191 research outputs found

    A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    Get PDF
    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks

    Efficient Clustering Protocol Based on Stochastic Matrix & MCL and Data Routing for Mobile Wireless Sensors Network

    Get PDF
    In this paper, we have already presented a new approach for data routing dedicated to mobile Wireless Sensors Network (WSN) based on clustering. The proposed method is based on stochastic matrix and on the Markov Chain Cluster (MCL) algorithm to organize a large number of mobile sensors into clusters without defining the required clusters number in advance. It is based on mobile sensors connectivity to determinethe optimal number of clusters and to form compact and well separated clusters. Our proposed approach is a distributed method using nodes locations, degrees and theirs residual energies during the cluster head election. Simulation results showed that the proposed approach reduced the loss packets rate by 80%, the energy consumption by 30% and improved the data delivery rate by 70% compared to LEACH-M protocol. Moreover, it outperforms the E-MBC protocol and reduced the average energy consumption and loss packets rate by 60%; as well as it improved the success packets delivery rate by 40%

    Energy-efficient mobile sink routing scheme for clustered corona-based wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) are generally composed of several tiny, inexpensive and self-configured sensor nodes, which are able to communicate with each other via wireless communication devices. The main duty of the nodes is to sense data and transmit to a sink via multi- or single-hop data transmission manners. Since the sensor nodes generally are limited in power resources, they deplete their energy rapidly. In addition, sensor nodes are usually distributed in places, where may be too harsh to be accessible for human. Consequently, exchanging or recharging the power supplies of the sensor nodes is difficult. Therefore, energy efficiency is the most critical issue in design of WSN, which affects the lifetime and performance of the network. Several cluster-based schemes are proposed to enhance the energy efficiency; however, most of them generate sub-optimal clusters without considering both coverage and energy issues simultaneously. Furthermore, several mobility-based schemes are proposed in order to achieve balanced energy consumption through optimizing the sojourn time and sojourn location of Mobile Sinks (MS). Nevertheless, most of them adjust the sojourn time of MS under predictable mobility pattern. Moreover, in most of existing mobility based schemes, time limitation is not considered for optimizing the sojourn location of MS. The aim behind this research is to develop an Energy-efficient Mobile Sink Routing (EMSR) Scheme, which improves the energy efficiency. The EMSR is the incorporation of three schemes: Energyefficient based Unequal-sized Clustering (EUC) mechanism aims to construct the optimal sized clusters, which ensures the energy conservation and coverage preservation. Collaborative Mobile Sink-based Inter-Cluster Routing (CMSICR) mechanism aims to optimize the sojourn time of MS to balance the energy consumption among Cluster Heads (CH). An Energy-efficient Intra-cluster Movement of Mobile Sink (EIM2S) mechanism, which identifies the optimal sojourn locations of the MS within clusters in order to balance the energy consumption among Member Nodes (MN). The EMSR partitions the network field into optimal clusters and employs MSs in order to balance the energy consumption among CHs and MNs. Simulation results show that EMSR achieved improved performance in terms of network lifetime by 51%, total energy consumption by 28% wasted energy by 36% compared to existing schemes. In conclusion, the proposed routing scheme proves to be a viable solution for multi hop cluster based WSN

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    A survey of network lifetime maximization techniques in wireless sensor networks

    No full text
    Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteri

    An energy-efficient mobile sink-based unequal clustering mechanism for WSNs

    Get PDF
    Network lifetime and energy efficiency are crucial performance metrics used to evaluate wireless sensor networks (WSNs). Decreasing and balancing the energy consumption of nodes can be employed to increase network lifetime. In cluster-based WSNs, one objective of applying clustering is to decrease the energy consumption of the network. In fact, the clustering technique will be considered effective if the energy consumed by sensor nodes decreases after applying clustering, however, this aim will not be achieved if the cluster size is not properly chosen. Therefore, in this paper, the energy consumption of nodes, before clustering, is considered to determine the optimal cluster size. A two-stage Genetic Algorithm (GA) is employed to determine the optimal interval of cluster size and derive the exact value from the interval. Furthermore, the energy hole is an inherent problem which leads to a remarkable decrease in the network’s lifespan. This problem stems from the asynchronous energy depletion of nodes located in different layers of the network. For this reason, we propose Circular Motion of Mobile-Sink with Varied Velocity Algorithm (CM2SV2) to balance the energy consumption ratio of cluster heads (CH). According to the results, these strategies could largely increase the network’s lifetime by decreasing the energy consumption of sensors and balancing the energy consumption among CHs

    Power saving and energy optimization techniques for Wireless Sensor Networks

    Full text link
    Wireless sensor networks have become increasingly popular due to their wide range of applications. Energy consumption is one of the biggest constraints of the wireless sensor node and this limitation combined with a typical deployment of large number of nodes have added many challenges to the design and management of wireless sensor networks. They are typically used for remote environment monitoring in areas where providing electrical power is difficult. Therefore, the devices need to be powered by batteries and alternative energy sources. Because battery energy is limited, the use of different techniques for energy saving is one of the hottest topics in WSNs. In this work, we present a survey of power saving and energy optimization techniques for wireless sensor networks, which enhances the ones in existence and introduces the reader to the most well known available methods that can be used to save energy. They are analyzed from several points of view: Device hardware, transmission, MAC and routing protocols.Sendra Compte, S.; Lloret, J.; García Pineda, M.; Toledo Alarcón, JF. (2011). Power saving and energy optimization techniques for Wireless Sensor Networks. Journal of Communications. 6(6):439-459. doi:10.4304/jcm.6.6.439-459S4394596

    Models and Solution Approaches for Efficient Design and Operation of Wireless Sensor Networks

    Get PDF
    Recent advancements in sensory devices are presenting various opportunities for widespread applications of wireless sensor networks (WSNs). The most distinguishing characteristic of a WSN is the fact that its sensors have nite and non-renewable energy resources. Many research e orts aim at developing energy e cient network topology and routing schemes for prolonging the network lifetime. However, we notice that, in the majority of the literature, topology control and routing problems are handled separately, thus overlooking the interrelationships among them. In this dissertation, we consider an integrated topology control and routing problem in WSNs which are unique type of data gathering networks characterized by limited energy resources at the sensor nodes distributed over the network. We suggest an underlying hierarchical topology and routing structure that aims to achieve the most prolonged network lifetime via e cient use of limited energy resources and addressing operational speci cities of WSNs such as communication-computation trade-o , data aggregation, and multi-hop data transfer for better energy e ciency. We develop and examine three di erent objectives and their associated mathematical models that de- ne alternative policies to be employed in each period of a deployment cycle for the purpose of maximizing the number of periods so that the network lifetime is prolonged. On the methodology side, we develop e ective solution approaches that are based on decomposition techniques, heuristics and parallel heuristic algorithms. Furthermore, we devise visualization tools to support our optimization e orts and demonstrate that visualization can be very helpful in solving larger and realistic problems with dynamic nature. This dissertation research provides novel analytical models and solution methodologies for important practical problems in WSNs. The solution algorithms developed herein will also contribute to the generalized mixed-discrete optimization problem, especially for the problems with similar characteristics
    corecore