCM) [48,50,51].

3.3 Conclusions

In the first part of this chapter, a closer look to GNSS receiver fundamentals has
been taken, concentrating on baseband processing and especially on signal acquisi-
tion part. This part of the chapter has provided a compact overview of acquisition
function and its main tasks. In the second part, the possible error sources and chal-
lenges in GNSS have been listed and discussed, to form a survey that will be com-
pleted with solution proposals in Chapters 5 and 6.
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4. RSS-BASED POSITIONING APPROACHES - SYSTEM
OVERVIEW AND CHALLENGES

As described in Chapter 2, there are several possible positioning technologies based
on cellular and WLAN networks. One possibility is to utilize time delays to determ-
ine the distance between transmitter and receiver. Time delay -based techniques, such
as TOA, RTT or OTDOA, however require very exact clocks and also fine synchron-
ization in the network, in order to be able to estimate the propagation delays with
high precision. Since the current network generations do not fulfill these require-
ments, expensive investments would be needed to the network structures. Therefore,
other positioning techniques are preferred. Another challenge is the amount of dif-
ferent modulation and MA technologies, that may vary a lot in different networks
and also between the transmitters in the same network, that is the case especially
with WLAN transmitters. Besides time delays, the distance between transmitter and
receiver can be estimated using RSS or RSS Indicator (RSSI). Many communication
networks monitor the network status automatically using RSS measurements. The
measurements define the signal quality, that is important in order to be able to make,
e.g., handover decisions in cellular networks. Since the RSS measurements are eas-
ily available and due to their accessibility in Application Programming Interfaces
(API) of many networks, they offer a very attractive and economical alternative for

positioning.

Many different approaches for RSS-based localization have been presented in the lit-
erature, such as fingerprinting [16,23,157,174,193,228,230,238,265,275,303,313,
315,322,328, 334], triangulation approaches [241,291], weighted centroid -based
[40, 88,200, 304, 326] or clustering approaches [60, 63,76, 143, 175,232,269, 344].
While about half of the work in this thesis has been focusing on improving the
GNSS receiver design, the other half concentrates on improving RSS-based posi-
tioning algorithms. The focus has been on FP, PL and WeiC methods, that are the

three most widespread approaches, but also clustering is shortly introduced in this
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chapter. After the fundamentals of different RSS-based positioning approaches have

been described, this chapter continues with discussion concerning the challenges.

4.1 Fundamentals of RSS-based localization

4.1.1 Training phase and database structure

RSS-based positioning approaches have typically two stages: an initial off-line train-
ing or learning phase, where the data is collected and models and databases are cre-
ated, and an online estimation phase, where the actual position calculation is per-
formed [99, 225, 344]. An alternative is to use some method that does not require
training phase, e.g., SLAM method presented in [14, 24, 89], but in this thesis, we

concentrate on the two-phase positioning approaches.

Typically, the radiomap target area is divided into a grid, where each grid point con-
tains coordinates together with the actual data. The radiomap grid can be created
with either uniform grid resolution [167,238,292, 323] or non-uniform grid resolu-
tion [124,127,139]. The uniform grid resolution means that all grid points have the
same regular size, usually a square box a m x a m, with a = 1,5, 10, etc. If the grid is
non-uniform, the grid point locations can be adjusted, e.g., according to the building
floor plan or according to the distance from the grid points to the transmitter, as pro-
posed in [127]. Since the building floor plans and transmitter locations are however
often unavailable, non-uniform grids would be difficult to utilize efficiently. For this
reason together with the fact that uniform grids are many times simpler to implement
in the database and in some of the positioning algorithms as well, only uniform grids
are considered in this thesis. Grid size effect is discussed more in Section 4.2 and
Chapter 9.

In this thesis, x;, y;, z; are the 3D coordinates of the grid point i (i = 1,...,N¢p), Ny,
represents the total number of grid points (or fingerprints (FPs), as they are called for
now on in this thesis), and the measured RSS of the kth transmitter in the ith FP is
denoted by P, . Thus, the data in FP i can be formed as

{xi,vi,zi, {k; Py} }, k € 1:Nrx,i € 1: Ny, 4.1)

where Nry is the total number of transmitters (or APs in the WLAN case) in the
database. We remark that also the indexes (here, k) are needed together with the RSS
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values for each transmitter, since pure RSS value does not indicate the transmitter it
comes from. We also remark that the number of heard transmitters in each FP may

vary.

Parameter estimation

Radiomap database can be used in the localization phase as such, or it can be used to
estimate the required parameters for other positioning approaches than FP, such as PL
or WeiC (see Section 4.1.2). Typically, the needed parameters are transmitter-related.
Thus, it makes sense to organize the needed database also in transmitter-based order,
where all FPs where the particular transmitter & is heard and corresponding RSS are

included in a form of
{xj,kayj,kyzj,k,Pj,k},j =1 :pr(k), k €1:Nrx. 4.2)

Here, Ny, is the number of FPs, where the transmitter k is detected.

One of the most common PL model is the one-slope log-distance model [21,128,155,
241,335], where the observed RSS for transmitter k in fingerprint i is

Pi7k =Pr, — 101k logo d,"k +MNik- 4.3)

Here, ny stands for the PL exponent and Pr, is the apparent transmit power for the kth
transmitter, that are also the two unknown PL parameters together with the transmitter
location (x7x,,y7x,,2rx,)- Mik is @ noise factor with Gaussian distribution, standard
deviation (std) o and zero mean. 1; is assumed to include not only measurement
noise, but also shadowing or other random RSS fluctuations. Indeed, d; ; denotes the
range between the estimated location of kth transmitter (frx,,7x,,2rx,) and the ith
FP

dix = \/(Xi —Xrx )2+ (i —9rx,)* + (zi — 2rx,)? 4.4)

Naturally, one-slope log-distance model may not be as accurate as multi-slope mod-
els to form the signal propagation and RSS variations. Due to the walls and other
obstacles that affect the propagation path especially in indoor situations, the propaga-
tion parameters may change a lot even in relatively short distance. The parameters
may also be different for different directions from the transmitter, and for differ-

ent floors, due to floor losses. Multi-slope PL models have been proposed, e.g.,



54 4. RSS-based positioning approaches - system overview and challenges

in [55,291,355]. The advantage of one-slope log-distance model is however in the
low number of parameters to be estimated. Since the type of the propagation environ-
ment may vary and many parameters are not known beforehand, it is important that
the number of estimated parameters is kept as minimum. Therefore, the one-slope

log-distance model is considered also in this thesis.

In matrix form, the one-slope PL. model for kth transmitter can be presented as [291]
P, = H, O] +n. (4.5)

Above, n is a Gaussian distributed noise vector of size Ny,) X 1. @ includes the
unknown PL parameters for kth transmitter excluding the coordinates (i.e., @ =
[n« Pr]), Py contains RSSs for kth transmitter (i.e., Px = [Py x P2k ...Ppr(k%k]), T 18

transpose operator, and

1 —10logodix

Hy= . (4.6)

L —10l0g10dy,, &
Now, Eq. (4.6) is possible to be solved by linear regression [164] or by using classical
deconvolution approaches, for example Least Squares (LS) [291, 309]. Further on,
transmitter positions can be estimated, e.g., through brute-force approach [70], or by
weighted centroid based techniques, as presented in [31]. Another possibility is to
use deconvolution-based approach, where all unknown parameters (i.e., nrx, Pr.,
Xrx) are estimated jointly [291,309]. Here, xTx, represents the transmitter location

(xTx,,YTX,,2TX,) in Vector form.

4.1.2 Localization phase

Many different positioning methods can be employed in the localization phase. The

most known ones are over-viewed in what follows.

Conventional fingerprinting

Fingerprinting is based on the assumption that each position has a unique RSS signa-
ture, where certain transmitters are heard with certain RSS levels. This unique RSS
signature is used in the positioning, where the RSSs (or other location-dependent

parameter, equivalently) measured by the receiver is compared to the measurements
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Table 4.1: Typical metrics in fingerprinting.

Metric ‘ Formula ‘ References ‘
N 1
Euclidean L lo.—P.|?)? [23,265,303,328]
z=1
N,
Square of Euclidean Y |0, —P|? [72,216]
z=1

(Spearman distance)

N
Manhattan distance Z |0, —Pi|| [139,156,303]

Mabhalanobis distance \/(0 P,Z)TZ 1 0Z  2) [139,156,303]

Logarithmic Z log ( ) [124,139,303,358]
z=1
Gaussian likelihood [76,79,120]
Number of
commonly heard N, [216]
transmitters

in the training database. Among all the FPs in the training data, the best match
is searched and the coordinates of the best-match-fingerprint are returned as the
estimated location of the receiver. Therefore, fingerprinting is also called pattern
matching [303] or map matching technique. Fingerprinting based user positioning
can be either distance-based or probabilistic approach [139,276,303]. Probabilistic
fingerprinting is studied, e.g., in [16, 121, 124, 176, 230, 275, 303, 344]. Some typ-
ical metrics are presented in Table 4.1. Other possible metrics can be found, e.g.,
in [139,216,303], and a comprehensive analysis of various distance and similarity

measures is presented in [315].

In the equations in Table 4.1, observed RSS levels by the user is denoted with O,
(i.e., 0 =[010;...0y | dBm, the range for O, is typically between —100 dBm and
0 dBm), and N, is the number of commonly heard transmitters in the FP and in the
user measurement. Since the number of heard transmitters is changing from one FP
to another, one possible metric is to take into account in the comparison the number
of commonly heard transmitters. Also combinations of the metrics shown in Table

4.1 are possible, e.g., the number of commonly heard transmitters and Euclidean.
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The positioning approach, where the user location is estimated as the location of the
best-match-FP, is called Nearest Neighbor (NN) method [23, 275, 276]. It is also
possible to choose several FPs with smallest values of distance metric S; a method
called K Nearest Neighbor (KNN) [22,23,66, 121,122,158, 184,228,238, 258, 265,
313,315, 328], where the estimated receiver location [£us, $ams, Zus| is computed as

an average over the locations of the chosen K FPs

[$ms, 9ms, Zms] = < [ 2_: Xn s f: i ] ) 4.7)

Here, [, 7, Z] represents the group of K FPs, that are chosen to be the best matches
among all FPs according to the current metric. The assumption in KNN is that by
using averaging a position estimate is probably closer to the user’s true location than
any individual neighbor. In Weighted KNN (WKNN) method, averaging is similar to
KNN method, but also weighting factor is included [238].

Path-loss based positioning

Since the training stage in PL approaches includes the calculation of the transmitter
position and the PL parameter estimates 7izy and ISTTX, in the estimation phase the
receiver location is computed using only these obtained parameters and the observed
RSS. One way to do this is to use standard trilateration method [97,219,338], where
the receiver location is estimated based on the distance to the transmitter locations.
This distance ry can be solved from the one-slope path loss model of Eq. (4.3) for kth

transmitter as

re =10 10% (4.8)

Since the transmitter positions are also estimated and if the distance r can be obtained
for at least three transmitter, the receiver location can further be calculated using non-
linear LS methods. Another way to calculate the user position is to utilize the PL
models to re-create the original FP data by estimating the RSS for each transmitter
in every fingerprint. Further on, the user position can be estimated equivalently as in
conventional FP approach. The advantage of this method is that the FP database does
not have to be saved and transmitted, since it can be easily regenerated based on the

PL parameters.
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Weighted centroid based positioning

In the WeiC-based positioning, the user position is estimated as a weighted aver-
age over the locations of the heard transmitters (e.g., APs), with certain weighting
factors [40, 88, 200, 208, 304, 326]. Since the aim is to give more weight to those
transmitters which are closer to the unknown receiver location, the measured RSS by
the receiver can be here selected as an appropriate quantifier. Thus, all that is needed
in the estimation phase is the observed RSS Oy and the estimated transmitter posi-
tions (£7x,,7x,,2rx, ) for the kth transmitter, that are computed in the training phase.
The user position (xs, yums,zums) is marked as Xy in vector form, and is calculated

as
Ni

XMs = ), WiRTx, (4.9)
k=1

Here, Nj, is the number of heard transmitters and wy is the weighting factor, that is

calculated in this thesis as

107
10
W= —— (4.10)

Ny o

Y 10m

k=1
In other words, the weights are just the RSS measurements obtained by the receiver
in linear scale. Obviously, several variants for defining the weights can be found
in the literature, e.g., based on the inverse of the estimated distance between the
transmitter and the receiver [304]. Other possible weighting variants can be found
also in [190,221].

Clustering

Clustering is a modification of the conventional fingerprinting, where the main point
is to try to reduce the amount of data to be transferred between the database server
and the receiver and to minimize the databases to be saved in the receiver by choos-
ing only a subset of all available data in the positioning phase. Clustering can be per-
formed either based on the the coordinates (also called 3D clustering [76]), as studied
in [60,214,269,364], or based on the RSS vectors, as studied in [86, 142,280, 344].
3D clustering can be performed, e.g., by using well-known K-means with Euclidean
distances and a predetermined number of clusters [19, 76]. Hence, for some particu-

lar set of FP coordinates x and clusters ¢, K-means clustering algorithm attempts to
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divide M vectors {X1,...X;} into M, < M clusters ¢ by minimizing the within-cluster
sum of squares [76,269]:

M,
Y ¥ i —wall? (4.11)
d=1Xx€Ecy

Here, ¢, represents the dth cluster and u; is the mean of the points in the cluster
cq4. Further on, only the FPs that belong to the chosen clusters (e.g., the closest ones
according to the initial positioning estimate [76]) will be used in the positioning, e.g.,
using KNN. Several novel clustering methods have been proposed within the last few
years, and e.g., in [63, 142] the authors suggest a clustering based on AP similarity.

Clustering can also be used in floor detection, as proposed in [269].

4.2 Physical layer challenges in RSS-based cellular and
WLAN-positioning

While the most encountered challenges in GNSS include especially NLOS and mul-
tipath propagation, the challenges for WLAN and cellular positioning are somewhat
different, as it was shown in Table 2.6. Since the work in this thesis has focused on
the RSS-based localization, the challenges regarding the methods that are based on
RSS data, are of utmost interest. The main difference in WLAN and cellular RSS-
based approaches is in the number of heard transmitters. In WLAN, basically all
near-by APs are considered and the RSS is measured for every heard AP, resulting
even tens of APs in each scan. In cellular networks, the process is different, and RSS
measurements are not necessarily performed for all neighboring BSs. This happens,
e.g., if the RSS from the serving BS is very good.

Fig. 4.1 presents the challenges related to certain stages (positioning architecture
design, training phase, data transferring and estimation phase) in the RSS-based po-
sitioning, together with the corresponding solutions. The solutions for challenges in
stages B and C have to be often treated jointly, since for example the choice of grid
interval affects both the database forming and the data transferring. In this section,
we go through the main challenges in RSS-based localization system. The structure
of Fig. 4.1 is followed in the upcoming chapters, where the proposed solutions to the

challenges are presented in detail.
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4.2.1 Challenges related to the positioning architecture design

One possible challenge or error source in any positioning system using existing net-
works is the network infrastructure. Both in cellular and WLAN networks, the trans-
mitters are placed according to communication needs. Therefore, the existing trans-
mitter configuration may not be suitable for positioning purposes at all. This chal-
lenge is considered more in Chapter 8, where we present a criterion to estimate the

expected accuracy bound in WLAN networks with certain topology.

4.2.2 Challenges related to the training phase and data transfer

In two-stage positioning approaches, the first stage covers the measurement gath-
ering process, and possibly also forming the models, if path loss models or other
signal-to-distance mapping based methods are used. The data samples to the training
radiomap can be collected either beforehand as manual data collection, or continu-
ously using crowd-sourcing [60,94,143,160,226,238,337,360,361]. In manual data
collection, the main challenge is how to maintain the fresh database. One solution
is to repeat the collection process continuously, but this is usually too expensive and
time-consuming. Regardless of the chosen data collection method, one challenge in
data collection is that the measurement collection process can result as incomplete,
where more measurements are gathered from one part of the town or building, while
another part remains partly or totally uncovered [310]. The reason for these cov-
erage gaps in the radiomap can be that the people collecting the measurements are
not allowed to enter some parts of the building (e.g., personal offices etc.), or that
the measurements are collected only with a car, leaving pedestrian streets uncovered.

Naturally, coverage gaps affect the localization performance [310].

Another challenge in the data collection is caused by the uncontrolled measurement
collection, that can easily lead to errors in the database. One possible situation is that
the location for a collected data sample is incorrect for some reason (e.g., due to the
incorrect coordinates offered by a reference system, or due to human mistakes), res-
ulting as an outlier in the radiomap. In outdoor environments for cellular networks,
GNSS location can be utilized as a reference location in the data collection process,
but in indoor cases, some other methods are needed. Same holds for urban canyons,
where GNSS location estimates may be erroneous. It should be remarked that in two-

stage positioning approaches, the accuracy of the data sample locations in the training
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radiomap plays an important role, since the inaccuracies affect directly the position-
ing performance of the location approach to be used. Since the reference position is
not an easy task to achieve indoors, especially in crowd-sourced mode, the measure-
ment collection process often becomes very complex. One solution is to collect the
data and insert the reference locations for each measurement point manually, using
indoor maps installed in the collection device. This is however quite exhausting pro-
cess, and rarely possible for crowd-sourcing based solutions. Another possibility is
passive crowd-sourcing, where the collection is performed using inertial sensors. In
this case, some control is still needed to find the outliers and to observe the data qual-
ity, especially because the positioning error tends to cumulate in pure sensor-based
positioning [84,289].

Besides the possible error sources caused by data collection, many important ques-
tions are also related to the database structures and updates. Two examples are the
grid density and the resolution type (uniform or non-uniform). Naturally, the grid
density affects the number of FPs in the radiomap, but when the FP area increases,
also the number of saved transmitters for each FP increases. Indeed, when the grid
interval increases, the positioning accuracy may be decreased. The grid size impact
is discussed more in Chapter 9. In the radiomap grid, the location information for
each grid point (or FP) is typically defined as the center coordinates instead of the
real position of the collected data sample [232]. Thus, all gathered measurements in
the synthetic or server-defined grid point area belong to the same FP. Several meas-
urements can be collected in exactly the same location, as it is the case, e.g., with
crowd-sourcing. Hence, the questions related to database updates need to be taken
into account also in the collection phase, when a data sample is collected in a FP
that already has a saved sample. Also the questions related to FP data updates are

discussed more in Chapter 9.

When thinking of indoor positioning and of an average size office building with sev-
eral floors and plenty of offices, or a multifloor shopping mall with tens of small
stores and boutiques, it is clear that the transmitter infrastructure can be very dense.
A huge number of transmitters, e.g., APs, naturally means a lot of transmitters to
be detected in each measurement scan (i.e., in the training phase), leading into a
huge amount of data to be handled and transferred. Thus, one addressed challenge
in this thesis is how such huge amount of data can be reduced. In the two-stage po-

sitioning approaches, the pre-collected RSS radiomap database can be used in many
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to be transferred.

different ways. In fingerprinting, where the positioning estimate is calculated using
some pattern matching algorithm, the whole database is needed in the positioning
phase [174,322,334]. One way to reduce the amount of transmitted data is to use
some other positioning methods, that do not necessarily need the whole radiomap in
the positioning phase, but use it only to estimate certain parameters or models needed
in the position calculation, as was discussed in Section 4.1. These kind of methods
are the PL based positioning, that utilizes the radiomap information to estimate PL
models [241,291], or the WeiC method, that requires only transmitter locations in
the localization phase [40, 88,200]. This is also illustrated in Fig. 4.2, that shows
the block diagram for database use for FP, PL. and WeiC methods, when the trans-
mitter locations are unknown. We remark that if the transmitter locations are known,
WeiC method does not need the whole database at all. The three methods are further

compared and analyzed in Chapter 10.

Though the amount of data needed to be transferred is clearly less for some other
methods, it should be noticed, that in two-stage positioning approaches with train-
ing database, all methods need the radiomap in a way or another - either they utilize
directly the collected fingerprints or use the fingerprints to estimate models and/or
parameters to be used in the positioning phase. Thus, the memory requirements are
the same for every method, at least in the training phase. Data removal solutions
can help in this, by reducing the unnecessary data to be stored. Data removal solu-

tions naturally also decrease the amount of transmitted data, but serve more in the
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FP method, where the whole database needs to be transferred, than in PL or WeiC

methods.

Besides the memory and data transmission requirements, the dense transmitter net-
work may also cause other challenges. When a mobile hears tens of transmitters in
one RSS measurement, it is clear that some of the heard transmitters are more import-
ant than others from the positioning point of view. As it was noticed, e.g. in [342] and
in our results in [182], too many transmitters in the positioning calculation may even
decrease the positioning accuracy. While the primary goal for the WLAN network
is still in communications to guarantee the coverage and to efficiently serve plenty
of users at the same time, the system infrastructure may have several APs physically
in the same location or very close to each others. Indeed, since the APs are usually
separated only by their MAC-addresses, the special WLAN transmitters that support
multiple BSSIDs will also be seen as several transmitters in an exactly same location.
Since these kind of APs and also other closely located ones surely transfer at least
partly correlated data, not all of these are needed in the positioning calculation. The
unnecessary and redundant data can be seen as noise, that increases the complexity of
the localization process [100,177]. The challenge of large databases and unnecessary

data together with possible solutions is studied extensively in Chapter 9.

Another challenge in any RSS-based positioning method comes from the RSS fluc-
tuations, caused e.g. by shadowing. In many existing PL propagation models, shad-
owing is included in the models, but the fluctuations affect in every method. RSS
values may variate due to many reasons, such as device placement, user orientation
and body shape. The observed RSS is different, if the device is hold in hand, when
compared to the case where the device is in a pocket or backpack, or stands still in
a table. The RSS fluctuations may also be caused by the changes in the environ-
ment, especially indoors, e.g. when people are passing by, or doors are opened and
closed [64]. The LOS is easily disturbed, when the user turns and blocks the LOS
connection with his/her body. In general, signal shadowing is very difficult to model
accurately indoors not only due to the changes in the environment, but also because
of multipaths, reflections and scattering. The situation is better outdoors, especially
in rural areas with more LOS situations, but dense city centres with high buildings

are almost as challenging than indoor cases.

Due to the RSS variations, the measurement collection process in the training phase

has to be carefully planned. If the data samples are collected in the absence of other
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people in the building, the RSS values may not be realistic. For the same reason, sev-
eral measurement samples should be collected for every fingerprint. Since basically
everything affects the RSS, one sample in each location is not enough. Thus, des-
pite of the possible uncertainties, continuous crowd-sourcing is a very good option
to obtain realistic data measurements. Channel effects are studied in more detail in
Chapter 9.

4.2.3 Challenges related to the estimation phase

One of the main challenges in the estimation phase is that the device used in the
data gathering may be different than the device used in the positioning phase. The
main parameters in the radiomap FPs are RSS/RSSI values and transmitter (e.g.,
AP or BS) detection. Since the chipsets on the devices are different, the value of
observed RSS in the same location may vary between different devices, resulting as
RSS biases. These problems lead to the use of complex calibration or mitigation
methods [87,92,124,216,254,325], in order to compensate the effect of more or less
constant RSS variations to the positioning accuracy. The offset can be also partial,
meaning that one device is used for the data collection in one part of the building, but
some other device is used for the rest of the building. Fig. 4.3 illustrates this effect
showing the relation between RSS values in dB and RSSI for three different chipsets
(Atheros, Symbol, Cisco) [26]. As it can be seen in this figure, both the RSS scale
and the steps differ between the chipset manufacturers remarkably. Different offsets

due to lack of calibration are studied extensively by us in [183] and in Chapter 10.

Another challenge in the estimation phase is the choice of an appropriate positioning
algorithm and the questions of how to detect the floor in indoor positioning. Different
methods require different amount of data to be transferred to the receiver, but on the
other hand, the accuracy is still the key question, and low-complexity methods with
decreased data transferring needs do not necessarily offer as good performance as
the more complex algorithms. The challenges and solutions related to positioning
algorithms and floor detectors are discussed more in Chapter 10.
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Fig. 4.3: An illustrative example for the relation between RSS values (in dB) and RSSI for
three different chipsets.

4.3 Conclusions

In this chapter, the fundamentals of two-stage RSS-based localization approaches
have been first described, concentrating on the most widespread methods (finger-
printing, path loss and weighted centroid). Secondly, this chapter has included an
extensive overview of the typical physical layer challenges in RSS-based position-
ing. The discussion related to challenges will be completed with solution proposals
in Chapters 8, 9 and 10.
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S. PROPOSED SOLUTIONS FOR GNSS CHANNEL MODELING

As stated in Chapter 3, one of the biggest challenges for GNSS is indoors. The

solutions to address this challenge can be divided into

e Indoor propagation modeling for GNSS signals. This challenge is taken into
account in this chapter by proposing indoor fading channel models for GPS-
like signals, based on indoor measurements. The results are also published by
us in [152].

e Improved integration schemes at the receiver side, such as HS-GNSS. This

challenge is studied more in Chapter 6.

A related challenge to the GNSS channel effects is how to build suitable channel
simulators for wireless GNSS channel to be used further to develop acquisition and
tracking algorithms in different environments. A simple and efficient simulator for
Nakagami-m distributed fading channels is presented in this chapter, and the results
are also published by us in [250].

5.1 Indoor fading distributions for GPS signals

Indoor channel models are one important part of learning the GNSS signal propaga-
tion in indoor environment, and very useful for positioning algorithms developed for
indoor GNSS and pseudolite GNSS. Pseudolites can be used as independent indoor
positioning systems or alternatively as augmentation to GNSS [262,324]. The more
realistic indoor fading channels can improve tracking performance by helping to en-
hance interference mitigation and multipath mitigation methods, and by increasing
integration times for HS-GNSS. In this section, the indoor channel propagation is

analyzed based on data measurements. The purpose is to give further insight on the
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Fig. 5.1: Illustration of the measurement environment. Blue cross represents the transmitter

location, and red circle the receivers location.

GNSS-like signal propagation indoors by studying the indoor signal fading charac-
teristics. The fading distributions of the measured channel peaks are also compared

to several theoretical distributions.

5.1.1 Measurements set-up description

The measurement campaign was carried in the main corridor, lower floor of one of
the buildings of Tampere University of Technology, as it is shown in Fig. 5.1. In
the signal reception, one transmitter of GPS-like signals (with different codes than
the actual GPS) and two synchronized GPS receivers were used: one receiver was a
reference receiver, that was used to capture the data from the transmitter via cable,
and the another receiver was used to capture the wireless signal and obtain the channel
characteristics. The transmit antenna is placed in a fixed position as shown in Fig. 5.2.
The measurement scenarios were divided into two different sets, where the receiver

was moving towards the transmitter (Set 1) or away from the transmitter (Set 2).

The block diagram of the measurement set-up is shown in Fig. 5.3, where CIR refers
to Channel Impulse Response. Initial estimates for Doppler frequency and delay were
obtained based on the strong cable signal (i.e., the reference signal) shown in Fig. 5.3,
by scanning the whole delay-frequency space. Indeed, the frequency and code drifts
and navigation data were estimated based on the reference signal and then removed
from the wireless signal [186—188]. Further on, the wireless signal was correlated

with the replica spreading code, by taking into account the estimates for the delay
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Fig. 5.2: Transmitter position in the measurement set-ups.
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Fig. 5.3: Block diagram of the measurement set-up.

and frequency and including the possible drifts. In the indoor environment, N¢ has to
be high enough, i.e., more than 20 ms, in order to decrease the noise level. Therefore,

navigation data removal had to be done before the coherent integration [186—188].

5.1.2 Data analysis - Fading distributions

The fading distributions have been analyzed for the averaged amplitudes after N¢ =
200 ms integration. This integration length has been chosen in here as a relevant
case for HS-GNSS, where large integration periods are used. The LOS delay was
computed in two ways: either as the delay corresponding to the peak of the refer-
ence signal /fLOS,re ¢ (using the fact that the two receivers are synchronized), or as
the delay of the global peak in the wireless signal ’fpeakﬂir. The measurement data
Probability Density Function (PDF) and Cumulative Distribution Function (CDF)
were compared to several theoretical distributions, such as Rayleigh [164,293,329],
Rice [171,234,329], Nakagami-m [186,234,293,345], Log Normal [74, 117], and
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Loo [210, 329] distributions, respectively. These distributions are the most com-
mon distributions reported in literature especially in satellite communications (see,
e.g., [74,293,329]).

In the case of at least one strong LOS signal combined with possibly several weaker
NLOS signals, the fading channel distribution is typically assumed to be Rician [293].
In Rayleigh fading, the fading fluctuations are deeper, i.e., Rayleigh distributed fad-
ing is more severe than Rician fading [243]. Thus, Rayleigh distribution is likely
to fit quite well the measured data, when only NLOS propagation paths are avail-
able [185,266,293]. With Nakagami-m distribution, that is also called m-distribution,
a wider class of fading channel conditions can be modeled than with Rayleigh or
Rician distributions only [234]. In [186, 187] it was also shown that Nakagami-
m provides the best fit for satellite-to-indoor channel propagation. The PDF of a
Nakagami-m fading amplitude is [29, 187,234,293,345]:

m 2
SNaka(a) = 2 (m) a®" Lexp <— ma >, (5.1)

F(a) MNaka MNaka

where a stands for the signal amplitude, I'(-) denotes the gamma function and uyak,
is the average path power ( uyaa = E(a?) ). m represents the Nakagami fading para-
meter [293] and is equal to the inverse of the normalized variance of the squared
envelope [187,266]: )
E(a?)

m= (var(az))' (5.2)
Above, var(a?) means the variance of a>. The value for m-parameter can range
between 1/2 —co. The channel converges to a static channel, when the m — co.
As special cases, Nakagami-m distribution covers Rayleigh distribution when m =
1, and one-sided Gaussian when m = 1/2 [234,266]. Besides Nakagami-m, other
distributions considered in this section are Rician [171,234,329], Rayleigh [164,293],
log-normal power distribution [117,329] and Loo’s distribution [210].

The best theoretical distribution for the averaged amplitude distributions (N¢ = 200
ms) was searched by minimizing the Mean Square Error (MSE) between the CDF of
the measurement data and the CDF of the theoretical distribution. MSE as a similarity
measure is used, e.g., in [18,286]. Other possibilities to measure the goodness of fit
are, e.g., Kullback-Leibler (KL) divergence [18, 162, 286] or maximum likelihood

estimation [296].
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Table 5.1: Best amplitude distribution fit.

’ ;ELOS,ref I %peak,air ‘
Set 1 Set 2 Set 1 Set 2
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Fig. 5.4: PDFs for theoretical distributions and wireless signal instantaneous amplitude
measurements at ;ELOS,re 7 (Set 2, Nc = 1 ms).

According to the chosen minimization criterion, the results are shown in Table 5.1
as the best fit distribution. The best choice seems clearly to be Nakagami-m dis-
tribution with relatively low m, i.e., m = 0.6 —0.7. This finding is equivalent with
earlier studies in [186—188], where Nakagami-m was noticed to be the best fit both in
outdoor-to-outdoor and outdoor-to-indoor environments, with smaller m-parameter
values in indoor case. The results were also checked visually, and an example of the

PDFs of measurements and theoretical distributions is shown in Fig. 5.4.

5.1.3 Data analysis - Average number of paths and path spacings

The number of channel paths was examined using the wireless CIR estimates. In
order to decrease the noise level, Nc = 200 ms was used. The normalized CIR amp-
litudes were studied and all detected peaks higher than a threshold (here, the threshold

was chosen to be 2.5 x E(CIR), according to [299]) were considered as true channel
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Table 5.2: Estimated number of channel paths Npq), and path spacings Apq,. Both mean and

standard deviation (std) included. Wireless channel.

| \ | Set1 [ Set2 |
mean 1.14 | 1.07

Npan | std 0.41 | 0.43
max 4 6

Apan | mean [chips] | 0.12 | 0.03
std [chips] 0.36 | 0.19

paths. A window of 200 correlators (i.e., about 6.25 chips around the global peak)
was used with oversampling factor 16.367/1.023 ~ 16 samples per chip. Table 5.2
shows the mean, maximum and std of the number of detected peaks and the average
and std of the path spacings (in chips) for both scenarios. Clearly, if more than one
path is present, they are located very close to the first one.

5.2 An improved simulation model for Nakagami-m fading channels

Since the Nakagami-m distribution has been noticed to provide the best fit for the
fading amplitudes of realistic satellite-to-outdoor, satellite-to-indoor and indoor-to-
indoor channels [152,187,188,250], it is very important to find a simple and feasible
simulation model for Nakagami-m distribution for studying and developing position-
ing algorithms. However, the existing simulation models for Nakagami-m distributed
fading channels include only the values of m between 0.5 — 10 [29, 343], and the
modelling for 0.5 < m < 0.65 is noticed to be computationally quite expensive [343].
In [29], Beaulieu &al. suggested one of the simplest model, based on a simplified
approximation of the inverse of the CDF of the Nakagami distribution, for simulating
Nakagami-m fading channels. Although any arbitrary value of m between the val-
ues 0.65 and 10 were supposed to be covered in the Beaulieu &al. model in [29],
only 12 values in this interval were presented, and the procedure to obtain any other
arbitrary value was not explicit or straightforward. Therefore, in this section, we
introduce an efficient low-complexity method to generate a Nakagami-m distributed
channel coefficients directly from Rayleigh-distributed variables, based on an accur-
ate approximation function. Our method extends the Beaulieu &al. approach [29] to

a wider range (i.e, 0.5 — 16) of Nakagami m-parameters. Thus, our contribution in
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this section is to present a fast simulation-based approach to model realistic channels

using Nakagami-m fading model.

5.2.1 Beaulieu &al. method

In [29], Beaulieu &al. showed that with certain transforms, Rayleigh distributed ran-
dom variables can be used to generate Nakagami-m distributed fading channel para-
meters. The principle of this method is illustrated in Fig. 5.5, i.e., the blocks except
the additional interpolation stage (marked with dashed block and lines). Rayleigh
distributed amplitudes from the channel model (here, we used the channel model of
Schumacher &al. [259,283,284]) are transformed to Nakagami-m distributed by us-
ing Beaulieu’s functions. The phases are assumed to remain uniformly distributed.
This assumption is in [29] noticed to be reasonable for most of the wireless channels.

Beaulieu &al. method is based on the accurate approximation for the inverse of
Nakagami-m CDF. The inverse CDF function Fg(-) for Nakagami-m fading can be
defined as [29]

x(u) zmmt2m71 (_ﬁ)
Fr(x) = —_— e /dt. 53
where R represents a random variable and
_Rr2
U=1—ew (5.4)

Above, 6> means the second moment of random variable R (i.e., 6> = E[R?]). Since
the inverse FR_1 (u) can not be directly generated, Beaulieu &al. proposed the follow-
ing approximation Fy, ' (1) ~ G(M(u)), where

arM(u) +aph(u)? + az\(u)?

G(Mu)) = Mu) + 1+ b1 M(u) + byh(u)?

(5.5)

Here, A(u) is defined as
1 n
Au) = ( n— ) (5.6)

and the coefficients a;, a», as, b1, and b, are used to minimize the approximation

error Z Fy ' (1) — G(Mu))
uel0,1)
example values for them are introduced in Table I of [29]. For other values of m than

. The coefficients are dependent on m and some

those shown in [29], the coefficients can be calculated by minimizing the mentioned

approximation error, but at the expense of complexity.
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Fig. 5.5: Implementing Beaulieu’s transforms for Schumacher’s channel model. Interpola-

tion stage (dashed block) is included only in the proposed approach.

5.2.2 Proposed approach

Since Beaulieu &al. presented in [29] the coefficients to minimize the approximation
error only for finite values of m between 0.65 and 10, our purpose is to extend the
method for a wider range of m-values with lower computational load. The fading
channel model used here is based on the Multiple Input Multiple Output (MIMO)
radio channel model of Schumacher &al. [259, 283, 284], where the multipath fad-
ing channel environment is created using specific channel coefficients. These Rician
or Rayleigh-distributed coefficients are generated in frequency domain in order to
achieve speed-dependent fading spectrum. The MIMO model of [259, 283,284] is
simplified to Single Input Single Output (SISO) channel model, since MIMO model-

ling is not necessary in our approach.

The block diagram for the Nakagami-m channel model is shown in Fig. 5.5, including
also the additional interpolation stage (dashed block and lines). The coefficients, that
were shown by Beaulieu &al. in [29], are kept as a starting point. The rest of the
coefficients are selected according to two conditions: the minimum error between
the simulated and theoretical Nakagami-m distributed PDFs (J;), and the minimum
error between the true m and the target m of the channel (J;):

Ji=Y | psin(R,0) = pn(R) [, (5.7)

R=0
where pgim (R, ) is the simulated PDF for the coefficients @, p,;(R) is the theoretical
PDF and o = [a; a a3 b; by| represent the currently tested values for the coefficients.

Jo = | Mgim () — myp, |7, (5.8)

where my, is the target m (i.e., m of the theoretical PDF) and my;, () is the true m
of the simulated channel. The best coefficients 0. were chosen to be the coefficients
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Fig. 5.6: Examples of known and simulated approximation coefficients for: (a) coefficient

ai, (b) coefficient ay, and (c) coefficient by. Similar figures for az and by are shown

in [250].

m Ja | e | o | b | b
0.55 | —0.1109 | —8.7589 | —29.3969 | 123.5136 | 35.4096
0.60 | —0.0969 | —6.6612 | —22.6394 | 93.3546 | 29.3539
0.90 | —0.0224 | —0.1029 | —0.3155 3.2833 0.8055
2.33 | 0.2444 —0.0834 0.2744 —0.2899 | 0.1006
3.5 | 0.4159 —0.3188 0.2634 —0.8254 | 0.2208
5.54 | 0.6637 —0.7375 0.3028 —1.2587 | 0.4186
9.5 1.0631 —1.5159 0.5651 —1.5753 | 0.6273
10.5 | 1.1464 —1.7039 0.6449 —1.6344 | 0.6722
11.0 | 1.1839 —1.7983 0.6883 —1.6642 | 0.6955
13.0 | 1.3247 —2.1692 0.8949 —1.7408 | 0.7608
15.0 | 1.4550 —2.5349 1.1083 —1.8082 | 0.8194
15.5 | 1.4874 —2.6264 1.1615 —1.8264 | 0.8353
16.0 | 1.5197 —2.7178 1.2147 —1.8446 | 0.8512

Table 5.3: Some examples of the generated values for all approximation coefficients.

minimizing the criterion Jj + J;:

o = argmin (J, +J2).

(5.9)

The generation of the approximation coefficients included interpolation for 0.65 <

m < 10 (i.e., for those m-values which were not defined in [29]), and extrapolation
for both 0.50 < m < 0.65 and for m > 10. Some illustrative values of the generated

coefficient values for Beaulieu’s transforms are presented in Fig. 5.6 and in Table 5.3.

More values are shown by us in Table 1 of [250]. Not all the generated coefficient

values are introduced here nor in [250], but the missing ones between 0.5 < m <

16 can be approximated using linear interpolation for the known coefficient values
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shown in [29,250] and in Table 5.3.

Fig. 5.7 shows the PDFs of simulated and theoretical Nakagami-m distributed fading
amplitudes. PDFs for all presented values of m match well to theoretical PDF; there
is typically a slight mismatch, which also varies by the simulation round due to a

limited number of generated random variables.

5.3 Conclusions

This chapter has concentrated on the challenge of GNSS signals indoors via chan-
nel modeling. Based on measured GPS-like data indoors, the indoor fading charac-
teristics have been analyzed for the purpose of deriving appropriate indoor channel
models for GNSS signals. In the analysis, it has been noticed that the amplitude
variations indoors match the Nakagami-m distribution, typically with m = 0.6 —0.7.
It has also been observed that typical indoor channels have only few signal paths,
and they are located at short distances (i.e., within less than one chip). Thus, an
appropriate indoor channel model can consist of one or two closely-located paths,
with the LOS signal obeying Nakagami-m distribution for amplitudes and uniform
distribution for phases. Based on these indoor channel studies, an efficient and low-
complexity simulation model has been introduced for Nakagami-m distributed fading
channels, by extending the method proposed by Beaulieu &al. to a wider range of
m-values. The approximation coefficients have been generated for m-parameter with
arange 0.5 — 16, and the PDFs for theoretical and simulated Nakagami-m channels

have been compared.
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The main contributions of this chapter can be summarized as follows:

e Indoor fading channel models are analyzed for GPS-like signals, based on real
indoor measurements. Obtained fading channel characteristics are compared
to typical fading distributions to find suitable channel model for GNSS indoor

propagation.

e Based on the studied indoor channel models, a simple and efficient Nakagami-
m fading channel simulator has been built with extended range of m-values for
wireless GNSS signals. This channel model can be used further to develop

acquisition algorithms in various fading environments.

Based on the work presented in this chapter, there have been also two publications:

1. Elina Pajala, Tero Isotalo, Abdelmonaem Lakhzouri and Elena Simona Lo-
han, ”An improved simulation model for Nakagami-m fading channels for
satellite positioning applications”, in Proc. of 3rd Workshop on Positioning
Navigation and Communication (WPNC), Hannover, Germany, Mar 2006, pp.
81-89.

2. Najmul Islam, Elena Simona Lohan, Abdelmonaem Lakhzouri, Elina Pajala,
Heikki Laitinen and Markku Renfors, “Indoor fading distributions for GPS-
based pseudolite signals”, in Proc. of International Workshop on Satellite and
Space Communications (IWSS), Salzburg, Austria, Sep 2007.
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6. PROPOSED SOLUTIONS FOR HS-GNSS

One possible solution for the challenges in indoor positioning is the HS-GNSS tech-
nology, that is able to obtain a position fix with weaker signals using some advanced
detection algorithms. However, besides the ability to work in a harsh indoor envir-
onment, another important challenge in GNSS low-complexity and fast acquisition,
which works under multipath propagation and with ambiguous modulation types,

such as BOC, which are specific to modern GNSS. For this, the solutions are:

e Good choice of decision variables and decision thresholds. In this chapter,
three CFAR detectors are studied. The main goal is to build a simple and
robust decision variable which eases the design process, in the sense that it
allows to use a decision threshold which is independent of channel conditions.

Our results are presented also in [252].

e Good choice of integration schemes. The solutions are the same as for dealing
better with indoor GNSS. We show in this chapter and in [249] that the DC
schemes also work with unambiguous acquisition techniques (i.e., Betz and
Fishman (B&F)-method [27,32, 108]).

In this chapter, we focus only on acquisition stage.

6.1 CFAR detectors

As was mentioned in Chapter 3, P; and Py, are highly dependent on the chosen
threshold y. Therefore, the choice of a proper threshold value is very important for
the whole acquisition process. The chosen threshold can be either fixed to a constant
value, or it can be adapted, e.g., according to estimated CNR. Since the channel

conditions are typically chancing, a constant decision threshold may not be the best
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Table 6.1: Different decision statistics.

’ X ‘ Equation ‘ Name References
Xrer maxé\l”i"s Z; | The classical decision statistic | [28,132,150,204,267]
max. 2in 7,
X ﬁ The peak-to-mesh ratio Proposed by us in [252]
maXNbins 7
X2 % The ratio-of-peaks [154,252,253]
i)
Npins 2
i1 Zi . . .
X3 % The modified ratio-of-peaks | Proposed by us in [252]
m2 m3

solution. It is also possible to find a threshold, that is independent on CNR and

channel fading statistics, if the decision variable X is built in a suitable manner.

The CFAR detectors, that are the most used in practice [150, 151], were presented
earlier in Chapter 3. In this section, three decision statistics for CFAR detectors
and hybrid-search acquisition of a BOC modulated CDMA signal are proposed and
analyzed. The comparison is done in terms of P; and the dependence of the threshold
on the channel conditions. We also show how to choose the threshold for each of
these three situations, and which of the proposed ways to build the decision variable
is the most robust to noise and channel conditions. As a benchmark, the classical
decision statistic, where the decision variable is chosen as the maximum over the
squared absolute value of the averaged correlation function, is kept in the analysis.

The results are also published by us in [252].

Proposed decision variables

Different ways to build the test statistic X are shown in Table 6.1. X,/ is the clas-
sical one [28, 132, 150,204, 267], but the drawback is that it requires that 7y is ad-
apted according to the current CNR level, as was shown in [28] and as we also no-
ticed in [252]. Therefore, other choices, that would be independent on CNR, were
searched. These proposed decision variables are denoted by X; and the corresponding
threshold by v;, j = 1,2,3. A decision statistic similar with X (i.e., ratio-of-peaks)
have previously been proposed also in [253]. However, the method in [253] was de-
scribed only for single-path channels and the choice of the second largest peak was
not detailed.
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In the equations in Table 6.1, Z; represents the correlation output in the search win-
dow i, E(-) is the expectation operator (that can be approximated, e.g., via the mean
over all Z; values, i = 1, ..., Npins), Zp, is the second local maximum and Z,,, is the
third local maximum in the time-frequency mesh. In the case of single-path channel,
looking for the next local maximum is straightforward. However, since the occur-
rence of multipaths is very typical, this challenge needs to be taken into account for
both X, and X3 decision variables. E.g., for X5, two first maxima are found from
the correlation output and then compared. If the second local maximum was chosen
as the next maximum of the residual correlation output without any limitations, it
would very probably correspond to another channel path with relative high value.
Naturally, comparing two multipath correlation peaks would lead to smaller value of
the decision threshold, and hence, to lower detection probability P;. Therefore, the
multipaths have to be estimated and ignored when looking for the next maximum.
Thus, in practice, e.g., Z,,, = the second local maximum out of Z; — K variables, after
removing from the time-frequency mesh the K values corresponding to the chan-
nel paths and to their closest neighbors (K is chosen in such a manner to account
for the maximum delay spread of the channel and for the estimated maximum Dop-
pler spread). More details of how to choose the second and third local maximum is
presented by us in [248,252].

Simulation results

The robustness of the detection threshold in the presence of various channel profiles
and various steps of the time bins (Afp;,) in the search stage was analyzed by us
in [252]. For a fair comparison of between different decision variables, the false alarm
probability Pr, was fixed from the beginning and the target corresponding threshold
Y; was then computed in order to meet this accurate Ps,. The best threshold will
be chosen in such a way to exhibit a good P; (when false alarm is fixed) and to be
independent on CNR, the channel type and the time-bin step.

The coherent integration length N¢ and the non-coherent integration length Nyc were
fixed to some desired values in order to get realistic results for each channel cases.
The simulations were done for two different Nakagami-m distributed fading chan-
nel profiles with multipath propagation. The first fading channel profile (denoted

as “channel 1” for now on) is a 4-path fading channel with m = 2.5, N¢ = 20 ms
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Nakagami-m fading channels. Pfa =0.01.
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Fig. 6.1: P, for different decision variables X;, j = 1,2,3, and X,.y, for various CNR. Chan-
nel 1 (solid lines) with v = 45 km/h and channel 2 (dashed lines) with v =3 km/h.

and Nyc = 4 blocks. The second fading channel profile (denoted as channel 2 for
now on) is a 2-path fading channel with m = 0.75, N¢ = 40 ms and Ny¢c = 2 blocks.
The sum of the channel path powers was normalized to 1. The time-bin step was
Aty = 0.125 chips. The test statistic was build over time-frequency windows of size
20 chips x 1 kHz (i.e., hybrid search). The used modulation was SinBOC(1,1).

The impact of the decision variable on the Py, when Py, is fixed to 0.01, is illustrated
in Fig. 6.1. Both fading channel profiles are included, channel 1 with mobile speed
v =45 km/h and channel 2 with v = 3 km/h. As it can be noticed, the differences
between the three studied decision variables X;, X,, and X3 are very small. In the
“channel 17 case, where the mobile speed is higher, P, for the decision variable X, s

is slightly lower than P, for the other three decision variables.

Fig. 6.2 shows the impact of the decision variable on P; for two different mobile
speeds with channel 2 profile. The distinction between the Pys for the three decision
variables Xi, X, and X3 remain about at the same level but the P; for X, is clearly
affected by the mobile speed. With mobile speed 3 km/h the decision variable X, s
may give even 0.15 lower P, than the other decision variables. The impact of different
CNR values on v; is shown in Fig. 6.3 ((a) for X;, X, and X3 and in (b) for X,.r).
According to the results, the detection threshold for the proposed three test statistics
is totally independent on CNR. On the other hand, as expected [28], the detection
threshold for X, ¢ is highly affected by CNR, and therefore it should be set adaptively.
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Channel 2, v = 3 km/h, CNR = 25 dB-Hz

Channel 2, v = 120 km/h, CNR = 27 dB-Hz
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Fig. 6.2: P; versus Py, for different decision variables X;, j = 1,2,3, and Xy, for different
mobile speeds: (a) 3 km/h and (b) 120 km/h. Channel 2 scenario.
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Fig. 6.3: Impact of the CNR on Y; values with different constant Py,: (a) decision variables
X1, X3 and X3 and (b) Xyey. Channel 1 with v =45 km/h.

This follows that errors in the CNR estimation may affect the detection probability

when the classical detection variable is used.

Furthermore, the impact of channel conditions on the detection threshold y; was ex-
amined for all three proposed test statistics. Fig. 6.4 shows the impact of the men-
tioned two channel profiles, 4-path and 2-path, on the y; value with different constant
Py, values. As it can be seen, y; values for the decision variable X are clearly de-
pendent on the channel profile and the coherent and non-coherent integration lengths.
The detection thresholds ¥, and y; remain almost at a constant level (i.e., they are in-

dependent of the channel profile and the integration lengths).
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Both Nakagami-m fading channels. CNR = 28 dB-Hz.
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Fig. 6.4: Detection threshold y; versus Py, for both channel profiles: channel 1 with v =45
km/h (solid lines) and channel 2 with v = 3 km/h (dashed lines).

It is obvious that, if y; is independent of CNR, the channel type and the time-bin
step, the threshold value is easier to choose, and therefore the acquisition design can
be done in a simple way. Therefore, the simplest test statistic is that one for which
the detection threshold is the least dependent on the channel and receiver parameters,
such as CNR, integration times, channel type and time-bin step. When examining

our results both in here and in [252], it can been concluded that

e P, for X, is affected by the mobile speed. With low mobile speeds, the de-
cision variable X,.r may give even 0.15 lower P; than the other decision vari-

ables.

e The threshold vy for X, needs to be set adaptively according to current CNR

in order to prevent decrease in P,.

e The thresholds vy; for all three studied decision variables X, X, and X3 are
independent on CNR.

e When studying the effect of channel profile and N¢ and Nyc lengths to the y; of
decision variables X;, X, and X3, X, was noticed to be the most robust choice,

according to the above conditions.

Thus, by choosing the decision variable X, and by defining the threshold y, according
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to the values given in Table 1 in [252], the target Pf, under any channel conditions

can be selected.

6.2 Enhanced ditterential correlation

Instead of the non-coherent integration, other types of post-correlation combination
are also possible. These techniques include differential non-coherent correlation
(DN) [273], enhanced differential non-coherent correlation (DN2) proposed by us
in [249], Teager-Kaiser (TK) based scheme [126,206] and different generalized post-
detection integration (GPDI) schemes, such as full GPDI [75,260], Truncated GPDI
and Fractional GPDI [207]. The non-coherent combination may cause some squar-
ing loss [71], but due to its simplicity, it is suitable for conventional GNSS receivers.
GPDI schemes are planned for harsh environments (such as indoors) to increase the
sensitivity, but at the cost of complexity. Differential correlation methods instead
can be seen as a trade-off between sensitivity and complexity [282,350], to be used
in HS-GNSS receivers. A comprehensive analysis of the mentioned post-detection

integration techniques can be also found in [207].

Differential correlation methods have previously been proposed for CDMA-based
wireless communication systems [149,273,350] and more recently in satellite nav-
igation context [136, 144, 249, 282]. In [282], it was noticed that differential cor-
relation methods have better resistance to noise and other temporally uncorrelated
interference sources than the traditional non-coherent integration methods, with me-
dium and low coherence times of the fading channel and in the absence of frequency
errors. Thus, differential correlation methods can help to exploit the temporal correl-
ation of fading signals and, consequently, to improve the acquisition process and the
receiver sensitivity in challenging environments. The big advantage of the differen-
tial methods is that they do not, nonetheless, increase much the computational load

of the acquisition stage, when compared to the conventional methods.

In this section, we present an enhanced differential correlation technique, which in-
creases the signal detection probability in multipath fading channels. Since this en-
hanced method exploits the signal correlation in longer time intervals, the interfer-
ence effects (coming from noise and other temporally uncorrelated sources) can be
diminished. Indeed, since the analysis in [282] by Schmid et al. is limited to GPS

signals with BPSK modulation only, it is important to make the analysis also for BOC
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modulated signals currently used in modernized GPS, Galileo and Beidou systems,
and soon to be used in Glonass CDMA signals. Therefore, we study the effect of

differential correlations with and without unambiguous acquisition methods.

6.2.1 Enhanced differential non-coherent correlation method
Differential correlation with ambiguous acquisition

For the conventional non-coherent integration (NC), the correlation output Z,goc nc
is given as in Eq. (3.7). In traditional differentially non-coherent correlation, denoted
as DN for now on, the correlation is performed between two consecutive outputs
of the coherent integration I;. These correlation variables are then integrated (i.e.,
averaged) in order to obtain differential acquisition variable. Thus, the differential
correlation output Z for ambiguous BOC (aBOC) method can be given as

2

LY
Z4BOC.DN = | L, (6.1
Npc —1 n=1
where I,, n =1,...,Npc, are the outputs of the coherent integration and Np¢ stands

for the differential integration length. For now on, it is assumed that Npc = Nyc, in
order to have a fair comparison between differential and conventional non-coherent
approaches. Since differential coherent integration (where only real parts of the dif-
ferential correlation outputs are integrated) has been noticed to be more sensitive to
residual Doppler errors [144], only non-coherent differential methods are considered

here.

Sometimes temporal correlations in a desired signal may occur in relatively long time
intervals. If the coherent integration time, prior to taking the differential correlation,
is small (i.e., clearly smaller than (At).,;), long time correlations can be exploited as

follows [273]:
2

7 = , (6.2)

P
E < ) 1;;1,,+,~)
i=1

in which E(+) is the expectation operator (i.e., an average over n) and P € 1...Nyc.

This improves suppression of temporally uncorrelated interference. Here, under con-

siderations is an enhanced DN method as a particular case of Eq. (6.2), denoted by
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DN,. This method has been found empirically, using simulations for Galileo signals.

The acquisition variable of DN, for aBOC method is expressed as:

| Noc-2 2
Noo 3 Y, L+ L)) (6.3)

n=1

Z4BOC,DN, =

As it will be seen later in this section, even this simplest particular case of Eq. (6.2)
offers a clear gain in acquisition accuracy for both aBOC and unambiguous B&F-

technique.

Differential correlation with unambiguous acquisition

For unambiguous acquisition techniques, such as B&F method, the NC, DN and DN,
algorithms are applied separately on the lower sideband (LSB) and upper sideband
(USB) correlation outputs, as illustrated in Fig. 6.5 and in Egs. (6.4)-(6.5):

1 Npc—2 2
Zss.pN, = Npc 2 n;l (L, L, +1,"1,.,) (6.4)
and
1 Npc—2
Zps.pN, = Npe 2 n; <In Ly + 1y Lo
2
e e
+In In-‘rl +In In+2> 3 (65)

where Zgg is the acquisition variable for single sideband and Zpg for dual sideband,
and [, and I, are the coherent correlation outputs after LSB and USB filtering, re-
spectively. Only DN, expression is shown here for clarity reasons, but the formulas
for DN and NC are straightforward.

Fig. 6.5 shows the block diagram of the B&F unambiguous acquisition technique
[27,32, 108] with the additional differential correlation block. Here, DN/DN, block
forms the differential products I I,1;. Typically in dual sideband methods, the lower
and upper sidebands are combined after non-coherent squaring [108]. Since the DN-
methods were noticed to provide better detection probability P, if the non-coherent

squaring is performed after dual sideband combining, the upper and lower sidebands
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Fig. 6.5: Block diagram of the B&F-method with differential correlation.

are in our method combined before non-coherent squaring, for both DN and DN,
-methods (see Fig. 6.5). Fig. 6.6 justifies this choice, by showing the P; vs. CNR for
DN and DN, -methods with both combination orders. Here, ”order 1” means the or-
der where the combination of the sidebands is done affer non-coherent squaring, and
“order 2”” means the order where the combination is done before non-coherent squar-
ing (as in Fig. 6.5). Also the NC-method is included in the figure as a reference. As
it can be seen, P; increases for DN and DN, methods, if the non-coherent squaring
is performed after the sideband are combined. In the case of single sideband tech-
nique, there is obviously only one possible configuration (i.e., non-coherent squaring
immediately after DN/DN; blocks).

Fig. 6.7 presents the correlation function envelopes for aBOC and dual sideband
B&F, with both NC and DN, methods, respectively, in the case of SinBOC(1,1) mod-
ulation. As it can be seen, DN, processing decreases the sidelobe peaks clearly in the
case of aBOC. Indeed, in the case of unambiguous BOC, DN, makes the main peak
approximately 0.5 chips narrower, when compared to the aBOC with NC processing.

This may also increase the tracking sensitivity in the receiver.

6.2.2 Simulation results for comparing different correlation methods

In what follows, the traditional conventional non-coherent integration (i.e., NC), DN
method and the new DN, -method are compared in fading channels. Both aBOC
and unambiguous B&F-technique (dual/single sideband) [27,32, 108] are taken into
account. In all simulations, we use a constant false alarm of Py, = 1072 (see Section
6.1), SinBOC(1, 1) modulation [134, 135] and hybrid search. The decision variable
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Fig. 6.7: Envelope correlation functions for aBOC and dual sideband B&F and for NC and
DN, methods, respectively. SinBOC(1,1), order 2.

is chosen to be the ratio-of-peaks, according to the results shown in Section 6.1 and

in [252]. In the case of multipath channels, the detection probability Py is calculated

as the probability that at least one channel path is detected with an error of less than

or equal to 1 chip. As it was shown in Section 5.1 and in [187, 188,250], both indoor

and outdoor channels match to the Nakagami-m distribution with various values of m-

parameter. Therefore, Nakagami-m distributed multipath fading channels were used
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Fig. 6.8: P; vs. CNR for NC and DN, correlation methods. Ambiguous BOC and B&F
-techniques, order 2. Pr, = 0.01 and v = 3 km/h.

in the simulations.

Fig. 6.8 shows the impact of the different correlation methods (i.e., NC, DN and
DN5) on the Py, for the aBOC and B&F -techniques. In both cases, the P, is clearly
increased with DN;-method, when compared to NC or DN method. Fig. 6.9 presents
the P; versus mobile speed v for NC, DN and DN, correlation methods in Nakagami-
m channel with (a) 1 path and B&F -technique and with (b) 3 paths and aBOC -
technique. Based both on Fig. 6.9 and other results shown by us in [249], it is
obvious that DN;-method is offering the best P; with low mobile speeds. However,
if the mobile speed increases, DN-methods deteriorate quite fast when compared to
the NC-method. This makes sense, since when the fading is faster, temporal correla-
tion between consecutive outputs of coherent integrator gets weaker. Therefore, with
high mobile speeds, the differential integration actually starts to suppress the desired

signal.

Based on the results shown in here, for indoor environments, where the mobile speed
is typically very low, DN,-method is always the best choice. In outdoors, where the
mobile speeds are higher, the best correlation method needs to be considered more
carefully. Therefore, we proposed in [249] a combined correlation method, where
the best correlation method can be chosen according to the estimated coherence time
(At) o of the channel. We also explain in [249] how (Af)¢., can be explicitly estim-
ated.



6.2. Enhanced differential correlation 91

aBOC. Nakagami-m channel (m=4.5). N, = 10, N, . = 8 B&F-method. Nakagami-m channel (m=2). N; = 15, N, . = 8.
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Fig. 6.9: P; vs. mobile speed v for NC, DN and DN, correlation methods. Nakagami-m
channel with 1 path. (a) aBOC, m = 4.5 and N¢c = 10 ms. (b) B&F-method, m = 2
and N¢ = 15 ms.

6.2.3 Possible extensions for DN2 method

GPDI can be divided into full GPDI [75,260] and its variants, namely Truncated
GPDI [207] and Fractional GPDI [207]. Full GPDI combines the traditional NC
Z.poc Nc With kK-span cross-correlations as [207]

2
Npc—1 Npc

Y L ik

n=1 k=n+1

ZGppr = Zapoc,NeC + 2 (6.6)

Formulas for Truncated and Fractional GPDI can be found in [207]. Differential
correlation methods were noticed in this section to outperform the non-coherent one
when the coherence time of the channel is low. In [207], GPDI schemes have been
noticed to be more robust to the residual Doppler errors and to obtain the best per-
formance in terms of P;, when compared to differential and non-coherent methods.
Thus, one idea for further research would be to combine the GPDI with DN, method.
E.g., the inner correlation term /;_, Iy could be replaced with the enhanced differen-

tial correlation as

Npc—2Npc—1

Zpoipe, = Zapocne +2| Y, Y, B+ L L - (6.7)
n=1 k=n+1

This would not increase the system complexity, but possibly increases the perform-

ance, when compared to the GPDI scheme as such.
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6.3 Conclusions

In this chapter, we have focused on improving the acquisition algorithms to address
the challenges of multipath propagation, interference and ambiguous modulation
types. Our first goal was to build a simple and robust decision variable which eases
the design process, in the sense that it allows to use a decision threshold which is
independent of channel conditions. Three CFAR detectors were proposed and ana-
lyzed together with the classical decision statistic. We showed that the most suitable
decision variable is the ratio of the first 2 significant peaks in the time-frequency
mesh of a hybrid-search algorithm, since it is the most robust with respect to varying

channel conditions.

Secondly, we paid attention to the post-detection correlation schemes, and proposed
an enhanced differential non-coherent integration method for the acquisition of a
BOC-modulated GNSS signal. We showed via simulations, that this enhanced differ-
ential correlation method increases the P; performance in multipath fading channels,
when compared to the conventional non-coherent integration and to the traditional
differential non-coherent integration methods, especially indoors where the mobile
speed is low. The results are valid for both unambiguous (i.e., B&F-method) and

ambiguous acquisition techniques.

The main contributions of this chapter can be summarized as follows:

e A novel analysis of several CFAR detectors is presented, in terms of detection

probability and dependence on the channel conditions.

e A novel enhanced differential non-coherent integration method is proposed.

We also offer a comprehensive analysis of different correlation methods.

Based on the work presented in this chapter, there have been also two publications:

1. Elina Pajala, Elena Simona Lohan and Markku Renfors, "CFAR detectors for
hybrid-search acquisition of Galileo signals”, in Proc. of European Navigation
Conference (ENC-GNSS), Munich, Germany, Jul 2005.

2. Elina Pajala, Toni Huovinen and Tapani Ristaniemi, ”Enhanced differential

correlation method for acquisition of Galileo signals”, in Proc. of 10th In-
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ternational Conference on Communication Systems (ICCS), Singapore, Nov
2006.
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7. DESCRIPTION OF THE WLAN AND CELLULAR RSS
MEASUREMENTS

Real data measurements are used to create or validate most of the proposed solutions
for RSS-based positioning in the following chapters (Chapters 8-10). Therefore, it
is appropriate to describe the measurement set-ups before going into details of the
different solution proposals. We describe also the database update method and per-
formance metrics used in this thesis. The parameters described in this chapter are

valid for the subsequent Chapters 8-10.

7.1 Cellular measurements

Cellular measurements consisted of outdoor and indoor measurements, for 2G and
3G networks. The measurements were collected using a Nokia C7 mobile phone,
that had an incorporated GPS unit. Different outdoor scenarios are detailed in Table
7.1, showing the location, type of the measurement area and the number of detected
BSs Npg in the considered measurement set. District in Table 7.1 refers a part of
a town, that is different from downtown. Since the measurement device was able
to gather the data either for 2G or for 3G at a time, some areas have measurements
only for one type of cellular network. Besides the outdoor measurements, cellular
measurements were gathered also indoors. Since the measurement device had only
GPS as a reference position, the map positions indoors could not be saved. Therefore,
fixed point measurement approach was adopted. In the fixed point measurements,
the mobile was kept stationary during the measurements, with a duration ranging
between 1 — 10 hours, and the data was captured continuously with 1 s time slots. A
huge set of fixed point measurements from various indoor locations was collected,
in same towns as outdoor measurements (i.e., Tampere and Rovaniemi (Finland),

Bucharest (Romania) and Munich (Germany)), resulting as 15 different indoor data
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Table 7.1: Outdoor measurement scenarios for cellular data (2G and 3G).

Set-up Location Area Measurement | Network | Nps
device

2G; Tampere, Finland | Large district Nokia C7 2G 47
2Gy Bucharest, Romania Park Nokia C7 2G 21
2G3 | Bucharest, Romania | Downtown Nokia C7 2G 77
2G4 | Bucharest, Romania | Large district Nokia C7 2G 81
3G, Rovaniemi, Finland Downtown Nokia C7 3G 29
3G, Munich, Germany | Small district Nokia C7 3G 7
3G3 Tampere, Finland | Large district Nokia C7 3G 77

scenarios for GSM data and 19 different scenarios for WCDMA data. Both outdoor

and indoor cellular measurements are used for channel modeling in Section 9.1.

7.2  WLAN measurements

WLAN measurements were collected manually with two different tablets, a Windows
Acer and an Asus Nexus 7 with Android 4.3.1 OS, that included proprietary software
solutions and detailed HERE indoor maps. In the measurement collection, the same
device was always used in one building. After the data samples used to form the
training data were collected, the user tracks, that were used for the positioning ana-
lysis, were collected separately during different days and covering several floors in
each building. All indoor measurement scenarios used in this thesis, with building
descriptions and main characteristics, are detailed in Table 7.2, showing the build-
ing type, location, used measurement device, the number of floors Ny;y,s, €stimated
building size, the number of data samples in the used user track N,, number of FPs
Ny¢p in the radiomap, the used horizontal grid resolution A,y (typically, between
1 —5 m, though sometimes even higher resolution was used), the total number of

2. One letter

detected APs saved in the radio map N4p, and the AP density per m
corresponds to one building. We remark that the number of FPs Ny, is not the same
than number of gathered measurements in the building of interest, but the number
of FPs with fixed grid resolution (thus, Ny, is dependent on the chosen resolution).

The number of APs N4p in Table 7.2 shows the number of individual MAC addresses
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detected during the measurement collection, but due to the multiple BSSID support,
some APs may have several MAC addresses. Thus, some APs here may be physically

at the same location.

Altogether, indoor WLAN measurements included 10 different buildings (university
buildings, office buildings and shopping malls) located either in Tampere (Finland),
Klaukkala (Finland) or in Berlin, Germany. In some buildings, the measurement pro-
cess was performed more than once, and new measurements were clumped together
with the older measurements. Thus, each building may have several measurement
set-ups with different measurements, or only different forming of the same meas-
urements, where, e.g., only grid resolution is changed. Examples with two different
uniform grid resolution A,,;; in one floor of building A, with set-ups A4 (Agig = 1
m) and A5 (Agi¢ = 5 m ), are shown in Fig. 7.1.

7.3 Database updates

The number of measurements in one building as a result of collection process, e.g.,
crowd-sourcing, may be huge. Several measurements may occur in the same location,
or very close to each other, and saving all of them in the radiomap can increase
the amount of data remarkably. Too many measurements can also slow down the
estimation phase, or even decrease the positioning performance. For this reason, the
radiomap is typically divided into a synthetic grid, where the location information
for each grid point (i.e., FP) is defined as the center coordinates instead of the real
positions of the collected data samples [139,232]. If the same transmitter is detected
in several measurements collected in the same grid point area, alternatively all RSS
values can be saved as in [275] or only one parameter, such as the mean over the RSS
measurements, is saved for each transmitter [265].

In this thesis, when a collected data sample appears in a FP that already has a saved
sample, all transmitters in both samples are examined. If a new transmitter has been
detected in the incoming sample, this new transmitter with its RSS is saved to the FP
data. If some transmitter is detected both in the old and incoming measurement, the
arithmetic mean between the old and new RSS values is calculated. If all samples
are wanted to be kept equally weighted, only a counter is needed to keep track of the
number of samples to be used in the average calculation. By using this kind of incre-

mental updating via the arithmetic mean, similar measurements can be combined and



Table 7.2: WLAN measurement scenarios indoors.

7. Description of the WLAN and cellular RSS measurements

Building Location | Measurement | Nyjoors | Building | Set-up N¢p N, Agrid Npp?® | AP density

device size [m] [m] per m?

A" T University building T Tampere, Windows 4 163 < 58 Al 1479 158 I 309 0.0082
Finland Nexus A2 505 181 1 238 0.0063

A3 4417 606 I 556 0.015

Aq 6168 9638 I 509 0.014

A5 1046 250 5 509 0.014

B | University building 2 | Tampere, Windows 3 152 x93 Bl 584 176 I 354 0.0083
Finland B2 4086 2301 I 489 0.012

B3 705 2301 5 489 0.012

C Office building 1 Berlin, Nexus 9 75 x 65 C1 624 850 5 573 0.013
Germany C2 14611 250 I 727 0.017

C3 1446 250 5 727 0.017

Cq 516 250 10 727 0.017

C5 14611 2611 1 727 0.017

D Office building 2 Tampere, Nexus 7 59 x 61 D1 844 143 I 995 0.040
Finland D2 8201 250 I 1213 0.050

D3 1082 250 5 1213 0.050

D4 398 250 10 1213 0.050

D35 8201 3873 I 1213 0.050

E Shopping mall 1 Berlin, Nexus 6 205 x 235 E1 1633 520 5 468 0.0016
Germany E2 14596 196 I 878 0.0030

E3 3093 196 5 878 0.0030

E4 1201 196 10 878 0.0030

F Shopping mall 2 Tam 2%_ Windows 6 160 x 139 F1 1887 205 | 326 0.0024

Finlan

G Shopping mall 3 Berlin, Nexus 3 175 x 160 GI 306 776 5 574 0.0068
Germany G2 3405 776 I 631 0.0075

G3 796 776 5 631 0.0075

G4 388 776 10 631 0.0075
H Shopping mall 4 Tampere, Windows 3 152 x 123 HI 358 215 1 69 0.0012
Finland H2 512 11846 5 147 0.0026

I Shopping mall 5 Tampere, Nexus 3 53 x 126 11 1988 250 | 162 0.0081
12 373 250 5 162 0.008T

Finland 13 141 250 10 162 0.0081

J Shopping mall 6 W__u@:wwwmw, Windows I 96 x 50 J1 75 283 (not synthetic) 31 0.0065

inlan,

98

¢ Each AP is identified by an individual MAC-address, but since some WLAN transmitters may have multiple MAC-addresses, some of the APs here can

be at the same physical location.
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(b)
Fig. 7.1: Examples of uniform grid intervals in building A with (a) Agriq = 1 m (set-up A4)
and (b) Agig =5 m (set-up AS).

the database size decreased, when compared to a case where all RSS values are saved
as such. Another possibility would be to save only the latest measurement sample for

each FP, but in this way the risk of saving an outlier would increase.

7.4  Performance measures

In this thesis, we use several performance metrics when comparing the results. The
most used metric is mean distance error € (see, e.g., [40,57,63,86, 88,104, 194,241,
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275,280,310,311,314,316,326,348]), that is calculated as the mean of Euclidean dis-
tances between the user location estimates (£y/s, $ars, 2ms) and the true user locations

(xpms,Yms,zms) in three dimensional Cartesian coordinate system as

1 N " N N
&=y )y (\/ (xms, —2ums, ) + (Yms, — Ims,)* + (zus, —zMSu)Z). (7.1)
U y=1

Besides this mean distance error, in some results it is more convenient to use other
performance measure, such as standard deviation (std) of the distance error [102,
348]. In addition, median distance error [66,241], Root Mean Square Error (RMSE)
[83, 173] and percentage of distance errors of less than 5 meters are included in
some results. One important metric is also floor detection probability (also called
floor identification accuracy), that is calculated as the probability of correct floor
estimation in the 3D position estimation and used as a performance metric, e.g.,
in [15, 208, 217, 218, 307, 310, 311]. The floor is chosen in this thesis according
to the estimated z-coordinate of the position estimate, and choosing the closest floor

to it.

7.5 Conclusions

In this chapter, we have presented the used cellular and WLAN measurement set-ups.
We have also described the database update method and performance measures used

in this thesis.



8. PROPOSED THEORETICAL BOUNDS IN WLAN-BASED
POSITIONING

As it was discussed in Chapter 4, the existing transmitter configurations may not be
suitable for positioning purposes, even if the number of transmitters is large, since
the AP deployment inside a building is primarily optimized for communication and
not for navigation purposes. In this chapter, we concentrate on the challenges and
solutions related to the phase A presented in Fig. 4.1, namely the positioning archi-
tecture design. We tackle these challenges by calculating a CRLB-based criterion for

RSS-based positioning. The proposed criterion can be used

e to choose the optimal AP density and the optimal AP topology in a WLAN
network that is designed for localization needs or

e to estimate the expected accuracy bound in an existing WLAN network, based

on its underlying AP topology or density.

Our results were also published in [180].

8.1 Proposed CRLB-based analysis

The number of transmitters (here, APs) in a building may be huge. Several APs
located next to each others may carry redundant information for positioning purposes,
while in some other parts of the building there may be lack of APs. Therefore, it is
necessary to clarify the constraints of localization accuracy under a certain given AP
configuration and to be able to make guidelines for the deployment planning if the

AP topology can be revised for the navigation needs.

CRLB has previously been computed for the RSS-based PL positioning method in
[351] and Received Signal Strength Difference (RSSD) based fingerprinting in [141].
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In [257], the CRLB has been derived for the RSS-based localization in sensor net-
works, and further used to optimize the locations of anchor nodes in [270], but only
in theory without real measurements. The effect of quantity and geometry of APs
is studied shortly in [303], based on the computed CRLB for RSS measurements in
WLAN network, but again, the studies are based on simulations and restricted num-
ber of APs only.

The difference to the studies of [141,257,270,303,351] and other studies of AP to-
pology for positioning purposes found in the literature, e.g., [20, 61, 98, 103, 363],
is that in our studies, the target is to determine a theoretical limit, that can be used
both as a tool to understand the restrictions of an existing AP configuration and to
provide guidelines for AP placing if the network can be primarily set up for localiz-
ation needs. The presented criterion can show what is the best possible localization
accuracy with the current AP deployment, and it can also predict what the position-
ing accuracy can be with increased number of APs. The results in this chapter are
based both on measurements and theoretical derivations. We address both FP and PL

methods.

The CRLB defines a lower bound on the variance of any unbiased estimator of an
unknown parameter [163]. If the estimated receiver location is (f) = (Xms Sus iMs)T,

its covariance matrix is given by

2
G)E chy O3z

C0V¢($) = | Oyt G% Oz | - (8.1)

2
Gzt Oz O

We know that Cove($) > {I(¢)}~" [163], where I(¢) denotes the Fisher matrix [163]:

e[ o P)

Here, the expectation operation E is calculated with respect to the likelihood function
p(x;9) and p(x;0) stands for the PDF of observations x;¢. By using Eqs. 8.1 and
8.2, the Fisher information matrix /(¢) can be computed as

p(x0)  Ppxd)  IPp(x:0)

R 92x zaxay zaxaz
— _ | 9pxd)  9p(xd) I p(x:0)
I(q)) - dyox 9%y dydz ) (8.3)

’p(x:9)  Ppx)  9*p(x:0)
070X dzdy %z
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The used pdf in this paper is the Gaussian one, and we take into account the joint

power (i.e., sum over all hearable APs):

(Or(staVMs-ZMs)—Pi,r(xid‘iﬁli))z )
202

(8.4)

Zlvgﬁ;
PL model is chosen to be the one-slope log-distance model in Eq. (4.3). Thus, neg-
lecting the noise terms, the observed power for the transmitter r (detected both in the
FP and in the user measurement) by the receiver is O,(x,y,z) = Pr. — 10n,log,yd,
where d is the distance between the unknown MS location (xuss, yums, Zms) and trans-
mitter r location (xrx.,yrx,,zrx,) and d;  is the distance between the fingerprint i

(xi,vi,zi) and the transmitter r location. Since
0,—P, = —10n,log,od — (Pr, — 10n,1og,o d; )
d
— —10n,1 (—)
n Oglo di,r
(8.5)
the pdf is

( (oo () )
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(8.6)
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Using Eq. (8.6), the first derivative (derivatives marked with D for now on) of the

diagonal elements of Eq. (8.3) with respect to x is
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N,
= 21 ZZ-(—IOn,)Z-loglo(j)-D[loglo(j)}

G% —1 i Lr

According to the derivation rule for logarithm function and knowing that d; , is not

dependent on x, we get

dIn p(x;0) 1 Y ) d 1 (x—xrx,)
JIPLY) 2. (—10m,) -1 Y. . -
ox 202 ; (=10m)" Yogio () i~ 2
I § 2 d \ (x—xrx,)
= o2In 10 r; (=10n,) logyo (a) d2

ik d . (x—xrx,)
= Zplogm(Zr) TTX,

r=1

where p = (;211?1 "1’())2. Further on, the second derivative with respect to x is
0% In (x;0) d . (x—xrx,)
x [Zp togio (5) =2 }

- ZP ( 1oz dcll,r)}'(xdmﬁoglo(dd) D[(X_U;TX’)D
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d\ (y—yrx)*+@—zrx)* — (x—xrxr)2>

log, <d7) ’ d*
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Since the expectation value for log, (ddfr) = 0, the latter part of the Eq. 24 equals 0

and thus, we get

P inp&o) - P &érx)

%E ~ In10 ’ 6.7

where & is any of the x, y, z coordinates.
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Further on, the computed CRLB can be utilized to calculate an optimal AP density in
a building, when the AP deployment is adaptive. The following steps to this process

are proposed:

1. Generate AP locations inside a 3D building, according to specific rules (e.g.,
uniform, rectangular, circular, or according to desired topology).

2. Generate the radiomap for training phase with randomly allocated measure-
ment positions and the involved RSS according to the PL model in Eq. (4.3).

3. Generate random receiver positions or user tracks within the considered 3D
building, e.g., via random walk model.

4. Based on the training data generated at Steps 1-3, compute the achievable
CRLB for each desired scenario using Eq. (8.7).

5. Choose the configuration (e.g., number of APs per building area) that gives the
lowest average CRLB, under a sufficient number of Monte Carlo simulations

(in our simulations, we used 10000).

8.2 Measurement-based verification of the proposed CRLB-based criterion

In this section, we use measurement-based results to verify that the CRLB can be
used to estimate the expected RSS-based positioning accuracy according to the AP
deployment and density in a building. Both FP and PL approaches are addressed
in the verification. For the FP method, we use probabilistic approach and the log-
arithmic Gaussian as the distance metric (see Section 4.1.2 and Table 4.1), since it
offers the best results according to [139,241,291]. For FP method, also KNN-method
of Eq. (4.7) is used, with K = 5, according to our results presented in [184] (see more
in Section 4.1.2 and in [22,23,66,121,122,158,184,228,238,258,265,313,315,328]).
For PL approach, we use one-slope path loss model of Eq. (4.3), and assume that the
PL coefficient n; for the kth AP remains constant within the distance between the
transmitter and receiver. The noise std 6; for each AP can be obtained from the
measurements. Different WLAN measurement scenarios used here were described
in detail in Chapter 7 and in Table 7.2.
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Table 8.1: Measurement results (see Table 7.2 for building details). For FP and PL, the

results are calculated as std of the distance error.

Building | CRLB FP PL AP density

[m] (std) [m] | (std) [m] per m?
A3 1.18 7.94 15.78 0.0082
B1 1.49 17.04 17.41 0.0083
Cl 1.45 7.22 10.37 0.0131
D1 0.66 6.49 5.75 0.0395
El 1.86 12.36 17.47 0.0016
F1 2.32 18.08 28.17 0.0024
Gl 2.83 15.30 29.65 0.0068
H1 10.03 31.23 32.93 0.0012

Table 8.1 shows the CRLB, std of the distance error (see Section 7.4) for both FP
and PL method and the AP density for several buildings. Based on Table 8.1, the

following observations can be made:

o In general, the FP approach performs better than the PL. method, and FP is also
closer to the CRLB limit, as expected.

e In buildings with high AP density (e.g., A3, B1, C1 and D1), the CRLB is at

most 1.5 meters.

e The smaller AP density (in buildings E1, F1, G1 and H1) results both as in-
creased CRLB and higher positioning errors.

e In a multi-floor building with incomplete data (e.g., building H1), even the
CRLB with unfiltered data rarely obtains sub 3 m accuracy. Additional filtering

and sensor integration may indeed decrease the error.

8.3 Choice of AP density in flexible network topologies

In this section, we will show an example of how to use the CRLB as a benchmark
to find out a sufficient AP density for the best achievable localization results, using
a 2D simulation model (i.e., only one floor). The size of the simulated building is

defined as x m x y m, where both x and y are varied randomly between 50-150. AP
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CRLB vs. AP density
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Fig. 8.1: CRLB vs. AP density both for a simulated building (i.e., theoretical CRLB) and real

measurements (same buildings included as in Table 8.1).

density is fixed to desired value, but AP placings and receiver positions are defined
randomly inside the simulated building according to uniform distribution. Fig. 8.1
illustrates the CRLB vs. AP density both for the measurements and for a simulated
building. The results for simulated building are computed over 100 receiver locations
and 10000 iterations, due to the randomizing. In the case of real measurements, the
AP density is calculated as an average over all floors in the particular building. As it
can be noticed in Fig. 8.1, the curves for CRLB vs. AP density for the measurements
and for the simulations are close to each other. It can be also examined in Fig. 8.1 that
exactly two meter positioning accuracy can be obtained with AP density of 0.018 /m?
(i.e., by placing an AP for about every 7.5 m). Indeed, we can obtain sub-meter
accuracy by placing an AP for every v/10 ~ 3 m, but placing them closer than this

will not bring much benefit.

Besides the AP density, naturally also the AP deployment (i.e., AP placements) is
important from the localization accuracy point of view. Therefore, an average Voro-
noi area is calculated between the estimated AP positions to show the impact of AP
configuration. Fig. 8.2 shows one example of the Voronoi polygons for 4th floor of
building C1. The polygons in Fig. 8.2 are drawn only inside the outer walls of the
building, i.e., the polygons outside the building area are not taken into account. The
AP locations are marked with red circles, Voronoi vertices with black dots, and the

area of the polygon specified by the Voronoi vertices is determined with blue lines.
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Example of Voronoi polygons. Building C1, floor 4.
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Fig. 8.2: Illustration of the Voronoi polygon areas between the estimated AP locations. Build-
ing C1, 4th floor.

The average area of blue polygons represent the average Voronoi area.

Fig. 8.3 shows an average Voronoi area (within the building limits) between the
estimated AP positions for both the real measurements and for simulated building.
As it can be noticed, both real measurements and theoretical (i.e., simulated) case are
following the same trend: higher Voronoi area corresponds to to higher CRLB and
small Voronoi area to small CRLB. The results in Fig. 8.3 verify that the CRLB-
based criterion takes into account also the AP placements, not only AP density. The
conclusion is that CRLB-based criterion is a powerful tool to predict the best possible

localization results for a given AP configuration.

8.4 Conclusions

In this chapter, we have studied the challenge of the transmitter topology in indoor
environment. We have presented a CRLB-based criterion, that can be used either to
estimate the expected positioning accuracy limit in WLAN-networks with predefined
topology or to find out the best AP density for a certain goal of positioning accuracy,
in a network designed for localization. We have verified with measurement-based
results the suitability of the presented CRLB criterion, addressing both FP and PL
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CRLB vs. average Voronoi area
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Fig. 8.3: CRLB vs. average Voronoi area over all floors both for a simulated building and

real measurements (same buildings included as in Table 8.1).

positioning methods. We have explained how to use the CRLB and we have also
shown that that the CRLB-based criterion considers not only AP density, but also the
AP positions. The results we have shown here can provide more insight for design-
ing an efficient WLAN-based localization environment and for evaluating existing

WLAN AP deployments in the context of positioning accuracy.

The main contributions of this chapter can be summarized as follows:

o A CRLB-based criterion is presented, to be used as a benchmark to evaluate

the AP topology in a building for positioning purposes.
The work in this chapter has also resulted in the following publication:

1. Elina Laitinen and Elena Simona Lohan, ”Access Point topology evaluation
and optimization based on Cramér-Rao Lower Bound for WLAN indoor posi-
tioning”, in Proc. of International Conference on Localization and GNSS (ICL
GNSS), Barcelona, Spain, Jun 2016.
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9. PROPOSED SOLUTIONS FOR TRAINING PHASE AND DATA
TRANSFER IN WLAN AND CELLULAR POSITIONING

In this chapter, we propose solutions for the challenges related to the phases B and
C presented in Fig. 4.1, namely the training phase and data transferring related chal-
lenges. As it was discussed in Chapter 4, many challenges in the training phase and in
the data transferring have to be handled jointly, since, e.g., choice of the grid density
and large databases affect both phases. As a reminder from Fig. 4.1, the solutions to
address the challenges related to the phases B and C are:

e Propagation modeling for WLAN and cellular signals, both indoors and out-
doors. This challenge is considered in this chapter, by proposing suitable
path loss models for RSS-based localization systems with adequate shadow-
ing modeling. The results were also published by us in [290].

e Appropriate choice of grid density. This challenge is discussed in this chapter,
by illustrating the effect of grid density both to the positioning performance and
database size, with three most widespread RSS-based positioning algorithms
(FP, PL, WeiC).

e Data removal solutions to decrease the memory and bandwidth requirements
for data transfer. In this chapter, the impact of AP selection on FP, PL. and WeiC
methods is studied with a variety of different removal criteria. We show that
even 50% of the APs can be safely removed from the radiomap with a properly
chosen removal criterion without increasing much the localization error. Our
results were also published in [179,181, 182].

e Compression methods [311]. This solution is not discussed in this thesis.

This chapter is organized as follows: in Section 9.1, we study the path loss and

shadowing models and their parameters, for both cellular and WLAN signals. In
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Section 9.2, we continue with a discussion of the database updates and choice of the

grid interval, and in Section 9.3.1, we concentrate on database reduction solutions.

9.1 WLAN and cellular channel models

In this section, wireless propagation effects are studied for WLAN and cellular sig-
nals. The focus is especially in indoor environments, but also outdoor cases are
considered. Our purpose is to analyze the path loss and shadowing models and their
parameters, and clarify the differences and similarities between WLAN and cellular
wireless propagation models, such as whether RSS fluctuations (e.g., shadowing and
fading effects) are system dependent or can be modeled with similar path-loss models
for all the envisaged systems.

9.1.1 Path loss parameter estimation

The results shown in this section are based on measurements with both WLAN and
cellular signals described in Chapter 7. The path loss coefficient 7i and the apparent
transmit power Pr (mean and std) are estimated using first-order polynomial regres-
sion and omni-directional one-slope path loss model of Eq. 4.3. An example of the
linear regression is shown in Fig. 9.1. Since the transmitter positions are not known
beforehand, they were estimated in the analysis using WeiC based techniques (see
Eq. (4.9) and [31])).

Tables 9.1, 9.2, 9.3 and 9.4 show the approximated path loss coefficient i (mean,
std and maximum) and the apparent transmit power Py (mean and std), for different
measurement scenarios and for WLAN signals indoors (for floorwise measurements
in Table 9.1 and for 3D measurements in Table 9.2) and 2G and 3G signals outdoors,
respectively. In the beginning of these studies, we had the measurements only sep-
arately for different floors, and therefore, the parameters were estimated in the first
place for the floorwise case only in 2D (Table 9.1). These floorwise results, that
we have presented in [290], are here completed with 3D measurements (Table 9.2).
WLAN signals outdoors were noticed to be generally too weak to draw any conclu-
sions, and therefore, they were left out from the comparison here. Only those trans-

mitters that were detected in at least 10 measurement points were considered in the
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Polynomial regression, est. n=4.3792, est PT:—18.2334

-50

RSS! [dB]

-100

I
-5 15 20

0 5 10
10*log10(Distance to AP) [10'Iog10 m]

Fig. 9.1: An example of linear regression for estimating fi and Pr.

Table 9.1: Estimated path loss parameters for WLAN signals indoors. Floorwise measure-

ments only. Std stands for standard deviation.

Set-up Mean# | StdA | Max A4 | Mean Py | Std Pr | Nup / floor
[dBm] [dB] (detected)
Al, Istfloor | 249 [ 1.89 [ 103 | -50.13 [ 25.36 190
Al 2ndfloor | 250 | 202 | 11.8 | -49.73 | 29.84 205
Bl, Istfloor | 1.38 | 1.02 | 45 -62.88 | 19.43 244
Bl,2ndfloor | 143 | 1.08 | 54 -64.14 | 18.89 331
Fl,2nd floor | 142 | 127 | 47 -66.35 | 24.20 158
Fl,3rdfloor | 125 | 142 | 76 -69.63 | 24.79 188
HI, Istfloor | 1.61 1.03 | 42 -59.01 | 23.25 64
J1, 1st floor 194 [ 128 | 40 5273 | 25.57 31
mean 175 [ 138 [ 66 | -5933 | 2392 | 176

analysis. According to our results shown in [290], where the AP location estimates

were compared to the true locations, such approximation is reasonable.

In the case of floorwise WLAN measurements (Table 9.1), the estimates for 7 were
computed floor-by-floor, and 7 represents the two-dimensional path loss exponent.
Due to the floor losses, the /i may be different in 3D environment, i.e., when examin-
ing the RSS values also in z-direction. Therefore, also the 3D case was taken into
account (Table 9.2). When comparing the results of WLAN indoor signals (Tables

9.1 and 9.2), it can be seen that the averages of estimated 7 and Py are very sim-
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Table 9.2: Estimated path loss parameters for WLAN signals indoors. 3D measurements.

Set-up | Meanq | Stdi | Max 7 | Mean Pr | StdPr | Nap/ building
[dBm] [dB] (detected)
A5 1.67 0.77 3.1 -56.25 12.44 509
B3 2.25 1.01 4.3 -46.40 16.14 489
C3 2.11 1.16 54 -53.36 16.19 727
D3 1.63 0.88 4.2 -58.88 11.74 1213
G3 1.20 0.85 4.2 -59.22 15.78 631
H2 1.70 1.02 4.2 -52.87 19.95 147
12 1.33 0.84 34 -63.81 14.09 162
| mean [ 170 | 093 [ 41 | -5583 | 15.19 | 554

Table 9.3: Estimated path loss parameters for 2G signals indoors.

Set-up | Mean7 | Std7i | Max 7 | Mean PT Std I3T Nps
[dBm] [dB]
2G, 1.73 0.85 4.82 -28.81 23.37 | 47
2G, 0.79 0.81 3.26 -65.05 19.26 | 21
2G3 2.19 1.91 8.71 -19.04 51.17 77
2Gy 1.73 1.51 10.08 -26.67 49.76 81

| mean | 161 [ 127 | 672 | -3489 [ 3589 | 57 |

Table 9.4: Estimated path loss parameters for 3G signals indoors.

Set-up | Mean7q | Stdii | Max 7/ | Mean Pr | Std Pr | Ngg
[dBm] [dB]

3G 1.25 0.76 2.98 -51.76 26.56 | 29
3G, 1.03 1.11 3.14 -60.83 33.18 7
3G3 1.37 0.76 3.88 -46.73 2277 | 71

| mean | 122 [ 088 | 333 | -53.11 [ 27.50 | 38 |

ilar in both cases, but the estimates for 72 vary more between different measurement
scenarios in the case of floorwise measurements. Also, the estimated Py in the floor-
wise case is slightly lower. This is expected, since when the estimations were done
floor-by-floor, some of the detected APs may be located in some other floor, result-

ing as lower estimated value for the apparent transmit power. Fig. 9.2 illustrates
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-80

Fig. 9.2: An example of RSS values for one AP in different floors. Measurement set-up Al.

this, by showing the RSS values for one AP in building A in different floors (set-up
Al). However, as an interesting conclusion, it seems clear that PL. models can be cal-
culated as 3D omnidirectional models in multi-floor buildings, and additional floor
losses are not needed. For outdoor cellular cases (Tables 9.3 and 9.4), the average
for 71 is close to the estimate for WLAN signals in the case of 2G, and slightly lower
for 3G case. The estimated Pr is on average higher for 2G than for 3G and WLAN
cases. The number of transmitters in total is clearly smaller for the cellular networks
when compared to the WLAN cases, and this may affect the statistics.

9.1.2 Shadowing modeling

Shadowing effect was studied with two different approaches: fixed point measure-
ments and path loss-based. Assuming that the measurement errors remain the same,
the shadowing effect can be seen in fixed point measurements as the fluctuations in
the observed RSS values. Thus, for kth transmitter, shadowing part ¥y (in dB) can
be modeled as

¥, =P — E(P),k=1:Nrx 9.1

where E(+) is the expectation operator, estimated here as the mean. The mean RSS
values versus the std of the shadowing part (std(W;) in indoor environment are illus-
trated in Fig. 9.3, for WLAN, 2G, and 3G signals, respectively. As it was detailed in
Chapter 7, the fixed point measurements were gathered in various indoor locations in

several different towns, and the number of scenarios was 43 for WLAN signals, 15
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Fig. 9.3: Mean RSS versus the std of the shadowing, with fixed point measurements indoors.
(a) WLAN, (b) 2G and (c) 3G signals.

for 2G cellular signals, and 19 for 3G signals. Each point in the figures corresponds
to one transmitter in a measurement scenario. Since the amount of measurements for
WLAN case is higher, and since the number of detected 2G or 3G BSs indoors is
lower than the number of detected WLAN APs, Fig. 9.3 (c) has more points. Based
on the Fig. 9.3, it can be noticed that the shadowing std is not dependent on the sig-
nal strength. In other words, a signal received closer to the transmitter and a signal
received further away from the transmitter are likely to be affected similar shadowing
fluctuations. We also noticed that shadowing fluctuations in 2G and WLAN networks
had a std always below 14 dB, while for the 3G case the shadowing std can be as high
as 20 dB. The mean values are presented in Table 9.5.
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Fig. 9.4: An example of the three steps in shadowing analysis. 2G data, outdoors.

Besides fixed point measurements, shadowing effect was studied also based on the

following methodology:

1. Path loss parameters and transmitter location were estimated as in Section
9.1.1.

2. Based on the estimated parameters and the path loss model in Eq. (4.3), the

power map was re-created.

3. The re-created power map was subtracted from the original power map, to form
the shadowing part. The mean and std are further calculated from the residual

shadowing part.

The three steps are illustrated in Fig. 9.4.

Table 9.5 presents results for the shadowing analysis, for both fixed point and path
loss based approach. The analysis was performed for WLAN signals indoors and
cellular signals both indoors and outdoors. In the case of path loss based approach
and floorwise WLAN measurements, the average is calculated over the scenarios A1l
(first and second floors), B1 (first and second floors), F1 (second and third floors), H1
(first floor) and J1 (first floor). In the case of path loss based approach and 3D WLAN

measurements, the the average is calculated over the scenarios AS, B3, C3, D3, G3,
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Table 9.5: Average std of shadowing [dB] for WLAN and cellular signals. Both fixed point
measurements and path loss based approach.

Fixed point approach | Path loss based approach
Indoor Outdoor Indoor Outdoor
WLAN 1.94 - 6.40 -
(floorwise)
WLAN - - 4.47 -
(3D)
2G 3.15 - - 5.14
3G 6.08 1.53 - 6.42

H2 and 12. In the case of 2G and 3G measurements, the averages are calculated over
all 2G/3G scenarios (see Table 7.1).

When examining Table 9.5, it can be seen that the average std of shadowing with path
loss based approach is 4.47 — 6.42 dB. In fixed point measurements, the values are
slightly smaller. One explanation for this is that there is not enough spatial variability
in the fixed point measurements data, as the number of measurement locations is
remarkably less when compared to hundreds of spatial positions in the path loss based
approach. The results for path loss based approach also include the std of model
mismatch and not only shadowing part. In other words, in path loss based approach,
the shadowing value shown in Table 9.5 consists of both the true shadowing std and

std of the path loss modeling errors.

9.2 The choice of the grid interval

Another relevant questions related to database forming concerns the grid density. As
it was mentioned in Section 4.2, increasing the grid interval A,,; will decrease the
number of FPs in the database, but too loose FP density may decrease the positioning
results. Higher FP density can improve the positioning accuracy, but only up to cer-
tain limits. Unnecessarily dense grid results as highly correlating FPs and increased
amount of data to be saved. Fig. 9.5 shows the mean distance error (see Section
7.4) versus Agq for four different buildings, when fingerprinting approach is used.
As it can be seen, in some buildings (e.g., buildings D and G) the best results are

achieved with Ag,;; = 1 m, while for some other (e.g., buildings C and I), 5 m grid
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Fig. 9.5: Mean distance error vs. Agiq, for 5 different buildings. Fingerprinting approach

with logarithmic Gaussian likelihood.

interval gives as good results as 1 m grid interval. This may be caused, e.g., by the

AP configuration in the building or by the measurement collection process.

Fig. 9.6 illustrates the number of FPs for different grid resolutions for the same
buildings. Based on Figs. 9.5 and 9.6, it is clear that the grid density has to be
carefully planned, since the difference between the amount of stored data may be
huge, but the improvement in the mean distance error for smaller A,y very small,
if any. The discussion of the grid interval effect in different positioning approaches
is continued also in the next section, because the grid interval is also related to data

reduction solutions. Some other studies on the grid size can be found, e.g., in [328].

9.3 Database reduction solutions

As it can be seen in Table 7.2 and as it will be discussed more in Chapter 10, the
APs infrastructure is very dense in many buildings. For example, we can have hun-
dreds or even more than one thousand MAC-addresses detected in buildings of up to
only 0.048 km? area. Both the number of transmitters and the number of FPs can
be significant, and this leads to big amount of data for the localization approaches to
deal with. The memory requirements for the database in large areas or with many
buildings may become overwhelming, and also data transmission may become a bot-

tleneck for the positioning system, especially for FP method. In addition, not all
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available information is needed in localization. With such high density of APs in
many buildings, some APs are more significant than others and the irrelevant APs
can be simply seen as noise [99, 177]. This holds for, e.g., WLAN transmitters sup-
porting multiple Basic Service Set Identifiers (BSSID), meaning that several MAC
addresses can be heard from exactly the same transmitter. Typically, the AP infra-
structure inside a building is optimized primarily for communication targets, such
as serving many users in the best possible way. For this reason, multiple APs can
be placed next to each other, and since RSS is dependent on the distance between
the mobile and an AP, as well as on the environment, these closely located APs may
transmit heavily correlated RSSs. Thus, all APs do not carry relevant information
for localization needs, and the unnecessary and redundant APs can be dropped from
the estimation process, in order to decrease the storage demands and computational
complexity of the localization system [100]. Besides with AP selection and reduc-
tion, the size of the training database can be decreased by increasing the A,4, as was

illustrated in Section 9.2.

In this section, we study the impact of AP selection and removal, on three different
positioning algorithms (FP, PL, WeiC), taking into account also the effect of chosen
Agria. The positioning approaches for FP and PL are the same than described in
Section 8.2. For WeiC method, the position estimate is calculated as Eq. (4.9) and
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Eq. (4.10). AP selection has been previously studied, e.g., in [62, 101, 104, 176,
199,229, 344,359,365], but the AP selection together with the grid interval and with
several positioning approaches has not been addressed before. AP selection can be
done in the online positioning phase [104, 176, 365], in the offline training phase
[62,344,359], or by taking into account both phases [182,229]. In this section, we
describe the used selection methods and we continue with AP selection, first in the

training phase and secondly in the estimation phase.

9.3.1 AP selection criteria

In what follows, we investigate seven different criteria to choose the most relevant
APs in the offline training phase for all three positioning algorithms. Both traditional
selection methods, i.e., max-mean [344] and InfoGain [62], are taken into account.
With all selection criteria presented in-what-follows, excluding MIMO selection, any
reduction percentage is possible: e.g., 5%, 10%, or 55% out of all detected APs
can be removed from the training database, i.e., the removal percentage is chosen
adaptively. In MIMO selection, however, the number of APs located next to each
others is building dependent: we use the AP deployment as it is, and therefore, it
varies between the buildings how many APs are co-located and removed with the

MIMO removal criterion. The studied criteria are:

1. No selection

- In this criterion no selection is performed, but all APs are stored in the
radiomap. The results obtained with no selection are used in the compar-

ison as a benchmark to understand better the effect of AP selection.
2. Maximum RSS (maxRSS)

- In this criterion, APs with maximum RSS value are chosen to form the AP
subset. This method is similar with max-mean of Youssef et al. in [344],
but the difference is that only the maximum RSS instead of the average
RSS is considered when sorting the APs. The reason for this is that we
have noticed maxRSS to have similar or slightly better performance than

max-mean algorithm [182].
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3. Entropy / InfoGain

- In this criterion, so-called entropy of RSS is computed for ever AP, and
the APs with maximum entropy are selected to form the AP subset. This
criterion is based on Info gain in [62], with only slight modifications. The
entropy used in this paper is defined in the following manner, by using an
analogy with the definition of the classical entropy [341]:

Ex = max (Pxlogy (Px)), (9.2)
where Py includes the RSSs of kth AP in vector form, i.e.,
Px =[PPy ... PNf.p(k)7k]. 9.3)
4. MIMO (or multiple BSSID) selection

- Asalready discussed, it is possible that one WLAN AP has several BSSIDs
(i.e., transmissions with multiple MACs coming from the same physical
location). The target of this selection criterion is to avoid to use correl-
ated data, that the closely located or similar APs may provide. In our
research, these kind of MIMO APs (or any other APs containing several
MAC:s) are identified only based on their estimated location: if more than
one AP are estimated to be located within maximum one meter range,
only one among them is chosen. One meter was chosen to allow also
estimation errors in AP location estimation. The unknown AP positions
are estimated as in Eq. (4.9). Three different selection options are ex-
amined here: only one (according to the maximum average RSS), two or
three APs among the co-located ones will be kept. Removal percentage
is naturally the highest in the first case, where only one AP is chosen. We
remark that the total number of APs located at the same place depends on
the AP infrastructure of the building.

5. FFT

- FFT transform can extract the information about spectral content of a im-
age. If AP patterns are considered as a image, FFT can be used to show
the the most relevant APs. In a FFT-based criterion, the AP subset is se-

lected according to the spectral content calculated in FFT domain. The
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FFT is computed over a matrix, that contains a RSS-dependent inform-
ation of every AP in each FP (i.e., size of the matrix is Nyx X Ngp). If
an AP is heard in a FP i, the RSS-dependent information is computed as
P,y + P, Py, is a threshold, that is selected here based on an assumption
that the lowest expected RSS is —100 dB, and thus, P, = 100 (in order to
have positive values at the FFT input). If an AP is not detected in the par-
ticular fingerprint, the RSS input is set to 0. After the FFT is performed
over the information matrix, the APs are sorted in a descending order,

according to their maximum value in the FFT-matrix.

- Kullback-Leibler (KL) criterion is chosen to one selection criterion, due
to its ability to measure the difference between two probability distribu-
tions. In this criterion, we calculate a divergence value for each AP based
on the RSS levels, by using the Kullback-Leibler (KL) criterion for diver-
gence. By KL analogy, we define a Dg; matrix; Dgz, = [daplab=1.Nry

where

dap =YY |Pa— Py|log(|P. — Py|). (9.4)
a b

The APs with highest KL divergence value are chosen to form the AP

subset.
7. Dissimilarities

- Another possible criterion is based on dissimilarities between APs. In this
criterion, we build a dissimilarity matrix according to the RSS differences
between any pair of APs, as below:

0 P—Ps| . PPy
|P,—Py| 0 v |Pa=Pyy |
Dpiss= ™ (95)
Pryy—Pi| |Pupy—P| . 0

where P, is the average RSS detected from kth AP. Further on, we com-
pute an independent dissimilarity value for each AP as a sum over the
dissimilarities between the particular AP and all other APs. AP subset is

then formed based on the maximum dissimilarity value.
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Besides the criteria listed in here, we tested also average RSS, variance of RSS, num-
ber of points (where the target was to emphasize more those APs with higher coverage
area by sorting APs in descending order based on the number of fingerprints where an
AP is detected) and random AP selection (used only as a benchmark). Some results
were published by us in [182]. Since none of these additional criteria provided very

promising results, they were left out from the comparison here.

9.3.2 AP selection in the training phase

The positioning results for AP selection are presented in this section as mean distance
error (see Section 7.4). For FP method, also KNN-method is used, with K = 5,
according to our results presented in [184]. Fig. 9.7 shows the mean distance error
for the seven studied AP selection criteria for buildings C3, D3 and 12, with Ag,;jy = 5
m and with all three positioning methods. The percentage of removed APs from the
training database varies between 10% — 80%, excluding the MIMO selection. For
MIMO criterion, the number of removed APs is varied so that either one (with the
maximum average RSS value), two or three APs were kept out of the closely located
APs (within 1 m range). When we keep only one AP, the removal percentage is the
highest compared to the case when we remove two or three APs.

According to the results shown in Fig. 9.7, the main observations are:

e For FP method, APs can be removed up to 50 — 60%, but after that, the per-
formance starts to decrease faster.

e PL method is very robust to AP selection and also to removals with high per-

centage.

e WeiC method is very sensitive to AP selection and only 20% of the APs can be

removed safely without deteriorating the results.

e Removing APs using MIMO AP selection criteria and and keeping only one
AP among the subset of co-located APs does not increase the positioning error
in the case of FP and PL methods. However, the number of MIMO APs is
clearly building dependent, and therefore the percentage of removed APs may

vary between only few percent and even 60%.

e The best AP selection criteria for PL and WeiC methods are maxRSS and KL.
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e In the case of FP method, the best criterion is more building-dependent. Up to
50% removal, the differences in the results between different removal criteria
are very small. If more than 50% of the APs are removed, maxRSS seems
to be the most consistent among different buildings. This conclusion is based
on Fig. 9.7, the results obtained for other buildings and our studies presented
in [179,182].

It was also noticed based on Fig. 9.7 that in the case of the PL approach, removing
APs may be better than keeping all. The reason for this is probably in the parameter
estimation process. For example, by considering maxRSS criterion, the transmitters
with high RSS values probably have the parameter estimates closer to the true ones,
when compared to the transmitters for which the maxRSS values are clearly lower.
Thus, the positioning performance can be increased, when only these “good” APs are

saved in the radiomap and used in the estimation process.

Figs. 9.8 illustrate the effects of both AP removal and grid interval A,y as mean
distance errors, again for all three positioning approaches and choosing maxRSS-
selection criterion. Agq is varied between 1 — 20 m and the removal percentage
between 10 — 80%. We remark that the color bars are different for each figure. The
reason for this is that the results variate in the case of WeiC so widely (between
10 — 55 m), that the much smaller variation for FP (between 5 — 15 m) would not
be visible anymore if the same color bar was used for all figures. In addition, Table
9.6 shows the mean and median distance errors and RMSE in meters for several
buildings, both without any AP selection and with a 50% removal using maxRSS

criterion. Based on Figs. 9.8 and Table 9.6, the following conclusions can be drawn:

e As was noticed already in Fig. 9.7, FP and PL methods are more robust to AP
removal also with higher removal percentages, but according to Fig. 9.8, the

grid interval clearly affects more.

e Both FP and PL methods can handle the 50% data removals. Based on Table
9.6, the mean distance error for the FP approach is increased by only about
8% with the maxRSS-based removal criterion, when compared with the case
without any removal. For PL method, the mean distance error is increased by
about 6% with the maxRSS-method.
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Fig. 9.7: Mean distance error [m] for all AP selection criteria. FP, PL and WeiC positioning
approaches. Building C3 (a,b,c), building D3 (d,e,f) and building 12 (g,h,i), all with
Agrid =5m.

e WeiC method is very sensitive to AP selection, but grid interval affects only
slightly to the accuracy.

e In general, the positioning accuracy for FP method is clearly better than for PL
and WeiC.

Based on the results shown in this section, we cam make the following recommend-
ations, in order to maintain the performance loss to less than 10% of the maximum

achievable performance with no AP removal and A,y = 1 m:

e For FP method, we recommend A,y = 5 m and a maximum 50% AP removal
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Fig. 9.8: Effects of joint AP removal and grid size for building C3 (a,b,c), building D3 (d,e,f)
and building 12 (g,h,i) in mean distance error. FP, PL and WeiC positioning ap-

proaches with maxRSS-selection criterion.

with maxRSS-based criterion.

e For PL method, we recommend Ag,;; = 5 m and a maximum 60% AP removal

with maxRSS-based criterion.

e For WeiC method, we recommend Agj¢ = 10 m and a maximum 20% AP

removal with maxRSS-based criterion.
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Table 9.6: Results for several buildings and measurement set-ups, 50% removal. Mean and

median distance errors and RMSE, all presented in meters.

’ ‘ Building ‘ Criteria mean error [m] ‘ median error [m] ‘ RMSE [m] ‘

No removal 5.87 3.11 8.55

A3 maxRSS 50% 6.00 3.99 8.48

No removal 9.33 7.59 11.96

Bl maxRSS 50% 9.77 8.08 12.50

No removal 4.01 3.59 4.54

FP Cl maxRSS 50% 4.92 4.33 5.60
No removal 7.40 6.44 8.51

El maxRSS 50% 8.04 7.16 9.27

No removal 17.47 13.58 23.69

H1 maxRSS 50% 18.47 13.22 25.27

No removal 9.74 8.21 11.76

A3 maxRSS 50% 10.06 8.77 12.06

No removal 9.01 7.38 12.45

Bl maxRSS 50% 9.39 7.44 12.69

No removal 6.09 5.87 6.75

PL Cl maxRSS 50% 6.99 7.26 7.73
No removal 11.05 9.08 13.16

El maxRSS 50% 12.07 10.26 13.77

No removal 20.46 19.51 23.77

H1 maxRSS 50% 20.22 19.31 23.48

No removal 10.53 9.71 12.65

A3 maxRSS 50% 12.99 10.96 16.21

No removal 8.53 7.29 10.31

Bl maxRSS 50% 10.19 7.11 13.88

No removal 6.10 6.18 6.66
WeiC Cl1 maxRSS 50% 17.00 13.28 20.74
No removal 10.06 8.66 11.65
El maxRSS 50% 28.42 20.36 39.30

No removal 26.59 25.42 30.23
H1 maxRSS 50% 27.17 24.95 31.26

9.3.3 AP selection in the estimation phase

Since the amount of transmitters can be clearly limited in the training phase, it begs
the question of whether it is advantageous to limit also the detected transmitters to

be used in the position estimation phase. Fig. 9.9 presents the mean distance error
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in different buildings (buildings C3, D3, G3 and 12, all with A,;4 = 5 m), when only
the part of detected APs in the estimation phase are chosen, according to the highest

RSSs. Based on Fig 9.9, the following observations can be drawn:

e For FP approach (Fig. 9.9 (a)), it can be concluded that minimum required
number of transmitters is around 10. If only three transmitters are used instead

of 10, the positioning error would increase approximately 37%.

e In the case of PL approach (Fig. 9.9 (b)), the differences between different
number of used APs are smaller. In general, the results improve slightly when
all detected APs are not used for the position calculation. According to results
shown in Fig. 9.9 (b), the best choice is typically between 7 — 10 APs. How-
ever, if only 3 APs are used in the estimation phase, the positioning accuracy
deteriorates only 5% when compared to the results obtained with 7 APs. Thus,
PL method performs very well also when APs are limited in the estimation
phase. This would decrease the amount of transmitted data and save out the

memory space needed to re-create the database.

e In WeiC approach (Fig. 9.9 (c)) the best results are achieved when at least 10
APs are considered in the estimation phase. Similarly with PL approach, also
with WeiC, the differences are small between different number of used APs. In
general, when compared to the the results obtained with 10 APs, we would get

approximately 8% increase in the positioning error.

e As a conclusion, the number of used APs in the estimation phase can be lim-
ited to decrease the complexity without decreasing the performance with PL
and WeiC approaches. With FP method, limiting in the estimation phase is
possible, but only up to 10 APs, in order not to deteriorate the positioning

results.

9.4 Conclusions

In this chapter, we have concentrated on the challenges and solutions related to phases
B and C in Fig. 4.1. We have studied the the path loss and shadowing effects in cel-

lular and WLAN wireless channels both outdoor and indoor environments. We have
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shown that WLAN and GSM have similar RSS shadowing fluctuations, but for 3G
case, standard deviations of shadowing are typically larger. The obtained results are
useful for wireless positioning algorithms, especially for PL based approaches. In-
deed, we try to solve the challenge of large databases by studying the effects of grid
interval and AP selection to different methods. We have compared several different
AP removal criteria and concluded that the maxRSS-based criterion provides con-
sistently the best results in the majority of indoor scenarios. We have also shown that
in the case of FP method, 50% of the APs can be removed safely from the radiomap
with a properly chosen selection criterion without increasing much the positioning
error, but decreasing the database size remarkably (database sizes are discussed more
in Chapter 10). The expression ’safely’ means here that the performance deterior-
ation after 50% AP removal is no more than 8% from the performance where all

AP are kept. In addition, we have shown that the studied low-complexity method
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WeiC is very sensitive to AP selection, while PL. method is very robust also to high
percentage reduction. If the grid size is increased to 5, the performance for every po-
sitioning method (with no removal) in general remains still less than 6% away from
the performance with 1 m grid interval. In Chapter 10 we will show how the choice
of an appropriate grid interval and data removal solutions can significantly decrease

the number of parameters in the training database needed especially for FP method.

The main contributions of this chapter can be summarized as follows:

e An analysis of wireless propagation effects of WLAN and cellular signals,

based on indoor and outdoor measurements.
e A discussion of the database updates and effect of grid interval.

e An extensive analysis of the effect of grid interval and AP selection, with vari-

ous selection criteria, and for three positioning approaches (FP, PL and WeiC).

The work presented in this chapter has also resulted in the following four publica-

tions:

1. Shweta Shrestha, Elina Laitinen, Jukka Talvitie and Elena Simona Lohan,
”RSSI Channel Effects in Cellular and WLAN positioning”, in Proc. of 9th
Workshop on Positioning Navigation and Communication (WPNC), Dresden,
Germany, Mar 2012, pp. 187-192.

2. Elina Laitinen, Elena Simona Lohan, Jukka Talvitie and Shweta Shrestha,
”Access Point Significance Measures in WLAN-based Location”, in Proc. of
9th Workshop on Positioning Navigation and Communication (WPNC), Dresden,
Germany, Mar 2012, pp. 24-29.

3. Elina Laitinen and Elena Simona Lohan, ”Are all the Access Points necessary
in WLAN-based indoor positioning?”’, in Proc. of International Conference on
Localization and GNSS (ICL GNSS) 2015, Gothenburg, Sweden, Jun 2015.

4. Elina Laitinen and Elena Simona Lohan, ”On the Choice of Access Point
Selection Criterion and Other Position Estimation Characteristics for WLAN-
Based Indoor Positioning”, in MDPI Sensors, vol. 16 (5), May 2016.
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10. PROPOSED RSS-BASED POSITIONING SOLUTIONS

In this chapter, we propose solutions for the challenges related to the phase D presen-
ted in Fig. 4.1, namely the estimation phase. The challenges include the decisions
regarding which positioning method to use and how to detect the floor in 3D indoor
positioning, but also how the possible RSS offsets between the training and estim-
ation phases affect the positioning result. The solutions to address these challenges

are:

e Study of bias effects and calibration needs. An extensive study different offsets
due to lack of calibration is presented in this chapter. We show that certain
amount of offsets can be easily tolerated without any calibration. Our results
are published also in [183].

e Calibration methods [110, 168,216, 325], data fusion methods [209] and clus-
tering methods [60,63,76,86,142,214,269,344]. These solutions are not stud-

ied in this thesis.

e Good choice of the positioning algorithm. This challenge is partly covered in
this chapter, by comparing FP, PL. and WeiC approaches in terms of database
requirements and positioning accuracy. Parts of the results are also published
by us in [181].

e Floor detectors. We propose in this chapter a low-complexity floor detection
algorithm to decrease the amount of data to be transferred to the mobile. We
show that this novel floor detection algorithm much less complex than FP ap-
proach, but offers 31% better floor detection probability than the traditional

low-complexity approaches.

The chapter is organized as follows: in Section 10.1, the effect of an offset in the RSS

values between the training and estimation phases is examined. In Section 10.2, we
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continue with the comparison of different RSS-based positioning algorithms in terms
of complexity. Finally, our proposal of a novel floor detector is presented in Section
10.3.

10.1 Resistance to biases and calibration methods

Several different phenomena may result as fluctuations or an offset in the RSS val-
ues. Naturally, if the RSS that is saved to the database in the training phase differs
significantly from the RSS of the user device in the real-time localization phase, the
positioning accuracy may be degraded. An offset can be caused for example, by dif-
ferent equipment type, which is especially true in crowd-sourced data collection and
is most likely seen as a constant positive or negative bias. Indeed, temporal propaga-
tion dynamics such as user orientation, body losses in more or less crowded period
during the training phase compared with the estimation phase can result as random
bias. One possible reason for offsets is also environmental changes between the two
phases, that can be seen as localized bias. A localized bias can be caused also by only
partly updated FP database.

It is generally known, that a bias between the RSS values in the training and estim-
ation phases caused by different equipment or environmental changes can decrease
the positioning accuracy. For this reason, both calibration techniques and different
calibration-free positioning algorithms have been proposed, e.g., in [110, 168, 169,
216,325]. Indeed, some studies present how different equipment measures the RSSI,
e.g., [157,212]. This was illustrated also in Fig. 4.3. Even 25 — 30 dBs differences in
RSSs for different devices have been reported [83, 110, 157]. However, research on
the offsets and their impact on the positioning accuracy exists in the literature only in
some limited studies. In [64], the effect of three dynamic factors (relative humidity
level, people presence and movements, and open/closed doors) to the WLAN posi-
tioning accuracy was studied shortly, but the research was limited into one corridor
only with very few APs and the amount of the RSS offset is not specified or studied
at all. Also in [320], where the positioning performance of different devices in the
same environment was studied, the indoor environment was limited to two corridors

of one-floor only.

In this section, we study extensively the effect of an offset between the RSS values

in the training and estimation phases for WLAN-based positioning. We address fin-
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gerprinting estimation method and show the effect of different bias types and values.
Our results clarify how much a constant or a random bias affects the positioning res-
ults and what is the amount of bias that is still reasonable in terms of positioning
accuracy. All the results are based on measurements in several multi-floor buildings
(as detailed in Table 7.2). Solutions for calibration methods are not proposed in this
thesis, but various calibration methods from the literature are discussed shortly in the

end of this section.

10.1.1 The effect of a RSS offset

When studying the effect of a bias between the RSS values (in dBm) in the training
and estimation phases, a bias b is artificially added to the original measured RSS P; x
(see Eq. (4.1)) in the FPs. Thus, the FPs are formed now as

{-xhyiazi) {k7 pi,k}}ak el :NTXvi el :prv (101)

where P;; = P, + b. Three models of this artificially added bias are adopted: either
a constant one, a random one or a localized constant bias, where a RSS offset occurs
just for a certain part of the FPs for every floor. A localized bias is illustrated in
Fig. 10.1, where all FPs are shown for three floors of building A (set-up Al). The
blue crosses represent the positions of the FPs without a RSS bias and magenta dots
represent the positions of the FPs with additional RSS bias. In this example, a bias
occurs for 30% of the FPs. The areas with a bias are created by choosing first ran-
domly one FP and then adding a bias to the RSS levels for all APs detected in this
FP and every neighboring FP within 20 m range [310]. Then, the next FP is chosen
randomly and a new area with the RSS bias is created. This is continued as long as
the chosen percentage (e.g., 30%) of the FPs with a RSS bias is filled.

In what follows, the positioning results are presented as mean distance error, floor
detection probability and percentage of distance errors of less than 5 m (see Section
7.4). Floor detection possibilities are discussed more in Section 10.3. In our analysis,
both constant bias was analyzed by varying the amount of a bias between —30 dB
and +30 dB and random bias was analyzed by varying the amount of a bias between
—50 dB and 450 dB. In the position estimation, we used again the probabilistic fin-
gerprinting with logarithmic Gaussian likelihood as the distance metric (see Section
4.1.2 and Table 4.1) together with KNN-method (K = 5) of Eq. (4.7). The noise
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Building A, showing measurements with and without a bias for 3 floors

8 e T * Bias 0 dB
5 BT - Bias +10 dB

ym -4 100

Fig. 10.1: Illustration of a localized bias for 3-floors of the building A (set-up Al).

variance o, (see Table 4.1), that represents both shadowing and measurement error
effects, was assumed to be equal for all APs and was chosen to be 6, = 4.47 dB,
according to the average shadowing variance observed in WLAN indoor channels in
Section 9.1. In addition, results for 6, = 10 dB are presented by us in [183]. For
the cases of random bias and localized bias, all of the results are averaged over 1000

random iterations.

The mean distance error, the floor detection probability and the percentage of dis-
tance errors are shown in Tables 10.1, 10.2 and 10.3, respectively. In each table, the
first row (i.e., bias b = 0) shows the results without any offset and it is kept in the
comparison as a reference. Several data scenarios from Table 7.2 are included, and
the results are shown with various constant bias values, with two different scenarios
of random bias and with two different scenarios of localized bias. For the random
bias, the amount of bias was selected randomly according to uniform distribution,

and the two cases are following:

1. The amount of a bias was varied between —10 dB and +10 dB (case 1).

2. The amount of a bias was varied between —50 dB and +50 dB (case 2).
For the localized bias, the cases are following:

1. The bias is set up to be —10 dB for 50% of the FP database and +10 dB for
the rest 50% (case 1).
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2. 410 dB bias occurs in 70% of the FPs, and 30% of the FPs are without any

bias (case 2).

When studying the Tables 10.1-10.3, it can be seen that the negative constant bias
b = —10 dB deteriorates the results less than the positive constant bias b = 410 dB.
The averaged mean distance error over all of the data scenarios with b = —10 dB
increases 17% in general, when compared to the reference case (bias » = 0). The
effect for the averaged percentage of distance errors of less than 5 m is at the same
level (i.e., decrease of 20%), but the floor detection probability decreases only slightly
(—2.6% in general). With b = 4-10, the averaged mean distance error increases even
more than 50%, and the averaged percentage of distance error and the averaged floor
detection probability decrease with 35% and 9%, respectively. For constant bias of
higher than +/ — 10 dB, the results start to deteriorate faster. The same conclusions
can be drawn also based on Fig. 10.2, that shows the CDF of absolute distance error
for measurement set-ups Al, E1, F1 and G1, for constant biases of b = 4/ — 10 dB,
b=+/—20dB and b = +/ — 30 dB, random bias case 1 and localized bias case 1.

Similar results as for the constant bias of +/ — 10 dB are obtained also for the two
localized bias cases, where either two different biases (+/ — 10 dB) are covering the
whole building (i.e., localized bias, case 1) or a bias of 10 dB occurs in some part
of the building only (i.e., localized bias, case 2). In the case of the random bias,
a different uniformly distributed random bias either between —10 dB and +10 dB
(case 1) or between —50 dB and 450 dB (case 2) was added for every heard AP in
every FP. As it can be seen in Tables 10.1-10.3, the smaller random bias (i.e., case
1) affects the results very little, if any. Both the mean distance error and the floor
detection probability are at the same level for every building, and also the percentage
of distance errors is decreased only by about 4.7 meters on average. For case 2 of
random bias, the results are deteriorated clearly more, being approximately at the
same level than with constant bias b = +/ — 30 dB.

Based on the Tables 10.1-10.3, the following general observations can be made:

e A negative constant bias of —10 dB increases the mean distance error less
than 20% in general, but a positive constant bias of 410 dB affects more (the

averaged mean distance error increases more than 50%).

e The results seem to be building dependent, i.e., in buildings with high number
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Table 10.1: Mean distance error [m].

Biash[dB] [ Al [ A2 [ BI [ C1 [ DI [ El [ FI [ Gl [ HI [ mean ]
0 39 [ 56 [ 94 [ 41 [ 33 [ 7399 84 [161] 76
-10 57 | 70 | 89 [ 59 [ 33 [103 ] 112 109 [ 169 [ 89
+10 55 | 88 | 158 [ 45 | 47 [ 110 [ 161 [ 136 | 270 | 119
—20 160 | 179 [ 208 [ 123 | 6.5 [23.7 [ 194 | 188 | 354 | 19.0
+20 124 [ 166 [ 320 [ 80 | 9.0 [ 164 [ 23.1 | 237 | 457 [ 208
-30 258 | 368 | 47.9 [ 159 [ 121 | 76.1 | 363 | 623 | 464 | 40.0
+30 235 | 324 | 466 | 13.1 [ 155 | 428 | 27.5 [ 449 [ 514 | 33.1
Random, case 1 4.1 59 9.7 4.3 3.4 7.4 10.4 9.0 17.3 79
Random, case2 | 28.0 [ 324 | 405 | 11.8 [ 11.1 | 493 | 28.1 | 34.02 [ 387 | 30.4
Localized, case 1 | 62 | 81 [ 119 [ 55 [ 40 [ 109 | 128 [ 122 [ 213 | 103
Localized,case2 | 52 [ 77 | 130 | 48 [ 45 | 90 | 136 | 119 [ 225 | 102

Table 10.2: Floor detection probability [%].

Biash[dB] [ Al [ A2 [ Bl [ C1 [ DI [ El [ FI | Gl | HI [ mean |
0 949 [97.8 1 90.3 [ 91.1 | 874 [ 88.1 [ 89.3 [ 87.9 [ 91.6 | 90.9
—10 91.1 [ 934 [ 926 | 906 | 867 [ 91.2 [ 74.6 | 83.8 | 926 | 885
+10 86.1 | 884 | 744 | 88.0 [ 81.8 | 869 | 67.3 [ 780 | 972 | 83.1
-20 665 [ 69.1 | 614 | 644 | 469 | 644 [ 424 | 61.0 | 888 | 628
+20 67.7 | 624 | 449 [ 69.4 [ 51.0 | 829 [ 473 [ 539 | 940 | 637
-30 525 [ 47.0 | 369 | 558 | 315 [ 30.4 [ 288 | 272 | 814 | 435
+30 60.8 | 425 | 56.8 | 39.4 [ 37.1 | 57.1 | 37.1 [ 273 | 65.1 | 47.0
Random, case 1 | 93.2 | 97.8 | 903 [ 90.5 [ 88.0 | 88.1 | 86.6 | 874 | 90.6 [ 903
Random, case2 | 54.0 [ 29.7 | 43.8 [ 30.9 [ 22.7 [ 266 | 329 | 393 [ 92.1 [ 413
Localized, case 1 | 87.0 | 91.0 | 82.1 | 863 | 81.6 | 854 | 72.6 | 79.8 | 93.0 | 843
Localized, case 2 | 87.8 | 92.0 | 789 | 86.2 [ 81.0 | 86.3 | 76.5 | 79.8 | 90.2 [ 843

Table 10.3: Percentage of distance errors less than 5 m [%].

Biash[dB] [ Al [ A2 [ Bl [ C1 [ DI [ El [ FI | Gl | HI [ mean |
0 743 [50.2 1300 [ 715 [ 839 [ 34.1 [ 237 [ 279 [ 165 | 458
-10 593 | 42.1 | 338 [ 423 [ 779 | 234 [ 189 [ 229 | 104 | 368
+10 519 | 289 [ 153 [ 633 [ 622 | 166 [ 107 [ 97 | 78 | 29.6
—20 118 | 81 [ 169 [ 69 [440 | 34 [ 41 [ 96 | 13 | 118
+20 179 [ 42 [ 56 [313 [ 198 [ 53 [ 14 | 49 [ 02 [ 101
-30 00 [ 01 [ 06 | 41 | 84 [ 00 [ 10 [ 04 [05] 17
+30 64 | 00 | 1.1 [ 86 [ 92 [ 05 [ 21 [ 09 | 09 | 33
Random, case 1 71.6 | 47.5 249 | 69.7 83.0 | 31.7 16.2 18.4 6.7 41.1
Random, case2 | 0.0 | 00 | 00 [ 00 [ 14 [ 00 | 00 | 00 | 00 [ 02
Localized, case 1 | 41.8 | 280 | 8.1 [ 484 [ 775 | 60 [ 62 [ 24 | 06 | 243
Localized, case 2 | 56.0 | 28.6 | 12.5 [ 60.1 [ 664 | 115 | 63 [ 46 | 10 | 274
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Building A1, statistics on 158 user track points, 4 floors

Building E1, statistics on 520 user track points, 6 floors
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Fig. 10.2: CDF of absolute distance error for buildings and set-ups (a) Al, (b) El, (c) FI

of APs and FPs, the positive bias may give as good results as negative bias

(e.g., buildings Al and C1).

e Random bias between —10 dB and +10 dB affects the results very little, if any
(less than 4% deterioration in mean distance error in general).

e Both cases of localized bias increase the mean distance error with around 35%.

The results obtained in this section are partly different than the results for higher
shadowing variation 6, = 10 dB presented by us in [183], where we noticed that both
constant or random biases between —20 dB to +10 dB covering either the whole
building or only parts of it, can be easily tolerated in indoor environments. This
is natural, since when the shadowing is smaller, the effects of the possible offsets

become more visible.
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10.1.2 Calibration methods

Though small RSS offsets (i.e., less than —/+ 10 dB) can be neglected, in some cases
the offset is larger and calibration is needed in order to compensate the effect of more
or less constant RSS variations to the positioning accuracy. Calibration or mitigation
methods are widely studied in the literature, see for example [65, 87,92, 124, 168,
169,216,254,320,325]. Different devices with different chipsets scale the measured
RSS values to RSSIs with various equations and steps, as was shown in Fig. 4.3. In
some cases the observed RSS values can be linear, as was noticed in [124, 131, 168],
but due to chipset sensitivity, antenna spacings, antenna gains and operating systems,

linearity is not a guarantee [110, 198, 325].

Calibration can be performed either in offline phase, as for example in [124,168,320]
or in online phase, as for example in [65,339]. In the offline calibration, measure-
ments are collected from a variety of devices (e.g., using crowdsourcing) to find an
appropriate signal mappings for each equipment type. The drawback with this is that
a large dataset is required to able to calculate the mapping models. Alternatively, the
measurement database can be based on only one device, and the mapping to another
device types is performed before the localization phase, in an offline phase called a

learning period [124, 168]. This learning period can be automatic or manual [124].

In online phase, the mapping or adaptation is done simultaneously with the estimation
phase. [140] proposes to use the differences of signal strengths instead of absolute
RSS values in the FP database. Another example is to use only RSSI ratios, where
one transmitter and corresponding RSS in the measurement is selected and the rest
RSSs in the data sample are divided by this chosen RSS. This type of RSS relation
approach, that does not need a separate calibration phase, is used for example in
[65,169].

An interesting alternative to online adaptation is to use so-called test rank based
method proposed in [216], where the detected transmitters in the measurement are
sorted according to their RSS values. The order of the transmitters forms the so-
called ranking vector, and in the positioning phase, only these ranking vectors of the
FP and the mobile are compared. Similar approach is also presented in [339]. How-
ever, also in these approaches, it is assumed that the order of the sorted RSS values is
the same between different devices. More discussion on different calibration schemes

can be found, e.g., in [131].
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10.2 Complexity comparison of FP, PL and WeiC approaches in WLAN
networks

In this section, the comparison of different RSS-based positioning approaches is con-
sidered in terms of complexity, that is measured in terms of database size and sim-
ulation times in WLAN networks. Though database size and simulation time are
not highly used as complexity measures, the number of needed parameters (i.e., the
database size) as a complexity measure is adequate, when the idea is to compare the
amount of data to be transferred between the server and the mobile with different al-
gorithms. In addition, when it is difficult to calculate other computational complexity
measures, simulation or computation time is used, as, e.g., in [215,269]. Also more
advanced computational complexity measures, such as number of operations (see,

e.g., [347]), are possible.

Table 10.4 shows the total number of parameters needed to be stored for the training
radiomap for all three positioning methods. Three different buildings with different
Agriq are included as examples with numeric values, since the total number of para-
meters is naturally building dependent. Besides the building size and layout, also the
measurement collection (i.e., if the whole building is covered or not) and the num-
ber of detected APs affects the total number of parameters. For FP, the number of
parameters is the sum of parameters per fingerprint, i.e., the fingerprint coordinates
(xi,vi,2zi), the AP index or identifier k and the measured power for the kth AP P,
for each hearable AP in the particular fingerprint i. Since the number of heard APs
may vary from one fingerprint to another, the number of parameters may be different
for different fingerprints. Indeed, the number of parameters needed for FP position-
ing is remarkably decreased, if the grid interval is increased and thus, the number of
fingerprints is smaller, as illustrated in Fig. 9.6 and as can be seen in Table 10.4 as
well. In the case of PL and WeiC positioning approaches, the number of parameters
is not dependent on grid size, but only on the amount of available transmitters. For
PL, all we need is the AP positions (x7x,yrx,zrx) for each AP, and an AP identifier
together with AP dependent PL parameter estimates (here, transmit power Py, and
path loss coefficient n;). For WeiC, the number of parameters is even less, namely
the AP identifier and positions only.

It can easily be noticed, that the motivation for using PL. and WeiC approaches is

in the amount of stored data and their ability to offer statistical solutions for large
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Table 10.4: Number of the parameters needed to be transmitted for different positioning
methods. Examples for buildings C, D and I, with 1 m, 5 m and 10 m grid

intervals.
| Building | FP \ PL WeiC
Ziv:”{ 3+ ZZT:XI(I) 2) Nrx X6 Nrx x4
C2 Nea = 1091029 | 4362 (~ 0.4% of Nca) | 2908 (=~ 0.3% of Neo)
C3 Nes = 171090 | 4362 (~2.5% of Ng3) | 2908 (~ 1.7% of Ne3)
C4 Ncg = 76074 4362 (= 5.7% of Ncg) | 2908 (= 3.8% of N¢c4)
D2 Npy = 1196629 7278 (= 0.6% of Npp) | 4852 (=~ 0.4% of Npy)
D3 Np3 = 225246 7278 (= 3.2% of Np3) | 4852 (=~ 2.1% of Np3)
D4 Npg = 104682 7278 (= 7.0% of Npyg) | 4852 (= 4.6% of Np4)
11 N11 =90542 972 (’25 1.1% OfN[]) 648 (’25 0.7% OfN”)
12 Np = 23025 972 (= 4.2% of Npp) 648 (~2.8% of Npp)
13 N3 = 10483 972 (=~ 9.3% of Nj3) 648 (~ 6.2% of Ni3)

areas. In FP method, the number of FPs may be very large and the data that we save
for each FP usually contains more than ten variables. E.g., if in a certain FP i the
number of heard APs is 18, we need to save 39 parameters for this one fingerprint
only: 3 parameters for the FP coordinates, 18 for RSSs and 18 for the AP indexes. In
the PL-based approach with one-slope model, we only need to store 5 parameters per
transmitter. Thus, with PL approaches, it is possible to save even up to 11 times in the
database size [291] when compared to the FP approach. Moreover, PL. models can
be easily used to predict the RSS values in areas where the data is missing with in-
terpolations and extrapolations. The drawback of PL models is that, in general, these
approaches have slightly worse positioning accuracy when compared to FP, due to
the modeling inaccuracies, as we showed in Section 9.3.1 via WLAN measurements.
In order to be able to calculate the AP positions and PL parameter estimates, the full
radiomap is still needed for PL and WeiC approaches as well, though the amount of
transmitted data is remarkably decreased.

Different positioning methods are also compared in terms of time consumption in
Table 10.5 for buildings C and D, with two different A4 lengths. The time is cal-
culated over all user measurements (i.e., N, = 250), with A,y = 1 m and Ag,ig =5
m. The idea is to compare the time consumption of different methods with all data

included, and also if 50% of the database were removed. It can be seen that the FP
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Table 10.5: Performance comparison via algorithm time consumption [s] for 250 user meas-
urements. All positioning methods included, with no AP selection and 50% AP
removal. Buildings C and D, with both 1 m and 5 m grids.

Building FP PL WeiC
Building C2 | Noremoval | 1; =1483s | 0.10x# | 1.1x 1072 x4
50% removal | 0.81x7 | 0.07x# | 1.1x107 x1
Building C3 | No removal 0.18 x 1y 010x# | 1.1x107° x 1
50% removal | 0.17 xt; | 0.06x7# | 1.1 x 107 x 1
Building D2 | Noremoval |t =2472s | 0.08 xt, | 7.0 x 10°°x1
50% removal 0.82 x 1ty 0.06x | 70x10 X1
Building D3 | Noremoval | 023 xf, | 0.08x7 | 7.0x107% x1r,
50% removal | 0.13x1; | 0.05xn | 7.0x 10 °x 1,

method is clearly slower than other methods, due to more complex pattern matching
algorithm and big data matrices in the radiomap. When the grid size is increased to
5 m, the time consumption for FP is decreased remarkably, even more than 80%. We
can also notice that the difference between FP and PL methods is clearly smaller with
5 m grid. For PL approach, 50% data removal slightly decreases the time consump-
tion. WeiC algorithm, that uses only AP positions in the estimation and is very fast
algorithm, is not basically affected by the decrease in the number of APs. Indeed, the
grid interval affects the time consumption of the PL method only slightly, if any, and
is not affecting the time consumption of WeiC at all, since the number of parameters
for these methods remains the same for all grid intervals, as was seen in Table 10.4.
Based on the results shown in Tables 10.4 and 10.5, it can be concluded that with
an appropriate length of A,,;; and AP selection methods presented in Chapter 9, the

complexity of FP method can be decreased remarkably.

10.3 Floor detection

One important aspect in indoor positioning is the floor detection. The position es-
timation in a multi-floor building can be performed either directly in 3D mode, or
alternatively estimate first the correct floor and then calculate the position estimate
in 2D in the chosen floor. In this section, we propose a novel low-complexity floor

detection algorithm. We show that the proposed algorithm outperforms the other low-
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complexity methods in terms of floor detection probability, but is not as complex as
FP approach.

10.3.1 Possible floor detection algorithms

Many positioning algorithms can be used to estimate the position directly in 3D. In
these cases, e.g., in FP approach, the floor can further be decided according to the
position estimate. If no KNN method is used, the best FP in the building tells also the
floor estimate (or z-coordinate, respectively). If KNN is used, and the chosen FPs are
located in different floors, the floor can be estimated by simply mapping to the closest
one. The traditional low-complexity methods for positioning, and also for floor de-
tection, are centroid (Cen) [47] and WeiC [40, 88,200, 208, 304, 326] algorithms. In
Cen, the idea is to use only the estimated (or known) transmitter locations, and cal-
culate the user position only as a centroid over the detected transmitters. In WeiC,
the idea is the same, but a weighting factor is included to emphasize more, e.g., the
transmitters with higher RSS level. WeiC algorithm was presented earlier in Sec-
tion 4.1.2. Both Cen and WeiC can be similarly be used to estimate the transmitter
locations in the training phase. Other possible floor detection algorithms are, e.g., a
low-complexity approach presented in [269], based on K-means clustering.

10.3.2  Novel floorwise radiomap matrix model

In this section, it is assumed that in the data gathering process the radiomap database
is built floorwise, and Ny, measurements (or FPs) are available from floor f, with
f=1,...,Nfipors. For each floor f, a RSS matrix RY) is defined as

[ f f
A r;gvfpf
RV =| ... .. A0 : (10.2)
f f f
_ Ml TNpea o e T, _
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where r,Efnz includes the information of both heard and non-heard transmitters, as
follows:
0 if kth AP is not heard in mth FP
: in fth floor
An={ ., mimder (10.3)
’ 10710 if kth AP is heard in mth FP
in fth floor

Further on, the N7x X Ny, radiomap data can be modelled via the following floorwise

observation matrix UY):

(f) (f) (f)
g Hip LNgp,
o= ) : (10.4)
..(}) ..(}) SR
| U U2 o Moy, |
with the column vectors v, (f) = [u(f V) ) ]7 having the el 1
m(f) = Uy s U - UN g the elements equal to
the normalized RSS values:
rlgf)
u,ﬁf%:prf’m ,m=1,...,Npp,, k=1,...,Nrx (10.5)
N ()
Z rk,m
m=1

The floorwise observation matrix U) can be therefore seen as a collection of vector

observations at f-th floor:

UY) = [vi(f)va(f) ... Vi, ()] (10.6)

In other words, each vector v, (f) of size Nrx x 1 contains implicitly the information
about which APs are heard and which are not heard in the mth FP. The floorwise
matrix UY) can be thus seen as the realizations of a multivariate column random

vector vi/) € R¥x*1 with mean per floor uy(/):

B 0 n oo '
w =Y wl) Yy Zukwfpf (10.7)
k=1 k=1 k=1
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Fig. 10.3: An example of AP patterns per floors for 3 successive floors in building C5 of 9

floors.

Basically each floor has a different observation matrix U) and a different pattern
mean vector uy/). An example of the observation matrices for three successive floors

in a 9-floor building is shown in Figure 10.3.

Due to the correlated measurements, the covariance matrix of the multivariate vec-
tor v/) does not have full rank, and therefore, the multivariate vector distribution
probability distribution function is degenerate. Thus, in the floor detection algorithm
presented here, we will use only the information stored in the floorwise mean vectors
uy). Thus, the floorwise mean vector information is the only information that needs
to be transmitted to or stored at the mobile from the training dataset, in addition to the
estimated AP location in 2D (£7x,¥7x). With this way, the amount of data needed
to be transferred to the receiver can be decreased remarkably, when compared to the
whole FP database.

10.3.3 Novel positioning algorithm via multivariate random variable patterns

In this section, we present a novel Multivariate Random Variable Patterns (MuRVaP)
floor detection algorithm. The main idea in our proposed algorithm is that the most

likely floor is detected based only on the certain patterns of heard and non-heard APs,
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Pattern cross-correlation matrix

Floor index

Floor index

Fig. 10.4: An example of the pattern cross-correlation matrix in building C5 of 9 floors.

that are build separately for each floor. It can be assumed that the pattern mean vectors
uyY) are uncorrelated across different floors, as illustrated in Fig. 10.4, which shows
the cross-correlation mean pattern values uy (1) Uy (%2) for each pair of floors (fi, f2) in

a 9-floor building.

In the estimation phase, the receiver detects a set of APs with certain RSSs Oy. Also

in this phase, a vector w of heard and non-heard APs can be build as

T
4 I'Nrx
w= k=1,..., Nrx (10.8)
N N ) ) ’ ’
[ k=1 T Zki)irNTX]

where r;, = 0, if the kth transmitter is not detected, and r, = 10%, if the kth AP is
detected by the receiver, with Oy [dB].

In order to decide which is the most likely floor f the Euclidean distance between
the vector observed by the transmitter w is compared with the floorwise mean pattern

vectors uy);
—~ T
7 = argming (w— ,uv(f)> <w— ,uv(f)> (10.9)

Thus, the estimated Zjss-coordinate of the transmitter location will be the height of
the estimated floor ]/‘\, while the estimated £3s5- and yyss-coordinates can be calculated

using, e.g., WeiC (see Section 4.1.2) or other low-complexity estimation approaches.
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Table 10.6: Floor detection probabilities [%].

Building | Cen | WeiC | Floor of MuRVaP | FP
strongest AP | (new)

A4 619 | 699 | 69.1 85.5 87.3
B2 68.9 | 90.3 | 864 90.8 97.7
C5 346 | 74.6 | 73.7 82.8 81.5
D5 54.7 | 80.4 | 81.5 86.5 94.5
G2 499 | 76.1 | 80.3 84.0 90.3
Average | 54.3 | 78.3 | 78.2 85.9 90.3

10.3.4 Measurement-based results and complexity comparison

Table 10.6 presents the floor detection probabilities for 5 different multi-floor build-
ings, comparing several floor detection algorithms: the proposed MuRVaP, Cen,
WeiC, a low-complexity estimator based only on the estimated floor of the strongest
detected AP, and FP approach. It can be seen that the proposed low-complexity
MuRVaP approach offers, on average, between 7.7% and 31.6% better floor detec-
tion probability than the other low-complexity estimators (Cen, WeiC and floor of
strongest AP). Indeed, the proposed MuRVaP also has only 4.4% lower floor detec-
tion probability on average than the high-complexity FP approach, with the advantage

of a much lower complexity.

Table 10.7 presents the simulations times for estimating one user track point of each
considered building. As was noticed already in Section 10.2 and Table 10.5, FP ap-
proaches are not so good for mobile-centric real-time solutions, as an estimate per
user track point requires 0.1 — 0.52 seconds. On the other hand, the low-complexity
approaches discussed in here are all offering very fast position estimates (less than
0.5 x 1073 s per estimate) and are fully adequate for real-time mobile-centric solu-
tions. When considering the number of parameters to be saved and transmitted to the
mobile, the MuVRaP algorithm outperforms the FP approach clearly, even though
the number of parameters is slightly higher than, e.g., in WeiC algorithm.

10.4 Conclusions

In this chapter, we have focused on the challenges related to estimation phase (phase

D in Fig. 4.1). We have presented in this chapter a novel study of offsets between
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Table 10.7: Complexity comparison via algorithm time consumption (simulation times for

one user track point) in milliseconds.

Building | Cen WeiC | Floor of MuRVaP | FP
strongest AP | (new)

[ms] [ms] [ms] [ms] [ms]
A4 0.047 | 0.063 | 0.039 0.079 164
B2 0.049 | 0.064 | 0.045 0.12 100
C5 0.050 | 0.079 | 0.061 0.23 501
D5 0.055 | 0.083 | 0.063 0.19 522
G2 0.065 | 0.087 | 0.070 0.23 107
Average | 0.053 | 0.075 | 0.056 0.18 279

the RSS values in the training and estimation phases of fingerprinting. We have
investigated both constant and random biases, covering either the whole building or
only parts of it. We have shown in our analysis that if the shadowing is small, only
small amounts of biases (i.e., less than +/ — 10 dB) can be tolerated without any
calibration. This holds both for a bias in the whole building and for a localized bias.
However, random bias between —10 to +10 dB does not increase the positioning
errors. We have also presented an overview of the possible calibration methods found

in the literature.

The challenge of the choice of appropriate positioning algorithm was taken into ac-
count in this chapter by continuing the analysis of FP, PL. and WeiC approaches. The
analysis was started in Section 9.3, where the three positioning methods were com-
pared in terms of positioning accuracy together with AP reductions. In this chapter,
the analysis is continued by comparing FP, PL and WeiC approaches in terms of
complexity. The complexity was measured in terms of database size and simulation
times for the actual positioning. We showed, that the database size and algorithm
time consumption for FP method are multiple when compared to the PL and WeiC
methods, but can be efficiently decreased with AP removal and good choice of the
grid interval. In the last section in this chapter, we proposed a novel floor detection
algorithm. The proposed algorithm called MuRVaP offers clearly better floor detec-
tion than the traditional low-complexity methods, while keeping low computational

load and requiring only a fraction of the database size needed for the FP approach.

The main contributions of this chapter can be summarized as follows:



150 10. Proposed RSS-based positioning solutions

e A novel study of a various offsets in RSS-based localization, based on extens-

ive WLAN measurements.

e A comprehensive comparison of three most widespread positioning approaches,

in terms of positioning accuracy and complexity.

e A novel low-complexity floor detection algorithm.

Based on parts of the work presented in this chapter, there has been also one public-

ation:

1. Elina Laitinen, Jukka Talvitie and Elena Simona Lohan, ”’On the RSS biases
in WLAN-based indoor positioning”, in Proc. of IEEE International Commu-
nication Workshop (ICCW), London, UK, Jun 2015, pp. 797-802.



11. COMPARISON OF GNSS, CELLULAR AND WLAN
POSITIONING SOLUTIONS

Regarding the different challenges and solutions presented in this thesis, the purpose
in this chapter is to make a brief comparative analysis and summary of the discussed
three positioning method, namely GNSS, cellular and WLAN-based. In addition, we

will discuss the hybrid positioning solutions.

11.1 Comparative analysis of the different methods

In Section 2.6 and Table 2.5, the three different positioning approaches (GNSS, cel-
lular and WLAN) were compared shortly. In addition, Table 2.6 presented the main
challenges for these systems. Table 11.1 brings in new concepts, focusing espe-
cially to the solutions addressed in this thesis. Since the solutions in outdoor and
indoor cases for each method can be different, both environments are taken into ac-
count separately. As it is presented in Table 11.1, some aspects are common for all
methods, while some, for example PL models, are more relevant for RSS-based ap-
proaches (i.e., WLAN and cellular). As another example, fading models are import-
ant in GNSS, but in the case of RSS-based approaches, they are typically modelled
jointly with path losses. As seen in Table 11.1, GNSS are highly suitable in out-
door environments, but have limited availability indoors. WLAN and cellular act as
complementary to GNSS, through their indoor availability and floor detection capab-

ilities.

11.2  Hybrid positioning solutions

An ideal positioning system would be able to provide accurate location estimates

anywhere at any time, and guarantee the continuity of the serving, both outdoors and
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Table 11.1: Comparison of different positioning methods

minimum number of transmitters.

and solutions to various challenges addressed in this thesis. Nrx,, represents the

Outdoor positioning

Indoor positioning

7 GNSS 7 WLAN RSS cellular RSS | GNSS WLAN RSS cellular RSS
Availability Very high Low to moderate High Low Very high High
Most used PL single-slope Okumura-Hata single-slope single- &
models - PL [129,244], - PL multi-slope
[21,155,241] COST Hata [21,155,241] PL [55,355]
[12,295]
Most used Nakagami-m Typically modelled jointly Nakagami-m Typically modelled jointly
fading models [186,187] with path losses [Chapter 8] [Chapter 5] with path losses [Chapter 8]
User privacy Very high Needs privacy-preserving mechanisms Very high Needs privacy-preserving mechanisms
Nrx,,, for 4 (clear sky), 10 10 Needs assistance 10 10
< 5 m error 7 (urban canyons) [Chapter 9] [Chapter 9] from other systems [Chapter 9] [Chapter 9]
Floor
detection - - - Low High Moderate
capability [Chapter 9] [81]
Impact of Receiver RSS biases RSS biases Receiver RSS biases RSS biases
different sensitivity [Chapter 9] sensitivity [Chapter 9]
receiver types
Methods to Enhanced Topology Hybridization Enhanced Topology Hybridization
increase integration optimization with GNSS [354] integration optimization with GNSS [354]
performance methods [Chapter 6] [Chapter 7] or WLAN [166] methods [Chapter 6] [Chapter 7] or WLAN [166]
Methods to Statistical models Statistical models Cloud Statistical models Statistical models
decrease Cloud GNSS [Chapter 9], [Chapter 9], GNSS [Chapter 9], [Chapter 9],
complexity [211] AP significance & grid grid interval [211] AP significance & grid grid interval
interval [Chapter 8] [Chapter 8] interval [Chapter 8] [Chapter 8]
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Fig. 11.1: Galileo signal performance versus CNR.

indoors. As it has been stated earlier in this thesis, GNSS as a stand-alone solution
does not solve the challenge of an accurate indoor positioning. This can be shown
by following the model of [202]. Assuming no multipath or ionospheric errors, a
coarse estimate of Galileo signal performance versus CNR is shown in Fig. 11.1,
assuming 4, 7 or 10 visible Galileo satellites, respectively. Clearly, at low CNR
specific to indoor environments, Galileo (and similarly, other GNSS signals as well)
cannot achieve good accuracy; the accuracy is of the order of tens to hundreds of
meters. Clear sky at outdoor scenarios usually occurs above 44 dB-Hz [285]. Indoor
scenarios typically have CNR below 20-25 dB-Hz, and in-between we may have deep
urban canyons or signal severely affected by multipaths. Carrier and code tracking
in GNSS are typically not working well below 24 dB-Hz [346], and thus, there is a
certain CNR limit under which the GNSS-based positioning is no longer reliable.

The high need for global indoor positioning and the difficulty of utilizing GNSS
indoors led to the development of A-GNSS and HS-GNSS receivers. In addition,
several proposals for indoor positioning has been presented in the literature within
the last decade. However, due to contradictory conditions for positioning in outdoor
and indoor environments, none of the existing or proposed systems is able to provide
global positioning in all conditions as a stand-alone solution. The most promising
approach is a hybrid solution, where GNSS is supplemented, e.g., with WLAN or
cellular based positioning or other types of sensors.

Lately, GNSS has been proposed to be combined with cellular networks [77, 227,
354], with WLAN [82, 105, 195, 237,271, 362], with UWB [30, 106, 118], or with
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Fig. 11.2: An example of a block diagram with a hybrid architecture.

INS [165]. In [261], a ubiquitous solution with multiple techniques combined to-
gether, is presented. In [105,362], a hybrid solution combining GNSS and WLAN po-
sitioning was studied to overcome the challenges of GNSS in urban canyons. In [82],
a hybrid solution was proposed for ubiquitous positioning both outdoors and indoors,
by utilizing GNSS and WLAN measurements together with place detection method.

By utilizing the already existing signals that have widespread deployment and easy
access to measurement data, such as cellular and WLAN networks, the hybrid ap-
proaches can result both as an accurate and as economical solution. One possible
flowchart of a hybrid positioning solution using GNSS with cellular and WLAN data
is presented in Fig. 11.2. The outdoor/indoor detection can be done based on the
GNSS availability, as for example in [82]. If enough GNSS signals are not detected,
the positioning is switched to WLAN-based approach. Cellular networks, that have
wide coverage and that are typically always available on the mobile device, but that
are not as accurate as a stand-alone solution with the current networks, can be used
as an add-on to the GNSS or WLAN-based positioning.

11.3 Conclusions

This chapter has provided a short concluding overview of the studied challenges and
solutions, concerning the three positioning approaches covered in this thesis. We
presented a comparative table, and discussed also the hybrid approaches as future

solutions.



12. CONCLUSIONS AND FUTURE ISSUES IN WIRELESS MOBILE
LOCALIZATION

As stated in Chapter 11, none of the currently existing wireless positioning meth-
ods can solve the global positioning problem in every environment as a stand-alone
solution but hybrid approaches are needed. Therefore, the focus in this thesis was on
different positioning approaches, namely GNSS, cellular and WLAN-based localiza-
tion. In the case of cellular and WLAN-based positioning, this thesis concentrated on
the two-stage RSS-based localization, due to the easy availability and accessibility
of RSS measurements in the mentioned networks. Positioning approaches based on
existing wide-coverage networks can provide low-complexity and economical solu-

tions.

This thesis started with GNSS related challenges, and analyzed indoor fading channel
characteristics based on GPS-like signals. It was showed that the amplitude variations
indoors match the Nakagami-m distribution, and based on these findings, a simple
and efficient Nakagami-m fading channel simulator, that can be used to model vari-
ous fading environments in developing acquisition and tracking algorithms, was built.
GNSS acquisition algorithms were improved to address the challenges of GNSS in
indoor environments, such as multipath propagation and low CNR. The ambiguous
modulation types, that will be used in the new GNSS signals, were also taken into ac-
count. First, it was showed in this thesis that the ratio of the first two significant peaks
in the time-frequency mesh is the most robust to varying channel conditions among
several other studied CFAR detectors, and therefore, it is the best choice to be used
as the decision variable. Secondly, an enhanced differential correlation method was
proposed to be used as a post-detection correlation method in HS-GNSS receivers.
In was showed in this theses that the proposed method outperforms the conventional
non-coherent integration method and traditional differential correlation method in

indoor environment, where the mobile speed is low.
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The typical challenges in RSS-based positioning are related either to the positioning
architecture design, training phase, data transferring and storage, or estimation phase.
The architecture related challenges, such as transmitter density and placements, were
considered by calculating a CRLB-based criterion, that was also confirmed via real
measurements. This criterion can be used as an efficient tool to evaluate the existing
or planned transmitter topology and density in a building, in terms of positioning
accuracy. Shadowing effect was studied both in WLAN and cellular networks based
on measurement data. One important conclusion was that based on the estimated path
loss coefficients, 3D path loss models can model very well the signal propagation in

multi-floor buildings and no separate floor losses are needed.

One important question is the choice of an appropriate positioning algorithm, that
was studied continuously in the thesis. FP method provided consistently the best po-
sitioning performance, but it also requires larger database and more parameters to be
transmitted to the mobile. Therefore, the effect of grid density and AP removals was
studied for three positioning approaches (namely FP, PL and WeiC). It was showed
that maxRSS-based criterion, where the transmitters were sorted according to their
maximum RSS values and only the highest ones were kept, was the best choice in
terms of positioning accuracy. It was also noticed that in FP method, even 50% of
the training database can be reduced without deteriorating significantly the position-
ing results. This is an important finding, since the complexity of FP method can be
reduced remarkably with AP reduction and with good choice of the grid interval. Re-
lated to the estimation phase, the possibility of RSS offset caused by different devices
in the training phase than in the estimation phase was considered. Several different
types of offsets were investigated, and it was noticed that if the shadowing is small,
the small mounts of biases (i.e., between —10 dB and +10 dB) affect the localization
results very little and no calibration is needed. In addition, a novel floor detector, that
was noticed to outperform the other low-complexity floor detection methods without

increasing the complexity, was proposed.

As discussed in Chapter 11, combining several positioning methods together will lead
not only to more accurate location solutions but also better availability, continuity and
integrity. In the future, an accurate estimate of the user position will not be depend-
ent on whether the user is outdoors or indoors. The increasing number of networks
and transmitters will result as improved communication resources, but also as im-

proved performance and availability of various network-based positioning solutions.
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The upcoming 5G networks with femtocells and dense transmitter infrastructure can
allow more accurate positioning, and hyper-precision positioning is mentioned to be
even a requirement for technology developments in 5G [10]. In addition, the new net-
work architecture will also explode the number of possibilities offered by Internet of
Things (IoT). IoT will require positioning solutions in many services, and especially
accurate indoor positioning is essential. Thus, the convergence of communication
and localization would be very beneficial in the future, e.g., as a design of joint sig-

nals for both communication and positioning purposes.
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