9 research outputs found

    Opinion Holder and Target Extraction on Opinion Compounds – A Linguistic Approach

    Get PDF
    We present an approach to the new task of opinion holder and target extraction on opinion compounds. Opinion compounds (e.g. user rating or victim support) are noun compounds whose head is an opinion noun. We do not only examine features known to be effective for noun compound analysis, such as paraphrases and semantic classes of heads and modifiers, but also propose novel features tailored to this new task. Among them, we examine paraphrases that jointly consider holders and targets, a verb detour in which noun heads are replaced by related verbs, a global head constraint allowing inferencing between different compounds, and the categorization of the sentiment view that the head conveys

    Jointly Identifying Predicates, Arguments and Senses using Markov Logic

    No full text
    In this paper we present a Markov Logic Network for Semantic Role Labelling that jointly performs predicate identification, frame disambiguation, argument identification and argument classification for all predicates in a sentence. Empirically we find that our approach is competitive: our best model would appear on par with the best entry in the CoNLL 2008 shared task open track, and at the 4th place of the closed track—right behind the systems that use significantly better parsers to generate their input features. Moreover, we observe that by fully capturing the complete SRL pipeline in a single probabilistic model we can achieve significant improvements over more isolated systems, in particular for out-of-domain data. Finally, we show that despite the joint approach, our system is still efficient.

    Improving Syntactic Parsing of Clinical Text Using Domain Knowledge

    Get PDF
    Syntactic parsing is one of the fundamental tasks of Natural Language Processing (NLP). However, few studies have explored syntactic parsing in the medical domain. This dissertation systematically investigated different methods to improve the performance of syntactic parsing of clinical text, including (1) Constructing two clinical treebanks of discharge summaries and progress notes by developing annotation guidelines that handle missing elements in clinical sentences; (2) Retraining four state-of-the-art parsers, including the Stanford parser, Berkeley parser, Charniak parser, and Bikel parser, using clinical treebanks, and comparing their performance to identify better parsing approaches; and (3) Developing new methods to reduce syntactic ambiguity caused by Prepositional Phrase (PP) attachment and coordination using semantic information. Our evaluation showed that clinical treebanks greatly improved the performance of existing parsers. The Berkeley parser achieved the best F-1 score of 86.39% on the MiPACQ treebank. For PP attachment, our proposed methods improved the accuracies of PP attachment by 2.35% on the MiPACQ corpus and 1.77% on the I2b2 corpus. For coordination, our method achieved a precision of 94.9% and a precision of 90.3% for the MiPACQ and i2b2 corpus, respectively. To further demonstrate the effectiveness of the improved parsing approaches, we applied outputs of our parsers to two external NLP tasks: semantic role labeling and temporal relation extraction. The experimental results showed that performance of both tasks’ was improved by using the parse tree information from our optimized parsers, with an improvement of 3.26% in F-measure for semantic role labelling and an improvement of 1.5% in F-measure for temporal relation extraction

    Efficient Lagrangian relaxation algorithms for exact inference in natural language tasks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 95-99).For many tasks in natural language processing, finding the best solution requires a search over a large set of possible structures. Solving these combinatorial search problems exactly can be inefficient, and so researchers often use approximate techniques at the cost of model accuracy. In this thesis, we turn to Lagrangian relaxation as an alternative to approximate inference in natural language tasks. We demonstrate that Lagrangian relaxation algorithms provide efficient solutions while still maintaining formal guarantees. The approach leads to inference algorithms with the following properties: " The resulting algorithms are simple and efficient, building on standard combinatorial algorithms for relaxed problems. " The algorithms provably solve a linear programming (LP) relaxation of the original inference problem. " Empirically, the relaxation often leads to an exact solution to the original problem. We develop Lagrangian relaxation algorithms for several important tasks in natural language processing including higher-order non-projective dependency parsing, syntactic machine translation, integrated constituency and dependency parsing, and part-of-speech tagging with inter-sentence constraints. For each of these tasks, we show that the Lagrangian relaxation algorithms are often significantly faster than exact methods while finding the exact solution with a certificate of optimality in the vast majority of examples.by Alexander M. Rush.S.M

    Towards generalizable neuro-symbolic reasoners

    Get PDF
    Doctor of PhilosophyDepartment of Computer ScienceMajor Professor Not ListedSymbolic knowledge representation and reasoning and deep learning are fundamentally different approaches to artificial intelligence with complementary capabilities. The former are transparent and data-efficient, but they are sensitive to noise and cannot be applied to non-symbolic domains where the data is ambiguous. The latter can learn complex tasks from examples, are robust to noise, but are black boxes; require large amounts of --not necessarily easily obtained-- data, and are slow to learn and prone to adversarial examples. Either paradigm excels at certain types of problems where the other paradigm performs poorly. In order to develop stronger AI systems, integrated neuro-symbolic systems that combine artificial neural networks and symbolic reasoning are being sought. In this context, one of the fundamental open problems is how to perform logic-based deductive reasoning over knowledge bases by means of trainable artificial neural networks. Over the course of this dissertation, we provide a brief summary of our recent efforts to bridge the neural and symbolic divide in the context of deep deductive reasoners. More specifically, We designed a novel way of conducting neuro-symbolic through pointing to the input elements. More importantly we showed that the proposed approach is generalizable across new domain and vocabulary demonstrating symbol-invariant zero-shot reasoning capability. Furthermore, We have demonstrated that a deep learning architecture based on memory networks and pre-embedding normalization is capable of learning how to perform deductive reason over previously unseen RDF KGs with high accuracy. We are applying these models on Resource Description Framework (RDF), first-order logic, and the description logic EL+ respectively. Throughout this dissertation we will discuss strengths and limitations of these models particularly in term of accuracy, scalability, transferability, and generalizabiliy. Based on our experimental results, pointer networks perform remarkably well across multiple reasoning tasks while outperforming the previously reported state of the art by a significant margin. We observe that the Pointer Networks preserve their performance even when challenged with knowledge graphs of the domain/vocabulary it has never encountered before. To our knowledge, this work is the first attempt to reveal the impressive power of pointer networks for conducting deductive reasoning. Similarly, we show that memory networks can be trained to perform deductive RDFS reasoning with high precision and recall. The trained memory network's capabilities in fact transfer to previously unseen knowledge bases. Finally will talk about possible modifications to enhance desirable capabilities. Altogether, these research topics, resulted in a methodology for symbol-invariant neuro-symbolic reasoning

    Efficient Maximum A-Posteriori Inference in Markov Logic and Application in Description Logics

    Full text link
    Maximum a-posteriori (MAP) query in statistical relational models computes the most probable world given evidence and further knowledge about the domain. It is arguably one of the most important types of computational problems, since it is also used as a subroutine in weight learning algorithms. In this thesis, we discuss an improved inference algorithm and an application for MAP queries. We focus on Markov logic (ML) as statistical relational formalism. Markov logic combines Markov networks with first-order logic by attaching weights to first-order formulas. For inference, we improve existing work which translates MAP queries to integer linear programs (ILP). The motivation is that existing ILP solvers are very stable and fast and are able to precisely estimate the quality of an intermediate solution. In our work, we focus on improving the translation process such that we result in ILPs having fewer variables and fewer constraints. Our main contribution is the Cutting Plane Aggregation (CPA) approach which leverages symmetries in ML networks and parallelizes MAP inference. Additionally, we integrate the cutting plane inference (Riedel 2008) algorithm which significantly reduces the number of groundings by solving multiple smaller ILPs instead of one large ILP. We present the new Markov logic engine RockIt which outperforms state-of-the-art engines in standard Markov logic benchmarks. Afterwards, we apply the MAP query to description logics. Description logics (DL) are knowledge representation formalisms whose expressivity is higher than propositional logic but lower than first-order logic. The most popular DLs have been standardized in the ontology language OWL and are an elementary component in the Semantic Web. We combine Markov logic, which essentially follows the semantic of a log-linear model, with description logics to log-linear description logics. In log-linear description logic weights can be attached to any description logic axiom. Furthermore, we introduce a new query type which computes the most-probable 'coherent' world. Possible applications of log-linear description logics are mainly located in the area of ontology learning and data integration. With our novel log-linear description logic reasoner ELog, we experimentally show that more expressivity increases quality and that the solutions of optimal solving strategies have higher quality than the solutions of approximate solving strategies
    corecore